.)
CHALMERS |
Y b

GTM-IP_103

Speciall purpose modules

Exploring the Generic Timer Module’s
Feasibility for Truck Powertrain Control

Master of Science Thesis in Embedded Electronic System Design

DAN LARSSON
JONAS HEMLIN

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering
Gothenburg, Sweden, June 2015

The Author grants to Chalmers University of Technology and University of Gothen-
burg the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet. The Author warrants that he is the au-
thor to the Work, and warrants that the Work does not contain text, pictures or
other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for
example a publisher or a company), acknowledge the third party about this agree-
ment. If the Author has signed a copyright agreement with a third party regarding
the Work, the Author warrants hereby that he has obtained any necessary permis-
sion from this third party to let Chalmers University of Technology and University
of Gothenburg store the Work electronically and make it accessible on the Internet.

Exploring the Generic Timer Module’s Feasibility for Truck Powertrain Control

DAN LARSSON
JONAS HEMLIN

© DAN LARSSON, June 2015.
© JONAS HEMLIN, June 2015.

Supervisor: Magnus Stalesjo, Volvo Group Trucks Technology
Supervisor: Sally A. McKee, Department of Computer Science and Engineering
Examiner: Per Larsson Edefors, Department of Computer Science and Engineering

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering
SE-412 96 Gothenburg

Telephone +46 (0)31-772 1000

Cover: Overview of the Generic Timer Module IP developed by Robert Bosch
GmbH.

Typeset in BTEX
Department of Computer Science and Engineering

Gothenburg, Sweden, June 2015

Abstract

Timer modules are employed in ECUs to perform real-time signal processing in truck
powertrains. The architecture of these modules usually has either a hardware centric
or a software centric approach. In 2014 Robert Bosch GmbH released the Generic
Timer Module (GTM), which has an architecture that combines both approaches,
in the form of signal processing hardware modules and small embedded RISC cores.
As it is fairly new on the market no publicly available evaluations of the GTM exist.
This thesis examines the GTM'’s feasibility to perform all timer-module tasks in
Volvo Group Truck Technology powertrain ECUs. We do this by developing and
implementing two proof-of-concept designs for the most demanding of these tasks,
the control of fuel injection. With the results from tests performed on the designs
we show that the GTM, with the help of DMA, can perform the tasks at hand.
Volvo’s existing ECUs are used as the reference system which utilize another timer
module, the enhanced Time Processing Unit, against which the GTM is compared.

Keywords: timer module, Generic Timer Module, enhanced Time Processing
Unit, fuel injection, current waveform, angle clock.

Acknowledgements

We would like to take the opportunity to thank our supervisor at Volvo Group
Truck Technology, Magnus Stalesjo, for sharing his expertise in the area and his
time invested during this thesis. Also, we wish to express our gratitude to our
advisor at Chalmers University of Technology, Prof. Sally A. McKee, who especially
supported us in the art of technical writing. Additionally, we thank Alistair Low,
Johan Thorsen, and Agne Holmqvist for their support regarding the hardware.

Dan Larsson and Jonas Hemlin, Gothenburg, Sweden, June 2015

1

Contents

List of Figures
List of Tables

1 Introduction

1.1 Aim . . o,
1.2 Scope
1.3 Thesis structure

2 Fuel injection control systems

2.1 Fuel injectors
2.2 System control oo
2.2.1 Engine rotary position feedback
2.2.2 Injectors
2.2.3 Fuel pressure

3 Architectures

3.1 Enhanced Time Processing Unit
3.2 Enhanced Modular Input/Output Subsystem
3.3 Generic Timer Module,
3.3.1 Modules
3.3.2 Device configurations
3.3.3 GTM reference model
3.3.4 GTM generation 3
3.4 AURIX
4 Tasks performed by timer modules in the EMS
4.1 Fuel injector control system
4.1.1 Angleclock
4.1.2 Needle valves and spill valves
4.1.3 Remaining rail valves
4.2 Other tasks
5 Handling of the EMS’ timer-module tasks using the GTM
5.1 Requirements
52 Angleclock
5.2.1 Micro tick generation L.

il

10
10
13
14
14
19
19
20
20

22
22
22
23
25
26

Contents

5.2.2 Engine speed and base angle calculation 31

5.3 Needle valves and spill valves 32
5.3.1 Current waveform design 33

5.3.2 Input signal capture L. 35

5.3.3 Processing Lo 35

5.3.4 Output signal generation 37

5.3.5 Worst case response times 38

54 Remaining rail valves oo 40
5.5 Other tasks 41
5.6 Prototype 41
5.6.1 Hardware 41

0.6.2 Testingo 42

6 Results 44
6.1 Angleclock 44
6.2 Needle valves and spill valves, 45
6.3 Resource utilizationo 48

7 Discussion 50
7.1 GTM architecture 50
7.2 Angleclock 51
7.3 Needle valves and spill valves 52
7.4 FEthics 54
7.5 Future work 55

8 Conclusion 56
Bibliography 57

iv

2.1

2.2
2.3

2.4

3.1

3.2

3.3

4.1

4.2

4.3
4.4

5.1

0.2

5.3

5.4

2.5

List of Figures

[Mustration of the fuel delivery system’s components in a six-cylinder
Volvo diesel engine. Figure taken from a Volvo internal document [1],
with modified number coding.
[Mustration of a very simple fuel injector and its basic parts.
Typical positions of the cam shaft, crank shaft, and flywheel in an
engine. On the flywheel the slits used for rotary position feedback can
be seen. Partly modified figure originally taken from a Volvo internal
document [1].
Example of a current waveform driving a solenoid fuel injector.

High level block diagram of the enhanced Time Processing Unit in
dual-engine configuration. Figure taken from Freescale [2].
Block diagram of an enhanced Time Processing Unit engine. Figure
taken from Freescale [2]. o000
Overview of the Generic Timer Module architecture, device 103 and
IP version 1.5.5.1. Figure taken from Robert Bosch GmbH [3] with
added color coding. Lo

Example of the logic signals generated from crank and cam sensors
around the TDC event of cylinder four in a six-cylinder engine.
Typical waveform for the Delphi F2 fuel injector. The waveform is
generated by driving dummy loads, resulting in that the waveform
characteristics are affected and the waveform is not within the re-
quired boundaries. Figure taken from a Volvo internal document [4]. .
Simplified illustration of the drive circuit for one injector bank.
Example of the current waveform and drive stage signals generated
by the PHPWM function.

Current waveform parameters for the requirements of a Delphi F2
fuel injector. L
Block diagram of proposed design for engine rotary position feedback
using the GTM
Block diagram of the GTM-only design for needle valve and spill valve
control using the GTM,
Block diagram of the Hybrid design for needle valve and spill valve
control using the GTM
Overview of the hardware setup used for development and testing. . .

5

11

12

15

23

24
25

26

28

30

33

34

List of Figures

6.1

6.2

6.3

6.4

Capture of three injector pulses that have been scheduled on the crank
slit zero interrupt to start 45 degrees later.
Capture of a current waveform generated by the GTM-only solution
with cursors indicating the vital points.
Capture of a current waveform generated by the Hybrid solution with
cursors indicating the vital points. L.
Zoom-in on Figure 6.2 showing the latency introduced by the GTM-
only solution.

vi

3.1

5.1
5.2

5.3
5.4

2.5

6.1

6.2

6.3
6.4

List of Tables

Two device configurations of the GTM with the number of modules
(channels) they contain and their respective ARU RTT.

Typical values for parameters in Figure 5.1 given by Delphi [5].
Measured worst case times for how long it takes to reach the bound-
aries in the different operation sections of a F2 fuel injector.
Utilization of MCS channels in one MCS instance for one bank.
WCRT for the modules used in the presented designs, assumed that
all digital modules operate at the maximum clock frequency of 100 MHz.
The number of instruction cycles present in the critical path during
the four interesting WCRTs.

Description of the different signals shown in Figure 6.1, 6.2, 6.4, and
6.3. . . e
Measured worst case latencies on both designs and the estimated
WCRTS. . .o e
Configuration values which differentiates between the designs.
GTM-resource utilization for our two designs on a GTM device 103.
The number of available channels is placed within parenthesis after
the module acronym. Lo L Lo

vii

29
36

38

39

44

47
48

49

List of Tables

viil

1

Introduction

The Electronic Control Units (ECUs) controlling a modern truck’s powertrain per-
form many tasks with strict real-time requirements. Reliably performing these tasks
requires deterministic timing behavior which a general purpose processor lacks. Ad-
ditionally, some tasks demand a higher throughput than a general purpose processor
can commonly sustain [6]. Thus, the microcontroller within the ECU employs timer
modules as peripheral circuitry to aid the main processor in performing the time-
critical portions of tasks.

Timer modules can be divided into two main approaches: hardware-centric and
software-centric. The hardware-centric approach consists of signal processing Input
Output (IO) units controlled by a Central Processing Unit (CPU). The software-
centric approach has simple 1O units, but it also includes a processing core that
commonly uses a specialized instruction set optimized for timing operations. The
processing core allows for a more versatile operation, making it more independent
of the host CPU than the hardware-centric approach. In the latter the host CPU
has to serve many interrupts while controlling the module. The disadvantage of the
software-centric approach is that it has a lower time resolution.

The latest powertrain ECUs developed by Volvo Group Trucks Technology! in-
clude two timer modules to aid the main CPU: the hardware-centric enhanced Mod-
ular Input/Output Subsystem (eMIOS) [7] and the software-centric enhanced Time
Processing Unit (eTPU) [2], both developed by Freescale Semiconductor?. Volvo is
in early stages of evaluating microcontroller family alternatives for the next gener-
ation of the ECUs. Several of these microcontrollers include a timer module called
Generic Timer Module (GTM), which is an Intellectual Property (IP)-core devel-
oped by Robert Bosch GmbH?. The GTM aims to combine the two approaches using
an interesting architecture and it has units with signal processing capabilities as well
as a processing core. This approach together with a versatile design give the GTM
potential to replace both the eMIOS and the eTPU in the next ECU generation. If
it is possible to replace the currently used timer modules, development is simplified
as expertise then can be focused on one timer module. Additionally, relying on the
GTM as timer module is one step towards microcontroller-platform independence.
This as the GTM is not tied to one microcontroller company thanks to that it is
distributed as an IP-core. The GTM’s potential has been identified by two major
microcontroller suppliers to the automotive industry (Infineon Technologies! and

Volvo Group Trucks Technology is hereafter referred to as Volvo.
2Freescale Semiconductor is hereafter referred to as Freescale.
3Robert Bosch GmbH is hereafter referred to as Bosch.

4Infineon Technologies is hereafter referred to as Infineon.

1. Introduction

Freescale) which includes a GTM in their state-of-the-art microcontrollers.

The GTM was released in a chip in early 2014 [8]. No evaluation reports have
been released presenting the GTM’s capabilities, and Volvo has not yet evaluated
the timer module. Other companies may have evaluated the GTM, but if so they
are likely bound by disclosure agreements or do not want to publish such informa-
tion. This thesis is thus the first publicly available report evaluating the GTM’s
capabilities.

1.1 Aim

This thesis assesses the suitability of the GTM to perform all timer-module tasks in
the current generation of Volvo powertrain ECUs. The goals are to present a proof-
of-concept design of how the GTM can be employed to perform the most demanding
tasks currently performed by the eMIOS and the eTPU, and to produce a proof-of-
concept prototype that shows that the proposed design works as intended. Also, we
evaluate if the GTM has enough resources to perform all timer-module tasks for the
ECUs.

1.2 Scope

We limit the proposed design to the most demanding tasks, as it is not possible to
evaluate the GTM’s compatibility with all tasks performed by the timing modules on
all ECUs within the project timespan. We choose to focus on fuel injection, because
those tasks are the most demanding with respect to response time, processing time,
and resource usage. Also, most other tasks can be seen as subsets of the fuel injection
tasks in terms of functionality and all remaining tasks are even less demanding. As
a result, verifying that the GTM can perform fuel injection gives a strong indication
that the GTM can perform all tasks executed by the timer circuits.

Similarly, we limit the evaluation of resource usage to cover only one ECU. Volvo
employ two ECUs in their powertrain, the Engine Management System (EMS) and
the Aftertreatment Control Module (ACM). Due to the distribution of tasks between
the ECUs the evaluation only needs to cover the EMS; the ACM performs fewer
and less complex tasks. Also, the EMS performs the tasks related to fuel injection.
Taking the task distribution to consideration, verifying that the GTM has resources
to serve all timer tasks executed in the EMS also verifies that the GTM has enough
resources to also replace the timer modules in the ACM.

In this thesis we use the current Volvo powertrain ECUs as our reference point.
We thus assume that the tasks executed by the timer modules in the current ECUs
will stay the same in the next generation of ECUs, an assumption which may not
be accurate. The assumption was made as the tasks for the next generation ECUs
are not yet available.

Two of the microcontroller families including the GTM was available at the start
of this thesis: the AURIX family developed by Infineon, and the Qorivva family
developed by Freescale. Within the Qorivva family the model Matterhorn [9] in-
cludes a GTM device, whereas all models in the AURIX family includes a GTM. As

1. Introduction

this thesis evaluates the GTM, the choice of microcontroller affects the analysis to
a small degree, but a microcontroller from the AURIX family was chosen as it was
of greater interest for Volvo.

1.3 Thesis structure

In the next section we introduce the fundamentals of a fuel injection control system
together with its basic components. Then we continue to describe the architecture of
relevant timer modules as well as the architecture of the microcontroller used in the
prototype. After that we cover how Volvo’s current system performs the tasks that
we have created designs for. In the section after we present our proposed designs,
some details about the implementation and how input stimuli were generated. We
then continue with showing our results in the following section. Lastly, a discussion
and a conclusion ties it all together.

2

Fuel injection control systems

In fuel injection systems of combustion engines, the fuel is pressurized and delivered
to the combustion chamber through an injector. The combusted air-fuel mixture is
prepared by multiple injection events, where the start of injection and the quantity
of fuel injected is controlled by an actuator valve. Additionally, the injection events
take place at a predefined fuel pressure and the injection process starts when the
piston is in a specific position. An ECU manages injection by controlling the fuel
pressure, deriving the piston’s position and operating the injector.

The fuel pressure needed for injection is produced by one or several high pressure
pumps. There exist several possible configurations for how the pump(s) are con-
nected. One configuration is to have one pump per injector. This pump can either
be incorporated in the injector, called Unit Injector System (UIS), or the pump and
injector can be separated, called Unit Pump System (UPS). Another configuration
is the Common-Rail (CR) system, which means that all injectors are connected to
a rail and share the same pressurized fuel. Normally, only one pump is employed to
pressurize the rail, but designs with several pumps exist. One such solution called F2
from Delphi has injectors with integrated pumps, where all pumps together pressure
the common rail [10].

In Figure 2.1 an F2 fuel injection system in a Volvo engine is illustrated together
with all parts leading up to it, thus constituting a whole fuel delivery system. It
begins with the fuel tank (1) from which a low-pressure fuel pump (2) sucks fuel
through a filter (3). The fuel then passes through piping to the F2 systems high-
pressure fuel pumps (4) that pressurizes the common rail (5). All injectors (5) then
take fuel from this rail. For safety reasons there is a dump valve (7) that can release
the pressure in the rail when needed. The dump valve, the high-pressure pumps, and
the injectors are all controlled using an Volvo developed ECU (8), which is cooled
by incoming fuel.

2.1 Fuel injectors

Figure 2.2 illustrates a very simple fuel injector. Pressurized fuel sprays through the
holes in the nozzle (1) into the combustion chamber when the needle (2) is lifted
off its seat. The lift is controlled by the electromagnetic field that is created when
current flows through the solenoid coil (3), which causes the metallic core (4) to
move linearly through the coil. The needle is attached to the core, and so it lifts
when the core starts to elevate. When current stops flowing, the core and the needle
are pushed down by the spring (5), which ends the injection event. More advanced

4

2. Fuel injection control systems

Figure 2.1: Illustration of the fuel delivery system’s components in a six-cylinder
Volvo diesel engine. Figure taken from a Volvo internal document [1], with modified
number coding.

designs may decouple the core from the needle and use the solenoid actuator as
a hydraulic servo for moving the needle [11]. Such designs allow lower operating
currents and have the benefit of reducing mechanical vibrations transferred from
the core to the needle. As the solenoid controls the needle movement that affects
the fuel influx, the described injector can be called a needle valve.

Fuel injectors can be based on piezoelectric elements instead of solenoids, but
this thesis focuses on the latter: injectors based on piezoelectric elements are not
used in Volvo truck engines, and thus they are out of scope.

An injection event comprises a peak phase and a hold phase. During the peak
phase, the core and needle reach their elevated positions, and during the hold phase
they maintain these. It is desirable that the elevated position is reached quickly
during the peak phase. This requires a high current flow through the solenoid coil.
The hold phase uses a lower current level, as the core only need to keep its position.

2.2 System control

The system controls the injectors and the fuel pressure. To control the latter, the
system must know the current pressure, and to operate the injectors the engine’s
rotary position must be known. In this section we first describe how the rotary
position is acquired and then we cover how the injectors are controlled. Finally, we
describe how the fuel pressure is regulated.

2. Fuel injection control systems

Spring (5)

| Solenoid coil (3)

| Metal core (4)

Needle (2)

Nozzle (1)

Figure 2.2: Illustration of a very simple fuel injector and its basic parts.

2.2.1 Engine rotary position feedback

For the ECU to be able to determine when to start an injection event a high-
resolution feedback of the piston’s position is needed, information that is given from
the engine’s rotary position. Low-resolution feedback can be gained by a sensor that
detects slits evenly distributed around the flywheel attached to the end of the crank
shaft. Figure 2.3 shows the position of the crank shaft (1) and flywheel (2) in an
typical engine. To increase the resolution, the slit period can be divided into smaller
steps, called micro ticks. As the micro ticks need to be generated before the period of
the current slit is known, the period has to be estimated. Also, the engine rotation
speed is rarely fixed, which means that the micro tick generation has to handle
slit period estimations that are inaccurate due to deceleration and acceleration.
Deceleration is usually managed by pausing the micro tick generation when the
total number of ticks for one slit period has been generated, and acceleration is
managed by generating the remaining micro ticks from the latest slit period during
the next period.

The micro ticks can be used as a clock signal for a counter, then called an angle
clock. By looking at the number of micro ticks that have passed, it is possible to
know with high precision where in the cycle the engine currently is. At startup
when the starter begins to turn the engine, it is in an unknown position. Thus,
before injection of fuel can start, the angle clock needs to be synchronized. Part
of the synchronization is performed by detecting periodically missing slits on the

2. Fuel injection control systems

Cam Shaft (3)

Crank Shaft (1)

Figure 2.3: Typical positions of the cam shaft, crank shaft, and flywheel in an
engine. On the flywheel the slits used for rotary position feedback can be seen.
Partly modified figure originally taken from a Volvo internal document [1].

flywheel. However, as one engine cycle consists of two full crank shaft revolutions
in a four-stroke engine, an additional rotational reference is needed to synchronize
with the engine’s rotary position. The additional reference is normally provided by
a sensor that detects teeth distributed around a wheel attached to the cam shaft,
a shaft that only does one full revolution for one engine cycle. Figure 2.3 shows a
typical position of the cam shaft (3) in an engine. The cam wheel commonly has
far fewer teeth than the crank shaft has slits. When a special pattern in the teeth
is detected, the engine’s rotary position is known and the angle clock can be fully
synchronized.

2.2.2 Injectors

The needle valve is controlled by the ECU. The ECU controls the current flow-
ing through the needle valve solenoid by feeding it voltages, which is usually done
through switching Field Effect Transistors (FETS) connected to the injector’s high
and low sides. On the low side, the FET breaks the injector’s ground connection.
For the high side, two FETs are commonly employed, enabling the ECU to apply
either a low voltage (normally battery voltage) or a higher voltage (usually called
boost voltage). The main advantage of the boost voltage is that it enables a shorter
current rise time, resulting in a faster opening of the injector. To keep a steady

7

2. Fuel injection control systems

Current

Decay E— «—— Fast Decay

k————— Peak phase Hold phase Signa] level

Boost signal

Low side signal

Time

Figure 2.4: Example of a current waveform driving a solenoid fuel injector.

current flowing through the solenoid the high side voltage is rapidly switched on
and off, where the on time is called a chop. This technique gives the best result
if current feedback can be used. If no current feedback is available, Pulse Width
Modulation (PWM) can be used instead to keep a somewhat steady current level.
When switching the high side off completely the current level is dropped and if a
more rapid decay is desired the low side can be switched off as well. Figure 2.4
illustrates a current waveform for a solenoid injector along with the ECU’s output
signals. The duration of the time where current is flowing through the solenoid is
called an envelope.

It takes some time for the electromagnetic field to move the metallic core to its
elevated position. When the core is close to the desired level, less power is needed
to sustain the electromagnetic field due to that the inductance changes as the core
moves. As a consequence, the solenoid requires that voltage is applied a longer
period or more often for the current to rise the same amount during the first part of
the peak phase than during the later part of the peak phase. This dynamic behavior
has to be considered when designing the appearance of a current waveform.

The goal of the fuel injection is to create a homogeneous air-fuel mixture with a
desired air-fuel ratio. As the mixture properties affect emission levels, engine per-
formance, fuel consumption and combustion noise [11] (p60), it is important for the
current waveform to be precisely controlled to deterministically produce a mixture
with the needed properties [12]. One effective method to aid fuel atomization is
to split one injection into several injection events [13]!. However, the injected fuel
quantity is non-linear when the injection event’s pulse width is shorter than a certain
threshold [14]. A lower minimum injection quantity within the linear area enables

In Japanese, statement claimed by [12]

2. Fuel injection control systems

an increased number of injection events, which makes it easier to reach a higher
fuel atomization. On the other hand, if the ECU is unable to control the current
waveform with the required accuracy, the minimum injection quantity is increased,
which worsens the fuel atomization due to the fact that injection events have to be
longer and fewer in number.

2.2.3 Fuel pressure

For all CR configurations there are one or several solenoid valves used to regulate
the injection pressure. In a UIS or multi-pump CR system such valves are called
spill valves. They are controlled in the same manner as an injector needle valve and
is used to inhibit the spill outlet of the pump, allowing a pressure to be built up.
All CR systems have a rail-pressure sensor for feedback, and for safety reasons they
have a valve that can dump the rail pressure into the fuel tank, called dump valve.
In the single-pump CR system an additional valve, called inlet valve, is employed
to manage the influx to the fuel pump. The dump valve and inlet valve do not
have to be as precisely controlled as an injector needle valve since their function is
less demanding. Even so, they are preferably controlled using current feedback, but
necessarily not in the same way as a spill valve.

3

Architectures

This chapter provides basic information about the different hardware architectures
relevant to the thesis. Firstly, the eTPU and the eMIOS are covered to give a
background to what the GTM is supposed to replace. Secondly, we present the GTM
architecture together with information about device configurations and upcoming
versions. Finally, we introduce AURIX, which is the microcontroller architecture
used in the prototype.

3.1 Enhanced Time Processing Unit

The €TPU is a co-processor that has high resolution timing capabilities. This is
mainly achieved by a short latency from the occurrence of an event to the start of
event servicing, processing capabilities that reduce the need of intervention from the
CPU, and that each function has dedicated I/O units and timer circuits. Due to
these features it can perform waveform generation based on real-time input events
without the CPU’s intervention, which makes it suitable for injector control.
Figure 3.1 present the block diagram of an eTPU dual-core configuration. The
processing core’s of the eTPU, called engines, employ RISC and have an instruction
set that include instructions for handling and processing time events. The engines
fetch instructions from the Shared Code Memory (SCM) and have access to the
Shared Parameter RAM (SPRAM), where application data and parameters reside.
The CPU can access an engine’s registers, the SPRAM, and the SCM. An eTPU
engine comprises of two time base counters with angle clock logic, 32 timer channels,
a scheduler, a microengine and a host interface. The following paragraphs give an
introduction to the eTPU engines’ parts, which are illustrated in Figure 3.2.

Time bases. Two 24-bit time base counters are shared by all timer channels and
are used to produce timed events. Time base 1 can be clocked either externally by
a signal passed through a digital filter or internally by the system clock divided,
by a factor of 1 to 256. Time base 2 can also be clocked externally and internally,
but it also has a third mode. This is the angle clock mode which, when supported
by software, can keep track of the angle of a toothed wheel. In a dual engine
configuration of the eTPU a time base can shared with the other engine.

Timer channels. An engine has 32 I/O timer channels. A channel includes hard-
ware for input signal processing, hardware for output signal generation, and timing

10

3. Architectures

r— - - — — — — — A
[|
: Host CPU :
[|
R
SCM
Shared Code Memory
= =
~_"
IPS Interface
STAC A—N Shared /N STAC
Interface Registers [) BIU 4 1 Registers Interfac
"~ shared [N
pebug eTPU Engine A N—y] PRAM N/ eTPU Engine B Debug

17 1L

eTPU_A Ch. 0-31 eTPU_B Ch. 0-31

Figure 3.1: High level block diagram of the enhanced Time Processing Unit in
dual-engine configuration. Figure taken from Freescale [2].

event logic. Depending on the implementation, the channels” input and output sig-
nals be tied to one pin. The hardware for input signal processing includes a digital
filter that removes noise. There are two types of timing events, input pin transi-
tion and time base match, the latter meaning that a time base counter reached or
exceeded a predefined compare value.

The timer logic includes two sets of one 24-bit capture register and one 24-bit
match register, enabling a channel to support four different timing events. A capture
register holds the captured time base value upon an input pin transition and a match
register holds the value to compare with a time base in order to generate a time base
match event. The channel mode dictates when a timing event is enabled and what
action should be taken when an enabled timing event is generated. The actions
possible include enabling/disabling of other timing events, a change in the output
level, or a service request can be issued.

A channel can send 32 different service requests to the scheduler. The request
sent depends on internal flags, what timing event or specific combination of timing
events that have occurred, requests from other channels (called link requests), and
service request triggers received from the CPU. The set of service routines, called
threads, executed by the microengine upon a service request from a specific channel
is called a function. The instructions constituting the service routines of the function

reside in the SCM.

11

3. Architectures

STAC
Interface

Host

lnisridce Control Scheduler Service Requests Channels
1 E Channel 0
Engine
Configuration 5 TCR1 J\ Channel 1
[=
=4
2 T%Fi*r?'-}» TCR2/ j/ °
Time Base o Angle Clock .

Configuration

Microengine °

Fetch and

Channel
Decode

Control

Control

Control and Data

Execution
Unit

MDU
Control
Debug and Data
Interface

Channel 31
8]
© o
[a] o
Shared Shared
Parameter Code
RAM Memory
(SPRAM) (SCM)

Figure 3.2: Block diagram of an enhanced Time Processing Unit engine. Figure
taken from Freescale [2].

Angle clock. The eTPU’s angle clock is a combination of hardware and software.
Dedicated logic, the second time base counter, and timer channel 0 are used together
with the function associated with timer channel 0. The micro tics are generated as
explained in Section 2.2.1, where the slit period is estimated by software. Missing
slits on the flywheel can be treated as regular slits or the micro tics for the slit before
the missing ones can be increased to make up for the missing slits. Software has to
choose the desired action every time, right before the missing slits, meaning that a
profile of the slits has to be kept. Additionally, the software synchronizes the angle
clock to the slit profile.

Scheduler. The schedulers job is to determine which service request the micro-
engine should service next. It employs a scheduling mechanism that has a primary
and a secondary priority scheme. A channel’s priority can be set to one of three
levels. The primary scheme decides which of the three priority levels that the sec-
ondary scheme should pick a service requests from. The request chosen then gets
served by the microengine. To decide which priority level to choose, the primary
priority scheme uses time slots where each slot indicates one of the priority levels.
Seven time slots are used where two are dedicated to medium priority channels, one
to low priority channels and the remaining to high priority channels. If no channel

12

3. Architectures

with the chosen priority level has issued a service request, another slot is chosen. A
time slot ends when one service routine has finished execution, and a service routine
executing can not be interrupted by any event other than a force end event issued
by the CPU. The secondary priority scheme prioritizes the channel with the lowest
channel number. Starvation of high numbered channels is eliminated by starting
a new servicing cycle on the channels with the same priority level only when all
channels on that priority level which require service has been served.

Microengine. An eTPU engine’s microengine consists of two pipeline stages: in-
struction fetching, and execution. When no service routine is executed, it is in an
idle state. Execution of one instruction takes two clock cycles, with the exception of
multiply, division, and Multiply and Accumulate (MAC) instructions or if an access
conflict occurs in the SPRAM. However, several resources within the microengine
can be utilized in parallel, and if no access conflict occurs and if the MAC and Divide
Unit (MDU) is not overloaded, the throughput is one instruction per two clock cy-
cles. One instruction can perform three out of four types of operations: Arithmetic
Logic Unit (ALU)/ or MDU operations, SPRAM operations, channel configuration
or control operations, and flow control operations.

Host interface. The host interface gives the CPU control of the eTPU operation.
Initialization of the eTPU is performed by the CPU which assigns a function and
scheduling priority to each timer channel, as well as initialize the SCM. The initial-
ization sequence is finished when the CPU enables eTPU access to the SCM, which
disables CPU access. Operation is then started when the CPU enables the timer
channels. To further control operation, the CPU can trigger service requests and
modify a channel’s configuration. During operation channels can spawn two types
of request targeted towards the CPU: channel interrupt request and data transfer
request. The requests are issued within a executing service routine. The channel
interrupt request is serviced by the CPU and the data transfer request is serviced
by a Direct Memory Access (DMA) module.

3.2 Enhanced Modular Input/Output Subsystem

The eMIOS is a hardware timer module developed by Freescale. It has 32 channels
that each have a set of configuration registers, a 24-bit counter, and 24-bit wide
registers for capturing or comparing counter values. There are also five global 24-bit
counters that can be used as common time bases.

All channels in the eMIOS can be configured to perform one out of 18 available
functions. The functions include different kinds of PWM generation, PWM period
or duty cycle measuring, single input/output event generation, and General Purpose
Input Output (GPIO).

13

3. Architectures

3.3 Generic Timer Module

The Generic Timer Module is an IP-module developed by Bosch. It is designed
to be modular allowing different hardware vendors to choose a configuration that
fits their needs. The main task of the GTM is to offload work from the CPU by
handling fast repetitive tasks and minimizing the number of interrupts needed to
be raised. This is achieved with a number of programmable hardware modules that
after initialization can work independently, without the need to constantly interrupt
the CPU.

This section will expand on the first generation of the GTM architecture as this
was the only generation readily available and suitable in terms of IO ports when the
thesis was carried out. The final version, 1.5.5.1, of the first generation was released
in early 2014 and shortly after this the first microcontroller including a GTM became
available on the market. At the end of 2014 generation 2 was released [8]. However,
due to this generation only being released in small device configurations it did not
fit the needs for this work. The third generation was not available for this work as it
had not yet been released, but the relevant improvements this generation will bring
are brought up in Section 3.3.4.

Central to the GTM architecture is the Advanced Routing Unit (ARU) which
transfer data between all modules connected to it. For example, a common signal
path in the GTM is where a Timer Input Module (TIM) channel captures an input
event, then transfers information about the event through the ARU to a Multi
Channel Sequencer (MCS) channel for processing. When finished, the MCS sends
output characteristics over the ARU to an ARU-connected Timer Output Module
(ATOM) channel that generates an output signal. By using a module called the
Signal Multiplexer (GTM-MX) it is possible for the GTM to generate input events
to itself by internally routing an ATOM or Timer Output Module (TOM) output
to a TIM input.

3.3.1 Modules

The modules that the GTM architecture builds upon can be divided into three
groups. The first group, green in Figure 3.3, contains infrastructure modules that
provide base functionality needed by the other modules. The second group, yellow
in the figure, consists of four different modules for signal generation and processing.
The last group, cyan in the figure, include modules for application specific and safety
related tasks. Below we give more details about the different modules in the GTM.

ICM. Even though the GTM aims to reduce the number of interrupts to the CPU
almost a thousand different interrupts can be raised by the GTM’s modules. To
lower the number of interrupt lines needed to the CPU the Interrupt Concentrator
Module (ICM) concatenates related interrupts into common interrupt lines. Due
to this, the CPU has to read a status register inside the relevant GTM module to
determine the actual interrupt source when a interrupt is raised.

14

3. Architectures

GTM-IP_103

YS_CLK
SYS_CLI

GTM_ECLKx 3
<

SUB_INCT
SUB_INC2

8

/ ATOMO_ouT

8

/ ATOM1_ouT
8

/ ATOM2 ouT

8

/ ATOM3 oUT

8
/ ATOM4_OUT >

SUB_INC1
s
T8U_TS2

PSSR R,

TIMO_IN %

TIMILIN __ §
7

TIMZIN &

TIM3IN &

@ TIMO_AUX_IN
© TIMI_AUX_IN

MCS0
(8CH)

MCSs1
(8CH)

MCS2
(8CH)

MCS3
(8CH)

To GTM-IP Submodules

; A4

TOMO TOM1 TOM2
(16 CH.) (16 CH.) (16 CH.)

16

NS

ATOMO_OUT_ @
ATOM1_OUT_A&.
ATOM2_OUT.

ATOM3_OUT_&

TOMO_OU
TOM1_OU

16 16

‘GTM-IP
A Bus slave interface

IO and signal processing .
. Infrastructure modules modules Speciall purpose modules

Figure 3.3: Overview of the Generic Timer Module architecture, device 103 and 1P
version 1.5.5.1. Figure taken from Robert Bosch GmbH [3] with added color coding.

' /

TOMo_OUT
<

TOM1_OUT
<

TOM2_OUT
<

CMU. The GTM is clocked by an external clock called SYS CLK with a max-
imum frequency of 100 MHz, but to be able to generate signals and events with
specific timing there is a need for configurable clock signals. It is the Clock Manage-
ment Unit (CMU) which provides this in the GTM. The CMU has one global clock
divider that multiplies the SYS CLK with a rational number, where the rational
number must be less or equal to one. The resulting clock * x SYS CLK,n <m, is
distributed to the rest of the GTM’s modules as their clock source. To achieve other
clock rates the CMU has eight clock enable signals. These are created as integer
multiples of the global clock which results in them all being synchronized. The CMU
also has eight clock enable signals with fixed dividers. These signals can be driven
by any one of the eight user configurable signals.

TBU. The Time Base Unit (TBU) counts the number of pulses from a selected
CMU clock enable signal. The produced counter value can then be accessed by the
GTM’s other modules, thus providing a global time base with the same resolution
as the selected clock enable signal. As the maximum clock frequency is 100 MHz the

15

3. Architectures

highest resolution achievable is m = 10mns. A total of three counters exist in the
TBU and all three can trigger on any of the CMU clock enable signals, in addition,
two of the counters can be set to count the number of micro ticks generated by the
Digital Phase Locked Loop (DPLL), possibly providing an angle clock instead of a
time base.

ARU. For the GTM to unload the CPU it has to be able to work independently
and the different modules thus need to be able to communicate with each other.
This internal communication is what the ARU is responsible for. The ARU transfers
data between all connected modules in a round robin fashion and all transfers takes
two cycles of the global clock. This design ensures a deterministic communication
between all modules with a worst case transfer latency, called ARU Round Trip
Time (RTT), that only depends on the number of ARU-connected data consumers.
The width of the data transmitted is 53 bits; two 24-bit words and five configurable
control bits.

All data producers have a specific address from which a consumer can read from,
and as all transfers are destructive there can only be one consumer for each pro-
ducer. However, this can be circumvented by using the Broadcast Module (BRC)
to broadcast the same data to several consumers, with the downside of a higher
latency.

MCS. For signal processing the GTM has a scaled down RISC core. The core
consists of a five stage pipeline with eight hardware threads, called tasks, that have
their own work registers and program counter. The tasks also have access to a shared
trigger register, about which more detail will be given later. The pipeline’s ALU
operates on 24-bit wide operands and can perform addition, subtraction, and basic
logic operations, but lacks support for multiplication and division. Most instructions
take one instruction cycle to execute, except for memory accesses and some flow
control instructions. Data can be shared between all tasks within one MCS instance
via the shared Random Access Memory (RAM), but the ARU has to be used to
share data between tasks in different MCS instances.

The available memory for data and code in one MCS instance is by default 6 KB.
It is configured as a 4 KB and a 2 KB page which can be configured to belong to a
neighboring instance. Thus the memory available to one instance can range from
2KB to 10 KB. Independent of the memory configuration all available memory is
shared between all tasks in one MCS instance.

Which of the eight tasks in one MCS instance that should get to execute next
can be decided upon in two ways. The first is round robin scheduling where all eight
tasks and the CPU get one instruction slot each round. The CPU gets one slot so
it can access the MCS memory and registers. Running this scheme, one instruction
cycle takes nine clock cycles as all tasks get scheduled independent of if it is sleeping
or not. The other scheduling schema is similar to round robin, but sleeping tasks
does not get scheduled. Running this accelerated scheduling schema one instruction
cycle can take one to nine clock cycles, but with a minimum latency of five clock
cycles due to the pipeline. A task can be sleeping for three different reasons: it is
disabled, it executes a ARU read or write instruction, or it have executed a wait

16

3. Architectures

instruction.

ARU read instructions can be either blocking or non-blocking while the ARU
write instructions are only blocking instructions. A blocking instructions will sleep
the task until data has been received or sent through the ARU. The non-blocking
read instructions will sleep the task until the ARU arbiter has moved past the data
destination read from, resulting in a worst-case sleep time of one ARU RTT.

The mentioned wait instruction that puts a task to sleep is the Wait Until Register
Match (WURM). After executing a WURM the task will sleep until the targeted
register holds a specified pattern. Together with the shared trigger register the
WURM instruction enables a task to sleep until another task, or the CPU, wakes it
by setting its specific bit in the trigger register. This triggering only works one way
and a task can not put another task to sleep, so for enabling/disabling of a task the
CPU has to be used.

All instructions to be executed in the MCS have to be written in assembler code,
as there is no high-level language compiler available. The assembler produces a C
array of 32-bit integers that represents the machine code. This array then has to be
written into the MCS memory by the CPU at system startup, after which the MCS
tasks can be enabled to start execution.

AEIL. To configure one of the GTM’s modules the CPU writes configuration bits to
hardware registers and RAM locations in the respective module. This is performed
using the Generic Bus Interface (AEI) which connects to the CPU’s bus via a bridge
module. The MCS is not able to access the AEI, meaning that it can not perform
any configuration of the modules. All write or read accesses by the CPU over the
AEI have lower priority than each module’s own access.

PSM. Another way to transfer data to all ARU-connected GTM modules other
than over the AEI is to use the Parameter Storage Module (PSM). The PSM offers
an interface between the ARU and the CPU with a buffer in between. The buffer
can either run in First In First Out (FIFO) mode or be used as a ring buffer. When
running as a ring buffer the same data sequence will continuously be served to the
ARU enabling, for example, generation of a periodic complex output signal. There
can be a variable number of PSMs in the GTM and each PSM has eight configurable
buffers with corresponding interfaces to the ARU and CPU. The buffer also has a
mechanism for raising interrupts when certain configurable fill levels have been met,
e.g. full or empty. In addition to transfer data from the CPU into the GTM, the
PSM can also be used the other way around.

TIM. The TIM handles input to the GTM and consists of eight internal channels
that can each process one input signal. It is connected to the ARU as a data
producer, and depending on the mode of operation a channel will write different
kinds of data to the ARU. The different modes include input edge counting, PWM
signal characterization, input transition time stamp capturing, conversion of parallel
data to serial data, or periodic sampling. Each channel have an internal filter module
that can be activated. This filter can perform various types of glitch filtering and
time out detection, independent of the selected mode of operation.

17

3. Architectures

TOM. For generation of PWM and Pulse Count Modulation (PCM) signals a
TOM can be used. Each module instance has 16 channels that all have a 16-bit
counter, two 16-bit compare registers with accompanying shadow registers. The
rate of the counter can be selected from one of the CMU clock enable signals with
fixed divider. The two compare registers should be loaded with period and duty
cycle of the signal to be generated. To load new values into the compare registers
without disturbing ongoing operation the shadow registers can be used. The TOM
can be configured to load the values in the shadow registers at the beginning of the
next period, or it can be set to wait for a trigger signal from a neighboring channel.

ATOM. The TOM can only be loaded with data over the AEI, so to be able to
generate an output signal with the MCS or the PSM an ATOM has to be used.
It has 8 internal channels instead of 16, and apart from having the same basic
functionality as the TOM, and being connected to the ARU, the ATOM has some
additional features. For one, the internal registers are 24 bits wide instead of 16
bits, allowing for a greater range of signals to be created. The compare registers can
also compare against the TBU’s global time bases, in contrast to only the internal
counter, giving the possibility to produce output based on the angle clock or a global
time base.

The ATOM also has a mode of operation in which it is configurable what action to
take when a compare event occurs. Possible actions include different combinations
of output transitions and combinations of enabling/disabling of the other compare
register. When running in this mode and a compare event occurs the value from two
of the TBU time bases is captured in the ATOM’s shadow registers. These values
then have to be read, either by the CPU or over the ARU, before new compare
values can be written to the ATOM.

DPLL. The DPLL has the purpose of generating a fast switching signal from a
slower signal. One application is to drive an angle clock keeping track of the rotary
position of a combustion engine, as explained in Section 2.2.1. It has two inputs
which could be used either separately to maintain rotary position of two engines or
they could be used in conjunction for one engine. In the latter case one input signal
works as a backup that can be seamlessly switched over to, in case the other fails.

The created fast switching signal is used to trigger one of the global time bases
in the TBU, which then can be used as an angle clock. The number of micro ticks
generated for each revolution are fixed independent of acceleration or deceleration.
Deceleration is handled by pausing the micro tick generation when all ticks have
been generated for the current period. For acceleration there are two strategies
that can be used: the first is to generate all remaining micro ticks as fast as possible
before beginning with the ticks for the next period. The other is to add all remaining
micro ticks to those that will be generated in the next period, before calculating the
frequency for micro tick generation.

The period to use for micro tick generation is a prediction calculated using data
of up to two full revolutions old input events. The DPLL can also calculate time
predictions for when a specific angle will occur in context of the global time base.
This is possible as the DPLL is configured with a profile of the input signal which it

18

3. Architectures

uses together with the two revolutions worth of saved input data. Synchronization
is performed by manually detecting the current rotational position and then setting
a pointer to the correct position in the profile.

MAP. When the DPLL should be used to monitor the rotary position of a Brush-
less Direct Current (BLDC) engine the Input Mapping Module (MAP) needs to be
used. When one of the hall effect sensors in a BLDC engine, usually three, changes
output, an input event has to be passed to the DPLL. This is where the MAP comes
in and maps the output from all three sensors to one DPLL input. The MAP is
also used when the DPLL should track other signals than from a BLDC engine. In
these cases the MAP just statically routes two TIM channels’ output to the DPLL’s
inputs.

SPE. The Sensor Pattern Evaluation (SPE) module can in conjunction with a
TOM and a TIM drive a BLDC motor, but as this work not include any BLDC
engines, this module will not be covered in more detail.

CMP. In safety critical applications error detection is vital. The Output Compare
Unit (CMP) can be used to compare the output of neighboring channels in the TOMs
and the ATOMs to detect a malfunction. As this thesis does not focus on safety
this module will not be used.

MON. Similar to the CMP the Monitoring Unit (MON) is used in safety critical
applications and will not be used in this thesis.

3.3.2 Device configurations

For the GTM to fit a multitude of applications it exist in several device configu-
rations. The main difference between the configurations is in the number of MCS,
TIM, TOM, and ATOM instances. As all of these modules except for the TOM are
connected to the ARU they affect the ARU RTT, and in extension the worst case
transfer latency. In Table 3.1 two different GTM device configurations with their
respective number of modules and ARU RTT is displayed.

Table 3.1: Two device configurations of the GTM with the number of modules
(channels) they contain and their respective ARU RTT.

Device name MCS TIM TOM ATOM ARU RTT

Device 103 4(32) 4(32) 2(30) 5 (40) 730ns
Device 104 6(48) 6 (48) 5(80) 9 (72) 1130 ns

3.3.3 GTM reference model

Bosch maintain a reference model of the GTM bundled together with a simulation
environment. The GTM Reference Model (GTM-RM) makes it possible to develop

19

3. Architectures

and test code for the GTM on a computer without any additional hardware. A full
trace of almost all internal GTM signals and register can be viewed after a simulation
has finished. This in conjunction with the possibility to make printouts to a log file
during simulation makes the GTM-RM very suitable for initial development and
testing. However, there can be some small differences between how a real GTM and
the simulated one function, so final verification of a design using the GTM has to
be performed on the actual hardware. Especially when it comes to verification of
timing requirements as the simulation tool is not cycle accurate.

3.3.4 GTM generation 3

The next generation of the GTM-IP that Bosch will release is the generation 3. It
will bring several large improvements to mainly the ARU, and the MCS [15]. Also,
the ability to run at a clock speed of 200 MHz and clock gating on a cluster level
have been added. The clock gating allows unused parts of the GTM to be shut of,
resulting in a decrease power consumption. The division into clusters is done on
a module level where each cluster contain one of each module type, for as long as
there is instances. E.g. the first cluster contain a PSM while the second does not as
there only is one PSM.

The improvements made to the MCS include the addition of a parallel multi-
plication instruction and a serial division instruction. Next is that each MCS task
will have the ability to share a neighboring task’s registers, enabling data exchange
between tasks without the need to use the memory. Another large improvement is
that a MCS module will be able to access the AEI in its own cluster. This makes it
possible to use the MCS for configuration of the other modules in the same cluster.
The final relevant improvement of the MCS is the ability to receive interrupts from
the other modules in the same cluster. These last two reforms will increase the
GTM’s independence from the CPU.

In the ARU the possibility to customize the arbitration sequence has been added.
The connected data destinations are still served in a round robin fashion but it is
now possible to insert specific data destinations at user defined intervals in the
arbitration sequence. This results in these data destinations getting served more
frequently than the otherwise fixed ARU RTT. It is also possible to specify the
complete arbitration sequence in a PSM from which the ARU then loads it.

There are other improvements brought by generation 3 but as they do not have
any significance for this thesis they will not be brought up.

3.4 AURIX

AURIX is a family of microcontrollers developed by Infineon. It is aimed at the
automotive industry and is designed to offer high performance and high safety.
It exists in various configurations in terms of memory size and number of cores.
At most it has three cores of Infineon’s TricCore architecture. For the developed
prototype we used an AURIX TC2X7 development board with a AURIX TC277!

LAURIX TC277TF-64-F200S-CA [16]

20

3. Architectures

microcontroller. This model has in addition to three processing cores a GTM device
103 and a multitude of other peripherals. The peripherals of interest for this thesis
are the Analog to Digital Converter (ADC), the asynchronous serial interface, and
the DMA module. We will therefore give some more detail about these here.

VADC. For conversion of analog voltages to digital values the Versatile ADC
(VADC) in the AURIX can be used. It has 64 channels divided into groups of 8.
Each group has its own converter with a resolution of up to 12 bits. The channels
are served in order and can be individually shut off to let the others work faster.
Each channel can also be set to what is called Fast Compare Mode (FCM). In this
mode the converter will not produce a full result but only a flag bit indicating if
the voltage is over/under a user specified value. In this mode it is also possible to
specify a hysteresis to minimize glitches when the voltage is close to the specified
level.

The time it takes to perform a conversion depends on several factors, however,
the fastest conversion time is achieved when running FCM. Running this mode as
fast as possible a conversion time of 100ns is possible. The time between each
conversion depends on how the channels are triggered. If running the auto-scan
trigger mode, all active channels get triggered in a continuous sequential order, and
the latency between each conversion becomes 800 ns. When single trigger mode is
used the latency can range from 100 ns to 800 ns. A feature of single trigger mode is
that several channels can be grouped together and then triggered by a single signal.

DMA. The DMA module can be used to transfer data between peripherals in
the AURIX without the CPU’s intervention. It consists of 64 channels that can be
individually configured with what is called a transaction control set (TCS). When
a channel gets triggered, one out of two move engines loads the channels TCS and
performs the transfer. The source and destination address stored in the TCS can be
automatically increased or decreased to enable transfer of complete memory blocks.
Also, the TCS can include a pointer to another TCS for the move engine to load
when it is finished with the current transfer. This feature makes it possible to make
a sequence of transfers from memory addresses that are scattered throughout the
address space.

Triggering of a channel can be performed either by software or by hardware. The
software triggering is performed by the CPU and can for example be used to initiate
a block transfer of data in the background. For hardware triggering the various
interrupts of all the peripherals in the AURIX can be used. For example a finished
VADC conversion can trigger a transfer of the result to the memory of a MCS in
the GTM.

Communication interface. To communicate with the AURIX, one of its several
different communication interfaces can be used: including Ethernet, CAN, FlexRay,
I2C, and an asynchronous/synchronous serial interface. The last interface supports
different communication protocols like: LIN, SPI, and ASC. In all protocols data
transmission and data receiving is done through buffers, and the CPU can be notified
of new data received either by interrupt or by polling.

21

4

Tasks performed by timer modules
in the EMS

The ACM and EMS ECUs focused on in this thesis employ an eMIOS and an eTPU,
where the latter is in a dual core configuration. As mentioned the EMS perform
the tasks regarding fuel injection which this thesis focuses on. The timer modules
handle all sensors and actuators within Volvo’s fuel injection control system and will
be elaborated on in Section 4.1. All other tasks performed by the timer modules in
the EMS are briefly described in Section 4.2 to give a holistic view of the ECU.

4.1 Fuel injector control system

Volvo’s fuel injector control system described here is our reference system when
evaluating the GTM. This system can work with many different configurations re-
garding injectors and high-pressure fuel pumps. One commonly used configuration
is the Delphi F2 system. Volvo mainly employs eTPUs to perform all complex time
critical tasks within the control system, such as generating current waveforms. The
eMIOS only performs less complex tasks like PWM signal generation. The CPU’s
main task during runtime is to to feed the timer modules with configuration data
and commands. Other tasks that the CPU performs are gathering input param-
eters for computing the configuration data, and running diagnostics, but as this
thesis is focused at the timer module’s responsibilities we will not discuss the CPU’s
tasks further. The following sections describe the timer module tasks regarding fuel
injector control.

For safety reasons and for the possibility of dynamic calibration, the eTPU per-
forms self diagnostics. If for example a short circuit is detected, the affected func-
tion’s logic signals are deactivated within 1 s, resulting in a graceful degradation.
Furthermore, fault codes are set for easier maintenance in the event of a fault.

4.1.1 Angle clock

In Volvo’s system the eTPU keeps an angle clock for engine rotary position feedback,
as explained in Section 2.2.1, and the same part also calculates the engine speed.
There are 60 slits, minus the missing ones used for synchronization, around the
flywheel. For a four-cylinder engine two slits are missing for each half of the flywheel
circumference, and for a six-cylinder engine two slits are missing for each third of
the flywheel circumference. Each slit, and the missing ones, are further divided into

22

4. Tasks performed by timer modules in the EMS

Crank shaft angle
\-73.6 eyl TDC, 1 16.4 1 46.4
| | | |
78072 66 60 54 48 42 36 30 24 18 12 6 10 .6 12118 24 30 36 42148 54 60
T ™ T T T T T T T T T T T | T T T T T T T T T T

| |

| |

| |

0o ! 0oL \
! ! | ! ! Crank

| |
| |
l l
I I
17 (18)(19) 0 1 2 3 4 5 6 7 8 9 10 11 12 (13 14 15 16 17 (18)(19) 0 logic signal
: Extr:;‘l synchroniza‘xtion pulse :
H ‘ \‘H H Cam

5 (:6) 0 logic signal
‘ | 1 |

|

|

|

} }
12 18

36 130 1 3 12 6
I
1-36.8

|
I
|
|

| | | | | | |
| |
0 6
|
! 8.2

Cam shaft angle

Figure 4.1: Example of the logic signals generated from crank and cam sensors
around the TDC event of cylinder four in a six-cylinder engine.

512 micro ticks, resulting in a resolution of 65’2212 = %o. For the cam wheel there

is one tooth per cylinder distributed evenly around the wheel, plus one extra tooth
placed 15 degrees before the tooth indicating the first cylinder. The extra tooth is
there to enable for synchronization. Figure 4.1 displays the input signals generated
by the cam and crank sensors around the Top Dead Center (TDC) event of cylinder
four in a six-cylinder engine.

The angle clock logic in the eTPU, presented in Section 3.1, only has one input,
which are connected to the crank sensor. In the event that the crank sensor would
break, the Volvo system can fall back to using the cam wheel feedback for timing in-
jection events and engine speed calculations. However, this results in lower precision
as the cam sensor is not connected to the micro tick generating logic and injection
events will have to be scheduled in the time domain. The engine speed will also
be less accurate as there are less input events produced by the cam sensor than by
the crank sensor. If instead the cam sensor breaks down, the micro tick generation
continues to work, but synchronization becomes problematic as there is no way to
detect which cylinder is active.

In the eTPU the engine speed is calculated as an average over 20 crank slits.
When summing the period for these slits together an error could be introduced if
the period for the missing slits were included, as it is three times the normal length.
Volvo have solved this by virtual slits at the location for the missing slits. These
virtual slits are given the same period as the period for preceding slits.

4.1.2 Needle valves and spill valves

For control of the needle valves and spill valves the eTPU generates high precision
waveforms, which are a function called Peak and Hold Current Waveform Gener-
ation (PHCWG). The drive signals for the solenoids are created as explained in
Section 2.1 and the regulation of the waveform is aided by current feedback. The
battery voltage in the system is 24 V and the boost voltage, provided by a capacitor,
is 48 V. The current feedback signal is supplied by hardware as a voltage that has

23

4. Tasks performed by timer modules in the EMS

1 5004/ 670.0% 200.0s/

\\\\. LT W '\ l\l\‘\\\‘

Figure 4.2: Typical waveform for the Delphi F2 fuel injector. The waveform is
generated by driving dummy loads, resulting in that the waveform characteristics
are affected and the waveform is not within the required boundaries. Figure taken
from a Volvo internal document [4].

a linear relationship to the current flowing through the solenoid. Two comparators
are fed with the current feedback signal and the one-bit comparator output switches
level when the feedback signal passes a set reference voltage. The reference voltage
is created by a low pass filtered PWM signal generated by the eMIOS. One com-
parator’s reference value is set to the peak current and is called the peak comparator.
The other comparator’s reference voltage is set to the level of the hold phase and
is called hold level comparator. This comparator also has a logic signal called Hold
Level Control (HLC) which adds a voltage offset to the reference value when acti-
vated. The added offset makes the comparator’s switch level to rise to that of the
peak phase.

The Volvo system has a feature that enable an automatic switch between boost
and battery voltage. The main purpose of this feature is to slow down the rapid
decay during the beginning of the peak phase when the boost voltage is switched
off.

At run time the CPU feeds the timer module commands comprising of a list of
instructions that the timer module follows sequentially to produce a desired current
waveform. The possibility to combine simple instructions in an arbitrary order
enables for a wide variety of waveforms to be created. Figure 4.2 shows a current
waveform generated by the Volvo system for a F2 injector.

Diagnostics are performed both in software and hardware. The software diag-
nostics comprises mainly of checks of the time it takes to perform a subpart of the

24

4. Tasks performed by timer modules in the EMS

J 24V J 48V
Battery Jtﬂ Boost Jtﬂ

}_
e
—

LS1 Jﬂ Ls2

LS3 Jﬂ

Figure 4.3: Simplified illustration of the drive circuit for one injector bank.

envelope with the intent of detecting abnormal current behavior. The hardware di-
agnostic detects short circuits for the high side FETs, and if this happens a one-bit
digital signal (called High Side Short Circuit Detection (HSSD)) alerts the timer
module, which then shuts down the affected drive stage.

As all of the system’s injectors and spill valves are not used simultaneously, they
can be grouped together to lower the number of IO pins and drive stages needed.
Volvo has four groups with three PHCWG tasks in each, called a bank. This enables
up to 12 unique solenoids to be operated, with a maximum of four in parallel. All
solenoids in one bank share the same connection for the high side (Battery and
Boost) but have their own low side connection (LS1, LS2, and LS3). Figure 4.3
shows an illustration of one bank. Each bank also share the peak comparator, the
hold level comparator, and the HSSD signal. Together with the HLC signal this
makes for a total of 9 1O pins dedicated to each bank. In this value the four PWM
signals which give the reference voltage used by the comparators (trim signals) are
not accounted for, as they are shared between the banks.

4.1.3 Remaining rail valves

The dump valve and the inlet valve employed in CR configurations are operated
differently depending on the used fuel injection system. The dump valve can be
either mechanically or electronically controlled, whereas the inlet valve is always
electronically controlled. Further text assume that the dump valve is operated
electronically, as of otherwise a timer module is not involved. An electronically
operated dump valve can either be controlled like a fuel injector or by a PWM
signal. On the other hand, the inlet valve is always controlled by a PWM signal.
When PWM is used the drive stage consists of two FETs, one low side for connection

25

4. Tasks performed by timer modules in the EMS

Current

Decay ———> —— Fast Decay

¢————— Peak phase Hold phase

Duty Time

Period
Signal level

7u ﬂ ﬂ T —‘ H H H H H High side signal T

Low side signal

Time

Figure 4.4: Example of the current waveform and drive stage signals generated by
the PHPWM function.

to ground, and one high side for connection to battery voltage. The PWM signal
is then created by switching the high side FET while having the low side FET
activated.

Independent of how the valves are controlled the rail pressure is needed as decision
basis for controlling them. This pressure is acquired by an ADC measuring the signal
from the pressure sensor connected to the rail. The ADC is triggered by the eTPU
as regular intervals during the engines rotation. When the ADC has produced a
result the value is transfered to the eTPU by DMA.

The characteristics of the PWM used to drive the valves are based on the Root
Mean Square (RMS) value of the current going through the valve. This special kind
of PWM is called PWM RMS. In contrast to the control of injectors the needed
current feedback is provided by an ADC instead of hardware comparators. The
results from the ADC are transferred to the eTPU with DMA, after which the
eTPU computes the RMS value of the current. Every 10ms the CPU reads the
calculated value and uses it together with the rail pressure sensor data to derive
new PWM characteristics. These are then sent to the eTPU, which switches the
FETs according to the given characteristics.

4.2 Other tasks

All of the remaining tasks handled by the EMS’ timer modules are less complex
than the majority of those performed in the fuel injection control system. These
tasks comprise of four types: PWM signal characteristics measurement, PWM signal
generation, ADC triggering and data accumulation, and generation of a signal called

26

4. Tasks performed by timer modules in the EMS

Peak and Hold PWM (PHPWM).

The PHPWM produces a simpler current waveform for solenoid control than the
PHCWG employed for controlling fuel injectors and spill valves. Two differences is
that PHPWM control the solenoid without current feedback and employ no boost
voltage. As no current feedback is used the signals that compose the peak phase
and hold phase can be generated by simple PWM. The peak phase is created using
a higher duty cycle than during the hold phase. Figure 4.4 presents an example of
a PHPWM pulse.

The same function that performs ADC triggering for reading the rail pressure
sensor is also responsible for triggering other ADCs that collect data from other
pressure sensors. As such, these sensors are also read every 15th degree of the
engines rotation and the results is transfered to the CPU with DMA.

Summarizing all the remaining timer unit tasks there are a total of 22 PWM
signals generated by the eMIOS and the eTPU. The eMIOS measures the charac-
teristics of four PWM signals, and two PHPWM tasks are executed by the eTPU.
A reason for the eTPU to handle the PHPWM is that short circuit diagnostics have
to be performed to ensure safety; an ADC measures the solenoid current level peri-
odically and DMA transfers the result value to the eTPU which terminates the task
if the current rises to high. Additionally there is an eTPU function that triggers the
readout of all pressure sensors.

27

O

Handling of the EMS’
timer-module tasks using the
GTM

In this chapter we present our proof-of-concept design for how the GTM can be
employed to perform the timer-module tasks currently performed by the EMS. We
focus on fuel injector control and angle clock functionality as these are the most
demanding tasks that the system performs, but we will also give a less detailed
design proposal for how the remaining tasks can be handled. Additionally, the pro-
duced proof-of-concept prototype is described together with how the input stimuli
for testing have been produced.

Current
Ipeax Chop

Thola Chop

NAAAAAAANANAANANNANAANAANNANANNNN

VVVVVVVVVVVVVVVVVVVVYV\ Tiola Mean

— Theak —

Tpeak phase ———

Time

Figure 5.1: Current waveform parameters for the requirements of a Delphi F2 fuel
injector.

5.1 Requirements

For Volvo’s current system to function correctly there are a lot of requirements it
has to fulfill. We have not created our design to follow all of those requirements as it
is a proof-of-concept and not a full drop-in replacement. However, we have derived
requirements for our design based on Volvo’s system. The functional requirements
on our design are that given the same input and output signals it should produce

28

5. Handling of the EMS’ timer-module tasks using the GTM

Table 5.1: Typical values for parameters in Figure 5.1 given by Delphi [5].

Parameter Value
Iheak 16 A £0.2A
Ihold Mean 8A £0.2A
Ipeax Chop 4 A max
Ihold ChOp 2A £0.2A
T hax 10ms
Tpeakphase 400 ps
Tpeak 170 ps

Table 5.2: Measured worst case times for how long it takes to reach the boundaries
in the different operation sections of a F2 fuel injector.

Section Rise Time Fall Time

Normal decay Battery decay
Peak 3.5ps 3ps 3.8 s
Peak phase D s 4ps 5.51s
Hold phase 5ps 11ps N/A

an equivalent result compared to the existing system, described in Section 4. All
remaining requirements on our design is given below.

The appearance of the current waveforms used for needle valve and spill valve
control are tightly defined by the manufacturer. We aimed at being able to generate
a correct current waveform for the Delphi F2 fuel injector [10], as it was the most
demanding injector, in terms of timing requirements, used by Volvo at the time.
Figure 5.1 shows typical waveform parameters for a F2 injector and Table 5.1 holds
the values for the parameters given by Delphi [5].

Table 5.2 displays worst case measurements that we have performed on a real F2
injector. The values are the times it take to reach the boundaries in an injection
event’s two phases, as well as how long it takes to reach I,k in the beginning of
the peak phase. The first peak is separated from the rest of the peak phase in
these measurements as the current drops very fast after the initial rise to I ek and
it can be treated individually. When obtaining the rise times, boost voltage was
applied for the peak and the peak phase measurements, while battery voltage was
applied during the hold phase. In the specification from Delphi no voltage is applied
during decay, and the measurements for this use case are denoted with normal decay.
However, if battery voltage is applied when the boost FET is switched off during
the peak phase, the fall times become longer, giving the system more time to react.
Such fall times are obtained if Volvo’s automatic switch between boost and battery
voltage is used. Measurements performed using this kind of feature are denoted
battery decay in Table 5.2

The times in Table 5.2 give an indication of the timing requirements on our design;
our design has to stop the current from falling or rising, within the specified times.
The times also include a 0.8 s switching time of the high side FETs. As an example,

29

5. Handling of the EMS’ timer-module tasks using the GTM

subtracting the switching time leaves 10.2 s for performing the chain of subtasks,
from current level detection to output activation, when the current is dropping after
a chop in the hold phase. This value we denote as the Worst Case Response Time
(WCRT) of our design in that specific subpart of the current waveform. The other
WCRT for the remaining current waveform’s subparts is calculated in the same way.
As we employ battery decay in our designs the WCRT for the peak and the peak
phase becomes 3.0 s and 4.7 s, respectively.

5.2 Angle clock

In Figure 5.2 an overview for how maintaining an angle clock and performing engine
speed extraction can be done using the GTM. The DPLL module performs the
largest part in maintaining the angle clock, while the MCS handles engine speed
calculation and helps with converting absolute angles to relative angles for the angle
clock. The design is configured to trace the same kind of signals as described in
Section 4.1.1 and to produce the same resolution.

Some of the angle clock related tasks handled by the eTPU in Volvo’s solution
are not possible to handle with the GTM alone. Self diagnostics, error handling,
and synchronization need to be performed by the CPU. However, the DPLL has a
large number of status flags, error flags and interrupt sources that make such tasks
less complex. But as self diagnostics and error handling are not part of the angle
clock’s base functionality we did not include them in the design.

Host CPU
Cho TRQ Crank IRQ
Crank Sensor |
—{Cho
Ch2 IRQ
Cam Sensor Ch2 Ch2 Cap. 4{/) 4!/) State
7 7
TIMO 1 MAP P DPLL
Ch0 Cap. / / Trigger
7 7
32 32
Base Angle Engine Speed
Micro Tick
53
53f 53 Chl Cap - Cronk
24
ARU MCS1 7 TBU
Ch3 Cap. 53 Angle Clock
/ Cam,

Figure 5.2: Block diagram of proposed design for engine rotary position feedback
using the GTM

30

5. Handling of the EMS’ timer-module tasks using the GTM

5.2.1 Micro tick generation

To generate micro ticks in the DPLL the crank and cam sensor outputs first have
to be captured. This is done using TIMO channel 0 and 2 for the crank and the
cam signals, respectively. The channels are configured to filter away glitches on the
input signals, and when a valid sensor output is captured, the time stamp for the
edge and the added delay due to the filter, is transfered to the MAP module. TIM
channel 0 is routed straight through to the trigger input on the DPLL and TIM
channel 2 to the state input. The MAP can multiplex any of the TIM’s channel
1 to 5 to either the state input or as an input for rotational direction indication.
However, the direction indication was not used as the Volvo system currently does
not have any sensors for this.

When the DPLL receives input from the MAP one of two things will happen:
if all micro ticks for the preceding slit period have been generated it continues to
the next step; otherwise, the micro ticks not yet produced are generated in quick
succession before moving on. The next step is to calculate a prediction for the length
of the next slit period. The calculations are done using time stamps from past input
events and the configured profile of the input signal. Using the predicted period and
the number of micro ticks to be generated, a frequency for the micro tick generation
during the next slit period is attained. Each micro tick pulse is passed to the TBU
which in turn uses them to trigger the counter used as the angle clock.

Before the DPLL module starts to generate micro ticks it has to be synchronized.
Synchronization is performed by setting one memory pointer for the trigger input
and one for the state input. The pointers hold the address for the engine’s current
position in relation to the stored input signal profiles. To detect the engine’s current
position, interrupts indicating a new input edge from TIM channel 0 and 2 are used.
When a new rising edge is received on the cam input the period of the last tooth is
calculated. If it is less than half the previous period the extra cam tooth has been
found and we set the state pointer accordingly. The same approach is used for the
crank slits, but for them the CPU looks for a period that is twice as long instead of
half. When the DPLL is synchronized it is configured to raise an interrupt on the
first crank slit after each missing slit pair (crank pulse number zero in Figure 4.1).
This interrupt can later be used to schedule injection events for each cylinder.

In the event that the crank or cam sensor fail, the design can handle this grace-
fully. When an expected crank slit fails to occur the DPLL will raise an interrupt.
The CPU can then handle it by reconfiguring the DPLL to use the cam input in-
stead. This will result in lower accuracy than when running with the crank as the
cam teeth are further apart, but the DPLL will continue to produce micro ticks to
the angle clock. If instead the cam sensor breaks down, operation can continue as
usual until the engine stops, then on restart the synchronization will be problematic.
However, these functions have not been included in the design as they are not part
of the basic functionality.

5.2.2 Engine speed and base angle calculation

Engine speed is calculated in the MCS based on data received from two TIM chan-
nels. In the TIM module it is possible to feed a channel with the same input as

31

5. Handling of the EMS’ timer-module tasks using the GTM

its preceding channel. We use this to connect the crank sensor output to channel
1 and the cam sensor output to channel 3. Channel 1 then measures the period of
the crank signal and channel 3 captures the angle clock value at the rising edges of
the cam signal. Both channels then write the results to the ARU. In the MCS one
channel reads the crank slit period measurements from the ARU and puts it in a
32 entry large ring buffer. The period for the missing slit pair gets discarded as the
MCS is unable to divide it by three. A moving average of all entries in the ring buffer
is then calculated. Even though the MCS can not perform division this is possible
as the number of entries in the buffer is a multiple of two, which enables division by
shifting right. The result is then converted to RPM and written to memory from
where the CPU can access it.

The 24-bit counter that constitutes the angle clock does not reset after a complete
engine cycle. Therefore, when an injection event is scheduled with an absolute angle
it has to be converted to a relative angle clock value. For this to be possible a MCS
channel keeps a variable called base angle. The base angle holds the counter value
for the beginning of the current engine cycle and it is added to an absolute angle
clock value to get the relative value. The MCS channel tracks the cam input signal
by reading it from the ARU and updates an internal counter for each new input
edge. When the first edge of the engine cycle appears, the MCS channel updates
the base angle memory field with the captured angle clock value.

5.3 Needle valves and spill valves

This section presents two ways of performing the control of needle valves and spill
valves. As for the angle clock, these designs are produced with the aim of provid-
ing basic functionality; they are proof-of-concept designs. We have therefore not
included all diagnostics that is performed in the Volvo system, nor do we support
instructions in the sense they are used in the Volvo system; instead we have one hard
coded injection event which can be modified by a list of parameters. The first design
is optimized to produce as low response time as possible, while only employing the
GTM, hence it is called the GTM-only design. The aim for the second design is to
achieve a lower response time then the GTM-only design and to do this are other
resources from the targeted AURIX microcontroller in addition to the GTM utilized.
This design is called the Hybrid design and is used to evaluate if it is desired that
a design with a lower response time than the GTM-only design operates the Delphi
F2 fuel injector.

We begin this section with brief introductions to the two designs. Then the design
of the current waveform is presented. Next we present the signal path of the designs
beginning with how input signals are captured, how they later are processed and
how we have utilized the processing core, and then we present how output signals
are generated. Finally we estimate the WCRTSss of both designs.

The block diagram of the GTM-only design is shown in Figure 5.3. The current
feedback signal is processed by hardware comparators as in the Volvo system, and
each comparator output is captured by a TIM channel. The comparator data is
then transported to the MCS via the ARU. The MCS then uses the comparator
data together with time bases as a decision basis for deriving commands to send to

32

5. Handling of the EMS’ timer-module tasks using the GTM

Host CPU
Peak comp. trim 32
A — 32
: m| TOM va
Hold comp. trim PSMO
53
Low Side 1 Cmd 53
53 Hold Ctrl /
Low Side 2 4 Hold Ctrl 7
4 LS Ctrl 5
Low Side 3 53 LS Ctrl T /
Battery ATOMO gg ARU Bat Ctrl 5? !
4 Bat Ctrl 53
Boost 7 | Bos Ctrl 4
53 Bos Ctrl 7
T os Ctr! 53
Hold Ctrl // Cmdl/
IN
Hold comp. Cho Cap. Cho Cap.
—Ch0 Chl Cap. Chl Cap.
Peak comp. Ch2 Cap. Ch2 Cap.
h1 3% 53 3% 53
L Lo
TIM1 7 +— MCS0
155D Ch2

Figure 5.3: Block diagram of the GTM-only design for needle valve and spill valve
control using the GTM

ATOM channels via the ARU. The ATOM channels then produce the signals feed
to the FET drive stage.

In the Hybrid design, presented in Figure 5.4, we employ DMA which is included
in the AURIX microcontroller family. The difference outside the MCS instance
relative the GTM-only design is that the transfer of TIM results is performed by
DMA instead of the ARU. Additionally, DMA is employed to safely shut down a
bank which has encountered a short circuit or an open circuit.

5.3.1 Current waveform design

This section explains how we designed the current waveform to stay within the
waveform boundaries specified in Section 5.1. Both designs use the same current
waveform design allowing for an easier comparison of the results. We aimed to
produce a waveform as close to the one specified by Delphi in Figure 5.1.

At the beginning of an envelope the specified Low Side (LS) signal as well as the
boost and the battery signals are activated. Recall that the interlock suppresses the
battery signal when both the boost and the battery signals are active. The applied
signals result in that a boost voltage is applied to the solenoid and current starts
to rise. When the peak comparator indicates that the current has reached I,c.k the
boost signal is deactivated. To keep a steady current level in the peak phase the
boost signal is normally activated as fast as possible when the hold level comparator
indicates that the current has dropped below the hold level. This is not the case
for the first time the current drops after the initial rise to I eax, Where the boost

33

5. Handling of the EMS’ timer-module tasks using the GTM

Host CPU
32
Peak comp. trim
A — 32
Hold comp. trim 7
- |
53
Cmd 53
. 53 Hold Ctrl /
Low Side 1 / Hold Ctrl| o
Low Side 2 53 LS Ctrl
—— /LS Ctrl 3
Low Side 3 4 Bat Ctrl
5;’ Bat Ctrl ARU 53
Battery ATOMO 7 Bos Ctrl
53
Boost, 4/ Bos Ctil 53
7 Cmd
Hold Ctrl
PR
Ch0 IRQ
Hold comp. Chl IR
! Cho L
Ch2 IRQ
Peak comp. 1
Chl 32 32
ChO Res. Ch2 Res.
TIMO / /
7 7
32 32
Chl Res. ChO Res.
_HSSD .. ?{; DMA g; MCS0
Ch2 Res. 4 Chl Res. 4
7 7

Figure 5.4: Block diagram of the Hybrid design for needle valve and spill valve
control using the GTM

signal is instead activated directly. This is done as the short fall time (Table 5.2)
does not allow the GTM-only design to execute the number of instructions needed
to respond to the hold level comparator’s result in time.

The time of a chop is determined by the configuration data that the CPU sup-
plies to the GTM at initialization. The chop time is provided to an ATOM which
deactivates the boost signal after the specified time duration. As mentioned, longer
chops are needed at the beginning of the peak phase for the current to rise the
same amount as later in the peak phase. We counter this behavior by decreasing
the length of the boost chops for a specified number of chops. The remaining boost
chops then have the same length.

Battery voltage is applied between boost pulses by employing a feature such as
Volvo’s automatic switch between boost and battery voltage. This battery voltage
has a different effect on the current level in the beginning and at the end of the
peak phase due to the change in inductance when the metallic core is lifted. In the
beginning the battery voltage will only slow down the current drop. However, as the
peak phase progresses the battery voltage will eventually not only slow the drop,
but instead make the current rise. To counter that the current elevates too high, the
battery signal is deactivated if the peak comparator indicates that I e,k has been
reached. The battery signal is then activated again after the hold level comparator
indicates that the current has dropped below the hold level and the boost signal has
been activated. During the decay when the battery voltage is switched off, the peak
comparator is not monitored, as the current can not rise.

34

5. Handling of the EMS’ timer-module tasks using the GTM

A busy-wait loop is executed after the boost signal is deactivated to prevent
the battery signal from being switched off. The reason to do this is to wait for
the current to decay below Iex before monitoring the peak comparator’s result.
Without the busy-wait, the battery voltage would be switched off resulting in a
rapid decay instead of a slow decay. The disadvantage of waiting before monitoring
the peak comparator is that a delay is introduced when the current does not decay
and the battery voltage needs to be turned of.

When the peak phase has ended, both high side FETs are switched off and the
HLC signal is transitioned to lower the reference voltage supplied to the hold level
comparator. During the hold phase no voltage is applied between the chops. Also,
as the chop length relative to the current level increase is close to linear throughout
the hold phase, the chop lengths can be static. When the hold phase is finished the
battery and the LS FETs are switched off, leading to a fast decay of the current and
the end of the envelope is reached.

5.3.2 Input signal capture

This part of the task consists of how the one bit comparator output signals are
captured and transported to the processing core. In both designs the comparator
output signals are connected to one TIM channel each. The TIM channels’ output
in the GTM-only solution is supplied to the ARU and is transferred to the MCS
when an ARU read instruction is executed. However, in the Hybrid design the
TIM channels’ output data is transferred to the MCS’ memory by DMA, trigged by
interrupts from the TIM channels.

The TIM channels are configured to produce a result as soon as an edge transition
is detected on the input signal. All form of processing is kept to a minimum; the
most simple input signal characteristics are captured. The mode employed counts
the incoming edge transitions and produces a result when a chosen number of edges
has been detected. We set this number to one edge. By this configuration we
estimate that a result is produced within 50 ns. In the Hybrid design when a result
is produced, the interrupt that triggers a DMA transfer is also raised.

The HSSD signal is, in the GTM-only solution, handled in the same way as a
comparator output signal. However, the Hybrid design takes care of it differently.
The HSSD signal is initially in its inactive state and as soon a TIM result is provided
it is certain that the HSSD signal has transitioned, indicating that a short circuit has
occurred. Thus, we use the new result interrupt raised to trigger a DMA transfer
that disables the ATOM and MCS channels employed. The disabling of the ATOM

channels also deactivates all outputs.

5.3.3 Processing

The MCS perform processing based on parameters given from the CPU. Together
with data from the comparators and the two time bases, commands are sent to the
ATOM channels. The MCS module is configured to schedule the tasks using round
robin to ensure deterministic performance when the remaining MCS channels are
used for other tasks. Table 5.3 presents how many, and for what, the MCS channels

35

5. Handling of the EMS’ timer-module tasks using the GTM

are used, depending on design solution.

Table 5.3: Utilization of MCS channels in one MCS instance for one bank.

MCS channel GTM-only design Hybrid design

Master Master
HSSD -
Peak comp. -
Hold level comp. -
LS -
Boost -
Battery -

N O Ul W N~ O

In the GTM-only solution seven MCS channels are used: one channel handles
the signal generation logic (master channel), one channel fetches the HSSD signal
value from a TIM channel and reacts to it, two channels fetch comparator data
from the TIM channels, and three channels send commands to to ATOM channels.
Everything regarding this task could have been done in one channel, but to get the
lowest latency possible we decided to split up the tasks.

The MCS channels fetching comparator data ensure that the latest data written
to the ARU by the TIM channels are provided to the master channel as fast as
possible. If the master channel itself fetched this data it would add a time jitter
to the time-critical control loops, as the ARU fetch instruction blocks the channel
until the arbiter in the ARU has passed the desired ARU read address.

To safely shut down the FETs when the HSSD signal is activated the three
channels sending ATOM commands are needed. Without those channels the master
and the HSSD channel would both send commands to the ATOM channels. As it is
not possible for a MCS channel to perform several instructions atomically, such as
checking a shut down variable and sending an ATOM command, there is a high risk
that the master channel would send an ATOM command activating a FET when
the HSSD channel already has deactivated all FETs. Also, it is not possible for a
MCS channel to disable other MCS channels. Thus must only one MCS channel
sends commands to one ATOM channel to maintain correct behavior.

Fewer MCS channels are needed in the Hybrid solution. The channels fetching
comparator data are not needed as DMA is employed to provide input data to the
MCS. Additionally, the three channels sending commands to the ATOM channels
are not needed either as DMA is employed to disable the master channel and the
ATOM channels. The HSSD channel can be discarded as the emergency shut down
is triggered by a TIM channel. This result in that only the master channel is needed.

The following paragraphs will describe what is performed in each MCS channel
for the two designs.

Master channel The master channel fetches parameters, which are stored in
a PSM by the CPU, performs all processing based on the given commands, and
constructs the ATOM channel commands. When a master channel retrieves from

36

5. Handling of the EMS’ timer-module tasks using the GTM

the PSM all necessary parameters to produce an injection event the channel proceeds
to derive ATOM commands based on the provided parameters. In the GTM-only
design the ATOM commands are stored in memory which the LS, boost, and battery
channels then load and send to the ATOM channels. In contrast, the Hybrid design
writes the commands to the ATOM channels directly over the ARU.

LS, Boost, and Battery channels These three channels are used in the GTM-
only design and are simply used as an interface between the master channel and
the ATOM channels. The master channel stores an ATOM command in memory
and then triggers one of the three channels. The triggered channel then loads the
command and then writes it to the corresponding ATOM over the ARU. The MCS
channel then goes back to sleep, awaiting a new trigger. However, before the trig-
gered channel writes data to the ATOM channel, it check a termination variable
to see whether any termination of the current envelope have been requested. If so,
an ATOM command for deactivating the output signal is written instead of the
provided command, and afterwards the MCS channel disables itself.

Comparator channels The GTM-only design has two MCS channels which fetch
the captured comparator results from the TIM channels to the MCS instance. These
channels execute blocking ARU instructions and when the MCS channel has received
the data, the channel stores it in memory where the master channel can access it.

HSSD channel In the GTM-only design the HSSD channel fetches, with a block-
ing ARU instruction, the result from the TIM channel connected to the HSSD signal.
The acquired data is then checked in order to determine if the HSSD signal has been
activated. If so, an ongoing envelope is terminated and the whole injector bank is
shut down. The GTM-only solution terminates a ongoing envelope by first setting
the previous mentioned termination variable, and then triggering the LS, battery,
and boost channels.

5.3.4 Output signal generation

Each of the output signals fed to the drive stage and the HLC signal are generated
by an ATOM channel. The ATOM channels which produce the signals to the drive
stage are configured to work in a mode where they compare the value in an internal
register against a time base. When a compare match occurs the output signal is
transitioned according to the loaded ATOM command. The HLC signal can be
generated without any compare matches and the ATOM producing the HLC signal
is configured in a simpler mode where one of the bits in the ATOM command simply
determines the output level. The commands and the compare values are received
through the ARU.

The compare capability is mostly used to perform a chop. In such case, the
compare value supplied together with the ATOM command defines a time stamp in
the future for when the high side should be deactivated. In all other cases it is desired
that the output is deactivated as fast as possible, for example when the current has
dropped below the hold level. Then the compare value sent is zero, which triggers a

37

5. Handling of the EMS’ timer-module tasks using the GTM

compare event and switches the output as soon as the ATOM channel receives the
command.

The voltage reference signals supplied to the comparators are generated by TOM
channels. These PWM signals are not changed by the MCS, or by the CPU after
they have been initialized. Thus they can be created by TOM channels instead of
ATOM channels.

5.3.5 Worst case response times

The cases where the response time calculations are relevant for our designs are
when a new input event is received which results in that an output signal shall be
transitioned. Such input events are generated by the comparators and there are
four cases where the WCRT is interesting: when the current initially reaches I,eax,
when the current drops below the hold levels in the peak phase and the hold phase,
and when an emergency shut down must be performed due to an activation of the
HSSD signal. An estimation of the individual WCRT of all modules in our designs
are presented in Table 5.4. The value provided for DMA is for one transfer and it
is assumed that the transfer is served immediately.

The response time deactivating the boost signal after the initial peak is not
regarded as an interesting WCRT'. This is beacuase the peak comparator’s reference
value can be lowered if more time is needed for the system to react. Although, the
comparator level affects how long the busy-wait loop needs to be and how high the
battery voltage is allowed to elevate the current level. Why we nonetheless discard
this response time as unimportant is due to the current’s slow rise time when Ieax is
reached initially. If the reference value has to be lowered, it results in a substantial
longer time for the system to react to the initial peak than it affects the current
elevation of the battery voltage and the busy-wait loop length. All thanks to the
slow rise time.

Table 5.4: WCRT for the modules used in the presented designs, assumed that all
digital modules operate at the maximum clock frequency of 100 MHz.

Module WCRT of module
DMA ~ 300 ns per transfer

TIM ~ 50 ns
ARU 730 ns per transfer
MCS 90 ns per instr. cycle

ATOM ~ 50 ns

If an input event triggers an output transition, the WCRTs for the designs are
calculated by adding the WCRT of the modules passed from the comparators until
the output signal is transitioned. The WCRT of the GTM-only design thus includes
the WCRT of the TIM, two times the ARU, the MCS, and the ATOM. Summing
these together, minus the WCRT of the MCS, becomes approximatively 1.6 ps. The
WCRT of the Hybrid design when excluding the WCRT of the MCS becomes 1.1 ps,
as one ARU transfer is replaced by one DMA transfer. Depending on the available

38

5. Handling of the EMS’ timer-module tasks using the GTM

time until a current waveform boundary will be violated, different numbers of in-
struction cycles can be executed. The WCRT calculated here, which excludes the
WCRT of the MCS, is referred to as the base WCRT.

Table 5.5 present the number of instruction cycles in the critical path for the
four interesting WCRTSs and in parenthesis is the maximum number of instruction
cycles that can be performed while still meeting the requirements. The number of
instruction cycles assume that all time that is not part of the base WCRT is used
for execution, which is not the case in the peak phase and hold phase as it will take
some time before the current has dropped below the hold comparator’s reference
value. The table also shows our estimated WCRTS, as well as how far the values are
from the requirements is in parenthesis.

The type of WCRT estimation explained above is a naive approach and the
calculated value is likely to be longer than the real WCRT. What has not been
taken into account is that ARU’s arbiter will not necessarily be in a random position
when the ARU is used a second time in the critical path. This is because the arbiter
continuously polls all data destinations in a specified order independently of whether
the destination want data or not, but as the poll order is not defined in any document
we have access to, a correct WCRT is hard to calculate. Therefore we here present
WCRT estimations based on the naive approach.

The GTM-only design has more instructions in its critical path than the Hybrid
design due to the fact that the tasks are divided between several MCS channels.
Relative to the Hybrid design, five more instruction cycles are needed to fetch input
data and eleven more to transfer derived ATOM commands. These numbers can
not be applied to the emergency shut down action, as it is designed differently.

Table 5.5: The number of instruction cycles present in the critical path during the
four interesting WCRTS.

GTM-only design Hybrid design
Section Est. WCRT Instr. cycles Est. WCRT Instr. cycles
First drop 2.8 ps (-0.2) 14 (16) 1.8 s (-1.2) 3 (16)
Hold & Peak phase ~ 3.8us (-0.9) 25 (34) 1.9ps (-2.8) 9 (42)
HSSD 3.1pus (+2.1) 17 (0) 0.35ps (-0.65) - (-)

We mentioned that during the decay from the initial peak the GTM-only design
did not have time to take the hold level comparator’s result into account. The
current decay has to be countered by the GTM within 3.8 ps — 0.8 ps = 3.0 s, when
the FET switch delay has been subtracted. This leaves time for 1.4 ps of instruction
execution that equals 15 instruction cycles. This is not enough instruction cycles,
as the same number as are used in the hold phase, 25, would be needed. In the
solution adopted by both designs the hold level comparator is not monitored and
the ATOM command which activates the boost signal is dispatched directly. This
results in the GTM-only design needing 14 instruction cycles and the Hybrid design
needing three. The critical path for this solution no longer starts with an input event.
Instead the response time is measured from when the boost signal is transitioned to
its inactive state. In both designs the ARU has to be employed twice, as a readback

39

5. Handling of the EMS’ timer-module tasks using the GTM

must be performed on the boost ATOM before the new ATOM command can be
sent, resulting in the designs having the same base WCRT of 1.5 1s. The estimated
WCRT of the GTM-only design then becomes 1.5 ps + (90 ns x 14) ~ 2.8 ps and the
Hybrid design’s becomes 1.5 s + (90 ns x 3) ~ 1.8 us.

The WCRT is longer in the peak phase than in the hold phase as also the peak
comparator is monitored, but the WCRT that affects the designs ability to keep
the current within the specified boundaries is the same. As the peak comparator
is monitored during decay with activated battery signal, the critical path is longer
than during decays without applied voltage. The WCRT which affects the system
the most is where the current drops most rapidly, and during the peak phase this is
when no voltage is applied during the decay. As a result, even though the WCRT
is larger during the battery decays, the WCRT affecting the current drop the most
is when no voltage is applied. The number of instruction cycles in the critical
path during the rapid decays are identical with those employed in the hold phase,
thus the estimated WCRT becomes identical as well. The GTM-only design uses
25 instruction cycles and the Hybrid design nine, which correspond to estimated
WCRTS of 1.6 s+ (90 ns x 25) =~ 3.8 us and 1.1 18+ (90 ns x 9) & 1.9 s, respectively.

The total WCRT requirement during the hold phase for the design is large com-
pared to the other two cases. The time available for execution in the MCS is 8.6 pis
and 9.3 ps for the GTM-only design and the Hybrid design, respectively. These long
times are well within the capabilities of both designs.

The requirement to deactivate the output signals within 1.0 ps when the HSSD
signal has been activated is not possible for the GTM-only design. A total of 14
required instruction cycles and the base WCRT of 1.6 s results in an estimated
WCRT of 3.1p1s. However, the Hybrid design meets the requirement, if the DMA
channel is served in time, as only one transfer is needed to disable and deactivate all
the ATOM channels. One additional transfer is used to disable the master channel,
but is not a part of the WCRT as the outputs already have been disabled. The
estimated WCRT then consists of one TIM WCRT and one DMA transfer WCRT
which becomes 0.35ps. The time it takes for the ATOM outputs to switch after a
successful transfer is neglected.

5.4 Remaining rail valves

Currently, one way Volvo control influx and dump valves in the fuel injection system
is by PWM RMS, as explained in Section 4.1.3. The influx valve could also be
controlled like an injector, in a similar way to that described in Section 5.3.

To use the GTM to generate a PWM RMS signal would not be possible as the
MCS can not perform multiplication or division in hardware, and thus the RMS
calculations would be extremely slow. One solution to this is to move the RMS
calculation into the CPU. To not flood the CPU with readings from the ADC a
MCS channel would be responsible for collecting a small set of data points that the
CPU then could processes in a batch. Data collection would involve triggering of
an ADC at specific places of the generated PWM pulse and then receive the result
via DMA. The MCS would also need to control two ATOM channels for the actual
PWM signal output.

40

5. Handling of the EMS’ timer-module tasks using the GTM

For the rail pressure acquisition an ADC needs to be triggered synchronous to the
engines rotation. This could be done with an ATOM channel that is set to PWM
generation using the angle clock as time base. The ADC in turn, triggers a DMA
transfer when it has finished its conversion.

5.5 Other tasks

Left uncovered are all the tasks brought up in Section 4.2. To perform PWM signal
generation, a TOM channel can be used, and to obtain PWM characterizations a
TIM channel can be used, since the TIMs and the TOMs can perform the same
input and output functions as the eMIOS channels can, respectively.

The PHPWM is more advanced and also requires more resources. One approach
to generate such a signal is to use an MCS channel to control two ATOM channels.
The MCS would receive pulse parameters from the CPU via a PSM over the ARU,
or the CPU could update pulse length and period directly in the MCS’ memory.
Another solution without using an MCS channel could be to use three ATOM chan-
nels, one for the low side, one for the high side, and a last one to trigger a duty
cycle reload for the high side ATOM channel. The high side channel would, when
receiving a trigger, fetch a new duty cycle and period configuration from a PSM
configured in ring buffer mode. The CPU controls the pulse length and period of
the PHPWM pulses by changing the period and duty cycle in the low side and the
trigger channels.

Triggering of the ADCs for the remaining pressure sensors could be done the
same way as for the rail pressure sensor; an ATOM is configured to produce a pulse
every 15th degree based on the angle clock.

5.6 Prototype

We have implemented the design proposed in Section 5, forming a proof-of-concept
prototype. The purpose of the prototype was to show that the design is capable
of producing the correct functional behavior as well as to verify the timing require-
ments. Thanks to the GTM’s modular design with replicated hardware, control
of one injector and a working angle clock are enough to show that the GTM can
perform the intended tasks. Adding support for more injectors would not affect the
performance of the already existing parts in the GTM, as long as there are enough
modules available.

5.6.1 Hardware

Figure 5.5 gives a overview of the hardware setup we used for development and
testing. Volvo’s current system runs on the hardware platform called EMS, which
is developed and produced by TRW in close cooperation with Volvo. The EMS
includes the FETs required for driving solenoids with battery and boost voltage. It
also has the circuits needed to measure the current going through these solenoids
and for short circuit detections in the high side FETs (HSSD). The current sensing

41

5. Handling of the EMS’ timer-module tasks using the GTM

Battery Signal
AURIX ’— Boost Signal
P . High Side Con.
Generated Crank Low Side Signal U H
Sensor Signal HLC Signal Tow Side Con
Peak Comp. Trim EMSQ 3
Hold Comp. Trim :
Generated Cam GTM Peak Comp. Result
Sensor Signal
Hold Comp. Result

HSSD

Figure 5.5: Overview of the hardware setup used for development and testing.

circuit is combined with comparators that signal when the the current going through
the solenoids passes a specified threshold.

As mentioned in Section 3.4 we used an AURIX TC2X7 development board as
the hardware platform for the prototype. To this board we connected one each
of the above mentioned signals, allowing us to drive one real injector. The EMS
microcontroller was loaded with software that left its connections floating to remove
any potential interference with the AURIX’s logic signals.

The EMS which we had access to did not have Volvo’s feature that enable an
automatic switch between boost and battery voltage and thus we implemented our
own version of the feature. Our implementation was made of 7400 logic gates and
was placed in the signal path between the GTM and the EMS drive stage. The
implementation allows the boost and the battery signals to both be active at the
same time, but only one of the high side FETs is activated. The boost signal has
precedence and suppresses the battery signal. As soon the boost signal is deactivated
the battery signal will propagate to the drive stage as normal.

5.6.2 Testing

Before the prototype was moved to the hardware platform it was tested on the GTM-
RM simulator. This allowed for fast initial development as the software platform
allowed for more insight in the operation of the GTM than the hardware would have.
It also made sure any initial errors did not result in broken hardware. When the
behavior of the prototype running in the GTM-RM was satisfactory the prototype
was moved to the AURIX board on which further testing was carried out.

Stimuli for the cam and crank sensor inputs was needed to test the behavior of
the angle clock. The stimuli was generated by the GTM itself with the use of two
PSM channels in ring buffer mode and two ATOM channels reading values from the
buffers over the ARU. The ring buffers were populated with PWM data to produce
cam and crank logic signals representing an engine speed of 5000 RPM. To gain
more realistic signals, a 5% sinusoidal variation of the engine speed with three times
the period were added. This is to simulate the speedup of the engine after each
combustion as well as the slowdown in between.

The way of generating cam and crank sensor signals works for both the hardware
platform and the GTM-RM, but for the injection control input stimuli two different
solutions were used. When testing on the GTM-RM no real injector drive hardware

42

5. Handling of the EMS’ timer-module tasks using the GTM

could be connected, and as the signal generation is feedback driven, interrupts from
the ATOM channels were used to control TOM channels emulating hardware signals.
For the testing performed on the prototype a Delphi F2 injector was connected via
the EMS drive stage and the resulting behavior was inspected on an oscilloscope. To
remove the need for recompilation and downloading of the software between every
test, the asynchronous serial interface of the ARUIX TC277 was utilized to send
commands to the prototype and to receive debug printouts.

43

O

Results

In this chapter we present how the prototype performed with the input stimuli
described in Section 5.6.2. The prototype’s performance is presented using several
figures and Table 6.1 give a description of the signals seen in these figures. Last we
also show the resource utilization of the prototype.

Table 6.1: Description of the different signals shown in Figure 6.1, 6.2, 6.4, and
6.3.

Analog signal From To Description

3 (Blue) EMS Injector Current passing through injector
1 (Orange) EMS Injector Voltage over injector
Logic signal From To Description

D6 GTM EMS Hold level control

D12 EMS GTM Peak comparator flag

D11 EMS GTM Hold level comparator flag
D5 EMS GTM HSSD (active low)

D4 GTM EMS Battery (active low)

D3 GTM EMS Boost (active low)

D2 GTM EMS Low side

D1 GTM GTM Cam sensor

DO GTM GTM Crank sensor

6.1 Angle clock

To verify the functionality of the angle clock, injection events were scheduled on
specific angles. The injections were queued by the CPU when it received the crank-
slit zero interrupt from the DPLL and they were set to start 20 degrees before the
TDC of the current cylinder. This was done for one full revolution of the crank shaft
resulting in three injections 120 degrees apart. The length of the injections were set
to 30 degrees long, which at 5000 RPM corresponds to 1.2 ms.

Figure 6.1 shows the result from the above test. As it can be seen, all three
injections start slightly after the 7th crank signal for each cylinder, corresponding
to 20 degrees before TDC. The length of the injections are five slits long, which
corresponds to 5 x 6 = 30 degrees.

44

6. Results

For verification of the engine speed calculation crank and cam signals were gen-
erated for three different RPM; 1000, 2500, and 5000, to which the calculated values
were compared. For all three speeds the calculation was off by 0.5%), and the reason
for this will be brought up in Section 7.

RS04 30244, MY52161333; Wed May 20 16:12.07 2015
50.0%/ 3 5.008/ 1.240%¢ £ 0 TTL

- .
~i Agilent
Aoquisition
High Res
50.0MSals
’ H ’ ‘- (]- Channels
} \ / (oc 10.0:1
I .
| 1
j—— S e ==
1o 1
Bn T
DS
i v - =
D2 | N - T 1 - | =
I T T T T T T s A Tt TaTaT el

Figure 6.1: Capture of three injector pulses that have been scheduled on the crank
slit zero interrupt to start 45 degrees later.

6.2 Needle valves and spill valves

For the control of needle and spill valves two different designs were presented in
Section 5.3 and in this section we show how both designs performed.

A typical current waveform produced by the GTM-only design and the Hybrid
design are displayed in Figure 6.2 and Figure 6.3, respectively. In the figures, cursors
have been placed to indicate the four I, requirements from Table 5.1 in Section 5.1.
As seen, the GTM-only design meets all these, with the exception of I,e. chop
for which it can be seen that the ripple is a roughly 1 A larger than the required
maximum of 4 A. The Hybrid design meets all the I, requirements with a small
margin for the I ek chop. The time requirements have not been marked, but it can
be seen that these are fulfilled for both designs.

The busy-wait loop, mentioned in Section 5.3.1, was set to 2ps. As seen in
both waveforms, this wait time was long enough for the peak flag to go low and
thus prevent the battery voltage from being switched off, but it also introduces an
elevation of the current in the later part of the peak phase, after the boost voltage
is switched off, which is not desired.

The latencies measured correspond with those mentioned in Section 5.3.5: how
long time it takes for the system to activate the boost signal again after I,c. is
reached initially; how long time it takes during the peak phase and hold phase until

45

6. Results

Mls0- 30248, WVE2161335: Wed May 20 18:35:40 2015

| 80OV 3 5.00A/ 108.0%/ £ 0 TTL
h | i .
, -: Agilent
; Ay kb Hﬂ —: .ﬁ\cquisition
i /V MJWV\J \I \ | High Res
I }7 """"""""""""" S D S I R 3 S00MSals

| Cursors

=l L1 -

N L T AT ERTETRTTRT N

5 [! AY[3):

EJ‘" ! II_IUEI.I:I.FI.FJ“'L;I_LII ID'—IE' I: LU L UL LU LALLM LU UL UL L L LU — +Z2.1875A

Bi: TUUun i rririru U Uy U Uy U r T Ui T U I Y[S]

N LA AR | +16.18754

e — AY[3L

i e ' ' ' ' : i — —+] —— +400004

Figure 6.2: Capture of a current waveform generated by the GTM-only solution
with cursors indicating the vital points.

MS0-K 30244, MYS2181333: Wed May 20 14:32:18 2015

| B0.0vs 3 B.00DAS 108.08¢ £ 0, TTL
% Agilent
Boquisition
High Res
a00MSals
Channels
ot 1001
=
E I [E Cursors i
! ! VI3l
= HWHH[\J L I] +8.12504
e . | AV
Bu ' FTULULT U T o rrrarrrrrredurnnrrnoee | —— +2 18754
@E_: ML L V=) G187
b — | Av)
] e — — A —— —— +4.00004

Figure 6.3: Capture of a current waveform generated by the Hybrid solution with
cursors indicating the vital points.

the high side is activated after the current has dropped below the hold level; and
how long time it takes to perform an emergency shut down when the HSSD signal is
activated. Figure 6.4 shows an example of how the latency is measured for the peak
phase and hold phase. The latencies for each design are summarized in Table 6.2.
Recall that the peak phase and the hold phase has the same critical WCRT, and by
the same argumentation as in Section 5.3.5, the critical latencies are the same for

46

6. Results

the peak phase and hold phase. Thus the values for the two phases are the same in
this table as well. The values in parenthesis indicate how close the measurements
or estimated WCRTs are to the available time presented in Table 5.2, with the
switching time for the FET removed.

RS04 30244, MY521681333: Wed May 20 18:35:42 2015
2000%/ 3 2008/ 10.00%/ £ 0 TTL

T e .
| i Agilent
I ¢ Acquisition
} High Res
\-w w Pt FO0MSals
— My
} Channels
oc 10.0:1
A Py
[{ J i Cursors
- : SR i AR
+3 440000us
DB
o)
B]]_l L J 1 I ! I J 1 J L R
3
B4—I | S— - | S— — | S— | S—
D3
i
o .

Figure 6.4: Zoom-in on Figure 6.2 showing the latency introduced by the GTM-
only solution.

Table 6.2: Measured worst case latencies on both designs and the estimated
WCRTs.

Section GTM-only design Hybrid design
Latency Est. WCRT Latency Est. WCRT
First drop 2.3ps (-0.7) 2.8ps (-0.2) 0.82ps (-2.2) 1.8ps (-1.2)
Hold & Peak phase 3.4ps (-1.3) 3.8 s (-0.9) 1.8 s (-2.9) 1.9ps (-2.8)
HSSD 2.0ps (+1.0) 3.1ps (+2.1) 0.34ps (-0.66) 0.35us (-0.65)

The measured latencies are all shorter than the estimated WCRT, some are quite
accurate while others differ as much as 50% from the estimations. The largest reason
for this result is, as discussed, that the ARU arbiter is not always in a random
position when it is employed the second time in a critical path. To give a better
understanding of the arbiter problem we highlight the measurement for the Hybrid
design’s first drop. After the command to deactivate the boost signal has been
transfered by the ARU, the arbiter will always be in the same location when the
MCS executes the readback command. Evidently the time between the ARU arbiter
serving the MCS write address and the ATOM write address is large enough to let
the readback be served on the same arbiter round trip. Yet, the time span is still
small enough to let the MCS to also execute the ARU write for boost reactivation

47

6. Results

before the beginning of the next arbiter round trip. These circumstances enables
all three ARU transfers to be performed on one round trip time, thus the latency is
always the same. The additional 820 ns — 730 ns = 90 ns on the response time comes
from the latency introduced by the ATOM and the actual transfer over the ARU,
as well as inaccuracy in our time measurements.

The waveforms from the two designs are produced with nearly identical config-
urations. The comparators have the same reference values and the length of the
phases are identical; the length of the peak phase is set to 400 ps and the length
of the envelope to 1 ms. What differs between the designs are the values regarding
the length of a peak chop. As the GTM-only solution has longer response time, the
current decays more than in the Hybrid design and the chop must thus be longer
in the GTM-only design for the current to reach I, k. A longer chop time is not
needed during the hold phase as the longer latency only lowers the I,q Mean level
and does not affect the peak-to-peak value. The configuration values relating to the
peak chop are presented in Table 6.3.

Table 6.3: Configuration values which differentiates between the designs.

GTM-only design Hybrid design

Peak Chop 9.0 s 8.51s
Decrease per Peak Chop 0.8ps 0.6 ps
Number of Decreases 9 7

6.3 Resource utilization

Table 6.4 shows the utilization of the GTM’s resources for the designs presented in
the previous chapter. The utilization is calculated based on a GTM device 103, as
it was the configuration available in the prototype’s microcontroller. For the GTM-
only design the usage of MCS channels is 100% if it is assumed that the PHPWM
function is implemented as the MCS-less approach presented in Section 5.5. Oth-
erwise, there would not be enough MCS channels and the larger device 104 would
be needed to realize the design. Recall that the two trim signals are shared by two
banks, thus only four TOM channels are needed for needle and spill valve control.
Concerning the pressure sensor measurement it is enough with one ATOM channel
to trigger all ADC conversions as groups of VADC channels in the AURIX can be
triggered by a single interrupt source.

The MCS memory usage is moderate. If the GTM-only design is employed for
the needle and spill valve control, 1.4 KB of MCS memory is utilized. If instead
the Hybrid design is used, 0.9 KB is needed. These memory values correspond to
23% and 15% usage of the default 6 KB combined data and code space for one MCS
instance, respectively. The angle clock with its two MCS channels use 0.4 KB of
memory which corresponds to 7% of 6 KB.

The resource usage outside of the GTM for our designs compared to the current
EMS system are almost the same. The difference is that the Hybrid design needs

48

6. Results

12 more DMA channels. Additionally, any changes in execution time demands on
the CPU is hard to determine, but our estimation is that during runtime the needs
should be about the same between the current system and a GTM system. To
determine the differences more exact, we leave for future work.

Table 6.4: GTM-resource utilization for our two designs on a GTM device 103. The
number of available channels is placed within parenthesis after the module acronym.

Function or design ~ MCS (32) TOM (32) ATOM (40) TIM (32) PSM (8)

Angle clock 2 0 0 4 0
GTM-only / Hybrid 28 /4 4 24 12 4
PHPWM 0 0 6 0 2
PWM RMS 2 0 4 0 0
PWM generation 0 22 0 0 0
PWM measuring 0 0 0 4 0
Sensor measuring 0 0 1 0 0
Egé\fi(‘l’lﬁ)ﬁl"tal 328“((2)2;2; 26 (82%) 35 (88%) 20 (63%) 6 (75%)

49

/

Discussion

In this chapter we first elaborate about strengths and weaknesses regarding the
GTM. Next the angle clock is covered, where we relate our design to how it differen-
tiates toward Volvo’s or a general design employing the eTPU. The last discussion
is about the needle and spill valve control, where we evaluate our two designs and
reason about design decisions.

7.1 GTM architecture

The Generic Timer Module assessed in this thesis is a new approach to how a timer
module works. Its modular design makes it easy to add and remove features in
a system, without affecting the existing ones. Compared to the eTPU, in which
the addition of a new task may cause the other ones to fail, as all 32 channels
in the eTPU shares one execution pipeline. On the other hand, the eTPU has a
much more powerful instruction set than the GTM which, for example, can not
perform division or multiplication. This makes the signal processing capabilities in
the GTM’s processing core a bit more limited. However, the GTM’s different 10
modules all have hardware accelerated signal processing capabilities on their own,
while in the eTPU all processing has to be done with code.

When performing real-time tasks with short deadlines as those assessed in this
thesis the latency introduced by the ARU is a large problem. To use the GTM
for what it is intended, offloading the CPU, data has to be transported internally
between its modules using the ARU. One could use the CPU to move data between
the modules, but that would defeat the purpose of the timer module. However, in the
upcoming generation of the GTM it will be possible to circumvent this latency issue.
This generation will also address the issue of not being able to perform division or
multiplication in the MCS, which will make the processing capabilities of the MCS
much more powerful.

An additional downside with the GTM is that there is a fairly limited number of
ways a MCS channel can be triggered. The possible ones are to write to the trigger
register with the CPU or with another MCS channel in the same instance. Issuing
a ARU read instruction will also put the MCS channel to sleep, but then only the
channel read from is able to wake it. This means that if we want to, for example,
monitor more than one input we have to use the non-blocking ARU instruction
and poll all inputs in a loop. On this point the eTPU has the upper hand as it
is very flexible in how, and by what conditions, it can be triggered. However, the
next generation GTM will improve on this as well, with the possibility to receive

30

7. Discussion

interrupts in the MCS.

When it comes to latency and throughput we believe the GTM and eTPU have
different strengths. The GTM can, thanks to its design with independent hardware
modules, sustain a higher throughput and a more deterministic latency. On the
other hand can the eTPU achieve a lower minimum latency, but if to many events
happen at once the latency can jitter a lot. An example of this is if we setup both
timer modules to receive 32 inputs at the same time. The GTM would process all 32
inputs in parallel and the latency for all signals would therefore only depend on their
own execution time. For the eTPU the highest priority channel’s latency would also
only depend on its own execution time, but the lowest priority channel’s latency
would be bigger than the execution times of the 31 other channels combined.

7.2 Angle clock

In Section 6.1 we mentioned that the engine speed calculation returns a speed offset
of 0.5%. Recall that we have added a sinusoidal variation to the generated cam
and crank signals with a period equal to that of 20 slits. As the engine speed is
calculated as an average of the last 32 slit periods and we do not include the period
for the missing slits or the one before them, we get an average variation that is
non-zero. The mentioned period is not added as it is three times bigger than the
normal periods and the MCS can only perform division with denominators that are
a power of two. One solution to this problem could be to combine the period for
the missing slits with the period for the slit before. The new value gained would
then hold the period of four slits, and can thus be shifted right two steps to get an
average of them. If this average then is used instead of the period for the missing
slits, the error will become extremely small.

For the proposed angle clock design we have dedicated two MCS channels, one
for engine speed calculation and one for base angle updating. As can be seen in
Section 6.3 this will in conjunction with the GTM-only design for needle and spill
valve control result in 100% usage of the MCS channels. This could pose a problem
if some more task where to be added. However, in such case the base angle and the
speed calculation MCS channels could be combined, freeing up one channel for other
work. Combining the channels would not have a significant effect on the calculations
due to the relatively long time scale; at 5000 RPM there is 200 ps between the input
events, allowing for more than two thousand instruction to be executed. The reason
they are separated in our design is that it lowers the complexity and the code
becomes more modular.

The micro tick generation in the GTM is mainly performed by the DPLL. As
the DPLL is a hardware module that has been specifically designed to handle tasks
like this, the user gets much functionality from the start. Also, an all out hardware
implementation can handle high rotational speeds while still producing micro ticks
with an accurate frequency. On the other hand, an all out hardware design that
should handle diagnostics, error detection, and input anomalies can become very
complex. The error detection in theDPLL is to a large degree autonomous, but it
depend on timeout values that need to be updated by the CPU as the engine speed
changes. Also, synchronization needs to be managed by the CPU, increasing its

51

7. Discussion

workload, but as it is a one-time task performed at system startup it may not be a
large concern.

In the eTPU, several parts of the angle clock implementation are also handled by
software. Yet, the eTPU executes this software on its own, thus it lays no burden on
the CPU and it becomes more self-sufficient. This will also be the case for the next
generation GTM as the MCS channels then will be able to receive interrupts and
use the AEL It will then be possible to handle synchronization and error detection
completely in the GTM.

One advantage with the DPLL is that it generates very accurate predictions of
the upcoming slit period using up to two full revolutions of old input data. This
translates into the generated micro ticks being very accurate in terms of their place-
ment. Advanced period predictions are possible with the eTPU as well, but it then
has to be performed in software and will thus consume valuable execution time.
Another advantage of the DPLL is that it can seamlessly switch from generating
micro ticks based on the crank or the cam input signals. This results in a smaller
loss of accuracy in the event of a crank sensor failure than for the eTPU which then
has to switch to time based operation.

Based on our findings during this work we believe that the GTM can cater for
Volvo’s need in terms of angle clock functionality. The same can be said about
engine speed calculations if the suggested fix is applied to decrease the error, as the
accuracy then will be on par, or even slightly better, with the accuracy achieved in
the eTPU. This is because the eTPU solution creates two virtual slits based on the
period of earlier slits while our design, with the added fix, uses the actual slit period
for the missing slits.

7.3 Needle valves and spill valves

All requirements are fulfilled regarding the current waveform, except that the GTM-
only solution has a to high ripple during the peak phase. We believe that by tweaking
parameters and adding a new feature that is used in the peak phase, it will be no
problem to keep the current within the ripple boundary. The feature we propose is
to not apply boost voltage after that the battery voltage has elevated the current
to I,eak, but instead always apply battery voltage when the current has dropped
either for a static amount of time or when it has decayed past the hold level. When
the current then reaches Ipeax, the voltage is switched off. This new feature will not
introduce a longer critical path during the first part of the peak phase when battery
decay is employed if it is assumed that the master channel does not detect that I, eax
is reached until the battery voltage elevates the current. This assumption was held
during our experiments as seen in the result figures.

It may not be needed to have a system with shorter response time than the GTM-
only design when producing the current waveform. When observing the current
waveforms for the two designs, it is clear that the reduced latency for the Hybrid
design did not affect the waveform appearance to a higher degree. Thus it may not
be necessary to strive for a design with a shorter latency than the GTM alone can
produce.

As indicated by our results both designs have the potential to produce correct

52

7. Discussion

current waveforms. When we instead look at the 1 ps latency requirement for emer-
gency shutdown, the Hybrid design has 0.66 us to spare. This extra time may be
needed as DMA is used and there may be another ongoing transfer when the HSSD
signal is activated. Yet, if special care is taken when the system is designed, it
should be possible to ensure that the DMA is served in time. On the other hand,
the GTM-only has a 2 ps long latency, making it unfit to use in a real system. How-
ever, as the design otherwise is capable of generating a correct current waveform it
could still be used if we introduced HSSD handling using DMA. This would also
have the added benefit of freeing up the four MCS channels used for monitoring
HSSD signal and sending data to the ATOM channels. Also, by not using these
channels we would not need to trigger them from the master channel, thus removing
11 instruction cycles from the critical path and lowering the WCRT with 990 ns.

In our designs we have not included all software diagnostics performed in the
Volvo system, this as our designs are a proof-of-concept and focused on basic func-
tionality. Still, we are positive that the diagnostics can be included without affecting
performance, for example, it can be inserted at the busy-wait loop after reaching
Ipeqr, or during a chop. As can be seen in Table 5.5 there is room for a few additional
instructions in the critical path for both designs and it would thus be possible to
insert some degree of diagnostics there as well.

In their current state both of the proposed designs have a fairly low memory
utilization. The GTM-only design only uses about 23% of the default available
memory, while it occupies seven out of eight MCS channels in one instance. For the
Hybrid design the memory usage per MCS channel is considerably higher, 15%, but
four replicas of the design would still fit in the default memory of one MCS instance.
However, the addition of diagnostics and error handling would claim additional
memory space. Still, the Hybrid design has room left for 155 more instructions for
each bank, which we believe will be more than enough for the addition of diagnostics
and error handling. If it is not, additional memory can be taken from other MCS
instances, or the banks can be partitioned into different MCS instances.

The designs’ latencies vary relatively much due to the time jitter introduced by
the ARU. As the ARU arbiter likely is in an arbitrary position when a MCS channel
execute an ARU read or write, a delay is introduced in the interval from zero to one
ARU RTT. As a result, the response time is not static which leads to the waveforms
produced becoming inconsistent. However, the jitter can be circumvented when
transferring commands to ATOM channels by setting the compare match to occur
at least one ARU RTT from the time when the ATOM command is provided to
the ARU. The disadvantage of preventing the jitter in this way is that the system
average response time will be higher, but it may be preferable as the waveform
appearance becomes more consistent.

If the Hybrid design was targeted towards a third-generation GTM it could be
designed without the use of DMA, while still having the same GTM resource utiliza-
tion. Additionally, the response time would be shorter than for our current design.
An improvement brought by the third generation that would aid the transfers of
the TIM results is the possibility to customize the ARU arbitration sequence. Us-
ing this, the transfers from the TIM channels to the MCS master channel cou