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Charge carrier concentrations in acceptor-doped proton-conducting perovskites are to a large extent determined
by the hydration and oxidation of oxygen vacancies, which introduce protons and holes, respectively. First-
principles modeling of these reactions involves calculation of formation energies of charged defects, which
requires an accurate description of the band gap and the position of the band edges. Since density-functional
theory (DFT) with local and semilocal exchange-correlation functionals (LDA and GGA) systematically fails
to predict these quantities this can have serious implications on the modeling of defect reactions. In this study
we investigate how the description of band gap and band-edge positions affects the hydration and oxidation
in acceptor-doped BaZrO3. First-principles calculations are performed in combination with thermodynamic
modeling in order to obtain equilibrium charge carrier concentrations at different temperatures and partial
pressures. Three different methods have been considered: DFT with both semilocal (PBE) and hybrid (PBE0)
exchange-correlation functionals, and many-body perturbation theory within the G0W0 approximation. All three
methods yield similar results for the hydration reaction, which are consistent with experimental findings. For the
oxidation reaction, on the other hand, there is a qualitative difference. PBE predicts the reaction to be exothermic,
while the two others predict an endothermic behavior. Results from thermodynamic modeling are compared
with available experimental data, such as enthalpies, concentrations, and conductivities, and only the results
obtained with PBE0 and G0W0, with an endothermic oxidation behavior, give a satisfactory agreement with
experiments.
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I. INTRODUCTION

Since the beginning of the 1980s, when Iwahara et al.
[1] discovered proton conduction in acceptor-doped SrCeO3,
perovskite oxides (ABO3) have been studied extensively
with respect to their potential as proton conductors [2–4].
Such materials have many applications, including fuel cells,
electrolyzers, hydrogen separation membranes, and hydrogen
sensors [3]. Many acceptor-doped perovskites are also oxide
ion, electron, and hole conductors [5–7] and suitable for
applications such as electrodes and hydrogen separation
membranes [5,6]. As some applications rely on the perovskite
being a pure ionic or electrical conductor while others do not it
becomes important to understand and control the conductivity
mechanisms in order to predict and optimize the material
performance.

Proton incorporation into the perovskite structure is made
possible through acceptor doping. By substituting B-site
cations with dopant ions of lower valency positively charged
oxygen vacancies are formed due to charge compensation. By
exposing the doped perovskite to water vapor the vacancies can
be filled by water molecules which introduces protons into the
structure. In Kröger-Vink notation this reaction is expressed
as

H2O(g) + v••
O + O×

O � 2OH•
O, (1)

which describes how a water molecule, an oxygen vacancy,
and an oxide ion form two hydroxide ions (protons). Oxygen
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vacancies also enable the incorporation of holes, which can be
introduced through oxidation of oxygen vacancies,

1
2 O2(g) + v••

O � 2h• + O×
O . (2)

Theoretical modeling based on density-functional the-
ory (DFT) has become an important computational tool in
materials science. The local density approximation (LDA)
and various semilocal generalized gradient approximations
(GGAs) are routinely being used. In condensed matter research
the Perdew-Burke-Ernzerhof [8] (PBE) type of GGA is
currently the most common parametrization [9]. GGAs have
been applied to study hydration [10–16] as well as oxidation
[14,17–19] in different perovskite oxides.

For the oxidation process the semilocal GGAs predict the
reaction to be exothermic [12,14,17–19]: the hole concen-
tration is decreasing with increasing temperature. The hole
conductivity is proportional to both the hole concentration
and the hole mobility, and it is experimentally established
that the hole conductivity increases with temperature [20–23].
For the GGA result to be consistent with the experimental
results it has therefore been suggested that the hole mobility
increases more rapidly than the decrease in hole concentration
[14,19]. This, however, is not in line with the common view in
the research field and it has been stated that the electronic
structure of acceptor-doped proton-conducting perovskites
remain surprisingly poorly understood [24].

It is well known that local and semilocal functionals
underestimate the band gap of semiconductors and insulators
[25,26], a shortcoming that extends to the description of the
valence and conduction band edges. The position of the top
of the valence band is decisive for a correct description of
the oxidation reaction in Eq. (2) and hence one has to go
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beyond standard DFT with LDA/GGA in order to describe
hole conduction properly.

In this paper we have performed theoretical modeling of
hydration and oxidation of an acceptor-doped oxide. Three
defects are of interest in this context, the doubly positively
charged oxygen vacancy, the hole and the proton, where the
latter is often regarded as a hydroxide ion. Here we treat the
hole as a band state. The methodology is applied to acceptor-
doped BaZrO3, one of the most promising proton conducting
perovskites since it combines high bulk proton conductivity
with chemical stability [2,27,28].

First-principles calculations are used to determine the
electronic structure and defect formation energies. The starting
point is DFT based on the PBE functional for the exchange-
correlation energy. To remedy the band gap problem we then
consider two different approaches.

The first one is based on a many-body perturbation
technique. We determine the quasiparticle correction to the
PBE energy levels using the G0W0 approximation introduced
by Hedin [29]. The second approach is based on hybrid
functionals that admix a fraction of nonlocal exchange to a
semilocal approximation. We use the hybrid functional PBE0,
which is obtained from PBE by replacing 25% of the PBE
exchange energy by Hartree-Fock exchange. To make our
study less empirical we stick to this original suggestion of
25% Hartree-Fock exchange [30] and we do not make use
of range separation, as introduced in the corresponding HSE
functionals [31]. Additionally, PBE0 has been shown to give
a good description of BaZrO3 [32].

Thermodynamic modeling based on our first-principles re-
sults is then performed to obtain charge carrier concentrations
in the acceptor-doped system at different temperatures and
environmental conditions. We find a qualitative difference for
the oxidation reaction, being exothermic with PBE and en-
dothermic using the G0W0 approach and the hybrid functional.
Indeed, only the latter behavior is found to be consistent with
experimental data of charge carrier concentrations and hole
conductivities.

The paper is organized as follows. Section II describes
the different aspects of the theoretical framework used in the
paper, while Sec. III contains the computational details of the
PBE, PBE0, and G0W0 calculations. The results are presented
and discussed in Secs. IV and V, and, finally, a summary of
the paper together with conclusions is given in Sec. VI. The
Appendix gives a description of band structure alignment with
respect to the vacuum level based on surface calculations.

II. THEORY

In this work we study the thermodynamics of defect
configurations in the dilute limit. To this end, the formation
free energies of individual point defects are calculated (if
necessary for different charged states) as a function of atomic
and electronic chemical potentials. The properties of the
real system, most importantly defect concentrations, are then
obtained by invoking the charge neutrality condition, which is
employed to fix the electronic chemical potential under differ-
ent environmental conditions (atomic chemical potentials). An
extensive review on the subject of first-principles modeling of
defect formation in solids can be found in Ref. [33].

A. Defect formation energies

The formation energy of a defect in charge state q is given
by

�Edef = Etot
def + Eq

corr − Etot
id −

∑
i

�niμ̄i

+ q(εVBM + μe + �vq), (3)

where Etot
def and Etot

id are the total energies of the defective and
ideal systems, respectively. �ni denotes the change in atomic
species i upon defect formation and μ̄i is the corresponding
chemical potential at zero temperature (not including zero-
point energies). Finally, μe represents the electron chemical
potential with respect to the valence band maximum, εVBM.
The terms E

q
corr and �vq are corrections that compensate

errors associated with charged defects [34]. The former term
corrects errors due to image charge interactions, which are
consequences of the periodic boundary conditions. The latter
so-called potential alignment term corrects for the offset of
electrostatic potentials of the charged defective and neutral
ideal system.

The band gap problem of DFT affects the formation
energies and can be approximately corrected for by using
quasiparticle energy shifts from G0W0 calculations. The
method considered here, which is a perturbative approach
based on the DFT result, corresponds to applying a band
gap correction to Eq. (3) and is described in more detail in
Refs. [35–37]. In general, this approach requires knowledge of
the shifts of both band edges as well as defect levels. Fully ion-
ized defects, which is the nature of the defects in this paper, are
only affected by the shift of the valence band edge. The band
gap corrected formation energy for such defects is given by

�E
DFT+χ[GW ]
def = �EDFT

def + q�εVBM, (4)

where �εVBM = εGW
VBM − εDFT

VBM.
For finite temperatures and pressures, Eq. (3) can be written

as

�Gdef = Gtot
def + Eq

corr − Gtot
id −

∑
i

�niμi

+ q(εVBM + μe + �vq), (5)

where Gtot
def and Gtot

id are the Gibbs free energies of the defective
and ideal systems, respectively, and μi is the chemical potential
of the elemental reference phase i at finite temperatures and
pressures.

B. Chemical potentials of the gas phase

The considered defects are oxygen vacancies and protons
and chemical potentials for O and H are therefore needed.
The environments of the oxidation and hydration reaction are
oxygen gas (O2) and water vapor (H2O), and the chemical
potentials of O and H are thereby expressed as

μO = 1
2μO2 , (6)

μH = 1
2μH2O − 1

4μO2 . (7)

By assuming an ideal gas behavior the chemical potential of
O2 at temperature T and partial pressure pO2 (and equivalently
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for H2O at pH2O) can be written as

μO2 (T ,pO2 ) = μ̄O2 + εZ.P.
O2

+ h◦
O2

(T ) − T s◦
O2

(T ) + kT ln
pO2

p◦
O2

,

(8)

where εZ.P.
O2

is the zero-point energy of the O2 molecule and
h◦

O2
(T ) and s◦

O2
(T ) represent the temperature dependencies

of enthalpy and entropy of the gas phase at the reference
pressure p◦

O2
. The enthalpies and entropies of O2 and H2O

are extracted from thermodynamic tables [38]. Within the
harmonic approximation the zero-point energies are given by∑

k �ωk/2, where ωk are the molecular vibrational frequen-
cies. Experimentally determined frequencies [39,40] yield
εZ.P.

O2
= 0.10 eV and εZ.P.

H2O = 0.56 eV.
Total energies from DFT are used for μ̄i . Common practice

is to use the molecular total energies

μ̄O2 = Etot
O2

, (9)

μ̄H2O = Etot
H2O. (10)

This is problematic since PBE is known to overbind the O2

molecule with 0.9 eV. To overcome this problem total energies
of atoms are used instead and combined with experimental
values for the cohesive energies εcoh according to

μ̄O2 = 2Etot
O + εcoh

O2
, (11)

μ̄H2O = 2Etot
H + Etot

O + εcoh
H2O. (12)

With experimental data from Ref. [38] we obtain εcoh
O2

=
−5.21 eV and εcoh

H2O = −10.07 eV, where the zero-point en-
ergies (see above) have been removed.

C. Free energy of the solid phase

The considered expression for the free energy of the solid
phase depends only on temperature since the PV term is very
small within this context and can be neglected. This implies
that the Gibbs and Helmholtz free energies are practically
identical and one can write

G(T ) ≈ F (T ) = Etot + U vib(T ) − T Svib(T ), (13)

where Etot is the electronic contribution, and the temperature
dependent terms U vib(T ) and Svib(T ) represent vibrational
contributions. The latter two are calculated within the har-
monic approximation using an Einstein model [10,17]. Here
we assume that the formation of a defect does not affect the
vibrational frequencies of neighboring atoms. The change in
U vib(T ) and Svib(T ) due to the addition of one atom of species
i is given by

�U vib
i (T ) =

3∑
k=1

(
�ωi,k

2
+ �ωi,k

e�ωi,k/kT − 1

)
, (14)

�Svib
i (T ) = k

3∑
k=1

[
�ωi,k/kT

e�ωi,k/kT − 1
− ln(1 − e−�ωi,k/kT )

]
,

(15)

where ωi,k are the vibrational frequencies. For the oxygen atom
we use the frequencies 557 cm−1, 250 cm−1, and 250 cm−1,
and for the proton we use 3502 cm−1, 900 cm−1, and 601 cm−1,
which have been extracted from Refs. [10,17].

D. Defect concentration

Defect concentrations are considered to be within the dilute
limit and are therefore given by

cdef = Ndef

Vc

e−�Gdef/kT , (16)

where Ndef is the number of defect sites in the primitive cell
with volume Vc. In this case Vc = a3

0 with a0 being the lattice
constant. There are three oxygen sites in the primitive cell
and therefore three available sites for the oxygen vacancy, i.e.,
Nv = 3. Proton sites are associated with oxygen ions, with
four possible configurations per oxygen site [10], which yields
NH = 12 proton sites in each primitive cell.

In order for the dilute-limit approximation to be valid
the occupancy has to be much smaller than the number
of available sites (cdefVc � Ndef). In this paper we use a
dopant concentration of 10%, which yields a maximum proton
occupancy of 0.1 per primitive cell. This corresponds to
1 in 120 proton sites being occupied. The same dopant
concentration yields an upper limit of 0.05 oxygen vacancies
per primitive cell, which corresponds to 1 in 60 oxygen sites
being vacant. The dilute-limit approximation is thus justified.

E. Electron chemical potential

The electron chemical potential μe is obtained by solving
the charge neutrality condition∑

def

qcdef(μe) − ne(μe) + nh(μe) = 0, (17)

where ne and nh are the electron and hole concentration,
respectively, and the sum is over all defects in the material
including the acceptor dopants. Equation (17) can be solved
by iteration [41]. In the present work electrons and holes are
treated as band states and the corresponding concentrations
are obtained from the density of states (DOS) g(ε) according
to

ne =
∫ ∞

εCBM

g(ε)f (ε,μe)dε, (18)

nh =
∫ εVBM

−∞
g(ε) [1 − f (ε,μe)] dε, (19)

where εVBM and εCBM denote the positions of the valence band
maximum (VBM) and conduction band minimum (CBM), re-
spectively, and f (ε,μe) = {exp[(ε − εVBM − μe)/kT ] + 1}−1

is the Fermi-Dirac distribution function. The DOS is deter-
mined from first-principles calculations.

III. COMPUTATIONAL DETAILS

First-principles calculations within the density-functional
theory (DFT) formalism were carried out using the Vienna
ab initio simulation package [42], which uses plane wave
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FIG. 1. (Color online) Convergence of quasiparticle energies
from G0W0 calculations based on PBE wave functions with respect
to the number of bands included in the calculation.

basis sets and periodic boundary conditions. The projector aug-
mented wave method (PAW) [43] was employed to describe
ion-electron interactions. Two different functionals were used
to model exchange and correlation in their non-spin-polarized
versions: the generalized gradient approximation functional
PBE [8] and the hybrid functional PBE0 [30]. The plane wave
cutoff energy was set to 400 eV and a 6 × 6 × 6 Monkhorst-
Pack grid was used for k-point sampling of the BaZrO3

primitive cell and then reduced accordingly with increasing
supercell size. Supercells comprising up to 6 × 6 × 6 unit cells
were used for defect calculations based on the PBE functional.
PBE0 calculations were conducted for 3 × 3 × 3 supercells
only. Ionic relaxation was carried for all structures until the

residual forces were below 0.02 eV Å
−1

.
All calculations were performed with the cubic perovskite

structure, which belongs to space group Pm3̄m. The opti-
mized PBE lattice constant of 4.235 Å is somewhat larger
than the experimental values 4.191–4.197 Å [44,45], but in
agreement with previous theoretical studies of BaZrO3 based
on GGA functionals [10,12,17]. The PBE0 calculations were
carried out at the PBE lattice constant for a more direct
comparison.

Many-body calculations were carried out within the formal-
ism of the quasiparticle method GW [29]. More specifically,
the G0W0 approach was used. Calculations were based on
PBE wave functions and employed PAW data sets optimized
for GW calculations [46]. The general plane wave cutoff
energy was 434 eV, while a cutoff of 290 eV was employed
in the response function calculations. The Brillouin zone was
sampled using a �-centered 5 × 5 × 5 k-point mesh and all
calculations were carried out at the PBE lattice constant.

While the band gap converges relatively quickly with
the number of empty states included in the calculations,
individual quasiparticle energies typically converge more
slowly. As shown in Fig. 1 VBM and CBM are, however,
observed to depend linearly on the inverse number of bands,
whence converged values were obtained by extrapolation. This
approach is similar to the hyperbolic fit employed in Ref. [47].
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FIG. 2. (Color online) Comparison of PBE and PBE0 band struc-
tures for BaZrO3. Blue and red lines represent empty and occupied
bands, respectively. The gray areas indicate the extent of the indirect
band gap (R-�). The energy scale is chosen to be zero at the PBE
VBM.

IV. RESULTS

A. Electronic structure

The band structure of BaZrO3 from PBE and PBE0
calculations is presented in Fig. 2. The band gap is indirect
with the VBM at R and the CBM at �. The size of the gap,
which is determined from single-particle eigenvalues [48], is
3.13 eV and 5.35 eV with PBE and PBE0, respectively. The
direct band gap, with the VBM and CBM at �, is only slightly
larger: 3.38 eV with PBE and 5.57 eV with PBE0. The shape
of the band structures is very similar in both cases, which
indicates that the main difference between PBE and PBE0 lies
in the size of the band gap and the position of band edges. This
is illustrated in Fig. 3, which shows the total (DOS) and partial
density of states (PDOS). The valence band consists of oxygen
p states, while the conduction band of zirconium d states.

To compare the position of band edges the PBE and PBE0
band structures need to be properly aligned. Such an alignment
can be done with respect to a common reference potential,

D
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FIG. 3. (Color online) Total and partial density of states for
BaZrO3 obtained with PBE and PBE0. The red and blue lines
correspond to electronic p and d states and the dashed vertical line
marks the VBM.
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TABLE I. Comparison of theoretical and experimental band gaps
Egap, as well as VBM and CBM shifts �ε obtained from PBE0
and PBE + G0W0 calculations with respect to PBE calculations. All
values are given in units of eV. The theoretical data are also visualized
in Fig. 4.

Method �εVBM �εCBM Egap

PBE 3.13
PBE + G0W0 −1.10 0.50 4.73
PBE0 −1.42 0.80 5.35
Experiment 5.3 [51], 4.86 [52], 4.8 [53]

e.g., the average local electrostatic potential or the vacuum
level [49]. In this study we use the same pseudopotentials
and lattice constant for both PBE and PBE0 and the ionic
contribution to the electrostatic potential is therefore the same.
The electron density is found to be very similar with both
methods, which yield similar contributions to the potential as
well. As a consequence the average local electrostatic potential
is approximately the same for both methods and the two
band structures should be properly aligned [49]. We have also
performed alignment with respect to the vacuum level using
surface calculations, which verifies this alignment (see the
Appendix).

Band gaps and band-edge positions are summarized in
Table I and visualized in Fig. 4, where the band-edge positions
are given with respect to the PBE VBM. Both PBE + G0W0

and PBE0 open up the band gap, from 3.13 eV to 4.73 eV
and 5.35 eV, respectively, and yield VBM/CBM shifts that
are qualitatively similar. The rather good agreement between
PBE0 and PBE + G0W0 calculations for the VBM offset is not
trivial as it has been shown that PBE0 band-edge positions can
differ quite substantially from G0W0 calculations, especially
for wide band gap materials [50]. In general, one should expect
PBE + G0W0 calculations to be more reliable for this purpose
as they represent a more rigorous theoretical approach.

There are several experimental values for the band gap of
BaZrO3 in the literature. Robertson [51] reports a value of
5.3 eV, which in close agreement with the PBE0 result. More
recent studies by Cavalcante et al. [52] and Yuan et al. [53]
report band gaps in the range 4.8–4.9 eV, which agree better
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PBE, PBE0, and PBE + G0W0 calculations, where zero is set at
the PBE VBM. The dashed lines indicate that PBE + G0W0 is a
perturbative approach based on PBE. Also see Table I.
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with PBE + G0W0. The fact that the PBE + G0W0 still slightly
underestimates the experimental band gap is consistent with
calculations on other wide band gap materials [46,50,54].

B. Defect formation energies

Formation energies have been calculated for the oxygen
vacancy �Ev and the proton �EH. The considered charge
state of the vacancy is +2, which is the relevant state for the
oxidation and hydration reactions.

The terms E
q
corr and �vq in the expression for the formation

energy [see Eq. (3)] are corrections to errors introduced by
charged defects and periodic boundary conditions. Several
correction schemes have been proposed over the years to
reduce these errors (see Refs. [34,55] for examples). Here we
employ the finite-size scaling approach, in which the formation
energy is calculated for several different supercell sizes and
the corrected value E∞ is obtained by fitting the data points to
a polynomial of the form

E(N ) = aN−1 + bN−1/3 + E∞, (20)

where N is the number of atoms in the supercell. In this fashion
not only the leading terms of the multipole expansion of the
electrostatic image interaction [56] are accounted for but also
elastic image interactions [57]. This approach is suitable in this
case since it is computationally feasible to obtain a sufficiently
large number of data points for a reasonable fit. Additionally,
since the screening in BaZrO3 is quite large (the static dielectric
constant εr has been experimentally measured to fall in the
range 40–160 [58]), electrostatic image charge interactions,
which are proportional to ε−1

r , can be expected to be small.
There is thus no benefit in using more advanced schemes.

Supercells with up to 6 × 6 × 6 unit cells are considered
for the extrapolation, which corresponds to 1080 atoms in the
nondefective configuration. The results for the PBE functional
are shown in Fig. 5. The extrapolated formation energy for the
oxygen vacancy is 1.31 eV, while a value of 0.25 eV is obtained
for the proton. The figure shows that the formation energy of
both defects is quite close to the extrapolated value already
for 3 × 3 × 3 supercells (135 ± 1 atoms), which is related to
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TABLE II. Comparison of formation (�Ev and �EH) and
reaction (�Eox and �Ehydr) energies, where the former are given
for the electron chemical potential being located at the VBM
(μe = 0). For PBE and PBE + χ [G0W0] the formation energies are
extrapolated values; see Eq. (20) and Fig. 5. PBE0 values correspond
to 3 × 3 × 3 supercells. All energies are given in units of eV.

Method �Ev �EH �Eox �Ehydr

PBE 1.31 0.25 −1.31 −0.82
PBE + χ [G0W0] −0.88 −0.85 0.88 −0.82
PBE0 −1.53 −1.22 1.53 −0.90

the strong electrostatic screening. Since the PBE formation
energies of the 3 × 3 × 3 supercell are already very close
to the extrapolated value, this supercell size was employed
for PBE0 calculations, which are computationally much more
demanding.

Defect formation energies obtained from PBE and PBE0
calculations are summarized in Table II. All values are deter-
mined at the VBM corresponding to μe = 0. The differences
between the PBE0 and PBE values are −2.84 eV for the
vacancy and −1.47 eV for the proton. These differences are
very close to 2�εVBM and �εVBM (see Table I), which indicates
that the difference between PBE and PBE0 is mostly due to
the shift of the VBM. This observation in turn validates the
PBE + χ [G0W0] approach.

C. Reaction enthalpies and entropies

The energy of the oxidation reaction in Eq. (2) is determined
according to

�Eox = 2μe − �Ev(μe), (21)

which is independent of μe. Calculated values for �Eox are
listed in Table II. With PBE the oxidation energy is −1.31 eV,
which implies an exothermic reaction favoring the formation of
holes. With PBE + χ [G0W0] and PBE0 the oxidation energy
is 0.88 eV and 1.53 eV, respectively, which corresponds to an
endothermic reaction favoring oxygen vacancy formation.

The energy of the hydration reaction in Eq. (1) is given by

�Ehydr = 2�EH(μe) − �Ev(μe), (22)

which, like the oxidation energy, is independent of μe. All
three methods predict the reaction to be exothermic with a
similar magnitude for �Ehydr; see Table II. The reaction is
slightly more energetically favorable with PBE0 compared to
PBE, while PBE and PBE + χ [G0W0] yield identical values
by construction. This close agreement between the different
methods can be traced to the fact that the hydration energy
does not depend on the position of the VBM.

The standard enthalpy for both reactions can be determined
from �Eox and �Ehydr by including the zero-point energies
and the temperature dependence of both the solid and the gas
phase. The enthalpies are given by

�H ◦
ox(T ) = �Eox + �U vib

O (T ) − 1
2εZ.P.

O2
− 1

2h◦
O2

(T ), (23)

�H ◦
hydr(T ) = �Ehydr + 2�U vib

H (T ) + �U vib
O (T )

− εZ.P.
H2O − h◦

H2O(T ). (24)

0.0

0.1

0.2

E
nt

ha
lp

y
(e

V
) Oxidation

Hydration
.
.

0 250 500 750 1000 1250 1500

T (K)

-1.8

-1.5

-1.2

-0.9

-0.6

-0.3

0.0

E
nt

ro
py

(m
eV

K
−

1
)

FIG. 6. (Color online) Temperature dependence of the standard
enthalpy and entropy of the hydration and oxidation reactions; see
Eqs. (1) and (2). The electronic contributions to the enthalpy (�Eox

and �Ehydr) have been subtracted; thus the values at zero temperature
correspond to zero point energies.

Similarly, the entropies are given by

�S◦
ox(T ) = �Svib

O (T ) − 1
2 s◦

O2
(T ), (25)

�S◦
hydr(T ) = 2�Svib

H (T ) + �Svib
O (T ) − s◦

H2O(T ). (26)

In Fig. 6 we show the standard enthalpy and entropy as a
function of temperature for both reactions. �Eox and �Ehydr

have been subtracted from the enthalpy; thus the values at
zero temperature correspond to the net zero-point energy of
the reactions. These values are much less than the zero-point
energy of the respective phases, which indicate that there is
a large cancellation effect. Thus, if zero-point motion effects
are included, it is of importance to consider contributions from
both the gas and solid phases.

D. Oxidation

Based on the computed formation energies the equilibrium
defect concentrations can be determined for different tempera-
tures and pressures using the self-consistent scheme described
in Sec. II. With these concentrations the oxidation reaction
can be studied by calculating the corresponding equilibrium
constant

Kox(T ) =
(

pO2

p◦
O2

)−1/2
n2

hcO

cv
, (27)

where cv and cO denote oxygen vacancy and oxygen ion
concentrations, respectively.

In Fig. 7 we show the equilibrium constant as a function
of temperature together with the hole concentration of a
10% acceptor-doped system at the reference pressure (pO2 =
1 bar). As can be expected from the oxidation enthalpies,
the results differ quite significantly between PBE and the
other two methods. With PBE the hole concentration increases
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FIG. 7. (Color online) Upper panel shows the equilibrium con-
stant of the oxidation reaction in Eq. (2), while the middle and
lower panels show the corresponding hole concentration and self-
consistently obtained electron chemical potential. The concentrations
are obtained with pO2 = 1 bar and a dopant concentration of 10%,
where the latter is depicted as a black dashed line in the middle panel.

with decreasing temperature and is completely compensating
the dopant charge at lower temperatures. With PBE0 and
PBE + χ [G0W0] the concentration displays the inverse tem-
perature dependence and is several orders of magnitude
smaller. These features are reflected in the equilibrium con-
stant, where the positive slope of the PBE curve indicates an
exothermic process, while the negative slope obtained using
the other two methods corresponds to an endothermic reaction.

In general, the slope of the ln K(T ) curve is considered
to correspond to the enthalpy of the reaction. We define an
effective oxidation enthalpy according to

�H ◦,eff
ox (T ) = −k

d ln Kox(T )

d(1/T )
. (28)

Fitting the data in Fig. 7 to Eq. (28) yields �H ◦,eff
ox (T =

1000 K) values of −0.66 eV, 1.30 eV, and 1.92 eV for PBE,
PBE + χ [G0W0], and PBE0, respectively. These values can be
compared with −1.26 eV, 0.93 eV, and 1.58 eV for �H ◦

ox(T )
at T = 1000 K.

The electron chemical potential, which is also depicted
in Fig. 7, is negative with PBE below 1000 K and remains
close to the valence band edge for larger temperatures. For
PBE0 and PBE + χ [G0W0] on the other hand the electron

chemical potential is located well within the band gap over
the entire temperature range. In the latter case the Boltzmann
approximation can be used to find a more simplified expression
for Kox(T ) and nH. The equilibrium constant can then be
written as (see Supplemental Material [59])

Kox(T ) = [nVB(T )]2 e−�H ◦
ox(T )/kT e�S◦

ox(T )/k, (29)

where nVB(T ) = 2(m∗
hkT /2π�

2)3/2 and m∗
h is the effective

mass for the hole. From this expression it follows (see
Supplemental Material [59]) that

�H ◦,eff
ox (T ) = �H ◦

ox(T ) + 3kT . (30)

The contribution 3kT stems from the holes and is equal to
0.26 eV at 1000 K. This explains the difference between the
slopes of the PBE + χ [G0W0] and PBE0 curves in Fig. 7 and
the corresponding oxidation enthalpies �H ◦

ox(T ). While for
PBE there is also a positive contribution to �H ◦

ox(T ) it is more
difficult to obtain an explicit expression (see Supplemental
Material [59]).

We have also studied the dry system for a wide range of
temperatures and oxygen partial pressures. In Fig. 8 we show
the hole concentration for different temperatures and oxygen
partial pressures at a dopant concentration of 10%. The holes
completely compensate the acceptor dopants at high partial
pressures if PBE energies are used, and the hole concentration
is still quite substantial when the pressure decreases. With
PBE + χ [G0W0] and PBE0 we obtain a different picture. Here
the hole concentration becomes large only at high temperatures
and very high partial pressures, and consequently the acceptor
dopants are compensated by oxygen vacancies over most of
the considered range.

E. Hydration

In the same manner as for the oxidation reaction, the
hydration reaction can be studied through the corresponding
equilibrium constant,

Khydr(T ) =
(

pH2O

p◦
H2O

)−1
c2

H

cvcO
, (31)

where cH is the proton concentration. In this case the
equilibrium constant can be written as (see Supplemental
Material [59])

Khydr(T ) =
(

NH

Nv

)2

e−�H ◦
hydr(T )/kT e�S◦

hydr(T )/k. (32)

The difference in the number of sites available for protons
(NH) and oxygen vacancies (Nv) introduces an additional
configurational contribution to the entropy [16,60] and we
can define an effective hydration entropy according to

�S
◦,eff
hydr (T ) = �S◦

hydr(T ) + k ln

(
NH

Nv

)2

. (33)

In the present case we have NH = 4Nv and the additional term
is equal to 0.24 meV/K.

At 900 K we obtain hydration enthalpies of −0.68 eV
with PBE and PBE + χ [G0W0], and −0.76 eV with PBE0.
The corresponding effective hydration entropy at the same
temperature is −1.38 meV/K.
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FIG. 8. (Color online) Hole concentration calculated based on PBE, PBE0, and PBE + χ [G0W0] data under dry conditions at different
temperatures and oxygen partial pressures. The dopant concentration is 10%, which corresponds to 1.3 × 1021 cm−3.

F. Experimental conditions

The environmental conditions in experimental studies are
often such that both hydration and oxidation take place
simultaneously. This is the case for a hydrated material under
oxidizing conditions and during such circumstances it is not
possible to consider the two reactions independently.

We have employed the scheme described in Sec. II to
model these experimental conditions. Concentration pro-
files for a 10% doped material under wet conditions with
pH2O = 0.02 bar and pO2 = 10−5 bar are shown in Fig. 9.
The material is hydrated at lower temperatures according to
all three methods but only completely protonated for PBE0
and PBE + χ [G0W0]. With PBE the hydration occurs in
competition with hole formation leading to a situation with
roughly 50% protons and 50% holes. Similar to dry conditions,
the hole concentration increases with increasing temperature
for both PBE0 and PBE + χ [G0W0] while the behavior is the
opposite for PBE.

In this study only isolated defects are considered, which is
reasonable for low dopant concentrations. However, at higher
concentrations defect ordering and association effects cannot

be neglected. Real systems are often subject to high dopant
concentrations of approximately 20% and above. While in
such situations defect-defect interactions should be included
we do not consider this complication in the present work. The
scheme employed here (Sec. II) can, however, be extended
in straightforward fashion to account for additional defect
species, including defect pairs, as a first order approximation
to defect-defect interactions.

V. DISCUSSION

A. Hydration

It was established in the previous section that the three
methods considered in this work all predict very similar
results for the hydration reaction. This shows that a change
in description of the electronic structure has a small effect on
the hydration enthalpy.

The hydration of acceptor-doped BaZrO3 has been studied
extensively by several experimental groups and a compilation
of their results is provided in Table III. There is good agreement
between the different experimental results obtained at higher
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FIG. 9. (Color online) Concentration profiles calculated based on PBE, PBE0, and PBE + χ [G0W0] data under hydrated conditions at
pH2O = 0.02 bar and pO2 = 10−5 bar. The dopant concentration is 10%, which corresponds to 1.3 × 1021 cm−3.
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TABLE III. Experimental values of hydration enthalpies and entropies for various acceptor-doped BaZrO3 systems.

System T (K) pH2O (bar) �H ◦
hydr (eV) �S◦

hydr (meV K−1) Ref.

BaZr0.98Y0.02O3−δ 773–1173 0.023 −0.84 −0.98 Kreuer et al. [61]
BaZr0.95Y0.05O3−δ 773–1173 0.023 −0.82 −0.97 Kreuer et al. [61]
BaZr0.9Y0.1O3−δ 773–1173 0.023 −0.82 −0.92 Kreuer et al. [61]

773–1073 0.005–0.04 −0.77 ± 0.03 −0.90 ± 0.10 Schober and Bohn [62]
573–1173 0.1–1.0 −0.84 ± 0.04 Kjølseth et al. [63]
673–873 0.02 −0.86 −0.95 Ricote et al. [64]

BaZr0.85Y0.15O3−δ 773–1173 0.023 −0.86 −0.95 Kreuer et al. [61]
BaZr0.8Y0.2O3−δ 773–1173 0.023 −0.97 −1.07 Kreuer et al. [61]

323–773 0.023 −0.23 ± 0.01 −0.40 ± 0.01 Yamazaki et al. [65]
773–1173 0.023 −0.73 −1.04 Yamazaki et al. [65]

BaZr0.9Sc0.1O3−δ 773–1173 0.023 −1.24 −1.29 Kreuer et al. [61]
BaZr0.9Gd0.1O3−δ 773–1173 0.023 −0.69 −0.89 Kreuer et al. [61]
BaZr0.9In0.1O3−δ 773–1173 0.023 −0.69 −0.93 Kreuer et al. [61]

temperatures with some slight differences due to doping, where
the dopant species appears to have a more prominent impact
on the results compared to the dopant concentration.

At T = 900 K the calculated hydration enthalpy is
�H ◦

hydr = −0.68 eV with PBE and PBE + χ [G0W0], and
�H ◦

hydr = −0.76 eV with PBE0. Since these values are
computed for an effectively acceptor-doped BaZrO3 system
there is no specific entry in Table III to compare with,
although the values do agree quite well in general. For the
same temperature the calculated effective hydration entropy
is �S

◦,eff
hydr = −1.38 meV/K. The magnitude of this value is

somewhat larger than the experimental entropies listed in
Table III. Recent investigations have shown that a more
accurate treatment of the lattice vibrations gives a considerably
better agreement with experiments [16].

There is one entry in Table III which differs from the
others, namely the 20% yttrium-doped system studied at
low temperatures by Yamazaki et al. [65]. The absolute
value of the enthalpy is much smaller in this case, which
corresponds to a less exothermic reaction. The authors argue
that the difference with respect to other results is that the
hole concentration can be neglected at low but not at high
temperatures. This explanation is not consistent with either the
PBE or the PBE0/PBE + χ [G0W0] results in Fig. 9. Kjølseth
et al. [63], on the other hand, argue that the less exothermic
behavior is due to association and ordering between defects
and dopants, under the assumption that oxygen vacancies are
more associated and ordered compared to protons.

B. Oxidation

The modeling of the oxidation reaction yields very different
results depending on the method that is considered. The
values of the oxidation enthalpy in Table II show that
the standard DFT approach based on the PBE exchange-
correlation functional predicts the reaction to be exothermic,
while PBE + χ [G0W0] and PBE0 predict an endothermic
behavior.

Figures 8 and 9 show that the exothermic nature of the PBE
results yields large hole concentrations. The results for PBE in
the latter figure indicate that 50% of the oxygen vacancies are
oxidized even under hydrated conditions. This is inconsistent
with experiments, where almost completely hydrated samples
are obtained [2,61].

Unlike for the hydration reaction, there are to our knowl-
edge no reported experimental values of the oxidation enthalpy
for BaZrO3 systems in the literature. There are however
experimental values for other perovskite oxides, namely
BaCeO3 [66], BaTiO3 [67], and SrTiO3 [68]. The oxidation
enthalpies for these systems (see Table IV) are all positive,
which corresponds to the reaction being endothermic.

To compare these experimental values with theoretical
predictions �Eox was calculated for these perovskites as well.
Calculations were performed with both PBE and PBE0 using
the same computational setup as for BaZrO3. Band gaps and
band-edge shifts were determined as well, where the latter were
obtained under the assumption that the PBE and PBE0 band
structures are aligned. Although the cubic perovskite structure

TABLE IV. Lattice constants a0, band gaps Egap, band-edge shifts, and oxidation enthalpies �Eox/�H ◦
ox for several perovskite oxides. All

calculations have been performed with the cubic perovskite structure. For the band-edge shifts it is assumed that the PBE and PBE0 band
structures are aligned. Energies and lattice constants are given in units of eV and Å, respectively.

a0 Egap Band-edge shifts �Eox �H ◦
ox

System PBE Expt. PBE PBE0 Expt. VBM CBM PBE PBE0 Expt.

BaCeO3 4.476 4.445 [69] 2.25 4.95 4.41 [70] −1.45 1.25 −1.35 1.85 1.11 [66]
BaTiO3 4.031 3.991 [71] 1.71 3.82 3.21 [72] −1.41 0.70 −1.07 1.96 0.92 [67]
SrTiO3 3.939 3.900 [73] 1.81 3.98 3.25 [74] −1.41 0.77 −1.00 1.87 1.40 [68]
BaZrO3 4.235 4.191 [45] 3.13 5.35 4.8–5.3 [51–53] −1.42 0.80 −1.31 1.53
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is not the ground state for these materials it was chosen for
simplicity.

The results of these calculations are shown in Table IV.
These three perovskites behave qualitatively similar to BaZrO3

with negative and positive oxidation energies with PBE and
PBE0, respectively. The latter are in better agreement with
the experimental data. The band gaps are also improved for
all systems and the VBM and CBM are shifted downwards
and upwards respectively for all materials, similar to BaZrO3.
The fact that the overall improvement of PBE0 over PBE is
a general feature for these three systems in combination with
their similarities to BaZrO3 strongly suggests an endothermic
oxidation reaction in BaZrO3. Thus going beyond standard
DFT is a necessary procedure when studying the oxidation
reaction in these materials.

Throughout this article we have considered the hole to
be a delocalized band state. If the hole instead would be a
localized polaronic state (small polaron) then the oxidation
enthalpy would be reduced by the formation energy of the
polaron. Recent theoretical studies [75,76] based on the
HSE functional and LDA + U show indeed that polaron
formation is favorable in several perovskites (SrTiO3, BaTiO3,
and CaTiO3). However, the polaron formation energies are
only about 0.1–0.2 eV and thus quite small. While polaron
formation would reduce �Eox by 0.2–0.4 eV it would not
change the main conclusions of the paper.

C. Conductivity

Conductivity is a quantity that can be experimentally
measured much more easily than defect concentrations.
The conductivity of a charge carrier i can be decomposed
into

σi = qiBini, (34)

where qi is the carrier charge, Bi is the mobility, and ni is the
carrier concentration.

Total and partial conductivities of yttrium-doped BaZrO3

have been determined experimentally by several research
groups [20–23,61]. With a fit to the Arrhenius-like expression

T σh = Ae−Ea/kT (35)

the reported hole conductivities σh yield activation energies
Ea in the range 0.62 eV to 1.05 eV [20–23]. To compare the
experimental hole conductivities with our results for the hole
concentrations the mobility of the holes is required. While
the mobility and hence the diffusion coefficient have been
experimentally determined for both protons and oxygen vacan-
cies in yttrium-doped BaZrO3, the hole mobility is unknown.
There are, however, mobilities reported in the literature for
other perovskites including BaTiO3 [67] and SrTiO3 [68]. In
Fig. 10 these hole mobilities are depicted together with the
proton and oxygen ion mobility in BaZr0.9Y0.1O3−δ based on
experimental data from Kreuer et al. [61]. Unlike the proton
and oxygen ion mobilities, which clearly show temperature
activated behavior, the hole mobilities have a temperature
dependence close to T −1 corresponding to scattering limited
band conduction mechanism.

By assuming that Bh ∼ T −1 it follows from Eq. (34) and
Eq. (35) that nh ∼ e−Ea/kT . If we consider PBE + χ [G0W0]
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FIG. 10. (Color online) Experimental mobility of charge carriers.
The proton and oxide ion mobility is for BaZr0.9Y0.1O3−δ and is
based on data from Ref. [61]. The hole mobilities are based on the
expressions given in Ref. [67] (BaTiO3) and Ref. [68] (SrTiO3).

and PBE0, where nh � cv and the Boltzmann approximation
is valid, we get (see Supplemental Material [59])

Ea = �H ◦
ox(T ) + 3kT

2
. (36)

At T = 1000 K the calculated oxidation enthalpies yield Ea =
0.65 eV and Ea = 0.96 eV for PBE + χ [G0W0] and PBE0,
respectively, which are within the range of the experimental
results [20–23].

On the other hand, if we consider PBE the oxidation
reaction is exothermic and Ea is negative (cf. Fig. 7). This
cannot be made consistent with the measured conductivity
under the assumption of a weakly temperature dependent
mobility, Bh ∼ T −1. For the PBE result to become consistent
one has to assume a strongly temperature dependent mobility.
In Refs. [14,19] it was suggested that the hole conductivity
is given by a thermally activated process involving small
polarons with a mobility given by Bh ∼ T −1 exp (−Emig/kT ).
In the present case the activation energy for hole migration
Emig has to be at least 1 eV, which is unlikely.

VI. SUMMARY AND CONCLUSIONS

In the present work we have studied the oxidation and
hydration of an acceptor-doped proton-conducting perovskite
oxide, BaZrO3, in contact with water vapor and oxygen
gas. Charge carrier concentrations have been determined for
different temperatures and partial pressures based on data from
first-principles modeling.

Two different methods have been employed that improve
upon the conventional PBE functional with regard to the
description of band gap and band edges, namely the PBE0
hybrid functional and PBE + G0W0 calculations rooted in
many-body perturbation theory.

We find that the hydration reaction is exothermic and well
described by both PBE and PBE0. Including the band-edge
shifts from G0W0 calculations (PBE + χ [G0W0]) does not
change the energetics for the hydration reaction.
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For the oxidation reaction, however, the different approx-
imations predict qualitatively different results. With PBE
the reaction becomes exothermic, while it is endothermic
with PBE0 and PBE + χ [G0W0]. The exothermic PBE be-
havior yields large hole concentrations when lowering the
temperature even under hydrated conditions and the oxide
cannot become completely hydrated, in disagreement with
experiments. For the exothermic nature of PBE to be consistent
with the experimental data for the hole conductivity the hole
mobility has to increase more rapidly than the decrease in hole
concentration. Such a temperature dependent hole mobility
is unlikely. We conclude that only the endothermic behavior
with PBE0 and PBE + G0W0 can be made consistent with
experimental data of charge carrier concentrations and hole
conductivities.

In summary, PBE gives a good description for the hydration
reaction but to model the oxidation reaction improved approx-
imations have to be used. Here we show that the PBE + G0W0

method and hybrid functionals are two viable alternatives and
we present a theoretical approach, which in a consistent way
describes both hydration and oxidation of proton conducting
acceptor-doped perovskites.
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APPENDIX: BAND STRUCTURE ALIGNMENT

To determine the shift of the VBM and CBM between PBE
and PBE0 the band structures need to be aligned. Such an
alignment can be done with respect to a common reference
potential, such as the vacuum level Vvac [49]. A schematic
representation of the alignment is depicted in Fig. 11. If the
band structures are aligned with respect to this reference
then the shifts of the VBM and CBM are given by the

PBE PBE0

EA

Egap IP IPsurf

CBM

VBM

ΔVel

EA

Egap IP IPsurf
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FIG. 11. (Color online) Schematic representation of the band
structure alignment between PBE and PBE0.

difference in the ionization potential IP and electron affinity
EA, respectively,

�εVBM = IPPBE − IPPBE0, (A1)

�εCBM = EAPBE − EAPBE0, (A2)

where IP = Vvac − εVBM and EA = Vvac − εCBM.
To determine Vvac and consequently IP and EA a surface

calculation has to be performed. Such a calculation requires
a supercell containing a sufficiently long slab of BaZrO3 so
that the core of the slab becomes bulklike, as well as enough
of vacuum, in order to reach the vacuum level. An important
aspect of this approach is that the vacuum level of the slab
system, Vvac,slab, is not the same as the desired vacuum level
due to ionic and electronic relaxation at the surface of the
slab and thus cannot directly be used as vacuum level in the
alignment procedure. To obtain the actual vacuum level these
surface contributions need to be removed:

Vvac = Vvac,slab − �Vel − �Vion, (A3)

where �Vel and �Vion are contributions from electronic and
ionic relaxation at the surface, respectively. In the following
only electronic relaxation is considered; hence �Vion = 0. The
desired IP can thus be extracted from the slab system according
to

IP = Vvac,slab − εVBM,slab − �Vel = IPsurf − �Vel (A4)

and together with Eq. (A1) we obtain the shift of the VBM
according to

�εVBM = IPPBE
surf − IPPBE0

surf − (
�V PBE

el − �V PBE0
el

)
. (A5)

In the same manner we obtain the following expression for the
CBM shift:

�εCBM = EAPBE
surf − EAPBE0

surf − (
�V PBE

el − �V PBE0
el

)
. (A6)

The electronic relaxation at the surface gives rise to a
surface dipole (see Fig. 12). If we denote the difference in
the planar averaged (in the xy plane) charge density between
the surface and bulk systems �ρ(z), where z is the axis

z

−ρ ρbulk

ρsurf

Δρ = ρsurf−ρbulk

Slab Vacuum

⇓

FIG. 12. (Color online) Schematic representation of how the
surface dipole charge density �ρ is obtained. The �ρ curve (green)
has been multiplied with a factor of 5 for clarification.
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TABLE V. Difference between PBE and PBE0 results for the bulk
system as well as both terminations of the [001] surface. Equivalent
band-edge shifts for the different systems are given in bold. Energies
are given in units of eV.

Quantity Bulk ZrO2 BaO

�εVBM −1.42 −1.37 −1.26
�εCBM 0.80 0.90 0.36
�Egap 2.22 2.26 1.62
V PBE

vac − V PBE0
vac 0.10 0.14

−(�V PBE
el − �V PBE0

el ) −0.17 −0.27
�εVBM from Eq. (A5) −1.44 −1.38
�εCBM from Eq. (A6) 0.83 0.34

perpendicular to the surface, then the potential arising from
the surface dipole can be calculated from the expression [77]

�Vel = − p

ε0A
, (A7)

where ε0 is the vacuum permittivity, A is the unit area, and p

is the electric dipole moment

p =
∫

�ρ(z)(z − z0)dz, (A8)

with z0 denoting the center of mass.
In an actual calculation �ρ(z) is obtained in the following

manner (for a schematic representation see Fig. 12). First,
a 1 × 1 × n supercell is constructed and the corresponding
charge density ρbulk(z) is determined. Half of the atoms are
then removed resulting in a supercell containing a 1 × 1 × n

2

slab and an equal amount of vacuum. Subsequent electronic
relaxation yields the charge density ρsurf(z). �ρ(z) is then
obtained as the difference between these charge densities,

�ρ(z) = ρsurf(z) − ρbulk(z), (A9)

where ρbulk(z) has been truncated and set to zero at the same
position as the surface in the slab supercell.

To determine the VBM and CBM shifts we have considered
the [001] surface with both ZrO2 and BaO terminations. We
have used n = 9, which corresponds to a slab consisting of four
and a half unit cells, where both surfaces (the second surface
arise from the periodic boundary conditions) have the same
termination. We use the same computational setup as described
in Sec. III; however, only one k point is used in the z direction.
A summary of the results is given in Table V. Using Eq. (A5)
we obtain VBM shifts of −1.44 eV and −1.38 eV for the ZrO2

and BaO-terminated surfaces, respectively. These shifts are in
very good agreement with the VBM shift of −1.42 eV obtained
by directly comparing PBE and PBE0 results for the bulk. For
the CBM shifts we obtain 0.83 eV for the ZrO2-terminated
surface, which compares well with the direct value of 0.80 eV.
For the BaO-terminated surface, however, the CBM shift is
only 0.34 eV. This discrepancy is likely related to the fact
that the conduction band consists of zirconium d states (see
Fig. 3), which are not present in the surface layer for the
BaO termination. In all, the results obtained here demonstrate
the proper alignment of PBE and PBE0 band structures (at
identical lattice constant and using the same pseudopotentials)
shown in Fig. 2.
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