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Abstract

We are witnessing an unprecedented increase in mobile data traffic driven by video
on demand applications. The data rates achieved in the wireless link are approach-
ing the theoretical limits and the asynchronous requests for content mostly renders
traditional broadcasting useless. The methods of increasing the capacity of wireless
links include increasing the spectral efficiency, increasing the spatial reuse and find-
ing new frequency spectrum, which will all be addressed by the new 5G standard.
It is questionable, however, whether these solutions alone will be enough to cope
with the demand.

Storage has become an inexpensive and readily available resource. Recently, it
has been proposed to exploit this fact to store content closer to the end users –
a technique known as caching. The proposed solutions include storing content at
access points or to use available storage on wireless devices such as smartphones,
tablets and laptops to store content on the actual wireless devices. In both cases,
content is typically stored in a distributed fashion over a number of storage de-
vices using an erasure correcting code (ECC). This bears great similarities with
distributed storage (DS) for wired systems such as data centers or peer-to-peer net-
works. Therefore, we will use the term wireless DS. The main difference with respect
to wired DS is that content is stored to decrease the strain in the base station (BS)
wireless link and increase throughput while in wired DS the main goal is to store
data and maintain its availability over long periods of time.

In this work we consider a DS for a wireless network, where mobile devices arrive
and depart according to a Poisson random process. Content is stored in a number of
mobile devices, using an ECC. When requesting a piece of content, a user retrieves
the content from the mobile devices using device-to-device communication or, if not
possible, from the BS, at the expense of a higher communication cost. The repair
problem when a device that stores data leaves the network is investigated. In par-
ticular, we introduce a repair scheduling, where repair is performed (from storage
devices or the BS) periodically. Analytical expressions for the overall communica-
tion cost of repair and download as a function of the repair interval are derived. The
analysis is illustrated by giving results for maximum distance separable codes and
regenerating codes. The results indicate that DS can reduce the overall communi-
cation cost with respect to the case where content is only downloaded from the BS.
The required repair frequency depends on the code used for storage and the network
parameters. In particular, regenerating codes relying on many storage devices for
repair require very frequent repairs. It is also shown that instantaneous repair is not
the optimal repair scheduling for some code families.
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Acronyms

BS base station

CDF cumulative distribution function

CDN content delivery network

c.u. cost unit

D2D device-to-device

DS distributed storage

ECC erasure correcting code

i.i.d. independent, identically distributed

MBR minimum bandwidth regenerating

MDS maximum distance separable

MIMO multiple input multiple output

MSR minimum storage regenerating

OFDM orthogonal frequency division multiplexing

P2P peer-to-peer

PDF probability density function

PMF probability mass function

t.u. time unit
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Symbols

α storage per node [bits]

β data transmitted from storage node during repair [bits]

Γ storage budget [files]

γBS repair bandwidth in BS communication [bits]

γD2D repair bandwidth in D2D communication [bits]

∆ repair interval [t.u.]

λ arrival rate [t.u.−1]

µ departure rate [t.u.−1]

ρBS transmission penalty in BS communication [c.u./bit]

ρD2D transmission penalty in D2D communication [c.u./bit]

ρ transmission penalty ratio

ω request rate [t.u.−1]

C total cost [c.u./(bit×t.u.)]

Cd download cost [c.u./(bit×t.u.)]

Cr repair cost [c.u./(bit×t.u.)]

dmin minimum Hamming distance

k download access

kc number of information symbols

M file size [bits]

N average number of nodes

n number of coded symbols (storage nodes)

r repair access

Sk stopping time [t.u.]

Ta node inter-arrival time [t.u.]

Tl node lifetime [t.u.]

Tr inter-request time [t.u.]

Wl time of lth request [t.u.]

W̃l time of lth request in a repair interval [t.u.]
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Chapter 1

Introduction

1.1 Background and Motivation

There is an ever increasing demand for high quality video content on mobile devices
like smartphones, tablets and laptops. It is predicted that the global mobile data
traffic will reach 24.3 exabytes per month by 2019, nearly a tenfold increase compared
to the traffic in 2014 [1]. The transmission of video is responsible for approximately
55% of all mobile data traffic, where the video segment is predicted to increase to 75%
by 2019. Video traffic is driven by video on demand applications like Youtube and
Netflix where user requests are asynchronous, i.e., users wish to download content
at different times. The implication is a shift from traditional video broadcasting
to transmitting video files to each user separately. This threatens to completely
congest the already burdened wireless links as current 4G systems are operating
close to the theoretical limits [2]. To emphasize the seriousness of the situation, the
European Network and Information Security Agency (ENISA) listed congestion of
wireless links as a top ten smartphone risk, already in 2010 [3].

The methods to increase the capacity of existing wireless links include increas-
ing the spectral efficiency, increasing the spatial reuse and to find new available
frequency spectrum. For the present 4G standard, there are already technologies
in place, such as multiple input multiple output (MIMO) and orthogonal frequency
division multiplexing (OFDM), that achieve a spectral efficiency close to the theo-
retical limits [2]. For 5G, massive MIMO (where the number of antennas is scaled
up by several orders of magnitude) is proposed to increase the spectral efficiency [4].
Increasing spatial reuse means using the same carrier frequency at another spatial
location. The way that the new 5G standard will most likely address this is by
introducing much smaller cells, i.e., a densification of base stations (BSs) [4]. A lot
of research is also invested in tapping the millimeter-wave frequency spectrum, with
frequencies ranging from 3 to 300 GHz [2]. It is likely, however, that these methods
alone will be too costly or insufficient to cope with the demand.

Recently, another solution to alleviate the problem of the wireless bottleneck
link has been proposed. Facilitated by the availability of inexpensive storage and
the knowledge that intense video traffic is caused by a few very popular video files
[5], it has been suggested to store content closer to the end users – a technique
known as caching [5–10]. The authors of [6–8] consider a central server transmitting
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content to a number of users, with individual storage capabilities, over a shared link.
It is assumed that the link experiences periods of low and high traffic. The main
idea is that during intervals of low network congestion popular content is stored by
the users and it is shown that less data has to be transmitted over the shared link
during periods of high traffic.

The idea presented in [9] is to deploy a number of access points (called helpers)
within the cellular network and to store data across them. The helpers have a large
storage capacity but low-rate wireless backhaul links to the BS. Users download
content from the helpers or, if not possible, from the BS. The wireless links between
helpers and users, as well as BS to users, experience delays and the BS to user links
have the highest delay. Users can connect to multiple helpers and both uncoded
and coded (using ideal fountain codes [11]) content placement is considered. The
optimum way of assigning content to helpers to achieve the shortest total download
time is analyzed in [9] and the storage of coded content is shown to outperform
the case where there are no helpers, i.e., all content is downloaded from the BS.
Furthermore, the coded scheme achieves a lower download delay than the uncoded
scheme.

The concept in [9] was pushed further in [10], where it was suggested to store
content directly in the mobile devices, taking advantage of the high storage capacity
of modern smart phones and tablets. Hence, no additional infrastructure is required.
[10] assumes that video files available for download in the wireless network have
different popularities, as shown for wired systems in [5], which is assumed to follow
a Zipf distribution. The position of mobile devices within a cell is a uniformly
distributed random variable and devices that are geographically close to each other
can communicate using device-to-device (D2D) communication. Traffic to the BS is
alleviated by optimizing the cell size, equivalently maximizing the number of times
a requested file can be retrieved from the mobile devices storing content.

The results in [6–10] were derived using information theoretical arguments. [12]
presents a more practical scheme where mobile devices roam in and out of a cell
within a cellular network according to a random process and request a file at ran-
dom times. The mobile devices, assumed to have infinite storage capacity, are used
to store copies of the file. The file can be downloaded through D2D communication
as long as a device storing a copy of the file remains in the network. Since a device
storing data will eventually depart from the cell, the problem of repairing the lost
data is investigated for the case of instantaneous repair. Since repair is instanta-
neous, this system will only face single device departures and simply replicating the
file and storing the copies on two mobile devices is sufficient to maintain the file in
the network.

Storing content closer to the end users in a wireless network bears some similar-
ities with the concept of content delivery networks (CDNs). Because the Internet
was designed for end-to-end transmission from a single server to multiple users at
the edge of the network, shown in Fig. 1.1(a), the capacity of the backhaul links
could not support the required data rates. The solution was the CDN, depicted in
Fig. 1.1(b), where popular content was stored at storage nodes closer to the users.
This evolved into peer-to-peer (P2P) networks, visualized in Fig. 1.1(c), where con-
tent was stored at, and sent between, the actual users (peers), a solution where

2



bottleneck link

(a) The original Internet. (b) The content delivery network.

(c) The peer-to-peer network. (d) Wireless DS with D2D communication.

Figure 1.1: The evolution of content delivery. Blue nodes store data and green nodes are users
downloading content. Solid and dashed arrows indicate wired and wireless connections respectively.

both the demand and the storage capacity scales with the number of clients. An
example of a P2P network is the BitTorrent technology where the storage of popular
files is distributed in the sense that a user downloads content from multiple storage
nodes. One of the important conditions that facilitated the transition from CDN to
P2P networks was the availability of sizable memory at the user side, which is now
exactly the case for wireless devices such as access points, and mobile devices. A
wireless distributed storage (DS) system with D2D communication, investigated in
[9, 10, 12] and visualized in Fig. 1.1(d), is a natural evolution of P2P networks.

1.2 Distributed Storage

There is a demand to store huge amounts of data. Using a single piece of hardware
to store data reliably would be very costly, if not impossible, due to the sheer size
of the data to be stored. The solution adopted in data centers is to store data in a
distributed fashion over several inexpensive devices, called storage nodes, which form
a DS system. Because the devices are prone to failures, one must provide resilience
to device failures, referenced to as fault tolerance, by introducing redundancy. The
simplest way, and still the most prevailing one, is to replicate data over several
storage nodes. For example, consider replicating a file three times and storing a
copy of the file at three storage nodes. If two nodes fail, the data can still be
recovered from the last functioning node. We say that 3-replication has a fault
tolerance of two failures.

A problem with replication is the large storage overhead for a given fault toler-
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ance. This has motivated the use of erasure correcting codes (ECCs) to achieve a
better fault tolerance/storage overhead tradeoff. In coding theory, an (n, kc) ECC
transform kc information symbols into a codeword of n symbols by adding n−kc par-
ity symbols. In DS, each code symbol is typically stored in a different storage node.
The storage overhead is defined as n

kc
. From a coding perspective, a node failure cor-

responds to a symbol erasure. The ECCs providing the best tradeoff between fault
tolerance and storage overhead are the maximum distance separable (MDS) codes
[13]. The minimum Hamming distance, dmin, of MDS codes achieve the Singleton
bound [13]

dmin ≤ n− kc + 1,

and it follows that an (n, kc) MDS codeword can be decoded from any kc coded
symbols. This is referred to as the MDS property. For example, the (n, kc) Reed-
Solomon code [13] is an MDS code, widely used for providing redundancy in data
transmission, that has also been applied in DS.

Facing storage node failures in DS, the initial state of reliability has to be re-
stored by populating one or more nodes with reconstructed data, which is commonly
referred to as repair. The repair access is the number of nodes involved in the repair
of a failed node and is a critical parameter especially for data centers. The reason
is that a storage node that is accessed during the repair process is not accessible for
data download. If the repair access is high, many storage nodes become unavailable
for download. The repair bandwidth is the amount of data (in bits) transmitted to
repair one failed node and is one of the most significant parameters for the wireless
systems introduced in Section 1.2.1. Other important parameters for DS include
download bandwidth, which is the amount of information that needs to be down-
loaded to decode the file, as well as encoding and decoding complexity, defined as
the number of bit level operations required to encode and decode data for download
and repair.

The new requirements imposed on ECCs for DS calls for new code designs. For
example, the high repair bandwidth [14] and repair complexity [15] is a known
disadvantage of MDS codes. Proposed coding schemes include pyramid codes [16],
local reconstruction codes [17] and locally repairable codes [18], mainly focusing on
minimizing the repair access. Regenerating codes [14], zigzag codes [19] and the
piggybacking framework [20] are designed to minimize the repair bandwidth.

1.2.1 Wireless Distributed Storage

Modern mobile devices like smartphones and tablets have substantial storage capac-
ities and can be used as storage nodes. The devices are assumed to be in the cellular
network, served by a BS, and can communicate through D2D communication. We
refer to this setup as a wireless DS system. The fact that the wireless devices share
the same transmission environment means that D2D connections can be set up with
almost no investments in new infrastructure which is definitely advantageous com-
pared to other solutions, e.g., installing storage in access points.

Like the storage nodes in a data center, the nodes in a wireless DS system are
also unreliable since there is always a risk of temporary or permanent data loss
due to outages or device departures. There is, however, one significant difference
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between the DS in data centers and the wireless DS. In data centers the reliability
is crucial. If the data cannot be maintained, it is permanently lost and the coding
scheme is designed to secure this reliability. In the case of wireless DS, the data
can always be downloaded from the BS, although possibly at a higher transmission
cost because the used bandwidth in the BS to device link is a scarce resource. The
coding applied to the wireless DS is designed to increase the availability of content
within the cell to offload the wireless bottleneck link.

Another important difference between the wired and wireless DS is that, in the
latter scenario, devices communicate over a shared channel. Besides the importance
of minimizing the used bandwidth in the BS-to-device link, minimizing the amount
of data transmitted between the devices through D2D communication is equally
important, hence codes focusing on minimizing the repair bandwidth [14,19,20] are
best suited for wireless DS.

In practice, a wireless DS network storing a single file works as follows. The
file, always available at the BS, is partitioned into packets and encoded onto storage
nodes using an ECC. Users within the cell request and download content from
storage nodes through D2D communication. If the data cannot be retrieved from
the storage nodes remaining in the cell, the users download file from the BS. Because
of the occurring permanent device failures, lost content must be repaired to restore
the initial state of data availability within the cell. The repair can be carried out
either by transmitting data from storage nodes, or if not enough data remain within
the wireless DS, repair is carried out by the BS.

1.3 Aim and Outline

In this work, we consider a wireless DS scenario, similar to the one in [12]. Mobile
devices roam in and out of a cell within the cellular network according to a Poisson
random process and request content at random times. The cell is served by a BS,
which always has access to the content. Content is also stored across a limited
number of mobile devices using an ECC. When a user requests a piece of content,
it attempts to download it from the mobile devices using D2D communication. If
not possible, the content is downloaded from the BS, at the expense of a higher
communication cost. The main focus is on the repair problem when a device that
stores data leaves the network. In particular, we introduce a repair scheduling, where
lost content is repaired (from storage devices sojourning in the cell or from the BS)
at periodic times. We derive analytical expressions for the total communication cost
of repair and download as a function of the repair interval. Furthermore, we analyze
several ECCs, namely MDS, and regenerating codes. It is shown that DS can reduce
the overall communication cost as compared to the classical scenario where content
is only downloaded from the BS. Somewhat surprisingly, instantaneous repair is not
the optimal repair scheduling for some code families. The work in this thesis has so
far resulted in a submitted conference paper [21] and an invited talk at the IC1104
COST meeting in Novi Sad, Serbia.

The remainder of the thesis is organized as follows. We explain the arrival,
departure and request processes of the wireless network, as well as the storage,
delivery and repair policies, define and analyze the average repair and delivery costs
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and present the coding schemes considered for DS in Chapter 2. The numerical
results are shown in Chapter 3 with conclusions in Chapter 4.
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Chapter 2

Wireless Distributed Storage

2.1 System Model

Consider a single cell in a cellular network, served by a BS, where mobile devices
(referred to as nodes) arrive and depart according to a Poisson process. The average
number of nodes in the network is N . Nodes wish to download content from the
network. For simplicity, assume that there is a single object (file), of size M bits,
stored at the BS. Further assume that nodes can store data and communicate error
free between them using D2D communication, that the nodes can communicate error
free with the BS and that the state of the network is known by all nodes and the BS
at all times where the communication overhead to get this information is neglected.
The scenario is depicted in Fig. 2.1.

Arrival-departure model. There are N nodes, each arriving according to a Poisson
process with exponential independent, identically distributed (i.i.d.) random inter-

Nλ

α α

α
α

kα

M

γD2D

γBS

µ

µ

Figure 2.1: A wireless network with data storage in the mobile devices (nodes). A new node
arrives to the network at rate Nλ. The departure rate per node is λ. Arriving and departing nodes
are marked orange. Blue nodes store exactly α bits each. The green node requests the file and
downloads it from the storage nodes (solid arrows), or from the BS (dashed arrow). The repair of
a node (in red) is carried out by transmitting γD2D bits from storage nodes (solid arrows) or γBS

bits from the BS (dashed arrow).
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0 · · ·

Nλ

µ

N − 1

Nλ

(N − 1)µ

N

Nλ

Nµ

N + 1

Nλ

(N + 1)µ

· · ·

Nλ

(N + 2)µ

Figure 2.2: Markov chain for the M/M/∞model used to describe the arrival-departure process.

arrival times with probability density function (PDF)

λe−λt, t ≥ 0,

hence a new node arrives in the network at inter-arrival times Ta with PDF

fTa(t) = Nλe−Nλt, t ≥ 0,

where Nλ is the expected arrival rate of a node and t ∈ R is time, measured in time
units (t.u.).

A node stays in the cell for an i.i.d. exponential random inter-departure time Tl

with PDF

fTl
(t) = µe−µt, t ≥ 0, (2.1)

where µ is the expected departure rate of a node. The number of nodes in the cell
can be described by an M/M/∞ queuing model and the Markov chain for such a
model is shown in Fig. 2.2.

Assume that µ = λ, i.e., the average flow of nodes in and out of the cell is the
same and the average number of nodes in the cell stays constant (equal to N). The
probability that there are i nodes in the cell is [22]

π(i) =
N i

i!
e−N .

Data storage. The file is partitioned into kc packets and encoded using an (n, kc)
ECC of rate Rc = kc/n. The encoded data is stored in n nodes, referred to as storage
nodes. For simplicity, we assume n� N , hence the probability that the number of
nodes in the cell is smaller than n is negligibly small, i.e.,

n−1∑
i=0

π(i)� 1. (2.2)

Therefore, the file can always be stored in the network. In particular, each storage
node stores exactly α bits, i.e., we consider a symmetric allocation [23]. Hence,

α =
M

kc

. (2.3)

Like [23], we impose an overall storage budget constraint of ΓM ≥ 0 bits across the
nodes in the cell, i.e., nα ≤ ΓM . Note that to satisfy the storage budget constraint,
Rc ≥ 1/Γ.
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Data delivery. Nodes request the file at random times with i.i.d. random inter-
request time Tr with PDF

fTr(t) = ωe−ωt, t ≥ 0, (2.4)

where ω is the expected request rate per node, i.e., the total expected request rate
in the cell is Nω. Whenever possible, the file is downloaded from the storage nodes
using D2D communication, referred to as D2D download. In particular, it is as-
sumed that data can be downloaded from any subset of k storage nodes, where
k ∈ {1, . . . , n − 1} and we may refer to k as the download access. In other words,
D2D download is possible if k or more storage nodes remain in the cell. In this case,
the amount of downloaded data, the download bandwidth, is kα bits. The parameter
k depends on the properties of the ECC used for storage, and will be discussed in
Section 2.3. In the case where there are less than k storage nodes in the cell, the
file is downloaded from the BS, referred to as BS download. In this case, M bits
are downloaded. To simplify the analysis in Section 2.2, the download bandwidth
is assumed to be the same irrespective of whether the request comes from a storage
node or not. This is a reasonable approximation, since n� N .

Transmission cost. It is assumed that transmission from the BS and from a
storage node (in D2D communication) have different costs. Denote by ρBS and ρD2D

the cost (in cost units (c.u.)) per bit, [c.u./bit]) of transmitting one bit from the BS
and from a node, respectively, and by ρ = ρBS/ρD2D its ratio.

2.1.1 Repair Process

When a storage node leaves the network, its stored data is lost (see blue node with
orange stripes in Fig. 2.1). Therefore, another node needs to be populated with
data to maintain the initial state of reliability of the DS network, i.e., n storage
nodes. The restore (repair) of the lost data onto another node, chosen uniformly at
random from all nodes in the cell that do not store any content, will be referred to
as the repair process. In particular, we introduce a scheduled repair scheme where
the repair process is launched periodically. Denote the interval between two repairs
by ∆ (in t.u.), ∆ ≥ 0. Note that ∆ = 0 corresponds to the case of instantaneous
repair, considered in [12].

Similarly to the download, repair can be accomplished from the storage nodes
(D2D repair) or from the BS (BS repair), with cost per bit ρD2D and ρBS, respectively.
The amount of data (in bits) that needs to be retrieved from the network to repair
a single failed node is referred to as the repair bandwidth, γ. In particular, assume
that D2D repair can be performed from any subset of r storage nodes by retrieving
β bits from each node. In other words, D2D repair is possible if there are at least
r storage nodes in the cell at the moment of repair. r is usually referred to as the
repair access in the literature. In this case γD2D = rβ, where the subindex indicates
that repair is performed from the storage nodes. If there are less than r storage
nodes in the network at the moment of repair, then the repair is carried out by the
BS. In this case γBS = α. It is assumed that repair always succeeds. Furthermore,
for both repair and download, error-free transmission is assumed.
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2.2 Analysis of Repair and Delivery Cost

In this Section, we derive analytical expressions for the repair cost, download cost
and total cost as a function of the repair interval, ∆. We denote by E(·) the expec-
tation, or average, and by E (Cr), E (Cd) and E(C) = E (Cr) + E (Cd) the average
repair, download and total cost respectively. The cost is defined in cost units per
bit and time unit [c.u./(bit×t.u.)].

2.2.1 Average Repair Cost

We begin with deriving the expression for the average repair cost. Denote by nD2D
r

and nBS
r the average number of nodes repaired from the storage nodes and from the

BS, respectively, in one repair interval. Also, let

bi(n, p) =

(
n

i

)
pi(1− p)n−i, i ∈ {0, . . . , n} (2.5)

denote the probability mass function (PMF) of the binomial distribution with pa-
rameters n and p. We have the following lemma, describing how to calculate the
average number of nodes repaired by storage nodes or by the BS.

Lemma 1.

nD2D
r =

n∑
i=r

(n− i)bi(n, p), (2.6)

nBS
r =

r−1∑
i=0

(n− i)bi(n, p), (2.7)

where p = e−µ∆.

Proof. The cumulative distribution function (CDF) of the node lifetime (2.1) is

FTl
(t) =

∫ t

0

fTl
(s) ds = −e−µs

∣∣t
s=0

= 1− e−µt, t ≥ 0.

The probability that a storage node has not left the network during a time ∆ and
is accessible for repair is

p = Pr(Tl > ∆) = 1− FTl
(∆) = e−µ∆.

Hence, the probability that i storage nodes are accessible is bi(n, p) from (2.5). If i
storage nodes remain in the network, then n− i repairs need to be performed. D2D
repair is performed if i ≥ r; BS repair is performed otherwise. Therefore, (2.6) and
(2.7) hold. �

We are now ready to state the full expression for the average repair cost, which
is given by the following theorem.
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Theorem 1. Consider the DS network in Section 2.1 with parameters M , ∆, ρBS,
γBS, ρD2D, γD2D, µ, n and r. The average repair cost is

E (Cr) =
1

M∆

(
ρBSγBSn

BS
r + ρD2DγD2Dn

D2D
r

)
(2.8)

=
1

M∆

(
ρBSγBS

r−1∑
i=0

(n− i)bi(n, p) + ρD2DγD2D

n∑
i=r

(n− i)bi(n, p)
)
, (2.9)

where p = e−µ∆.

Proof. From the system model, it follows that the cost of repairing a single storage
node from the BS is ρBSγBS c.u. Similarly, the cost of D2D repair of a single node is
ρD2DγD2D c.u. Normalizing by the file size (M bits) and the duration of the repair
interval ∆, we obtain (2.8) in [c.u./(bit×t.u.)]. Finally, using Lemma 1, we obtain
(2.9). �

2.2.2 Average Download Cost

We now shift the attention to the derivation of the average download cost in the
following theorem.

Theorem 2. Consider the DS network in Section 2.1 with parameters N , ω, M ,
ρBS, ρD2D, n, k, α, µ and ∆. Let µi = iµ, for i ∈ {k, . . . , n}, and pi = e−µi∆. Then,

E (Cd) =
Nω

M
(ρBSM Pr{BS download}+ ρD2DkαPr{D2D download}) (2.10)

= Nω

ρBS +

(
ρD2D

kα

M
− ρBS

)
1

∆

n∑
i=k

1− pi
µi

n∏
j=k
j 6=i

µj
(µj − µi)

 , (2.11)

where Pr{BS download}+ Pr{D2D download} = 1.

A file request entails a cost ρD2Dkα with probability Pr{D2D download}, and a
cost ρBSM with probability Pr{BS download}. The overall request rate per t.u. is
Nω. Normalizing by the file sizeM gives (2.10). We assume that Pr{BS download}+
Pr{D2D download} = 1, implying that download always succeeds, either from stor-
age nodes or from the BS and we can focus on obtaining Pr{D2D download}. The
derivation of Pr{D2D download} requires the derivation of two distributions: The
distribution of the time within a repair interval such that less than k storage nodes
are remaining in the cell, and the distribution of requests within a repair interval.

First we concentrate on the distribution of the time within a repair interval when
the number of storage nodes goes from k to k − 1. Within a repair interval, the
number of storage nodes n(t) in the cell is described by a Poisson death process [22].
Denote by Ti the time interval for which n(t) = i, i ∈ {k, . . . , n} (see Fig. 2.3 for
illustration). From (2.1), Ti is exponentially distributed with rate µi = iµ. This
means that we expect to see increasing inter-departure times of storage nodes in

11
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· · ·
· · ·

· · ·

Tn
Tn−1

Tk

k

Sk

Figure 2.3: The number of available storage nodes vs. time t, within the repair interval ∆. At
t = 0, there are n nodes available. During the intervals Ti, there are i nodes. Hence, during the
time interval t ∈ [0, Sk) there are at least k nodes available for D2D download.

average. Denote by Sk the time instant when n(t) changes from k to k− 1. We will
refer to Sk as the stopping time of the random process. We calculate

Sk =
n∑
i=k

Ti.

It can be shown that Sk follows the hypoexponential distribution with PDF [24]

fSk
(t) =

n∑
i=k

µnµn−1 . . . µk∏n
j=k
j 6=i

(µj − µi)
e−µit, t ≥ 0. (2.12)

This concludes the first part of finding Pr{D2D download} and we shift our attention
to finding the distribution of the time of a request within a repair interval ∆.

Let Wl be the absolute time instant of the lth request. Wl is computed as the sum
of l inter-request times with PDF given by (2.4). Thus, Wl is an Erlang-distributed
random variable with PDF [22]

fWl
(t) =

ωltl−1e−ωt

(l − 1)!
, t ≥ 0. (2.13)

The time of the lth request related to a repair interval is given by the following
definition.

Definition 1. The absolute time of the lth request in relation to a repair interval
∆ is defined

W̃l , Wl mod ∆.

We can calculate the distribution of W̃l by using the following lemma.

Lemma 2. The PDF of W̃l for t ∈ [0,∆) is

fW̃l
(t) =

∞∑
i=0

ωl(t+ i∆)l−1e−ω(t+i∆)

(l − 1)!
. (2.14)

12



Proof. See appendix A.1. �

The result of Lemma 2 is difficult to analyze directly. If we assume that we have
already seen an infinite number of requests we have the following definition.

Definition 2. The absolute time of the lth request in relation to a repair interval
as l→∞ is defined

W̃∞ , lim
l→∞

W̃l.

The distribution of W̃∞ is calculated using the subsequent lemma.

Lemma 3. The PDF of W̃∞ for t ∈ [0,∆) is

fW̃∞
(t) =

1

∆
. (2.15)

Proof. See appendix A.2. �

As it turns out, the absolute request time is uniformly distributed over a repair
interval if we wait an infinite amount of time. It can be verified numerically that the
convergence of W̃l to the uniform distribution is fast, i.e., W̃l is uniformly distributed
already for small values of l. Approximating (2.14)

fW̃l
(t) ≈

105∑
i=0

ωl(t+ i∆)l−1e−ω(t+i∆)

(l − 1)!
,

we define the maximum error of the PDF of W̃l from the PDF of the uniform
distribution

εmax(l) = max
t∈[0,∆)

∣∣∣∣fW̃l
(t)− 1

∆

∣∣∣∣ ≈ max
t∈[0,∆)

∣∣∣∣∣
105∑
i=0

ωl(t+ i∆)l−1e−ω(t+i∆)

(l − 1)!
− 1

∆

∣∣∣∣∣
As an example, Fig. 2.4 shows the maximum error when µ = 50, ω = 0.5 and
µ∆ = 1. We observe that the error decreases fast for increasing l. Consequently, we
will approximate

fW̃l
(t) ≈ 1

∆
= fW̃∞

(t), t ∈ [0,∆). (2.16)

Now we know the PDFs of the stopping time (2.12) and the request time within
a repair interval (2.16). D2D download is possible if at least k storage nodes are
available in the network, i.e., a request comes in the time interval t ∈ [0, Sk). Given
the sequence of random variables {W̃1, W̃2, . . .},

Pr{D2D download} = lim
L→∞

1

L

L∑
l=1

Pr(W̃l < Sk) ≈ Pr(W̃∞ < Sk) (2.17)

under the approximation (2.16). Using the PDFs of the stopping time (2.12) and the
distribution of requests within a repair interval (2.16), the PDF of the transformation
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Figure 2.4: The maximum error as a function of l, assuming that the time of the lth request
related to the repair interval is uniformly distributed when µ = 50, ω = 0.5 and µ∆ = 1.

W̃∞ − Sk is calculated [22]

fW̃∞−Sk
(t) =

∫ ∞
−∞

fW̃∞
(t+ s)fSk

(s) ds =
1

∆

∫ ∆−t

max(−t,0)

n∑
i=k

µnµn−1 · · ·µk∏n
j=k
j 6=i

(µj − µi)
e−µis ds

=
1

∆

n∑
i=k

µnµn−1 · · ·µk∏n
j=k
j 6=i

(µj − µi)

∫ ∆−t

max(−t,0)

e−µis ds

=
1

∆

n∑
i=k

(
e−µi max(−t,0) − e−µi(∆−t)

) n∏
j=k
j 6=i

µj
(µj − µi)

.

Hence, we calculate

Pr(W̃∞ < Sk) = Pr
(
W̃∞ − Sk < 0

)
=

∫ 0

−∞
fW̃∞−Sk

(t) dt

=
1

∆

n∑
i=k

∫ 0

−∞
eµitdt

(
1− e−µi∆

) n∏
j=k
j 6=i

µj
(µj − µi)

=
1

∆

n∑
i=k

1− pi
µi

n∏
j=k
j 6=i

µj
(µj − µi)

. (2.18)

Finally, using (2.18), (2.17) and Pr{BS download} = 1 − Pr{D2D download} we
obtain (2.11). Similar to the average repair cost, the average download cost is a
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complex function that is difficult to analyze. Despite this fact we can derive the
following result.

Corollary 1. For µ > 0, E (Cd) is strictly increasing if ρ > kα
M

, strictly decreasing
if ρ < kα

M
and constant otherwise.

Proof. See appendix A.3. �

2.2.3 Average Total Cost

The average total cost is obtained by combining Theorems 1 and 2,

E(C) = E (Cr) + E (Cd)

=
1

M∆

(
ρBSγBS

r−1∑
i=0

(n− i)bi(n, p) + ρD2DγD2D

n∑
i=r

(n− i)bi(n, p)
)

+Nω

ρBS +

(
ρD2D

kα

M
− ρBS

)
1

∆

n∑
i=k

1− pi
µi

n∏
j=k
j 6=i

µj
(µj − µi)

 (2.19)

where p = e−µ∆ and pi = e−iµ∆.

The average total cost when repair is instantaneous (∆→ 0) and when lost data
is never repaired (∆→∞) is given by the following corollary.

Corollary 2. For instantaneous repairs

lim
∆→0

E(C) =
ρD2D

M
(nµγD2D +Nωkα), (2.20)

Moreover, for µ > 0

lim
∆→∞

E(C) = NωρBS. (2.21)

Proof. See appendix A.4. �

For instantaneous repair (∆ → 0), both repair and download are always per-
formed from the storage nodes if n > 1. If n = 1 there are no storage nodes
remaining in the cell to repair from since the sole storage node departs. The two
terms in (2.20) correspond to the repair and download costs in the D2D regime. For
∆ → ∞, data is never repaired (hence, E (Cr) → 0) and, for µ > 0, the number
of storage nodes in the cell will become smaller than k at some point, and D2D
download is not possible. Therefore, the average download cost is the average BS
download cost. If µ = 0, there are no departures of storage nodes from the cell and
D2D repair and D2D download will always succeed.
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2.3 Coding Schemes

From Section 2.2 it can be seen that the total cost, E(C), depends on the DS system
parameters n, k, r, γD2D = rβ, and γBS = α (among others). This section describes
how, in turn, these parameters depend on the (n, kc) ECCs used for storage. There
is a one-to-one mapping

(n, kc)←→ [n, k, r]

and we will use this notation interchangeably. Note that n refers to the number of
coded symbols in (n, kc) and the number of storage nodes in [n, k, r] and here they
are equal by construction. We consider as examples MDS codes [13] and regenerating
codes [14].

2.3.1 Maximum Distance Separable Codes

Assume an (n, kc) MDS code [13] together with a DS system with k = kc. Then,
each of the n storage nodes stores αMDS = M

k
bits. Due to the MDS property,

D2D repair and D2D download require to contact r = k storage nodes. Moreover,
βMDS = αMDS = M

k
, which means that γD2D = M . The fact that an amount of

information equal to the size of the entire file has to be retrieved to repair a single
storage node is a known drawback of MDS codes [14].

The simplest MDS code, and also the most widely used for DS in data centers,
is the (n, 1) MDS code, referred to as n-replication. In this case, each storage node
stores the entire file, i.e., αrep = M . For replication, r = k = 1 and βrep = M .

2.3.2 Regenerating Codes

A lower repair bandwidth γD2D (as compared to MDS codes) can be obtained by
using regenerating codes, formally defined as codes achieving the optimal storage
per node and repair bandwidth tradeoff [14]. The lower repair bandwidth achieved
by such codes comes at the expense of increasing r [14]. Two main classes of re-
generating codes are covered here, minimum storage regenerating (MSR) codes and
minimum bandwidth regenerating (MBR) codes. For given n and k, MSR codes
yield the best storage efficiency, i.e., αMSR is minimum, while MBR codes achieve
minimum D2D repair bandwidth, i.e., γD2D = rβMBR is minimum.

Minimum storage regenerating codes. For an (n, kc) MSR code in a DS system
with k = kc, αMSR = αMDS = M

k
. Hence, the download cost E (Cd) for an (n, kc) MSR

code is equal to that of an (n, kc) MDS code. Moreover, r ∈ {k, . . . , n− 1} storage
nodes are contacted during the D2D repair process. However, βMSR = M

k
1

r−k+1
≤

βMDS [14]. γD2D = rβMSR is minimized for r = n − 1. Note that an [n, k, r] MSR
code with r = k has the exact same performance as an (n, kc) MDS code.

Recall that the file is partitioned into kc packets. In a practical MSR code design,
each of the kc packets has to be further divided into at least 2 subpackets. As an
example, consider the design of a (4,2) MSR code, with γD2D = 0.75M . The file
is partitioned into kc = 2 packets, namely {a, b}, and the two packets are further
divided into sub-packets {a1, a2, b1, b2}. The repair for the example [4, 2, 3] MSR
code is shown in Fig. 2.5.
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Figure 2.5: Repair for an example [4, 2, 3] MSR code, achieving a repair bandwidth of 0.75M .
Linear combinations of packets are stored on blue nodes. The weights are chosen to be the same
as in [14]. The orange storage node has failed. The remaining nodes create linear combinations of
their stored packets and transmit to an idle node (red).

Minimum bandwidth regenerating codes. As described in [14], an (n, kc) MBR
code in a DS system has r ∈ {k, . . . , n− 1}, hence γD2D = rβMBR = M

k
2r

2r−k+1
which

is minimized for r = n − 1. Furthermore, γD2D = αMBR = M
kc

[14], where the last
equality comes from (2.3). The relationship between kc, k and r is therefore

kc =
k(2r − k + 1)

2r
,

with constraint k > kc. The relation between kc, k, r, α and γD2D for the MDS
code as well as for the regenerating codes is presented in Table 2.1. The optimal
storage and repair bandwidth tradeoff achieved by regenerating codes, derived in
[14], is shown in Fig. 2.6 for [n, k, r] = [10, 5, r]. The [10, 5, 5] MDS code is included
for reference.

Table 2.1: The relation between code parameter kc and network parameter k, repair access r,
storage per node α and repair bandwidth γD2D for MDS and regenerating codes.

kc r α γD2D

MDS k k
M

k
M

MSR k {k, . . . , n− 1} M

k

M

k

r

r − k + 1

MBR k
2r − k + 1

2r
{k, . . . , n− 1} M

k

2r

2r − k + 1

M

k

2r

2r − k + 1
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Figure 2.6: The optimal storage per node and repair bandwidth tradeoff for [n, k, r] = [10, 5, r]
regenerating codes compared with the (10, 5) MDS code. The storage per node and the repair
bandwidth is normalized by the file size M .
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Chapter 3

Numerical Results

In this chapter, we evaluate the total cost E(C) for MDS and regenerating codes.
For all results, we consider a network with N = 100 nodes on average with µ = 50.
We also assume that no more than 10 nodes can be used for storage to not violate
(2.2). Without loss of generality we set ρD2D = 1 c.u./bit, i.e., ρ = ρBS.

We initially set a request rate ω = 0.5 and a penalty cost ratio ρ = 200 to
resemble a network where most nodes depart the cell without ever requesting the
file. Fig. 3.1 shows the normalized cost E(C)/Nωρ versus the normalized repair
interval µ∆, for four codes: [10, 2, 2] MDS code; [10, 2, 9] MSR code; [10, 2, 9] MBR
code; and 5-replication. The code rate for all codes is Rc = 1/5, except for the
MBR code that has Rc ≈ 0.19. This is a modest code rate but recall that a low
code rate corresponds to more data stored on storage nodes, i.e., nα ∝ R−1

c using

0 1 2 3 4 5 6 7 8 9 10

1

2

3

4

µ∆

E(
C

)/
N
ω
ρ

[10, 2, 2] MDS

[10, 2, 9] MSR

[10, 2, 9] MBR
5-replication

Figure 3.1: Normalized total cost E(C)/Nωρ versus the normalized repair interval µ∆. The
dotted line shows the cost of BS download. The curves correspond to the analytical expression for
the total cost and the markers are simulated values.
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(2.3). The term Nωρ is the cost of BS download (2.21). In the figure, µ∆ = 1
means that the repair interval is equal to one average node lifetime. The curves
correspond to the analytical expression for the total cost (2.19) and all markers are
simulated values. We have simulated 103 requests, or 103 repairs, whichever value
is the largest. Note that since α, β (and hence γD2D) and γBS are proportional to
the file size M as specified in Section 2.3, the repair and download cost in (2.8) and
(2.11), respectively, are independent of the file size M .

The following key observations can be made from Fig. 3.1: 1) For some repair
interval ∆ the total cost exceeds the cost of BS download; 2) the cost of the re-
generating codes with high repair access, i.e., r = n − 1, appears to be minimized
for ∆ → 0, i.e., instantaneous repair; 3) for the MDS codes, the cost seem to be
decreasing for small repair intervals; and 4) the [10, 2, 2] MDS code is pertaining the
lowest cost for some repair intervals.

3.1 Exceeding the Cost of BS Download

We begin by addressing the first observation. From Corollary 2, E(C)/Nωρ→ 1 (the
cost of always downloading content from the BS) when ∆ → ∞. We observe from
Fig. 3.1 that this is indeed the case. It is interesting to point out that the normalized
total cost exceeds 1 for values of the repair interval larger than a threshold ∆max.
We define the maximum repair interval as

∆max , sup
{

∆ : E(C) < lim
∆→∞

E(C)
}
. (3.1)

For ∆ > ∆max, retrieving the file from the BS is always less costly, therefore
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Figure 3.2: µ∆max as a function of the cost ratio ρ.
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Figure 3.3: Normalized total cost E(C)/Nωρ for the same codes as in Fig. 3.1, but for much
smaller normalized repair intervals µ∆.

storing data in the nodes is useless. Clearly, ∆max is a function of the cost ratio ρ.
Fig. 3.2 shows µ∆max as a function of ρ ∈ [1, 200], for all codes in Fig. 3.1 when
ω = 0.5. We observe that if ρ < 5, approximately, it is never beneficial to use the
considered codes for storage, i.e., the file should instead be downloaded from the
BS. As ρ increases, using the considered codes for storage is beneficial, if repair is
performed with ∆ ≤ ∆max, although the MBR code and the MSR code require very
frequent repairs. The MDS codes require less frequent repairs; for large ρ, the repair
interval must be at most around 1.5 average node lifetimes.

3.2 Investigating the Impact of the Code Rate

We will now focus on to the next key observation. For the same parameters and
codes used in Fig. 3.1, Fig. 3.3 shows the normalized total cost for very short repair
intervals. We observe that instantaneous repair is optimal for the high repair access
(r = n−1) regenerating codes. This highlights the fact that we should optimize the
high repair access MSR and MBR codes for very short repair intervals, i.e., when
∆→ 0.

As can be seen from Fig. 3.1 and Fig. 3.3, for regenerating codes with high repair
access, instantaneous repair entails the lowest total cost for ω = 0.5 and ρ = 200.
Using the same network parameters we calculate the average total cost when ∆→ 0
using (2.20). From Section 2.3 we already know that the repair bandwidth γD2D for
regenerating codes is minimized for a high repair access, i.e., we cannot achieve a
lower total cost when repair is instantaneous by decreasing the repair access. Fig. 3.4
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Figure 3.4: Average total cost versus k for MSR and MBR codes with high repair access
(r = n− 1) when n = 10 and ∆→ 0.

shows how the total cost varies with k when ∆ → 0 for the MSR and MBR codes
with n = 10.

The optimal regenerating codes for instantaneous repair appears to be the [10, 5, 9]
MSR code and the [10, 7, 9] MBR code. It can be readily seen from (2.20) and Sec-
tion 2.3 that 2-replication is the MDS code achieving the lowest total cost when
∆ → 0. A comparison of the aforementioned codes is shown in Fig. 3.5 for very
frequent repairs.

The 2-replication scheme is achieving a lower total cost than the considered
regenerating codes for small repair intervals. Fig. 3.6 gives the complete picture,
showing the average total cost for three codes: [10, 5, 9] MSR code; [10, 7, 9] MBR
code; and 2-replication as a function of the normalized repair interval µ∆. The
[10, 5, 5] MDS code, with same code rate Rc = 1/2 as 2-replication and the [10, 5, 9]
MSR code is included for reference. The [10, 7, 9] MBR code has rate Rc ≈ 0.47. It
turns out that 2-replication is achieving a lower cost than the considered high repair
access regenerating codes for all repair intervals.

3.3 Varying the Repair Access

Concentrating on the last two key observations, the normalized total cost E(C)/Nωρ
for the MDS codes from Fig. 3.1 for moderate normalized repair intervals µ∆ is
shown in Fig. 3.7. Indeed, the average total cost for the MDS codes is minimized
for some ∆ > 0. The reason is that the particular codes can handle multiple storage
node departures. The [10, 2, 2] code can recover from up to 8 storage node departures
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Figure 3.5: Normalized total cost E(C)/Nωρ for very short normalized repair intervals µ∆.
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Figure 3.7: Normalized total cost E(C)/Nωρ for the same codes as in Fig. 3.1, but for shorter
normalized repair intervals µ∆.

before D2D repair and D2D download is no longer possible. By waiting to see on
average 3 storage node departures, for example, the risk of BS repair and download
is still reasonably low so the average total cost is roughly the same. We do however
gain a little bit of node lifetime, i.e., the probability is higher that we repair onto a
node that departs at a later time than what a node that we performed instantaneous
repair onto would have.

The most important difference between the MDS and regenerating codes con-
sidered so far is the repair access r. Increasing the repair access lowers the repair
bandwidth γD2D, as previously stated in Section 2.3, but also decreases the failure
tolerance during repair. This motivates us to investigate regenerating codes with a
lower repair access. We will compare with the [10, 5, 9] MSR code analyzed in the
previous section. As explained in Section 2.3, an [n, k, r] MSR code with r = k has
the exact same performance as an [n, k, r] MDS code. Fig. 3.8 show the total nor-
malized cost E(C)/Nωρ for the [10, 5, r] MSR code with r ∈ {5, . . . , 9}. We carry
the 2-replication scheme, which was shown to achieve the lowest total cost for instan-
taneous repair, from the preceding section for reference. The network parameters
are ω = 0.5 and ρ = 200.

We see in Fig. 3.8 that increasing the repair access results in a higher total cost
for normalized repair intervals µ∆ ≥ 0.12, approximately. Also seen from the figure
is that there are repair intervals µ∆ ∈ (0, 0.12) when increasing the repair access
produces a lower cost, e.g., for µ∆ = 5 ·10−2 the [10, 5, 6] MSR code performs better
than the [10, 5, 5] MSR code. We know from Section 3.2 that 2-replication attains a
lower cost for very short repair intervals, i.e., as ∆→ 0, and for the current network
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Figure 3.8: Normalized total cost E(C)/Nωρ versus the normalized repair interval µ∆ for
[10, 5, r] MSR codes when the repair access r ∈ {5, . . . , 9}. The arrow points in the direction of
increasing r and the dotted line shows the cost of BS download.

parameters. This means that a high repair access (r = n− 1) is never beneficial for
these parameters despite the reduced repair bandwidth.

3.4 Changing the Request Rate

As can be seen from the equation describing the average total cost (2.19), increas-
ing the request rate ω puts more emphasis on the download cost (2.10). For the
same codes and network parameters as in Fig. 3.6, Fig. 3.9 shows the normalized
repair cost E (Cr) /Nωρ and the normalized download cost E (Cd) /Nωρ versus the
normalized repair interval µ∆. Note that the [10, 5, 5] MDS code is not included in
Fig. 3.9(b) because the download cost is exactly the same as the [10, 5, 9] MSR code
since αMDS = αMSR as explained in Section 2.3.

First, we see that the download cost in Fig. 3.9(b) is indeed a monotonically
increasing function of ∆, as predicted by Corollary 1. Comparing Fig. 3.9(a) and
Fig. 3.6 we see that the repair cost have a substantial impact on the total cost, shown
in Fig. 3.6, when the request rate is set to ω = 0.5. The ratio ω/µ = 10−2 reflects
the fact that it is more likely that a node departs the cell without ever requesting the
file. Maintaining ρ = 200, we plot the total cost for the ratio ω/µ ∈ {2·10−2, 10−1, 1}
in Fig. 3.10.

The first observation from Fig. 3.10 is that the maximum repair interval ∆max

(3.1) vanishes with increasing request rate ω, i.e., with a high request rate it is always
useful to store data on the nodes in the cell. The second remark is that none of the
high repair access (r = n− 1) regenerating codes perform better than 2-replication
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Figure 3.9: Normalized cost versus the normalized repair interval µ∆. The dotted line shows
the expected cost of BS download.
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Figure 3.10: Normalized total cost E(C)/Nωρ versus the normalized repair interval µ∆ varying
the ratio ω/µ. The dotted line shows the expected cost of BS download.

for any request/departure rate ratio ω/µ considered here. The performance of the
[10, 5, 9] MSR code will approach that of the [10, 5, 5] MDS code as ω becomes
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Figure 3.11: Normalized total cost E(C)/Nωρ versus the normalized repair interval µ∆ when
decreasing the transmission penalty ratio ρ and fixing ω = 0.5. The dotted line shows the expected
cost of BS download.

large since E(C) → E (Cd) as ω → ∞ using (2.19) and following the description in
Section 2.3.

3.5 Reducing the Transmission Penalty Ratio

For all the previous figures (except Fig. 3.2), we have assumed a high penalty cost ra-
tio ρ. In this section, we reduce this penalty ratio. We plot the total normalized cost
E(C)/Nωρ versus the normalized repair interval µ∆ for ω = 0.5 and transmission
penalty ratio ρ ∈ {1, 5, 10, 50} in Fig. 3.11.

The maximum repair interval ∆max, explaining when storing data on the nodes
is advantageous, decreases with the penalty ratio in agreement with Fig. 3.2. Also,
the [10, 5, 5] MDS code is rendered useless for ρ < 10 and the current network
parameters. As a final remark, when ρ = 1, E(C)/Nωρ > 1 for all considered
codes, i.e., we should rely on the BS for file downloads. The reason for this is that
ρ ≤ kα/M and the download cost E (Cd) is decreasing or constant in ∆ depending
on the code, as explained by Corollary 1. Since E (Cr) ≥ 0, with equality when
∆→∞, the total cost is minimized if we never attempt repair.
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Figure 3.12: Normalized total cost E(C)/Nωρ for codes achieving the minimum total cost for
some repair intervals versus the normalized repair interval µ∆ when ρ = 200 and varying the ratio
ω/µ.

3.6 Codes Minimizing the Total Cost

Now, when we know how the code and network parameters affect the average to-
tal cost, we are ready to summarize the performance of MDS codes and regen-
erating codes. For ρ = 200, we compare all MDS and regenerating codes with
n ∈ {3, . . . , 10}, i-replication, i ∈ {2, . . . , n} and the uncoded case where one node
stores the file. Note that for MDS and regenerating codes with n ∈ {1, 2}, we get
the uncoded and replication scheme respectively since k < n. Recall that we use a
maximum number of 10 storage nodes to not violate (2.2). Fig. 3.12 shows normal-
ized total cost E(C)/Nωρ as a function of the normalized repair interval µ∆ ∈ [0, 1]
for all codes that achieve the lowest total cost for some repair intervals when we vary
the request/departure rate ratio ω/µ ∈ {10−2, 2 · 10−2, 10−1, 1}. Blue curves with
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markers correspond to MBR codes. Red curves with markers represent repli-
cation schemes. The same colors and markers are used in the subsequent figures.
Particularly interesting codes are highlighted in the figure.

In Fig. 3.12 we see that for repair intervals ∆ ∈ [∆i,∆i+1), i ∈ {0, 1, . . .}, a
particular code is attaining the minimum total cost. We refer to the shortest time,
∆i, as the repair interval threshold ∆th for that code. Another code is achieving the
minimum cost in repair intervals ∆ ∈ [∆i+1,∆i+2). We refer to the periodic repair
time ∆i+1 as the repair interval threshold for the second code, and so on. Table 3.1
summarizes the normalized repair interval thresholds µ∆th for the codes presented
in Fig. 3.12 and others for the extended normalized repair intervals µ∆ ∈ [0, 10].
Note that if BS download pertains the minimum total cost we write “BS” in the
column “optimal code”. For the same codes and ω/µ = 10−2, Fig. 3.13 shows
the normalized total cost E(C)/Nωρ versus the normalized repair interval µ∆ for
ρ ∈ {5, 10, 50}. Table 3.2 lists the normalized repair interval thresholds for the codes
presented in Fig. 3.13 as well as other codes performing well in extended normalized
repair intervals µ∆ ∈ [0, 10].

If repairs can be carried out very frequently, the 2- and 3-replication schemes
yield the minimum total cost for all considered scenarios. We note that the MSR
codes are never achieving the minimum total cost and neither are the MDS codes
for which k 6= 1. For some repair intervals the MBR codes are exhibiting good
performance but with an increasing request rate ω, or a decreasing transmission
penalty ratio, replication is the best scheme to use for wireless DS.

We impose the storage budget constraint nα ≤ ΓM , introduced in Section 2.1.
If we let Γ = 5, some of the codes presented in the previous figures and tables are
disqualified for using too much storage. For example, the i-replication schemes, i ∈
{bΓc+1, . . . , 10} are no longer applicable. We again consider MDS and regenerating
codes for which n ∈ {3, . . . , 10} but only the codes conforming to the storage budget
constraint. The uncoded scheme is included in the comparison. Fig. 3.14 shows the
normalized total cost E(C)/Nωρ versus the normalized repair interval µ∆ ∈ [0, 1] for
codes that achieve the minimum total cost for some repair intervals. We investigate a
selection of request/departure rate ratios ω/µ and transmission penalty ratios ρ. Red
curves with markers correspond to MDS codes and black curves with markers
represent MSR codes. Red curves with markers represent replication schemes as
before. The normalized repair interval thresholds µ∆th for the codes in Fig. 3.14 are
listed in Table 3.3 in addition to other codes achieving the minimum total cost for
some repair intervals in the extended normalized repair intervals µ∆ ∈ [0, 10].

When imposing a storage budget constraint, we see that there exists repair inter-
vals for which the [9, 2, 2] MDS code, the [10, 2, 2] MDS code and the [10, 2, 3] MSR
code yield the lowest total cost among all the considered codes. They are replacing
the less storage efficient replication schemes that are no longer applicable due to the
storage budget constraint. None of the high repair access (r = n− 1) regenerating
codes are performing well. The fact that the [10, 2, 3] MSR code is achieving the
minimum cost for some repair intervals means that it can be beneficial to increase
the repair access slightly, which confirms the results in Section 3.3.
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Table 3.1: Codes achieving the lowest average total cost for different request rate ratios ω/µ
when ρ = 200. The normalized repair interval threshold µ∆th is the shortest normalized repair
interval such that the code achieves the minimum total cost which is valid until the next repair
interval threshold.

(a) ω/µ = 10−2

µ∆th optimal code

0 2-replication

2.4 · 10−3 [8, 5, 6] MBR

3.3 · 10−3 3-replication

3.1 · 10−2 [10, 5, 6] MBR

5.2 · 10−2 [9, 4, 5] MBR

5.7 · 10−2 [8, 4, 4] MBR

6.3 · 10−2 [10, 4, 5] MBR

7.7 · 10−2 [10, 5, 5] MBR

9.7 · 10−2 [9, 4, 4] MBR

0.12 [10, 4, 4] MBR

0.17 [9, 3, 3] MBR

0.20 [10, 3, 3] MBR

0.29 [9, 2, 2] MBR

0.33 [10, 2, 2] MBR

0.44 8-replication

0.48 9-replication

0.56 10-replication

1.8 BS

(b) ω/µ = 2 · 10−2

µ∆th optimal code

0 2-replication

2.5 · 10−3 3-replication

4.3 · 10−2 4-replication

0.12 5-replication

0.21 6-replication

0.29 [9, 2, 2] MBR

0.32 7-replication

0.36 [10, 2, 2] MBR

0.40 8-replication

0.48 9-replication

0.56 10-replication

2.21 2-replication

5.4 uncoded

(c) ω/µ = 10−1

µ∆th optimal code

0 2-replication

2.5 · 10−3 3-replication

4.2 · 10−2 4-replication

0.12 5-replication

0.21 6-replication

0.30 7-replication

0.39 8-replication

0.47 9-replication

0.55 10-replication

7.5 9-replication

(d) ω/µ = 1

µ∆th optimal code

0 2-replication

2.5 · 10−3 3-replication

3.8 · 10−2 4-replication

0.10 5-replication

0.18 6-replication

0.27 7-replication

0.35 8-replication

0.43 9-replication

0.50 10-replication
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Figure 3.13: Normalized total cost E(C)/Nωρ for codes achieving the minimum total cost for
some repair intervals versus the normalized repair interval µ∆ when ω/µ = 10−2 and varying the
transmission penalty ratio ρ.

31



Table 3.2: Codes achieving the lowest average total cost for different transmission penalty costs
ρ when ω/µ = 10−2. The normalized repair interval threshold µ∆th is the shortest normalized
repair interval such that the code achieves the minimum total cost which is valid until the next
repair interval threshold.

(a) ρ = 50

µ∆th optimal code

0 2-replication

1.1 · 10−2 3-replication

8.9 · 10−2 [5, 2, 2] MBR

9.0 · 10−2 [8, 4, 4] MBR

9.4 · 10−2 [10, 4, 5] MBR

0.12 4-replication

0.18 [10, 4, 4] MBR

0.23 [9, 3, 3] MBR

0.27 5-replication

0.28 [10, 3, 3] MBR

0.37 6-replication

0.38 [9, 2, 2] MBR

0.45 [10, 2, 2] MBR

0.55 8-replication

0.65 9-replication

0.74 10-replication

1.8 BS

(b) ρ = 10

µ∆th optimal code

0 2-replication

6.3 · 10−2 3-replication

0.26 4-replication

0.46 5-replication

0.64 6-replication

0.80 7-replication

0.94 8-replication

1.1 9-replication

1.2 10-replication

1.4 BS

(c) ρ = 5

µ∆th optimal code

0 2-replication

0.17 3-replication

0.54 BS
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Figure 3.14: Normalized total cost E(C)/Nωρ for codes achieving the minimum total cost for
some repair intervals versus the normalized repair interval µ∆ when Γ = 5.
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Table 3.3: Codes achieving the lowest average total cost for a selection of request rate ratios
ω/µ and transmission penalty cost ratios ρ when Γ = 5. The normalized repair interval threshold
µ∆th is the shortest normalized repair interval such that the code achieves the minimum total cost
which is valid until the next repair interval threshold.

(a) ω/µ = 10−2 and ρ = 200

µ∆th optimal code

0 2-replication

2.4 · 10−3 [8, 5, 6] MBR

3.3 · 10−3 3-replication

3.1 · 10−2 [10, 5, 6] MBR

5.1 · 10−2 [9, 4, 5] MBR

5.7 · 10−2 [8, 4, 4] MBR

6.2 · 10−2 [10, 4, 5] MBR

7.7 · 10−2 [10, 5, 5] MBR

9.7 · 10−2 [9, 4, 4] MBR

0.12 [10, 4, 4] MBR

0.17 [9, 3, 3] MBR

0.20 [10, 3, 3] MBR

0.37 [9, 2, 2] MDS

0.38 [10, 2, 2] MDS

1.5 BS

(b) ω/µ = 10−1 and ρ = 50

µ∆th optimal code

0 2-replication

1.0 · 10−2 3-replication

8.9 · 10−2 4-replication

0.20 · 10−2 5-replication

0.46 [9, 2, 2] MDS

0.50 [10, 2, 2] MDS

1.6 5-replication

(c) ω/µ = 1 and ρ = 50

µ∆th optimal code

0 2-replication

9.1 · 10−3 3-replication

7.0 · 10−2 4-replication

0.16 5-replication

0.33 [10, 2, 3] MSR

0.44 [10, 2, 2] MDS

1.8 5-replication

(d) ω/µ = 1 and ρ = 10

µ∆th optimal code

0 2-replication

3.7 · 10−2 3-replication

0.15 4-replication

0.28 5-replication

0.54 [10, 2, 3] MSR

0.66 [10, 2, 2] MDS

1.8 5-replication
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Chapter 4

Conclusions and Future Work

We considered DS for a wireless network where data is stored in a distributed manner
across mobile devices. We introduced a repair scheduling where the repair of the
data lost due to device departures is performed periodically. We derived analytical
expressions for the total communication cost, due to repair and download, as a
function of the repair interval.

If the request rate is low, we showed that there exists a maximum value of
the repair interval after which retrieving the file from the BS is always less costly
provided that the transmission penalty ratio is high. Therefore, DS in wireless
networks is useful if the repair can be performed frequently enough. The maximum
repair interval decreases with decreasing values of the transmission penalty ratio.
For sufficiently low penalty the maximum repair interval is no longer defined since
it is always less costly to download the file from the BS. An increasing request rate
has the opposite effect on the maximum repair interval. With a high request rate,
DS in wireless networks is always beneficial.

The optimal repair interval that minimizes the total communication cost depends
on the code used for storage. For high repair access regenerating codes, instanta-
neous repair is indeed optimal but for MDS codes using more than two storage
nodes, this is not the case. Varying the repair access, there is a tradeoff between the
reduction in repair bandwidth and the tolerance for storage node departures and
we showed that it is never beneficial to set the repair access too high. For a high
transmission penalty ratio and a low request/departure rate ratio, i.e., a network
dealing mainly with repairs and where it is very costly to use the BS, the MBR
codes with moderate repair access obtain the minimum total cost for some repair
intervals.

We also demonstrated that if we are unlimited in storage capacity, replication is
the scheme attaining the lowest total cost if the request rate is high or the transmis-
sion penalty ratio is low. Imposing a storage budget constraint, the more storage
efficient MDS and MSR codes proved to have good performance for some repair
intervals.

This work may be extended in numerous ways. We have to further analyze the
expressions for the average total cost to be able to predict what ECC to use for
wireless DS given a transmission penalty ratio and an arrival, departure and request
rate. Also, closed form expressions for the repair interval minimizing the total cost
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have to be derived. It would furthermore be interesting to investigate the statistics
of a real wireless network to find out if our assumptions that node arrivals and
departures follow a Poisson process is valid and, in that case, what are reasonable
arrival, departure and request rates. Connecting this knowledge to the complexity
of a particular code would allow us to say whether it is at all reasonable to achieve
a certain repair frequency.

There are many codes that could be analyzed using our system model where
the most interesting include locally repairable codes and rateless codes. The latter
codes might be more suitable if we consider the time it takes to perform repair,
i.e., storage nodes might depart in the middle of the repair process. It would also
be interesting to vary the D2D transmission penalty according to the geographical
distance of nodes within the cell, i.e., it requires more battery power to transmit over
longer distances. Finally, we have not yet considered the communication overhead
required to maintain the wireless DS network.
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Appendix A

Proof of Theorems

A.1 Proof of Lemma 2

Let the function

g(x) = x− i∆ = t, x ∈ [i∆, (i+ 1)∆), i ∈ {0, 1, . . .}, (A.1)

describe the transformation g : Wl → W̃l. The derivative of g is not defined in
the points x = i∆ but since g′(x) = 1, x ∈ (i∆, (i + 1)∆) and limx→i∆ g′(x) = 1,
g′(x) ≡ 1 in the domain of g. We have that

xi = g−1(t) = t+ i∆, t ∈ [0,∆),

are the roots of (A.1) and the PDF of W̃l is calculated as [22]

fW̃l
(t) =

∑
xi

fWl
(xi)

∣∣∣∣ 1

g′(xi)

∣∣∣∣ =
∞∑
i=0

fWl
(t+ i∆) =

∞∑
i=0

ωl(t+ i∆)l−1e−ω(t+i∆)

(l − 1)!
.

where fWl
(t) is given by (2.13).

A.2 Proof of Lemma 3

Using the gamma function

Γ(l) = (l − 1)!, l ∈ {1, 2, . . .},

and the Lerch’s transcendent [25]

Φ

(
e−ω∆, 1− l, t

∆

)
,

∞∑
i=0

(
t

∆
+ i

)l−1

e−ω∆i,

(2.14) can be rewritten as

fW̃l
(t) =

ωle−ωt

Γ(l)

∞∑
i=0

∆l−1

(
t

∆
+ i

)l−1

e−ω∆i =
(ω∆)le−ωt

∆Γ(l)
Φ

(
e−ω∆, 1− l, t

∆

)
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According to [26]

lim
l→∞

(ω∆)l

Γ(l)
Φ

(
e−ω∆, 1− l, t

∆

)
=
(
e−ω∆

)− t
∆ = eωt

and finally we obtain (2.15) as

lim
l→∞

fW̃l
(t) =

e−ωt

∆
eωt =

1

∆
.

A.3 Proof of Corollary 1

Let

li(x) =
n∏
j=k
j 6=i

x− j
i− j ,

then for a function f(x), the Lagrange interpolation polynomial [25]

L(x) =
n∑
i=k

f(i)li(x),

represents the function f(x) at the points x = i′ ∈ {k, . . . , n}, i.e.,

L(i′) =
n∑
i=k

f(i)li(i
′) = f(i′).

Now, using (2.17)

∂

∂∆
Pr{D2D download} =

n∑
i=k

∂

∂∆

1− pi
∆µi

n∏
j=k
j 6=i

µj
(µj − µi)

=
n∑
i=k

1

∆2

(
∆pi +

pi − 1

µi

) n∏
j=k
j 6=i

j

(j − i) ,

and if we let

f(x) =
1

∆2

(
∆e−xµ∆ +

e−xµ∆ − 1

xµ

)
,

then
∂

∂∆
Pr{D2D download} = L(0).

Since

xµ∆ < exµ∆ − 1, ∀ x, µ,∆ > 0,

we have

f(x) < 0, ∀ x, µ,∆ > 0,
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Seeing that L(x) interpolates the function f(x) in the points i ∈ {k, . . . , n} gives

∂

∂∆
Pr{D2D download} < 0, ∀ ∆ > 0.

From (2.10)

∂

∂∆
E (Cd) = Nω

(
ρD2D

kα

M
− ρBS

)
∂

∂∆
Pr{D2D download},

and the sign of ∂
∂∆

E (Cd) only depends on the sign of

ρD2D
kα

M
− ρBS ∝

kα

M
− ρ,

which completes the proof.

A.4 Proof of Corollary 2

From Theorem 1

lim
∆→0

E (Cr) =
1

M

(
ρBSγBS

r−1∑
i=0

(n− i) lim
∆→0

bi(n, p)

∆
+ ρD2DγD2D

n∑
i=r

(n− i) lim
∆→0

bi(n, p)

∆

)

By l’Hôpitals rule

lim
∆→0

bi(n, p)

∆
=

(
n

i

)
lim
∆→0

e−µ∆i(1− e−µ∆)n−i

∆
=

(
n

i

)
lim
∆→0

∂
∂∆
e−µ∆i(1− e−µ∆)n−i

∂
∂∆

∆

=

(
n

i

)
lim
∆→0

e−µ∆i
(
−µi(1− e−µ∆)n−i + (n− i)(1− e−µ∆)n−i−1µe−µ∆

)
=

 nµ, if i = n− 1

0, otherwise

We have that
r−1∑
i=0

(n− i) lim
∆→0

bi(n, p)

∆
= 0,

and
n∑
i=r

(n− i) lim
∆→0

bi(n, p)

∆
= (n− (n− 1))nµ = nµ,

giving the result

lim
∆→0

E (Cr) = ρD2DγD2Dnµ.
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Using Theorem 2 and l’Hôpitals rule

lim
∆→0

E (Cd) = Nω

ρBS +

(
ρD2D

kα

M
− ρBS

) n∑
i=k

1

µi
lim
∆→0

1− pi
∆

n∏
j=k
j 6=i

µj
(µj − µi)



= Nω

ρBS +

(
ρD2D

kα

M
− ρBS

) n∑
i=k

n∏
j=k
j 6=i

µj
(µj − µi)

 (A.2)

Consider the function

F (x) =
1∏n

j=k(µj − x)
,

which can be expanded as the sum of partial fractions as

F (x) =
ck

µk − x
+

ck+1

µk+1 − x
+ . . .+

cn
µn − x

=
n∑
i=k

ci
µi − x

,

where the constants ci, i ∈ {k, k + 1, . . . , n}, are given by evaluating

1 =
n∏
j=k

(µj − x)F (x) = ck

n∏
j=k
j 6=k

(µj − x) + ck+1

n∏
j=1

j 6=k+1

(µj − x) + . . .+ cn

n∏
j=1
j 6=n

(µj − x)

at the points x ∈ {µk, µk+1, . . . , µn}, thus producing the result

ci =
1∏n

j=k
j 6=i

(µj − µi)
.

Therefore

F (x) =
n∑
i=1

1

(µi − x)
∏n

j=1(µj − µi)
,

which evaluated at x = 0 gives

F (0) =
1∏n

j=k µj
=

n∑
i=k

1

µi
∏n

j=k
j 6=i

(µj − µi)
.

We may apply this observation to (A.2) and calculate

lim
∆→0

E (Cd) = Nω

ρBS +

(
ρD2D

kα

M
− ρBS

) n∑
i=k

n∏
j=k
j 6=i

µj
(µj − µi)


= Nω

ρBS +

(
ρD2D

kα

M
− ρBS

) n∑
i=k

∏n
j=k µj

µi
∏n

j=k
j 6=i

(µj − µi)


= Nω

[
ρBS +

(
ρD2D

kα

M
− ρBS

)
F (0)

n∏
j=k

µj

]
= NωρD2D

kα

M
,
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which, using (2.19), gives (2.20).
For the second part of the Corollary, again using Theorems 1 and 2, we have for

the average repair cost

lim
∆→∞

E(Cr) =
1

M

(
r−1∑
i=0

(n− i) lim
∆→∞

bi(n, p)

∆
+

n∑
i=r

(n− i) lim
∆→∞

bi(n, p)

∆

)
,

where

lim
∆→∞

bi(n, p)

∆
=

(
n

i

)
lim

∆→∞

e−µ∆i(1− e−µ∆)n−i

∆
= 0, ∀ i,

and hence
lim

∆→∞
E (Cr) = 0.

For the average delivery cost

lim
∆→∞

E (Cd) = Nω

ρBS +

(
ρD2D

kα

M
− ρBS

) n∑
i=k

1

µi
lim

∆→∞

1− pi
∆

n∏
j=k
j 6=i

µj
(µj − µi)

 ,
where

lim
∆→∞

1− pi
∆

= 0, ∀ i.

Now
lim

∆→∞
E (Cd) = NωρBS,

and (2.21) follows.
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