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ABSTRACT We studied the flocculation mechanism at the molecular level by determining the atomic structures of N-Flo1p and
N-Lg-Flo1p in complex with their ligands. We show that they have similar ligand binding mechanisms but distinct carbohydrate
specificities and affinities, which are determined by the compactness of the binding site. We characterized the glycans of Flo1p
and their role in this binding process and demonstrate that glycan-glycan interactions significantly contribute to the cell-cell
adhesion mechanism. Therefore, the extended flocculation mechanism is based on the self-interaction of Flo proteins and this
interaction is established in two stages, involving both glycan-glycan and protein-glycan interactions. The crucial role of calcium
in both types of interaction was demonstrated: Ca2� takes part in the binding of the carbohydrate to the protein, and the glycans
aggregate only in the presence of Ca2�. These results unify the generally accepted lectin hypothesis with the historically first-
proposed “Ca2�-bridge” hypothesis. Additionally, a new role of cell flocculation is demonstrated; i.e., flocculation is linked to
cell conjugation and mating, and survival chances consequently increase significantly by spore formation and by introduction of
genetic variability. The role of Flo1p in mating was demonstrated by showing that mating efficiency is increased when cells floc-
culate and by differential transcriptome analysis of flocculating versus nonflocculating cells in a low-shear environment (micro-
gravity). The results show that a multicellular clump (floc) provides a uniquely organized multicellular ultrastructure that pro-
vides a suitable microenvironment to induce and perform cell conjugation and mating.

IMPORTANCE Yeast cells can form multicellular clumps under adverse growth conditions that protect cells from harsh environ-
mental stresses. The floc formation is based on the self-interaction of Flo proteins via an N-terminal PA14 lectin domain. We
have focused on the flocculation mechanism and its role. We found that carbohydrate specificity and affinity are determined by
the accessibility of the binding site of the Flo proteins where the external loops in the ligand-binding domains are involved in
glycan recognition specificity. We demonstrated that, in addition to the Flo lectin-glycan interaction, glycan-glycan interactions
also contribute significantly to cell-cell recognition and interaction. Additionally, we show that flocculation provides a uniquely
organized multicellular ultrastructure that is suitable to induce and accomplish cell mating. Therefore, flocculation is an impor-
tant mechanism to enhance long-term yeast survival.
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Many fungi contain a family of cell wall glycoproteins called
“adhesins” that confer unique adhesion properties (1–3).

These proteins are required for the interactions of fungal cells with
each other in processes such as flocculation and filamentation (1,
2, 4). The members of the Flo adhesin protein family in Saccharo-
myces cerevisiae can be subdivided into two groups (2). The mem-
bers of the first group of proteins are encoded by genes, including
FLO1, FLO5, FLO9, and FLO10, which share considerable se-

quence homology. The gene products of FLO1, FLO5, FLO9,
and—to a lesser extent—FLO10 (5) promote cell-cell adhesion
and contribute to the formation of multicellular clumps (flocs),
which sediment out of solution and are therefore called flocculins
(6). Flo1p leads to a strong flocculation phenotype and is consid-
ered the most dominant adhesion protein (5, 7, 8). The members
of the second group of the Flo family, including Flo11p, Fig2p, and
Aga1p, have a domain structure similar to that of the first, but with
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quite unrelated amino acid sequences. Flo11p also promotes cell-
cell adhesion, but does this only weakly (5). Flo11p is mainly re-
quired for diploid pseudohyphal formation, haploid invasive
growth (4, 9), and biofilm formation (10, 11). N-Flo11p does not
bind mannose, which is in contrast to the other Flo proteins.
However, N-Flo11p can interact with N-Flo11p (homophilic ad-
hesion ability), explaining the weak-flocculation characteristic
(12, 13).

Flocculins consist structurally of three domains and are an-
chored in the cell wall by a glycosylphosphatidylinositol (GPI)
anchor (14, 15). The Flo proteins interact with other yeast cells
through their N-terminal mannose-binding domain (7, 16). The
N-terminal carbohydrate-binding domains of the Flo1 flocculins
from both S. cerevisiae (N-Flo1p) and S. pastorianus (N-Lg-Flo1p)
belong to the PA14 domain family (Pfam entry PF07691) (17).
The presence of a Ca2�-dependent carbohydrate-binding site is a
common element in the PA14 domain family (18, 19). The struc-
ture of N-Flo1p, which shares with the correspondent domain of
Flo5p (20) more than 90% of its amino acid sequence, had not
been solved until the present. The structure of the apo form of
N-Lg-Flo1p has been recently solved (21), but the adapted protein
structure upon carbohydrate ligand binding had not yet been elu-
cidated. Like most of the cell wall proteins, the N-terminal domain
of Flo1p is heavily N- and O-glycosylated (22, 23), but the exact
glycan profile and the role of these glycans in the molecular bind-
ing mechanism are not yet known.

Two major cases of cell-cell adhesion events are flocculation
and mating. Both events enhance the survival of yeast cells. Mating
between cells of opposite mating types enables genetic recombi-
nation, while flocculation is recognized as a way for cells in solu-
tion to escape from harsh conditions by sedimentation. Floccula-
tion also protects the inner cells of the floc from multiple stresses,
including antimicrobials and ethanol (24).

In this study, the atomic structures of the N-terminal domains
of Flo1p and Lg-Flo1p in complex with calcium and the ligand
carbohydrates were determined by X-ray crystallography. A
thorough investigation of the glycans present on the protein was
done, showing that N-Flo1p is expressed in two populations due
to the occurrence of 2 glycoforms. Furthermore, the homophilic
N-Flo1p–N-Flo1p interaction occurring through lectin-
carbohydrate binding was characterized at the molecular level,
and the contribution of the glycan-glycan interaction to N-Flo1p
self-binding was investigated by atomic force microscopy (AFM)
imaging and force spectroscopy. These results refine and extend
the flocculation mechanism at the molecular level by elucidating
the role played by glycosylated flocculins and glycans in cell-cell
adhesion. Moreover, liquid growth experiments in a low-shear
microgravity (�g) environment revealed that flocculation is
linked to mating (and sporulation), since flocculation provides an
organized multicellular ultrastructure with in-floc conditions
suitable for conjugation and mating. This was confirmed experi-
mentally by mating assays. These results extend understanding of
the role of cell flocculation in cell survival under adverse condi-
tions by enhancing the mating efficiency of cells.

RESULTS
N-Flo1p and N-Lg-Flo1p share significant structure identity
with N-Flo5p but establish additional interactions with the li-
gand through the L3 loop. The overall structure of apo-N-Flo1p
(Fig. 1A; see also Fig. S1 in the supplemental material) (PDB code

4LHL) is very similar to the crystal structure of apo-N-Flo5p (PDB
code 2XJQ): the two adhesion domains share 95% sequence iden-
tity and can be superposed with a C� root mean square deviation
(RMSD) of 0.31 Å over 241 residues (Fig. 1B). On the other hand,
the superposition of the apo-N-Lg-Flo1p (PDB code 4GQ7) and
apo-N-Flo1p structures, which are identical for 74% of their se-
quences, gives a C� RMSD of 0.59 Å over 213 residues (Fig. 1B).

N-Flo1p is characterized by the presence of a Flo subdomain
(N84 to M110), i.e., the Flo1 subdomain (Fig. 1A), which is situ-
ated near the binding site. It is stabilized by two disulfide bonds
and plays a role in binding specificity for mannosides (20). It is
absent in the structures of N-Lg-Flo1p (21) and N-Epa1p (25),
where it is replaced by the L2 loop (G84-N135 in N-Lg-Flo1p).
Loop L3 (amino acids [aa] 193 to 204) is present in N-Flo1p and
N-Lg-Flo1p, as well as in N-Flo5p and N-Epa1p (25), and is in-
volved in carbohydrate ligand binding. Most likely, residue 202 (P
in N-Flo1p and D in N-Flo5p) determines the flexibility of this
loop (Fig. 1B). The complete modeling of L3 in the apo form of
N-Flo1p was not possible since the electron density for residues
W196 to G198 and part of S199 was missing, which was most
probably due to the high flexibility of this loop. The correspond-
ing L3 loop is also quite flexible in apo-N-Lg-Flo1p and is posi-
tioned closer to the binding site than in N-Flo1p (Fig. 1B).

The interaction geometry of the N-Flo1p binding pocket
(Fig. 1C) (PDB code 4LHN) closely matches that of the N-Flo5p-
mannose complex (20). Ca2� is coordinated on carbohydrate
binding loop 1 (CBL1) (residues 157 to 161) by cis peptides D160
and D161 and on CBL2 (residues 225 to 228) by the N224 side
chain and by the main chain carbonyl groups of V226 and W228.
Residues D160, D161, and N224 are strongly conserved in the Flo
and Epa adhesin families due to their importance for metal dock-
ing (20, 26). The coordination shell is completed upon binding of
mannose by the 3=- and 4=-hydroxyl groups at a distance of 2.6 Å,
which creates a distorted pentagonal bipyramidal geometry. Man-
nose establishes hydrogen bonds between its 3=- and 4=-hydroxyl
groups and the aspartates of the cis peptide and between the oxy-
gen in position 2= and Q98. The side chain of Q98 in the Flo1
subdomain is responsible for the discrimination between the axial
mannose and equatorial glucose hydroxyls on C2. In contrast to
N-Flo5p, where there is no significant difference in the positions
of the L3 loop between the bound state and unbound state (20), in
N-Flo1p, remarkably, this loop approaches the CBL1 loop upon
carbohydrate binding, especially where it functions as a lid for the
active site. P202 in the dipeptide consisting of P201 and P202
seems to constrain L3 to a single conformation, while two confor-
mations were proposed for N-Flo5p, even in the bound state (20).
Under these conditions, the side chain of K194 in N-Flo1p can
readily interact with the mannose 6=-OH and the axial 2=-OH, and
W196 further stabilizes the binding by means of dispersion forces.

Imitating the Ca2�-dependent carbohydrate recognition of
N-Flo1p and N-Flo5p, N-Lg-Flo1p in complex with �-1,2-
mannobiose (Fig. 1D) (PDB code 4LHK) coordinates the Ca2�

cation through the side chains of highly conserved D133, D134,
and N197 (on CBL1) and the main chain of the variable K199 and
L201 (on CBL2). The Flo1 subdomain is absent here, and so are
any equivalents of N-Flo5p residues Q98 and Q117. The latter is
involved in a hydrogen bond with the 3=-hydroxyl group on the
reducing moiety of �-1,2-mannobiose (20). The L2 loop in N-Lg-
Flo1p replaces the flocculin subdomain in N-Flo1p and estab-
lishes hydrophobic interactions with the disaccharide through the
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FIG 1 Structures of N-Flo1p and N-Lg-Flo1p and their interaction with carbohydrate ligands. (A) Structure and surface shape of the apo form of the Flo1p
N-terminal carbohydrate-binding domain (PDB code 4LHL). The �-sheets of the PA14-like domain kernel are depicted in green, �-helices in dark blue, and
disulfide bonds in yellow (see also Fig. S1 in the supplemental material). (B) Comparison of the Flo apo structures: superpositions of the N-terminal domain of
Flo1p (green ribbons, PDB code 4LHL) on N-Flo5p (orange ribbon, PDB code 2XJQ) (left subpanel), and N-Lg-Flo1p (lilac ribbon, PDB code 4GQ7) (right
subpanel). The main structural features of the flocculin domains are indicated. In all structures, disulfide bonds are indicated in yellow. In the left subpanel, the
alternate conformation of N-Flo5p L3 loop is indicated in magenta. (C) The N-Flo1p (PDB code 4LHN) carbohydrate-binding site in complex with calcium and
mannose. The side chains of the main residues participating in ligand binding are shown and labeled. Ca2� is depicted as a green sphere. Mesh surfaces around
ligands represent their electron density from the respective omit maps, generated with SFCHECK (131) (contour level: 1 � for mannose, 0.8 � for mannobiose).
The position of the L3 loop for the unbound state is indicated in light green; the unbound-bound shift has an RMSD of 4.66, region I193 to N203 (see also Fig. S1).
(D) The N-Lg-Flo1p (PDB code 4LHK) carbohydrate-binding site, in complex with calcium and �-1,2-mannobiose. The position of the L3 loop for the unbound
state is indicated in salmon; the unbound-bound shift has an RMSD of 3.78, region I166 to D176 (see also Fig. S1). (E) Partial view of the NFlo1p binding pocket
(light blue ribbon/surface) in complex with calcium mannose. Conformations of the L3 loop from N-Lg-Flo1p (purple) and N-Flo5p (crimson; from PDB entry
2XJP) bound states are also shown for comparison. (F) In vitro binding affinities of NFlo1p, N-Flo5p, and N-Lg-Flo1p for monosaccharides and disaccharides,
measured by fluorescence titrations. The work by Veelders et al. may be found in reference 20; the work by Sim et al. may be found in reference 21.
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indole ring of W90. The K199, A200, and L201 residues on the
CBL2 loop also contribute by creating a hydrophobic environ-
ment around the ligand, which is then further “sealed” on one side
by L3. As in N-Flo1p, L3 in N-Lg-Flo1p is much closer to the
binding site than in N-Flo5p (Fig. 1E), and it is locked in one
conformation. From this loop, the side chain of K167 acts as a
hydrogen-bond donor with the 6=-OH on the reducing hexose
moiety, and residue W169 is again involved in the binding net-
work, mainly via hydrophobic interactions.

N-Flo1p recognizes mannose and mannobioses with higher
affinity than N-Flo5p and is more specific than N-Lg-Flo1p for
mannose oligosaccharides. The nonglycosylated N-Flo1p and
N-Lg-Flo1p constructs were used in fluorescence titration exper-
iments to determine the equilibrium constants for mannosides
(Fig. 1F). The affinity of N-Flo1p for D-mannose was found to be
in the low-millimolar range (KD [equilibrium dissociation con-
stant] of 8.7 � 0.43 mM), which is three times higher than the
reported value for N-Flo5p (29.3 � 3.6 mM) (20). A higher affin-
ity was found for �-1,2-mannobiose (630 � 50 �M), confirming
the trend observed for N-Flo5p, with a 10-fold difference in bind-
ing between the mono- and disaccharides. Surprisingly, N-Flo1p
was also able to recognize the �-1,3- and �-1,6-linked manno-
biose molecules (KD of 3.3 � 0.34 mM and 6.9 � 0.64 mM, re-
spectively). No binding of these two disaccharides was detected
for N-Flo5p (20). As expected, both Flo proteins interact very
weakly with glucose. Concerning N-Lg-Flo1p, our fluorescence
measurements on a few ligands basically corroborated data re-
cently published by others (21). The KD values for the N-Lg-Flo1p
construct from the CBS1513 strain are comparable to the value for
the CG2164 strain and fall within either the high micromolar
range (D-mannose) or the millimolar range (mannobioses).

Both N-Flo1p populations contain three N-glycosylation
sites with core as well as hyperglycosylated type N-glycans and
three O-glycosylation sites with two mannoses per site. N-Flo1p
is both O- and N-glycosylated and is expressed in S. cerevisiae in
two populations, distinguished by their apparent molecular
masses of around 36 kDa and 100 kDa (22). From the oligosac-
charide analysis of the N-glycans (see Fig. S3 in the supplemental
material), it is clear that both N-Flo1p populations contain both
short Man8 –14GlcNAc oligosaccharides (core type) and large
Man�50GlcNAc N-glycans (hyperglycosylated type) but in dif-
ferent ratios: 2 oligomannoses and 1 hyperglycosylated structure
for the 36-kDa N-Flo1p population and 1 oligomannose and 2
hyperglycosylated structures for the 100-kDa N-Flo1p popula-
tion. Thus, the three N-glycosylation sites (N135, N187, and
N262) that were predicted by the NetNGlyc online server (27) are
glycosylated.

Electrospray ionization-mass spectrometry (ESI-MS) was per-
formed on both populations of N-deglycosylated N-Flo1p, and
exactly identical profiles were observed (see Fig. S6A and B in ths
supplemental material), which implies that they carry equal
amounts of O-glycans. Based on the molecular mass of the
N-deglycosylated proteins detected in the spectra (29,317 Da), 5
or 6 mannoses are present on the N-terminal domain of Flo1p,
taking into account the remaining GlcNAc residues after EndoH
(endo-�-N-acetylglucosaminidase H) treatment. To estimate the
amount of O-glycosylation sites, the mass of the N- and
O-deglycosylated N-Flo1 protein was analyzed using ESI-MS (see
Fig. S6C), giving a mass of 28,868 Da, from which it is calculated
that 3 O-glycosylation sites are present. These results demonstrate

that at least two O-glycosylation sites contain 2 mannose residues
and that the third site has 1 or 2 mannoses.

N-Flo1p shows a homophilic interaction mediated by its
N-glycans. The binding of the N-Flo1p to the glycans of other
N-Flo1 proteins was determined qualitatively by surface plasmon
resonance (SPR) (Fig. 2A). The concentration-dependent in-
crease in signal indicates that N-Flo1p is able to bind to N-Flo1p.
The affinity of the interaction was estimated in the micromolar
range (7 �M). When N-deglycosylated N-Flo1p was injected over
the chip with immobilized N-deglycosylated N-Flo1p, almost no
binding was observed.

Force spectroscopy was used to further analyze this interaction
on the single-molecule level (Fig. 2B to D, left subpanels; see also
Fig. S2 in the supplemental material). In the presence of Ca2�,
unbinding events were detected in the range between 100 and
600 pN (Fig. 2B), and with an event peak of around 300 pN. An
evident decrease in the number of main peak events is observed
when mannose is added (Fig. 2C). A situation completely de-
void of unbinding statistics could be reached when both man-
nose and EDTA were present in solution (Fig. 2D), confirming
the activity of EDTA and mannose as inhibitors for the
N-Flo1p– glycan binding.

N-Flo1p glycans aggregate in the presence of Ca2�. The role
of the N-Flo1p glycans themselves in the homophilic adhesion
property of N-Flo1p was examined using AFM and force spectros-
copy by analyzing force-distance scatter plots (Fig. 2B to D, right
subpanels). Interactions between glycosylated N-Flo1p molecules
in the presence of Ca2� covered a wide range of distances, up to
approximately 350 nm in the distance ramp (Fig. 2B). During
inhibition with mannose, fewer unbinding events took place
closer to the surface (between 100 and 200 nm), but a significant
number of binding ruptures were still detected beyond 200 nm
(Fig. 2C), most likely independently from the flocculin mannose-
specific activity and attributable to glycan-glycan interactions. As
a result of the addition of EDTA as a second binding inhibitor,
these longer-distance events disappeared almost completely, and
only a few interactions (probably aspecific ones) were observed
(Fig. 2D). Therefore, mannose acts as a specific inhibitor for the
protein-carbohydrate interactions, which are rather homoge-
neous in terms of strength and distance, while the chelating agent
totally disrupts the heterogeneity of the interactions, affecting not
only the mannose-sensitive protein-carbohydrate-binding events
but also long-range events (which appear to be Ca2� sensitive but
mannose insensitive). The long-range events are possibly due to
strongly ionic, Ca2�-mediated carbohydrate-carbohydrate inter-
actions, most probably due to mannosyl-phosphate groups pres-
ent on the N-linked glycans. This phenomenon was further as-
sessed by visualizing the N-glycans released from the 100-kDa
population of N-Flo1p with AFM. In the presence of Ca2�, the
glycans aggregated (Fig. 3A and C), and in the absence of Ca2�, the
glycans did not aggregate and adopted a more globular conforma-
tion (Fig. 3B).

Cell flocculation enhances mating efficiency. The effect of
Flo8p activation and Flo1p overexpression on cell-cell interaction
processes was investigated by transcriptome analysis. The differ-
ential gene expression derived from the comparison of BY4742::
FLO8 and FLO1 overexpression strains to the nonflocculating
BY4742 wild-type (WT) strain under 1-g and low-shear (�g)
growth conditions is summarized as a Venn’s diagram in Fig. 4A.
The growth experiment in a low-shear environment resulted in a
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FIG 2 Analysis of N-Flo1p–N-Flo1p homophilic interactions. (A) N-Flo1p self-binding studied by SPR. N-Flo1p was immobilized on a CM5 chip, and 2-fold serial
dilutions of an NFlo1p solution were injected (concentration range, 25 to 0.39 �M). (Left subpanel) Glycosylated N-Flo1p interaction in the presence of Ca2�. The
apparent KD value of this interaction is calculated by using the response at equilibrium (REq) values (concentration range, 25�M to 1.5 nM) and a one-site binding model.
(Right subpanel) Deglycosylated N-Flo1p interaction in the presence of Ca2�. R.U., relative units. (B to D) AFM-force spectroscopy analysis data (see also Fig. S2 in the
supplemental material). Force event histograms (left subpanels) and force-distance scatter plots (right subpanels), which correlate the unbinding distance to the
unbinding force, illustrate glycosylated N-Flo1p self-binding (N-Flo1p on the tip versus N-Flo1p on the mica surface) obtained in liquid. (B) Tris solution with 10 mM
CaCl2. (C) Tris solution with 10 mM CaCl2 and 100 mM mannose. (D) Tris solution with 20 mM EDTA and 100 mM mannose.

Role of Molecular Mechanism of Flocculation in Mating

March/April 2015 Volume 6 Issue 2 e00427-15 ®

mbio.asm.org
http://mbio.asm.org/
http://mbio.asm.org/


much higher number of differentially expressed genes for both
flocculent strains than for the nonflocculent WT strain (Fig. 4; see
also Fig. S4 and Table S2 in the supplemental material). This in-
dicates that more cells were in the flocculent state and that nutri-
ent limitation conditions were obtained earlier compared to
growth at 1 g. This is consistent with a reduced total number of
cells and a higher glucose concentration in the culture chamber at
the end of the experiment under �g conditions than under 1-g
conditions (Fig. 5A and B). The functional enrichment based on
gene ontology (GO) annotation is presented in Fig. 4B, where it is
shown that the processes related to flocculation were induced in

both the FLO1 overexpression strain and the BY4742::FLO8 strain
compared to the WT reference. This effect was seen under both
growth conditions.

The genome-wide expression data were integrated on the high-
confidence protein-protein interaction (PPI) network to search
for differentially expressed high-score subnetworks leading to
groups of important proteins that potentially cross talk with Flo1p
and Flo8p. The high-score subnetwork seen under each growth
condition is presented with its functional enrichments (see Fig. S4
in the supplemental material). Based on the statistical cutoff at an
adjusted P value of 0.001, it is clearly seen that activation of FLO8

FIG 3 Imaging of N-Flo1p glycans and floc ultrastructure. (A) Single-molecule imaging of glycans in the presence of Ca2� shows an elongated or closed-ring
conformation; the right image is zoomed in (400 by 400 nm). (B) Imaging of glycans in the presence of EDTA. The glycans adopt a globular conformation; the
right image is zoomed in (400 by 400 nm). (C) Aggregates of glycans are observable when the Ca2�/glycan ratio is increased. The scan size of the right image is
2.0 �m. (D) Ultrastructure of a floc (BY4742 [FLO1]) by SEM imaging.
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has a bigger influence on the trajectory size of the identified high-
score subnetworks than FLO1 overexpression. Moreover, cultiva-
tion under a low-shear (�g) condition also increased the trajec-
tory size of the identified high-score subnetworks, which makes
this condition suitable for recognition of more subnetworks. In-
terestingly, the identified subnetworks are commonly enriched in
processes related to flocculation and mating, suggesting a positive
correlation between these two processes. Additionally, genes in-
volved in mating-type switching, conjugation with cellular fusion,
sporulation, response to decreased oxygen levels, and arrested
growth are also enriched (see Table S2).

The link between flocculation and mating was experimentally
confirmed by determining the mating efficiency (under 1-g con-

ditions), which was performed under unstirred (mating assay on a
filter and in nonshaken liquid) and stirred (shaken liquid) condi-
tions. In all cases, it was shown that mating is more efficient (P �
0.05) when FLO genes are expressed, indicating that flocculation
enhances mating efficiency (Fig. 5C).

DISCUSSION
The N-Flo1p and N-Lg-Flo1p mechanisms of interaction with
mannosides are similar, but the ligand size is important in the
choice of the binding partner. N-Flo1p shows a capacity for man-
noside binding that is more efficient than that seen with N-Flo5p,
although their apo form structures are almost identical in se-
quence and topology. Both contain a partially disordered L3 loop,

FIG 4 Transcriptome analysis and determination of the mating efficiency. (A) Differentially expressed genes (Q value of �0.05) in BY4741::FLO8 and FLO1 that
were overexpressed compared to the levels seen with the BY WT strain under 1-g and �g conditions. (B) Heat map of functional enrichment analysis. The
enrichment score (�log10 [enrichment P value]) data are shown in red for overrepresented gene ontology terms and in blue for the ones underrepresented in
BY4741:: FLO8 and FLO1 that were overexpressed compared to the levels seen with the BY WT strain under 1-g and �g conditions. All gene ontology terms that
had P values of �0.001 are shown (see also Fig. S4 in the supplemental material). LSU, large subunit; SSU, small subunit; ETS, external transcribed spacer.
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which is also present in the Epa1 adhesin from Candida glabrata as
directly participating in the interaction with galactosides (25, 26).
This loop plays a significant role in carbohydrate recognition and
contributes to an affinity for mannose that is 3-fold higher than in
the case of N-Flo5p. This is due to the fact that the side chain of
K194 in N-Flo1p is close enough to the binding site to directly
interact with the carbohydrate, in contrast to N-Flo5p. Its prox-
imity to the axial 2=-OH on the mannopyranose ring suggests the
contribution of K194 in determining the Flo1p carbohydrate
specificity, together with the Q98 residue in the Flo1 subdomain.
The conformation adopted by the L3 loop in the N-Flo1p–man-
nose complex is different from the one in bound N-Flo5p, which
is due to the loop sequence variations between the two proteins;
i.e., D202 in N-Flo5p is replaced by a proline in N-Flo1p. This
would block L3 in a single preferred conformation and create
favorable conditions for direct interactions of the loop side chains
with the hexose without affecting the specificity. For N-Flo5p, a
D202T mutation could also influence both ligand affinity and pro-
miscuity by constraining L3 in a specific conformation (20). The
shift in the L3 loop position, observed upon mannoside binding in
N-Flo1p (not in N-Flo5p), is likely responsible for the increased
affinity of N-Flo1p for mannose-containing carbohydrates. How-
ever, the variations in the binding equilibrium parameters be-
tween the two flocculins are not dramatic and the KD values are
still in the (sub)millimolar range. The approach of L3 to the CBL1
possibly requires an entropic cost for binding, which is compen-
sated only by the specific interaction with mannose and its axial
2=-OH. In Epa1p, W198 (which corresponds to K194 in Flo1p) on
L3 also plays a role in the recognition of galactose and galactose-

terminating glycans (25, 26), and it establishes stronger stacking
interactions with the ligand.

The same main structural features of N-Flo1p are found in
N-Lg-Flo1p from S. pastorianus. However, an even more enclosed
binding pocket accounts for a much higher affinity for mannose.
This seems to come at a cost for the interaction with longer car-
bohydrates. There is a distinct variation in the way the disaccha-
ride fits into the N-Lg-Flo1p active pocket compared to Flo5p-
mannose (PDB code 2XJS) since the coordination of the Ca2� ion
takes place via the hydroxyl groups of the reducing moiety. For-
mation of the Ca2�-mannobiose complex via the nonreducing
end seems to be excluded, likely due to the steric hindrance of the
long K199 side chain. The latter, together with W90 of L2, con-
tributes to the shielding of the binding pocket from the solvent
and the creating of a narrower hydrophobic environment. At the
same time, the charged amino group on the same chain would
readily establish an electrostatic interaction with the phosphate
group of a mannose-1-phosphate residue, which is a micromolar-
affinity ligand of N-Lg-Flo1p (21).

For N-Lg-Flo1p, the geometry of interaction with high-
mannose glycans is different from that seen with N-Flo5p; i.e., it
occurs through one of the �-1,6-linked mannoses, an interpreta-
tion that is justified by steric reasons. More remarkably, N-Lg-
Flo1p does not appear to be “specialized” in the recognition of
oligosaccharide molecules, despite its reduced solvent accessibility
and the possibility for mannobioses to dock into the binding
pocket. Longer mannose-containing molecules are more sterically
demanding than mannose, and this is not counterbalanced by

FIG 5 Cell growth and glucose consumption of S. cerevisiae strains grown under 1-g and �g conditions. (A) Cell concentrations determined at the end of the
growth experiment in microgravity (�g) and at 1 g (ground). (B) Glucose concentrations (percent [wt/vol]) at the end of the growth experiment in �g and at 1 g.
(C) Mating efficiency determined in stirred and nonstirred liquid and on a filter. The mating efficiency, determined by dividing the number of cells on SC-MK
medium by the number on SC-M medium, is significantly higher with cells expressing FLO genes (*, P � 0.05; **, P � 0.01).
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strong interactions between the supplementary residues and the
protein, which was confirmed by ligand affinity data (21).

The spectroscopic data not only clearly confirmed the influ-
ence of the L3 loop position and the conformation of all Flo
structures on their interaction with carbohydrate ligands but
also revealed the ability of N-Flo1p to recognize mannose oli-
gosaccharides with different glycosidic linkages. The influence
of monosaccharides on flocculation was previously assessed on
the cellular level (5, 12, 28). Recently, molecular quantitative
data were determined for N-Flo1p (22), for N-Flo5p (20), and
for N-Lg-Flo1p (21).

The role of the N-Flo1p glycans in the self-binding of
S. cerevisiae cells. The N-terminal domain of Flo1p is expressed as
two populations with different molecular masses (22). In this
study, we demonstrated that N-Flo1p contains three sites for
O-glycosylation and three sites for N-glycosylation. The
O-glycosylation sites are decorated with two mannoses, and the
N-glycosylation sites contain both the core and the hyperglycosy-
lated type N-glycans. However, the distributions of the two types
of N-glycans differ in the two populations. The 36-kDa N-Flo1p
population is decorated with two core type N-glycans and one
hyperglycosylated N-glycan, while the 100-kDa population pos-
sesses two hyperglycosylated type N-glycans and one core type
N-glycan.

SPR results revealed that N-Flo1p interacts homophylically
with the glycans of N-Flo1p in the presence of Ca2�. Self-
interaction of N-Flo1p molecules was confirmed using AFM im-
aging (data not shown). The Flo proteins, which stick out of the
cell wall, are the dominating cell wall proteins on flocculating yeast
cells (16). Therefore, an interaction with glycans from other cell
wall proteins is less likely to occur, and homophilic Flo protein
interactions are almost exclusively responsible for the flocculation
phenotype. The SPR data indicate that this interaction is charac-
terized by micromolar affinity (Fig. 2A), and binding experiments
confirm that the affinity of N-Flo1p for mannose is in the milli-
molar range (Fig. 1F). This low affinity guarantees that the occa-
sional binding of Flo1 proteins to other Flo1 proteins on the same
yeast cell is abolished quickly and allows Flo1p to then interact
with neighboring cells. It was also hypothesized that binding with
other Flo1 proteins on the same yeast cell is prevented due to the
presence of two binding sites, since one binding site is supposed to
form cis interactions, thereby immobilizing the N-terminal do-
main at the yeast surface, while the second binding site is respon-
sible for the trans interactions (20).

Interestingly, Flo11p has also been demonstrated to possess
homophilic adhesion ability (12, 13). Flo11p can compensate for
Fig2p (2) when overexpressed, and Fig2p can interact homophyli-
cally with Fig2p during mating (29). These results indicate that
cell-cell adhesive interactions during flocculation and agglutina-
tion are mostly established by homophilic interactions, which en-
sure species-specific formation of aggregates, as demonstrated in
an experiment where the floc structure was preferentially com-
posed of FLO1-expressing cells when FLO1� and flo1 cells were
mixed before aggregation (24). Cell-cell adhesion under condi-
tions of shear force further sorts out the more weakly binding cells,
which was demonstrated for interacting Dictyostelium cells via the
csA adhesin (30).

The role of direct carbohydrate-carbohydrate interactions has
not yet been explored in yeast flocculation. It was shown for
sponge proteoglycans that carbohydrate-carbohydrate interac-

tions can be important for cell adhesion phenomena since glycans
occur on the outermost cell periphery and therefore are likely
involved in the first intercellular contacts (31–34). Hence, the role
of the glycans present on N-Flo1p in the flocculation event was
further studied by analyzing the purified Flo1p glycans. Using
AFM imaging, it is shown that glycans aggregate in the presence of
Ca2� (Fig. 3A to C). The initial steps in cell recognition and adhe-
sion events by carbohydrate-carbohydrate interactions can be fur-
ther reinforced by other intercellular interactions, e.g., lectin-
carbohydrate interactions. The presence of these two types of
interaction points to a two-stage cell-cell adhesion process. The
long, flexible glycans have a high probability of interaction when
cells are moving toward each other. These interactions stabilize
the cell-cell interactions, allowing the nonreducing glycan ends to
penetrate the binding pocket. Divalent Ca2� cations play a crucial
role in both types of interaction. These results show that the cell-
cell adhesion mechanism for flocculating yeast cells is based on
glycan-lectin binding as well as on glycan-glycan interactions
(Fig. 6) and actually unify the generally accepted lectin hypothesis
(35) with the historically first-proposed molecular cell floccula-
tion mechanism, i.e., the “Ca2�-bridge” hypothesis (36, 37). This
hypothesis states that flocculation is based on ionic interactions
stabilized by hydrogen bonds and on the involvement of Ca2�

ions that form bridges between flocculating cells by linking the
carboxyl groups present on the cell surface. Our results show that
Ca2� can bridge cells through glycan-glycan interactions.

The role of Flo8p in flocculation. Flo8p was originally identi-
fied as a transcriptional activator of FLO1, and in addition, it was
found that transcription of the FLO11 (MUC1) and STA1 (encod-
ing extracellular glucoamylase) genes is also positively regulated
by FLO8 (38). Mutation in FLO8 and mutation in the MSS11
transcription factor show very similar phenotypes, and those
genes coimmunoprecipitated and bound cooperatively to UAS1-2
of the STA1 promoter (39, 40). The Flo8p transcriptional activa-
tion domain contains an N-terminal LisH motif that appears to be
required for its physical interaction with the Mss11p transcription
factor for cooperative transcriptional regulation of the shared tar-
gets (39–41). Flo8p and Mss11p can directly form either a het-
erodimer or a homodimer capable of binding to DNA, and the
Flo8-Mss11 heterodimer interacts functionally and physically
with the Swi/Snf complex, which is critical for activation of STA1,
FLO11, and FLO1 expression.

In the FLO1-overexpressing strain as well as in the Flo8p active
strain, FLO1 is upregulated. The most striking difference between
the two strains is the expression of FLO11 and the associated genes
involved in its regulatory pathways in the Flo8p active strain. Nu-
merous studies have revealed detailed insights into the complex
topology of regulatory pathways at the promoter of FLO11 and its
responsiveness to many external and internal signals (42). The
FLO11 promoter is under the control of several conserved signal-
ing cascades, including the cyclic AMP-protein kinase A (cAMP-
PKA) pathway (43–49), the Fus3/Kss1-mitogen-activated protein
kinase (MAPK) cascade (46, 50), the Snf1 pathway (51), the gen-
eral amino acid control system (52), and the target of rapamycin
(TOR) network (53). Although dynamic information is necessary
to fully unravel the regulatory mechanisms involved, the low-
shear transcriptomics data in particular sheds detailed light on
FLO11 regulation at the beginning of the stationary-growth phase
(see C1 in Fig. S4 in the supplemental material). This microgravity
experiment provides a unique extensive data set of differentially
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expressed genes that allows confirming many results of previous
research and indicates new links in the regulation of FLO11 ex-
pression and flocculation.

The low-shear �g results indicate glucose starvation and acti-
vation of the cAMP-PKA pathway by the downregulation of FLO8
via the Tpk2p branch of the pathway, as well as by the upregula-
tion of the transcription factors PHD1 via the Tpk1p branch and
ASH1 of the pathway (see C1 and C2 in Fig. S4 in the supplemental
material). The dual-specificity Yak1p protein kinase is at the cen-
ter of a regulatory cascade for adhesive growth and stress resis-
tance, which is under dual control of the Whi3p RNA-binding
protein and the Tpk1 PKA subunit (49, 54). In our results (see C2
in Fig. S4), the downregulated WHI3 is directly linked to the up-
regulated FLO11 and Cdc28-Cln3p cyclin-dependent protein ki-
nase, which plays a role in the control of the cell size at the G1/S
transition (55, 56). Whi3p is also linked to the cell cycle by con-
trolling the production of the G1 cyclins Cln1p and Cln2p and also
targets, besides Tpk1, the Tec1p transcription factor (57), which is
well known to activate FLO11 expression (46, 58–60). It is also
able to negatively control stress-regulated genes via a currently
unknown repressor and might be able to control the stability of
ploidy by affecting the expression of many genes involved in sister
chromatid cohesion (57). Additionally, the differentially upregu-
lated SNF1 and SNF4 genes in the network (see C2 and C3 in
Fig. S4) also indicate glucose starvation (carbon stress) conditions
and activation of the Snf1 protein kinase pathway (61–64). The

detected upregulation of FLO11 depends also on this Snf1 path-
way (51, 65–69). In the Flo8 active subnetwork (see C3 in Fig. S4),
SNF1 is directly linked to the hexose transporters HXT13 (upregu-
lated) and HXT3 and HXT5 (downregulated). The Snf1p complex
regulates several transcription factors that affect the expression of
genes required for low-glucose-concentration consumption and
alternative carbon sources (70–72), and its expression level is also
affected by the concentration of available oxygen (73), which is
depleted in a floc. Additionally, several genes linked to SNF1 and
involved in the regulation of glucose-repressible genes, such as
MTH1 (74), CAT8 and ADR1 (75–78), REG2 (79–81), and GAC1
(82, 83), are downregulated, which also is an indication of carbon
stress. Glucose repression inhibits Adr1p activity by multiple
mechanisms (84), including ADR1 expression (85), DNA binding
(86, 87), transcription activation (77, 88–90), and binding to 14-
3-3 (Bmh) protein (91). Snf1p also controls FLO11 expression by
inactivating the transcriptional repressors Nrg1p and Nrg2p (92,
93). These repressors are under the control of the Dfg16-Rim101
pathway, which also indicates pH control of FLO11 (94, 95). The
RIM pathway was activated by the upregulation of RIM101,
RIM20, and VPS4 and by the downregulation of DFG16 and
VPS20 in the Flo8p active low-shear data. In the FLO1 overexpres-
sion low-shear �g data (see panel D in Fig. S4), RIM101 was up-
regulated, but here FLO11 was not expressed. Also, the upregu-
lated ASH1 in this data set did not activate FLO11 expression.
There is also no FLO11 expression in the FLO1 overexpression 1-g

FIG 6 Molecular flocculation model based on Flo1p homophilic self-interaction. The two populations of N-Flo1p, which carry different types of N-glycans (see
also Fig. S3 and S6 in the supplemental material), are illustrated. Two S. cerevisiae cells bind together via Flo1p self-interaction. This binding is accomplished via
lectin-glycan and glycan-glycan interactions.
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data set, where TEC1 and FUS3 (MAPK pathway) are upregulated.
These results indicate that these activated pathways in the FLO1
overexpression strain are involved in activities other than FLO11
expression, such as in mating (see the next section).

FLO11 expression is also activated by amino acid starvation
and low glucose concentration (52, 96), which depends on the
sensor kinase Gcn2p and the transcription factor Gcn4p, which
are central elements of the general amino acid control (GAAC)
system (97). However, Gcn4p seems to regulate FLO11 indirectly
in response to amino acid starvation (42, 52, 98). In the Flo8 active
�g network, the GAAC pathway is activated and linked to the
upregulated FLO11 gene (see C4 in Fig. S4). The downregulated
GCN4 and GCN2 genes are connected to the upregulated (ARO4
and SER1) and downregulated (LYS14) genes involved in amino
acid biosynthesis, as well as to SUI1 and TIF11, which are involved
in the translation control of GCN4 (97). GCN2 is directly linked to
upregulated ASC1, which has been shown to be required for
FLO11-dependent adhesive growth upon amino acid starvation in
haploid cells (98). Asc1p impacts transcription factors in the MAP
kinase pathways of invasive and filamentous growth and cell wall
integrity (99, 100). Evidence of translational regulation of these
pathway-targeted transcription factors (Flo8p, Ste12p, Tec1p,
Rap1p, and Phd1p) suggests that ribosomal Asc1p controls the
biosynthesis of the final transcription regulators.

In the Flo8 active �g network, FLO8, as well as FLO11, is di-
rectly linked to the downregulated protein kinase HSL1 (101) and
CDC28 (see C1 and C4 in Fig. S4 in the supplemental material).
Hsl1p has a role in delaying the cell cycle in G2 phase as a response
to sudden (stressful) environmental changes by recruiting the
Wee1-family kinase Swe1p via the bridging action of Hsl7p to the
septin collar (102–104). Following stress, feedback between Swe1p
and Cdc28p controls Swe1p abundance, which promotes a delay
in nuclear division that is thought to maintain coordination be-
tween budding and the nuclear cycle (105, 106). Previously, it was
shown that inactivation of Hsl1p is sufficient to promote filamen-
tous growth caused by inactivation of Flo8p or Tec1p but is insuf-
ficient to promote filamentous growth in the absence of both fac-
tors (107). Our results also indicate the involvement of this
morphogenesis checkpoint in yeast flocculation.

The general stress activator protein Yap1p was a key mediator
of FLO11 expression that was induced by adding the plant hor-
mone indole acetic acid (IAA) (108). In the Flo8p active network
(see C5 in Fig. S4 in the supplemental material), YAP1 is differen-
tially expressed (downregulated) and is linked to GCN2, FLO8,
FLO11, and FLO1 via EPL1. Epl1p is a subunit for NuA4 (nucleo-
some acetyltransferase of H4) (109) and is thus involved in epige-
netic regulation. Epl1p is linked—via HTZ1 (gene of histone vari-
ant H2AZ)—to RPN4, which is a transcription factor that
stimulates the expression of proteasome subunit genes as well as of
genes involved in ubiquitylation, DNA repair, and other stress
responses (110). RPN4 expression is also subject to control by
Yap1p (111). Several other proteins involved in epigenetic regu-
lation processes, such as histone acetylation (Taf12p and Ahc1p
[SAGA complex], Taf12p [NuA3], Epl1p, Yng2p, and Act1p
[NuA4], Iki3p [elongator complex of polymerase II, and the
TFIID subunit Taf1p]), histone deacetylation (Sin3p [RPD3L]
and Sir2p [SIR]), and histone ubiquitination (Bre1p), are differ-
entially expressed in this network. Epigenetic regulation of FLO11
expression via the Rpd3L complex has been described previously
(95, 112). Another mechanism that depends on the regulator Sfl1p

and the histone deacetylase complex (HDAC) has also been re-
ported (113).

The role of flocculation in mating and survival. Differences in
gene expression between flocculating strains (BY4742::FLO8 and
FLO1 overexpression strains) and the nonflocculating BY4742
WT strain under 1-g and �g growth conditions were investigated
by transcriptome analysis. This analysis showed that flocculation
genes and genes involved in the mating process are coexpressed
(Fig. 4; see also Fig. S4 in the supplemental material), which indi-
cates that mating is induced in flocs. Various genes involved in
“conjugation with cellular fusion” (see Table S2), including the
genes involved in pheromone production [MF(ALPHA)2], a re-
ceptor protein (STE3) and associated G proteins (GPA1, STE4,
and STE18), signal transduction via the MAPK pathway (STE7,
FAR1, and FUS3), sexual adhesins (AGA2 and SAG1), and cell
(PRM1 and FIG1) and nuclear (PRM2) fusion (114–118), are dif-
ferentially expressed. Interestingly, the 1-g data set (see Fig. S4B)
and the Flo8 active �g data set (see Fig. S4C) from the FLO1
overexpression strain show clearly the link between mating and
flocculation by the upregulation of many genes involved in these
processes. Since Flo8p is not active in the FLO1 overexpression
strain, these results indicate that active Flo8p is not necessary to
induce mating but that specific microenvironmental conditions
that are present in the floc are needed.

These transcriptomics results were confirmed experimentally
by mating assays (Fig. 5C). These assays showed that MAT� cells
with active Flo8p or overexpressed Flo1p mated with WT MATa
had a higher mating efficiency than the WT mating pair. The high-
est mating efficiency was obtained for the Flo1p-overexpressing
strain, although there were no significant differences among the
flocculating strains under all 3 conditions. This means that— due
to cell immobilization in the floc structure—the mating efficiency
became independent of the shear flow and that mating was as
efficient under liquid conditions as on a solid substrate. This find-
ing is of major importance with respect to the role of flocculation
in the survival of yeast cells under starvation conditions as it en-
hances the mating efficiency. The results of the mating assays in-
dicate that the role of Flo proteins and flocculation in mating is the
construction of a uniquely organized multicellular ultrastructure
(the floc) that ensures tight cell adhesion, which is necessary for
zygote formation. This is consistent with the observed structure of
an induced cell aggregation pellet, which was solely based on ag-
glutinin interaction, where it was shown that sexual agglutination
contributes not only to cell contact between MATa and MAT�
AG�1 cells, thereby stabilizing a-� cell pairs, but also to the con-
struction of a uniquely organized ultrastructure (119). The inter-
action between the sex agglutinins, which are localized at the out-
ermost cell wall surface (115) (comparable to the localization of
the flocculins), was responsible for the formation of this “ex-
tended” ultrastructure, which provides the gametic cells with nu-
trients and is beneficial for subsequent growth of diploid cells. The
ultrastructure of this extended type aggregate is comparable to the
floc ultrastructure (Fig. 3D). In contrast to flocculation, a physical
method (centrifugation) was needed to create this agglutination
ultrastructure. Therefore, cell-cell interaction based on the stron-
ger lectin-carbohydrate binding is the natural way of creating this
mating-favorable ultrastructure.

Due to diffusive mass transport limitations in a floc (120),
nitrogen and carbon sources as well as oxygen drop to limiting
concentrations inside the floc. This was confirmed by the tran-

Role of Molecular Mechanism of Flocculation in Mating

March/April 2015 Volume 6 Issue 2 e00427-15 ®

mbio.asm.org
http://mbio.asm.org/
http://mbio.asm.org/


scriptome analysis: upregulation of genes involved with GO “glu-
coneogenesis” and “pentose-phosphate shunt” and genes in-
volved in GO “response to starvation” and “autophagy” (see
Table S2 in the supplemental material). Additionally, many genes
involved in cell wall, lipid, sphingolipid, and sterol metabolism are
upregulated. Anaerobic conditions are indicated by the upregula-
tion of the Tir, Pau, and Dan mannoproteins, the upregulation of
AAC3 and HEM13, and downregulation of ROX1. This is consis-
tent with previous transcriptome results obtained with FLO1-
overexpressing cells (24). The reduced growth is confirmed by the
downregulation of genes involved with RNA processing and ribo-
some synthesis. Severe limitation of both nitrogen and ferment-
able carbon sources and increased pH induce diploid cells to spo-
rulate (121, 122). This is confirmed by the transcriptome analysis:
upregulation of genes associated with GO “sporulation” (includ-
ing the involvement of TOR signaling and SNF1 signaling) and
Rim101 pathway activation (see Table S2). These results confirm a
previous transcriptome analysis, where genes associated with GO
“sporulation” and “spore wall assembly” were also differentially
upregulated in FLO1-overexpressed flocs (24). Also, several of the
enriched differentially expressed genes that are associated with
yeast flocculation (see Table S2) are also enriched in yeast biofilms
and colonies (11, 121, 123–125).

Flocculation is thus of crucial importance for the enhanced
chance of survival of Flo-expressing yeast cells under sustained
stress conditions. The benefits of flocculation with respect to cell
survival are manifold: flocculation gives the cells a way to escape
from harsh conditions in the growth medium, a floc protects the
inner cells from environmental stress, and cells in the middle of
the floc could lyse and act as a source of new nutrients for the other
cells (24). The new findings concerning the increased mating effi-
ciency in a floc suggest an additional role of flocculation in sur-
vival. Mating results in an offspring with genetic variation. Addi-
tionally, diploid cells can undergo meiosis and sporulation and
can package the haploid nuclei into spores to increase the survival
rate, since spores are highly resistant to a variety of environmental
stresses (121, 122). Therefore, flocculating cells have a signifi-
cantly higher chance for survival than nonflocculent cells.

MATERIALS AND METHODS
Expression and purification of the lectin domain of Flo1p and Lg-Flo1p.
The glycosylated N-terminal domain of Flo1p was purified by a combina-
tion of affinity chromatography and gel filtration after expression in
S. cerevisiae (22). Expression and purification of the N-terminal domain
of Flo1p and Lg-Flo1p from Escherichia coli have been described elsewhere
(126) (see Text S1 in the supplemental material).

Protein crystallization and X-ray structure determination. Crystal-
lization and X-ray data collection for N-Flo1p (in apo form and in com-
plex with mannose) and N-Lg-Flo1p (in complex with �-1,2-
mannobiose) have been described elsewhere (126). The structure of the
flocculin N-terminal domains (PDB codes 4LHK [N-Lg-Flo1p–manno-
biose], 4LHL [apo–N-Flo1p], and 4LHN [N-Flo1p–mannose]) were
solved by molecular replacement (see Text S1 and Table S1 in the supple-
mental material).

Enzymatic deglycosylation and glycan preparation. The N-glycans
were removed with endo-�-N-acetylglucosaminidase H and the
O-glycans with �-mannosidase from Canavalia ensiformis. To obtain
deglycosylated protein only, the glycans were separated by dialysis; to
obtain the glycans only, the deglycosylated protein was precipitated with
ice-cold ethanol (see Text S1).

ESI-MS and N-glycan profiling. Glycosylated N-Flo1p, N-deglyco-
sylated N-Flo1p, and both N-deglycosylated and O-deglycosylated N-Flo1p

were analyzed with electrospray ionization-mass spectrometry (ESI-MS).
The proteins were eluted from the column by isocratic elution followed by a
linear gradient. The data were analyzed with Masslynx software version 4.1.
The N-glycans were analyzed using high-pH anion-exchange chromatogra-
phy with pulsed amperometric detection (HPAEC-PAD) and a CarboPac
PA-200 column (see Text S1 in the supplemental material).

SPR. The self-interaction of N-Flo1p was studied by surface plasmon
resonance (SPR) using a Biacore 3000 instrument (GE Healthcare, Upp-
sala, Sweden) (see Text S1 in the supplemental material).

AFM and SEM. Topographic images of the released N-glycans of the
100-kDa N-Flo1p population were recorded with atomic force micros-
copy (AFM) using the tapping mode in air. Samples for force spectroscopy
were prepared by using a protein coupling method based on amino group
chemistry, and force spectroscopy experiments were conducted in buffer
solution (see Text S1 in the supplemental material). Glycosylated N-Flo1p
was immobilized on both freshly cleaved mica and AFM tips. Detailed
procedures for AFM and scanning electron microscopy (SEM) are de-
scribed in Text S1.

For SEM imaging, yeast flocs were fixed in 2% (vol/vol) glutaralde-
hyde in Na-cacodylate buffer (0.1 M, pH 7) during 15 min at room tem-
perature. The samples were then dehydrated with increasing ethanol con-
centrations (70%, 80%, 90%, and 100% [vol/vol]) for 10 min each time
and immersed in hexamethyldisilazane (Sigma) for 3 min at room tem-
perature. Samples were mounted on glass coverslips that were attached on
aluminum stubs with silver paint, sputter coated with a layer (~8 nm
thick) of Au/Pd, and examined with a Philips XL 20 SEM (FEI Company).

Microarray and network analysis. The BY4742 WT, BY4742::FLO8,
and BY4742 [FLO1] (5) strains were grown in a specially developed bio-
reactor (see Fig. S5 in the supplemental material) (Kayser Italia, Leghorn,
Italy) in microgravity and on Earth (see Text S1). The cells were fixed with
RNALater, and RNA was extracted. Next, each sample was amplified,
labeled, and hybridized onto an Affymetrix Yeast Genome 2.0 array for
the gene expression profiling. The differential gene expression analysis
was performed using the moderate t test method (127) for different com-
parisons. The gene ontology (GO) enrichment analysis of different statis-
tical hypotheses was performed using the R package PIANO (128). The
high-quality protein-protein interaction networks were retrieved from
the String Database (129), and the transcriptome data were integrated
with the network.

Determination of the mating efficiency. The mating efficiency was
determined by a genetic complementation assay (117). The following
mating combinations were selected: BY4741 WT MATa and BY4742 WT
MAT�; BY4741 WT MATa and BY4742::FLO8 MAT�; and BY4741 WT
MATa and BY4742 [FLO1] MAT�.

Microarray data accession number. The microarray data have been
deposited in NCBI’s Gene Expression Omnibus (130) and are accessible
through GEO Series accession number GSE64468.
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