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Abstract

An integrative data mining method, using multiple data types, called Joint and Indi-
vidual Variation Explained (JIVE) and it’s existing sparse version Sparse JIVE (sJIVE)
are analysed and further extended. The proposed extension, called Fused Lasso JIVE
(FLJIVE), includes the integration of a Fused Lasso penalization framework into the
JIVE method. Also, a model selection tool for selecting the parameters in the JIVE
model is proposed. The new model selection algorithm and the three versions of the
method, JIVE, sJIVE and FLJIVE, are analysed and compared in a simulation study
and later applied to the TCGA Glioblastoma Multiforme Copy Number (CNA) data
which is know to have fused properties. The simulation study shows that the rank selec-
tion algorithm is successful and that FLJIVE is superior JIVE and sJIVE when the data
have underlying fused properties. The results of applying the methods to the TCGA
data set suggest that large parts of the underlying mutational process is shared between
chromosome 7, 9 and 10. Results also suggest that chromosome 1 does not share as
much of this process and that chromosome 15 is almost independent of this process.
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1
Introduction

The main topic of the thesis is an integrative data analysis method called Joint and Indi-
vidual Variation Explained (JIVE). In this thesis the Fused Lasso penalization framework
is integrated into the JIVE method and a novel rank selection algorithm for JIVE is pre-
sented. The methods are then evaluated in a simulation study and then applied to a
real data set.

1.1 Background

In many research fields it is getting more and more common that data are measured in
multiple different data types for a common set of objects. Examples of different objects
and possible data types are shown in Table 1.1. The Cancer Genome Atlas (TCGA,
homepage available at: http://cancergenome.nih.gov/ ) provides such data for a large set
of patients diagnosed with the malignant brain tumor Glioblastoma Multiforme (GBM).
Also, in an exclusive collaboration, the Nelander Lab at Uppsala university is providing
Chalmers with data from the Human Glioma Cell Culture (HGCC) which are GBM cell
lines grown in a laboratory at the university hospital. Both data sets include measure-
ments for patients’ (or cell lines’) copy number aberrations (CNA), DNA methylation,
gene expression, somatic mutations and miRNA.

Table 1.1: Showing three examples of objects and corresponding data types.

Object Data types

Websites Word frequencies, visitor demographics, linked pages

Artists (music) Genre classifications, listener demographics, related artists

Patients Copy number, gene expression, microRNA
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1.2. AIM CHAPTER 1. INTRODUCTION

However, the different cases in GBM are highly heterogeneous, and understanding the
dynamics of subgroups, and how they are defined among the patients, may lead to more
effective targeted therapy plans for new patients. It is also of great importance to in-
vestigate how similar the cell lines in HGCC, which are grown from early stage cancer
tissue originating from patients treated in Sweden, are to the late stage cancer samples
from the patients in the TCGA data set. If there is a strong connection, then one could
possibly test new drugs and therapies for their effectiveness on the cell lines rather than
on real patients. This opens up lots of opportunities for discovering new effective cancer
therapies. However, in order to make these kind of analyses possible new statistical and
data mining techniques need to be developed.

This thesis will investigate and extend a framework which is a step in the direction to
where the questions mentioned above could be answered. The basis for this framework
is a method called Joint and Individual Variation Explained (JIVE) [1]. The method
tries to simultaneously decompose a dataset, containing multiple data types, into two
different levels of structure. The first level contains structure which is shared across all
data types. The second level contains individual data type-specific structure for each
data type, where the individual structures are independent of the joint structure but also
uniquely defined in each data type. By studying this method one can gain knowledge
about it’s current limitations and the soundness of it’s underlying assumptions. This is
important in order to, in the future, extend the model to handle multiple data sets and
not just multiple data types.

1.2 Aim

To describe the purpose of this thesis, and what it tries to achieve, it is divided into three
different aims. These aims will also be recurring themes in, and define the structure and
flow of, the following sections of the thesis. This thesis aims to:

1. Extensively explore JIVE in order to learn more about it’s limitations, underlying
assumptions and the model itself. Knowledge about this is needed in order to
extend the method.

2. Extend the current sparsity framework in JIVE to incorporate the underlying struc-
ture of genomic data. This can be done by integrating the Fused Lasso penalization
[9] into the JIVE procedure.

3. Investigate possible ways of finding the most suitable parameters for the JIVE
method. A solid model selection tool is of great importance when comparing the
original model to extended versions of it.

For the first aim to be reached, general understanding of JIVE is needed. This includes
the ability to draw conclusions about when it works as intended and for what kind of
input it generally fails. It also includes investigating how sensitive JIVE is to the dif-
ferent parameters in the model. This is important when applying the method to real
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1.3. LIMITATIONS CHAPTER 1. INTRODUCTION

data where the underlying structure is not known. It is also important since this class
of integrative clustering methods, specifically derived to handle multiple data types, is
new and not extensively explored and documented.

The second aim is reached by formulating and understanding the Fused Lasso sparsity
framework. This must be done in order to be able to interchange the current sparsity
setting in JIVE. In the current form of JIVE the sparsity is incorporated into the Princi-
pal Component Analysis (PCA) method, which is used as a subroutine within JIVE. To
be able to interchange the current non-structured sparsity penalization with a structured
sparsity penalization, the Fused Lasso penalty must be applied in the PCA step of the
method. This means that a great part of this project is to derive an algorithm for PCA
which incorporates the Fused Lasso sparsity into the principal component loadings. This
new structured sparsity is simply integrated into the JIVE procedure by replacing the
current PCA method with the Fused Lasso PCA (FLPCA).

The last aim comprises the challenge of how to validate the choice of parameters for this
new class of integrative methods. This class started with R. Shen, A. Olshen and M.
Ladanyi proposing a new method called iCluster [3] as recently as 2009. The method was
designed specifically for solving the problem of clustering a common set of observation
measured in many different types of data. The method was applied to Glioblastoma
CNA, miRNA and methylation data with promising results. A few years later Mo, Q. et
al. extended the method which resulted in iCluster+ [4]. The contribution of the under-
lying method for this thesis, JIVE, was done by E. Lock, et al. [1] where they applied
the method to GBM, miRNA and gene expression data. K. Hellton and M. Thoresen
[2] extended JIVE into a method named Joint and Individual Clustering (JIC), which
also cluster the observations, as recently as November 2014. Commonly discussed in
these papers are the problems of validating the results and choice of model parameters.
This demonstrates a consensus solution to the model selection problem has not yet been
found. It also suggests that there is a need for novel model selection tools.

1.3 Limitations

As mentioned in the background, a future aim is to extend the JIVE procedure to handle
more than one data set so that one can analyse the similarities between the HGCC cell
lines and the TCGA late stage cancer patients. The analysis would need the method
to extract common and individual features between data sets as well as between data
types. However, this thesis will not try to analyse the similarities/differences between
the TCGA and the HGCC data sets, and it will not apply any of the methods to the
HGCC data set. This is mostly because the HGCC data set needs more work to be
assembled in the same way as the TCGA data set, and partly because such an analysis
is large enough to be a paper itself.
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1.4. THESIS OUTLINE CHAPTER 1. INTRODUCTION

Also, this thesis will not try to model an extension of JIVE capable of analysing multi-
ple data sets. In order to model such a large-scale extension, more knowledge about the
original model is required. The time frame of this thesis does not allow for both such
an extension and the pre-work needed in order to carry it out. Therefore, this thesis is
limited to the smaller extension of Fused Lasso JIVE and will lay the grounds for the
more large-scale extension.

The model selection problem for JIVE will be addressed in this thesis. However, the
model selection problem for the penalization parameters in sparse JIVE and Fused Lasso
JIVE will not be thoroughly addressed and discussed throughout the thesis. The use of
more sophisticated model selection tools for this problem cannot be fitted into the scope
of this thesis, and instead, these parameters will be selected using visual guidance.

1.4 Thesis outline

In section 2 methods important to the thesis will be explained. Understanding the Prin-
cipal Component Analysis and k-means methods are important in order to understand
and to follow the motivation of JIVE and it’s extension JIC which also clusters the joint
and individual components in JIVE. Subsection 2.5 discusses the sparse PCA method
and proceeds by defining the generalized Fused Lasso problem and how the split Breg-
mann method can be used to solve it. The Fused Lasso PCA is then proposed and
derived. The topic of subsection 2.6 is model selection which introduces a novel rank
selection algorithm for JIVE and discusses how model selection for the penalization pa-
rameters is done throughout this thesis. The last subsection of section 2 gives a short
introduction to how the results of JIVE and JIC are visualized.

In section 3 a simulation study is conducted where the proposed rank selection algorithm
is evaluated on data with known underlying parameters. The three methods JIVE, sJIVE
and FLJIVE are then tested on simulated data where the assumption of FLJIVE is not
true and then on a simulated data set where the assumption of FLJIVE holds.

The rank selection algorithm and the three variations of JIVE are then applied to the
TCGA data set in section 4. In this section only the CNA data type will be used,
and instead, each chromosome will be interpreted as its own data type. Firstly, the
rank selection algorithm is applied to the data in order to estimate the most favourable
parameters. Then, given the parameters suggested by the rank selection algorithm,
JIVE, sJIVE and FLJIVE are fitted to three different set of chromosomes in order to
discover the relationship between the underlying mutational process of the chromosomes.

4



1.4. THESIS OUTLINE CHAPTER 1. INTRODUCTION

In section 5 a discussion about the performance of the rank selection algorithm is held.
The performance of FLJIVE is also discussed in a setting where the underlying assump-
tion is true and in settings where the assumption is violated. The section also discusses
JIVE as a method for analysing the connection between the underlying mutational pro-
cesses of the chromosomes. Lastly, possible future directions are discussed.
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2
Methods

The most central methods in this thesis are Joint and Individual Variation Explained
(JIVE) and its extension Joint and Individual Clustering (JIC). However, there are the-
ories important to understand in order to understand these methods. Therefore, this
section begins by explaining methods important to the thesis. The section then formu-
lates JIVE and JIC mathematically before describing the sparsity framework currently
available and it’s extension derived in this thesis. Also, a novel rank selection algorithm
for JIVE and JIC is presented. The section ends with a short introduction to how the
results of JIVE and JIC are visualized. In all formulations n refers to the number of ob-
servations (rows) and p to the number of features (columns). Also, in general, matrices
are written in upper case bold letters, vectors are written in lower case bold letters and
numerical variables are written as lower case normal face letters.

2.1 Principal Component Analysis (PCA)

Principal Component Analysis is a method that decomposes a matrix X into two ma-
trices: the principal component scores Z and their loading factors W. More formally it
can be written as:

X = ZWT ,

where X is an n × p-matrix, W is a p × p-matrix whose columns must be orthonormal
and Z is an n× p-matrix whose columns must be orthogonal. The W and Z are chosen
such that they minimizes the following optimization problem:

6



2.1. PRINCIPAL COMPONENT ANALYSIS (PCA) CHAPTER 2. METHODS

min
Z,W

1

2
‖X− ZWT ‖2F = min

Z,W

1

2

n∑
i=1

p∑
j=1

(X− ZWT )2ij

s.t

WTW =I

ZTZ =


s1 0

. . .

0 sp

 ,

(2.1)

where I is the p × p identity matrix and ZTZ is a diagonal matrix with the singular
values s1 ≥ ... ≥ sp ≥ 0 on the diagonal.

An important application of PCA is the approximation of a matrix X with another
matrix of rank r ≤ min(n,p). In many cases the rank r of a large matrix X is much
smaller than min(n,p) which means that the matrix could be approximated well using
only a few components. Let W[r] denote the first r columns of W, Z[r] denote the first
r columns of Z, and let X(r) denote the best r-rank approximation of X. Then X(r) can
be written as:

X(r) = Z[r]W
T
[r] =

r∑
i=1

ZiW
T
i , (2.2)

where Zi is the i:th column of Z and Wi is the i:th column of W. If one is inter-
ested in finding the best 1-rank approximation of X, the optimization problem could be
formulated as:

min
z,w

1

2
‖X− zwT ‖2F , (2.3)

where z is a n× 1-vector and w is a p× 1 vector. By equation 2.2 the solution to 2.3 is
z = Z1 and w = W1. Finding the subsequent vector-pairs Zi,Wi for i > 1 is equivalent
to finding the best 1-rank approximation of the residual matrix Ri = X−

∑i−1
j=1 ZjW

T
j .

The Non-linear Iterative Partial Least Squares algorithm (NIPALS) uses this fact to
compute the first few components in a principal component analysis [5]. Given a suffi-
ciently large number m, which will ensure that the algorithm will return, the algorithm
for extracting the r first components is defined as follows:

7



2.2. K-MEANS CHAPTER 2. METHODS

Algorithm 1 PCA NIPALS

1: procedure PCA(X,r,ε,m)
2: R = X.
3: for (i = 1,...,r) do
4: δ =∞
5: z = Ri

6: for j = 1,...m do
7: w = RT z
8: w = w

‖w‖
9: z = Rw

10: if |δ − ‖z‖| < ε then
11: break
12: end if
13: δ = ‖z‖
14: end for
15: Wi = w
16: Zi = z
17: R = R− zwT

18: end for
19: return W,Z
20: end procedure

2.2 k-means

In this section a brief explanation of the k-means clustering method will be presented.
Since k-means is a well-established and well-known algorithm with many implementa-
tions available, this section will only state the algorithm for solving the optimization
problem and not discuss some of its drawbacks. Instead, this section will focus on the
mathematical definitions needed in order to understand the method and its extension re-
duced k-means. Firstly, the original version of k-means is defined, and then the two-step
PCA/k-means procedure, knows as reduced k-means, will be introduced.

2.2.1 Conventional k-means

The well known unsupervised method k-means is a clustering method for dividing a set of
objects into a predefined number K cohesive groups (clusters). The name k-means comes
from the fact that the algorithm finds K vectors w1,...,wK which defines the centres of
the K clusters, and given the cluster centres w1,...,wK the cluster membership of an
object x is then defined as:

C(x) = arg min
k
‖x−wk‖2. (2.4)

8



2.2. K-MEANS CHAPTER 2. METHODS

The objective function which k-means is opting to minimize is the within cluster sum of
squares (WCSS):

WCSS =
1

2

K∑
k=1

∑
i∈Ck

‖xi −wk‖2, (2.5)

where Ck is defined as the set {i : C(xi) = k}. The most common implementation of
the k-means algorithms alternates between finding the cluster memberships (2.4) and
minimizing the objective function (2.5) with respect to w1,...,wK . With |Ck| being the
number of objects in cluster k the algorithm looks as follows:

Algorithm 2 k-means clustering algorithm

1: procedure k-means(X,K)
2: initialize w1,...,wK .
3: while not converged do
4: Update C(x1),...,C(xn)
5: for k = 1,...K do
6: wk = 1

|Ck|
∑
i∈Ck

xi

7: end for
8: end while
9: return C(x1),...,C(xn)

10: end procedure

2.2.2 Reduced k-means (k-means via PCA)

In many applications the number of features p exceeds the number of objects n, and
if p is really large, the running time of k-means will suffer. The idea with reduced k-
means is to first reduce the dimensionality of the data, and then cluster it in order to
find the cluster indicators. In this way the running time of the algorithm can be kept
low, as long as the dimension reduction technique is fast. Instead of having the solution
of k-means to be a vector of cluster belongings C(x1),...,C(xn), let the solution be the
cluster indication matrix Z = (z1, ...,zK−1) where:

zTk =
1√
|Ck|

0, . . . ,0, 1, . . . ,1︸ ︷︷ ︸
|Ck|

,0, . . . ,0

 ,

and zik > 0 meaning that object i belongs to cluster k. Z only needs K − 1 indicator
vectors to contain all clustering information since the observations belonging to cluster
K will have zeros in every column and can in that way be identified. Also, let W =
(w1, . . . ,wK−1). Then the objective function (2.5) of k-means can be reformulated as:
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2.3. JOINT AND INDIVIDUAL VARIATION EXPLAINED (JIVE)CHAPTER 2. METHODS

min
w1,...,wK

WCSS = min
w1,...,wK

1

2

K∑
k=1

∑
i∈Ck

‖xi −wk‖2

⇔ min
w1,...,wK

1

2

K∑
k=1

n∑
i=1

zik‖xi −wk‖2

= min
W

1

2

n∑
i=1

‖xi − ziW
T ‖2

= min
W

1

2
‖X−ZW T ‖2F

(2.6)

In this form the k-means objective function is undoubtedly very similar to the objective
function (2.1) of PCA. In fact, it has been shown that the principal component analysis
is the continuous version of the k-means minimization problem and that the principal
component score matrix in PCA is the continuous version of the cluster indicator matrix
in k-means [6], [7]. In order to retrieve the actual cluster indications, one can apply
k-means to the principal components scores. This give rise to the following two-step
procedure:

Algorithm 3 reduced-k-means clustering algorithm

1: procedure reduced-k-means(X,K,ε,m)
2: W,Z = PCA(X,K − 1,ε,m)
3: C(x1),...,C(xn) = k-means(Z,K)
4: return C(x1),...,C(xn)
5: end procedure

Note that in Algorithm 3 k-means is run on Z which is a n×(K−1)-matrix instead of X
which is a n×p matrix. If p is large, the running time of the reduced-k-means algorithm
is significantly less then the running time of the conventional k-means algorithm.

2.3 Joint and Individual Variation Explained (JIVE)

Given the ranks r, r1, . . . , rI JIVE is a method that decomposes multiple matrices X1, . . . ,XI ,
measuring I types of data for the same set of observations, each into two components:
One joint component J = (J1, . . . ,JI) which encodes structure that is shared between
all data types and one individual component A = (A1, . . . ,AI) which encodes informa-
tion only present in the corresponding data type. The matrix J is constrained to have
rank r and the matrices Ai are constrained to have rank ri respectively.

Furthermore, the J and the Ai terms should be orthogonal (JTAi = 0) which ensures
that J and the Ai terms do not share any structure among the objects. If the individual

10



2.3. JOINT AND INDIVIDUAL VARIATION EXPLAINED (JIVE)CHAPTER 2. METHODS

structures were to share the same structure among them, it would in fact be a joint
structure, and this which would be counter intuitive. Mathematically this can be written
as:

X1 =J1 + A1 + ε1
...

Xi =Ji + Ai + εi
...

XI =JI + AI + εI

s.t

JTAi =0 ∀ 1 ≤ i ≤ I,

(2.7)

where Xi,Ji,Ai and εi are all n×pi-matrices, Ji is the sub-matrix of the joint structure
J corresponding to data type i, Ai is the individual structure for data type i and εi
represents noise specific for data type i. Note that Ji and Ai refer to the joint and
individual matrices of data type i and not to a row or column.

The matrices J1, . . . ,JI and A1, . . . ,Ai can be further decomposed into two components
each, using PCA, as:

X1 =ZWT
1 + Z1V

T
1 + ε1

...

Xi =ZWT
i + ZiV

T
i + εi

...

XI =ZWT
I + ZIV

T
I + εI ,

(2.8)

Note that Z is shared between all data types for the joint component but not for the
individual component. This further decomposition is practical in three ways: Firstly,
PCA could be used to estimate the matrices J ,A1,...,AI while forcing structure to be
shared between the Ji but not between the Ai terms. Secondly, the rank for the matrices
J ,A1, . . . ,AI can be controlled by using PCA to find the best r-rank approximation of
J and the best ri-rank approximation of Ai. Lastly, the reduced k-means procedure can
be applied in order to find clusters. This will be further discussed in section below.

JIVE finds J and the Ai terms by minimizing the squared Frobenious norm of the
following residual matrix:
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R =



R1
...

Ri
...

RI



T

=



X1 − J1 −A1
...

Xi − Ji −Ai
...

XI − JI −AI



T

(2.9)

Similarly to PCA, the estimation of J and the different Ai are done iteratively by
alternating between estimating J for a fixed A and estimating the Ai terms given J .
In fact, the J that minimizes ‖R‖2F is J = ZW T where Z and W are the scores and
loadings of the r-rank PCA approximation of X −A. Similarly, the Ai that minimizes
‖R‖2F is Ai = ZiW

T
i where Zi and Wi are the scores and loadings of the ri-rank PCA

approximation of Xi−Ji. However, this is without the orthogonality constraint between
J and the Ai terms taken into account. The derivation for the correction due to the
orthogonality constraint can be found in the supplementary material of the original JIVE
article [1]. The JIVE algorithm is defined as:

Algorithm 4 JIVE algorithm

1: procedure JIVE(X, r, r1 . . . rI)
2: R = X
3: while not converged do
4: W ,Z = PCA(R,r)
5: R = X −ZW T

6: Z ′ = normalize(Z)
7: for i = 1,...I do
8: Wi,Zi = PCA((I −Z ′Z ′T )Ri, ri)
9: Ri = Xi −ZiW

T
i

10: end for
11: end while
12: return W ,Z,W1,Z1, . . . ,WI ,ZI

13: end procedure

2.4 Joint and Individual Clustering (JIC)

The extension from JIVE into JIC is rather straightforward. In words, JIC is a combina-
tion between JIVE and reduced k-means which uses the fact that JIVE is a decomposition
of the form (2.8). Given the data X, the number of joint clusters c and the number
of individual clusters ci, JIC starts by doing a JIVE-decomposition and then applies
k-means to the result returned by JIVE. More specifically, since J and the Ai terms are
estimated via PCA, reduced k-means can be applied to them in order to find clusters

12
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that are defined jointly among the data types and individually in each data type. In
practice this is just applying k-means to the Z and Zi’s returned by JIVE. Note that the
relationship between the number of clusters in JIC and the ranks in JIVE is c = r + 1.
The algorithm for JIC looks as follows:

Algorithm 5 JIC algorithm

1: procedure JIC(X, c, c1 . . . cI)
2: W ,Z,W1,Z1, . . . ,WI ,ZI = JIVE(X, c− 1, c1 − 1, . . . ,cI − 1)
3: return k-means(Z,c), k-means(Z1,c1) . . . , k-means(ZI ,cI)
4: end procedure

2.5 Sparsity framework

In the JIVE model (2.7) the J and the different Ai does not assume the data to have any
kind of structure. If the underlying true signal of the data is in fact structured, JIVE
can fail to estimate this structure due to a high degree of noise. In some applications it is
therefore desirable that JIVE takes some prior knowledge or assumption of the structure
of the data into account. One example is the assumption that the underlying signal is
sparse, i.e. a majority of the entries in the true J and Ai terms are exactly 0. In order
to enforce structure in JIVE, one can enforce the structure into the underlying PCA
decompositions of JIVE.

This section will define two different extensions of PCA that can be used inside the
JIVE procedure in order to enforce structure on the resulting fit. Firstly, the already
existing sparse PCA method (sPCA), which imposes sparsity on the loadings in the
decomposition, will be described. Before defining the second PCA extension, a general
definition of the Fused Lasso, which can be used to enforce anything from a regular
sparse structure to a graph structure, will be introduced. Lastly, the derivation of how
the Fused Lasso can be used in combination with PCA to form the Fused Lasso PCA
(FLPCA) is carried out.

2.5.1 Sparse PCA (sPCA)

As described in the paper by H. Shen and J. Z. Huang [8] one can enforce sparsity on the
loading factors in a principal component analysis by rewriting the optimization problem
in (2.3) as:

min
z,w

1

2
‖X− zwT ‖2F + λ1‖w‖1, (2.10)

with ‖w‖1 =
∑p

i=1 |wi| and λ1 being a parameter determining the degree of the penal-
ization.

13
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In Algorithm 1, w is constrained to have unit length which makes it unsuitable to apply
penalization directly on w. Instead, it is more suitable to scale z to have unit length
making w free of any scale constraints. As a last step in the outermost for-loop one
can re-scale w to have unit length and z to be free of scale constraints. With zT z = 1
Lemma A.1 gives that for a fixed z the w∗ that minimizes equation (2.10) is:

w∗ = T softλ1
(XT z),

where T softλ (w) =
(
tsoftλ (w1), ..., t

soft
λ (wp)

)T
and tsoftλ (w) = sign(w) max(0, w − λ). The

algorithm for sparse PCA looks as follows:

Algorithm 6 Sparse PCA NIPALS

1: procedure sPCA(X,r,λ1,ε,m)
2: R = X.
3: for (i = 1,...,r) do
4: δ =∞
5: z = Ri

6: for j = 1,...m do
7: z = z

‖z‖

8: w = T softλ1
(RT z)

9: z = Rw
10: if |δ − ‖z‖| < ε then
11: break
12: end if
13: δ = ‖z‖
14: end for
15: w = w

‖w‖
16: z = Rw
17: Wi = w
18: Zi = z
19: R = R− zwT

20: end for
21: return W,Z
22: end procedure

2.5.2 The generalized Fused Lasso

The Fused lasso was originally proposed by R. Tibshirani et al. in 2005 [9]. In a general
setting the fused lasso problem can be formulated as:

min
w

f(X,z,w) + λ1‖w‖1 + λ2‖Lw‖1, (2.11)

14
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where f(X,z,w) is any loss function of X,z,w, λ1‖w‖1 fills the same functionality as
in (2.10) and the penalty term λ2‖Lw‖1 penalizes the differences in the entries of w as
specified by L. The matrix L can be any m× p-matrix and will specify the relationship
between the coefficients w. L could for example be a p × p-matrix describing a graph
relationship between the coefficients.

The optimization problem in (2.11) is difficult to solve because of the non-differentiability
of the `1-norms. However, it can be efficiently solved using the split Bregmann method
[10]. By a few steps the split Bregmann method reformulates (2.11) into a primal and
a dual problem which can then be alternated between in order to find the optimal solu-
tion w∗. Firstly, instead of formulating the optimization problem as an unconstrained
problem, it can be formulated as a constrained optimization problem:

min
w

f(X,z,w) + λ1‖a‖1 + λ2‖b‖1

s.t

a = w

b = Lw.

(2.12)

The constrained version of the problem can be solved using the Lagrangian method of
multipliers. The Lagrangian function of (2.12) is defined as:

L̃(w,a,b,u,v) = f(X,z,w) + λ1‖a‖1 + λ2‖b‖1 + uT (w − a) + vT (Lw − b), (2.13)

where u and v are p× 1 and m× 1 dual vectors for the constraints a = w and b = Lw.
However, the problem is more efficiently solved using the augmented Lagrangian function
of (2.12). In the augmented Lagrangian function of (2.12) another two terms, penalizing
the violation of a = w and b = Lw, is added to (2.13):

L(w,a,b,u,v) =f(X,z,w) + λ1‖a‖1 + λ2‖b‖1 + uT (w − a) + vT (Lw − b)+
µ1
2
‖w − a‖22 +

µ2
2
‖Lw − b‖22,

(2.14)

where µ1, µ2 > 0 are two parameters affecting the convergence rate of the method. The
w∗ that minimizes (2.11) will now satisfy the following inequality [12]:

L(w∗,a∗,b∗,u,v) ≤ L(w∗,a∗,b∗,u∗,v∗) ≤ L(w,a,b,u∗,v∗). (2.15)

This inequality constraint can be solved by alternating between minimizing the primal
function L(w,a,b,u∗,v∗) for fixed u∗,v∗ and maximizing the dual function L(w∗,a∗,b∗,u,v)
for fixed w∗,a∗,b∗. Finding the estimates of the variables in time step t + 1 is done by
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first finding the solution to the primal problem and then finding the solution to the dual
problem as follows:

(w(t+1),a(t+1),b(t+1)) = arg min
w,a,b

L(w,a,b,u(t),v(t))

(u(t+1),v(t+1)) = arg max
u,v
L(w(t+1),a(t+1),b(t+1),u,v).

(2.16)

The solution to the dual problem is rather simple, since L is linear in u and v, and
can be found using gradient ascent. With the step parameters δ1, δ2 > 0, u and v are
updated as follows:

u(t+1) = u(t) + δ1(w
(t+1) − a(t+1))

v(t+1) = v(t) + δ2(Lw(t+1) − b(t+1))
(2.17)

The solution to the primal problem is slightly more complicated since it still contains
the non-differentiable `1-terms. However, note that L does not contain any `1-terms
involving w which means that the minimization of the primal problem can be split into
three parts as follows:

w(t+1) =arg min
w

f(X,z,w) + uT (w − a) + vT (Lw − b) +
µ1
2
‖w − a‖22 +

µ2
2
‖Lw − b‖22

a(t+1) =arg min
a
λ1‖a‖1 + uT (w − a) +

µ1
2
‖w − a‖22

b(t+1) =arg min
b
λ2‖b‖1 + vT (Lw − b) +

µ2
2
‖Lw − b‖22

(2.18)

Lemma A.2 can be applied to the minimization of a and b and gives that:

a(t+1) =T softλ1/µ1
(w(t+1) + u(t)/µ1)

b(t+1) =T softλ2/µ2
(Lw(t+1) + v(t)/µ2)

(2.19)

The result of (2.17)-(2.19) is the split Bregmann method, which in this case is also the
same as the alternating direction method of multipliers (ADMM) [13]. The algorithm is
defined as follows:
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Algorithm 7 Split Bregmann method for the generalized Fused Lasso problem

1: procedure SBFLasso(X,z,λ1,λ2,µ1,µ2,δ1,δ2, ε)
2: Initialize a(0),b(0),u(0),v(0).
3: while not converged do
4: w(t+1) = arg min

w
f(X,z,w) + u(t)T (w − a(t)) + v(t)T (Lw − b(t))+

µ1
2 ‖w − a(t)‖22 + µ2

2 ‖Lw − b(t)‖22
5: a(t+1) = T softλ1/µ1

(w(t+1) + u(t)/µ1)

6: b(t+1) = T softλ2/µ2
(Lw(t+1) + v(t)/µ2)

7: u(t+1) = u(t) + δ1(w
(t+1) − a(t+1))

8: v(t+1) = v(t) + δ2(Lw(t+1) − b(t+1))
9: end while

10: return w(t+1)

11: end procedure

The initialization of a(0),b(0),u(0),v(0) is not discussed in the article by Gui-Bo Ye and
Xiaohui Xie. In this thesis this is done by setting all entries to 0. By experimentation,
other ”smarter” initial values does not seem to improve the rate of convergence. The
update of w(t+1) depends directly on f(X,z,w) and is therefore discussed in the next
section where the split Bregmann method for the generalized Fused Lasso is applied to
a concrete problem. In this thesis the parameters δ1 = µ1 and δ2 = µ2 will be used,
as suggested by [10]. For further convergence properties of Algorithm 7 the reader is
referred to the original article by Gui-Bo Ye and Xiaohui Xie.

2.5.3 Fused Lasso PCA (FLPCA)

In this section the application of generalized Fused Lasso to the loadings of a principal
component analysis is derived. By (2.3) one gets that the Fused Lasso loss function in
(2.11) is f(X,z,w) = 1

2‖X− zwT ‖2F . In this thesis the focus will lie on a specific choice
of penalization matrix L, namely:

L =



−1 1 0 . . . 0 0 0

0 −1 1 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . −1 1 0

0 0 0 . . . 0 −1 1


,

where L is a (p− 1)× p-matrix. With this loss function and choice of L the fused lasso
problem for PCA becomes the following:
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min
w

1

2
‖X− zwT ‖2F + λ1‖w‖1 + λ2‖Lw‖1 =

min
w

1

2
‖X− zwT ‖2F + λ1

p∑
i=1

|wi|+ λ2

p∑
i=2

|wi − wi−1|.
(2.20)

As seen in (2.20) the choice of L will penalize the differences in subsequent entries in w
and shrink the differences towards 0. This penalization will encourage smoothness in w
and will fuse it to be a piecewise constant function for large enough λ2.

By applying Lemma A.3, w(t+1) in Algorithm 7 is found by solving the following system
of linear equations:

((1 + µ1)I + µ2L
TL)w = XTz + (µ1a

(t) − u(t)) + LT (µ2b
(t) − v(t)) (2.21)

With this specific choice of L the matrix ((1 + µ1)I + µ2L
TL) in (2.21) is tridiagonal

which means that (2.21) can be solved in the order of p iterations. This is very con-
venient for the running time of the algorithm. Also, using an efficient sparse matrix
implementation the space complexity of the algorithm is limited to O(np) with X being
the limiting factor. Without a sparse matrix implementation the limiting factor would
be LTL which would take up O(p2) space. This would not be practical for large p.
Additionally, note that if LTL is not tridiagonal the space complexity of O(np) is not
guaranteed even with the use of a sparse matrix implementation.

As mentioned in previous section the convergence criterion of Algorithm 7 was not dis-
cussed in the original article. Since in this application w is free of any scale constraint, it
is suitable to assume that Algorithm 7 has converged if |w(t+1)Tw(t+1) −w(t)Tw(t)| < ε
is satisfied. Combining Algorithm 6, Algorithm 7 and (2.21) the algorithm for Fused
Lasso PCA (FLPCA) becomes:
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Algorithm 8 Fused Lasso PCA NIPALS

1: procedure FLPCA(X,r,λ1,λ2,µ1,µ2,ε1,ε2,m)
2: R = X.
3: for (i = 1,...,r) do
4: δ =∞
5: z = Ri

6: for j = 1,...m do
7: z = z

‖z‖
8: w = SBFLasso(X,z,λ1,λ2,µ1,µ2,µ1,µ2,ε2)
9: z = Rw

10: if |δ − ‖z‖| < ε1 then
11: break
12: end if
13: δ = ‖z‖
14: end for
15: w = w

‖w‖
16: z = Rw
17: Wi = w
18: Zi = z
19: R = R− zwT

20: end for
21: return W,Z
22: end procedure

2.6 Model selection

In this section two different model selection problems will be discussed. Firstly, the
problem of selecting the ranks r, r1, . . . rI for the JIVE decomposition. Secondly, the
problem of selecting the penalization parameter λ1 for sJIVE and FLJIVE and penal-
ization parameter λ2 for FLJIVE.

2.6.1 Rank selection

A challenge with all supervised methods is validating them, and this is no exception for
JIVE and JIC. As a matter of fact, as JIVE and JIC are both very recent methods no
consensus solution to this problem has yet been agreed on in the literature. The main
goal of the validation of these two methods is finding the correct ranks r,r1, . . . , rI . In
this section a novel validation method, inspired by consensus clustering [11], for finding
the correct ranks r,r1, . . . , rI is presented. The validation method is based on clustering
sub-samples of the original data set.

Let X(1), . . . ,X(L) denote L sub-samples of the original data set X where each X(l)
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contains all the features for a random subset of the rows of X. Define I(l), the indicator
matrix of sub-sample X(l), as:

I(l)ij =

1 if xi,xj ∈X(l)

0 else
(2.22)

The purpose of the indicator matrix I(l) is to keep track of which pairs of objects are
present in each sub-sample. This is necessary since the sub-samples contains a subset
of the rows of X, and therefore not all rows will be present in each sub-sample. Also,
let C(l) denote the n × n connectivity matrix for sub-sample X(l). Given a clustering

C(X(l)) =
(
C(x

(l)
1 ), . . . , C(x

(l)
nl )
)

the connectivity matrix C(l) is defined as:

C(l)ij =

1 if object i and j are assigned to the same cluster in C(X(l))

0 else
(2.23)

The consensus matrix C is then formed by counting the number of times i and j have
been clustered together and dividing it by the number of times i and j have been included
in the same sub-sample. In mathematical terms the consensus matrix is defined as:

Cij =

∑L
l=1 C

(l)
ij∑L

l=1 I
(l)
ij

(2.24)

In a perfect scenario C would only contain 0 or 1 entries, and if the objects were ordered
by their cluster-belongings the consensus matrix would be block diagonal with the blocks’
entries equal to 1 and the rest of the entries equal to 0. However, in practise it is highly
unlikely that a perfect consensus matrix occurs, and comparing two consensus matrices
is not trivial. Therefore, there is a need for a consensus summary statistic which can be
used to compare two, or more, different consensus matrices. In this thesis a completely
new consensus statistic is derived to fit this specific rank selection problem. Future work
will be to compare this new statistic to the consensus summary statistic suggested by S.
Monti et al. [11] as well as to other statistics.

The new statistic is motivated by histograms over the values for different consensus
matrices. A key observation for the statistic proposed in this thesis is that as the rank is
more and more overfitted, the median of values larger than 0.5 starts to move from 1 to
0.5. Figure 2.1 shows histograms for C2J , . . . , C9J (CrJ corresponds to the joint consensus
matrix from rank r) where 4 is the correct rank. In the figure, this phenomenon is
demonstrated rather clearly where the median of values larger than 0.5 is significantly
less for C5J than for C4J .
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C2J C3J C4J C5J

C6J C7J C8J C9J

Figure 2.1: Showing histogram over the values for examples of C2J , . . . , C9J where the correct
rank is 4. As seen in the figure, C4J is closest to containing only zeroes and ones.

Another indicator of the rank being set wrong is the presence of multiple values between
0 and 1. For C2J and C3J in Figure 2.1 this is clearly demonstrated. It is also sensible
to assume that having values closer to 0.5 is worse than having values closer to 1 or 0.
With 0 ≤ v1 ≤ v2 ≤ 1 define:

βmin = min
v1≤Cij≤v2

B(Cij ,α,β)

βmax = max
v1≤Cij≤v2

B(Cij ,α,β),
(2.25)

where B(x,α,β) is the beta pdf-function for x with parameters α and β. The two indica-
tors of bad fit can be combined into the following statistic which should be minimized:

T (C) =

(
1−median

Cij≥m1

(Cij)
) ∑
v1≤Cij≤v2

(
1− B(Cij ,α,β)− βmin

βmax − βmin

)
, (2.26)

where 0 < m1, α, β < 1 are parameters that can be experimented with.

It is difficult to derive a statistic that works when the correct rank is small, the cor-
rect rank is large, the clusters have a hierarchical structure and in every other pos-
sible situation. Also, in practice the correct rank will most likely not have a perfect
distribution of only zeros and ones. Even though this is a difficult problem, setting
v1 = 0.1, v2 = 0.9,m1 = 0.5, α = 0.1, β = 0.1 seems to give good results in most cases
and will therefore be used throughout this thesis.
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The proposed Consensus Rank selection algorithm for JIVE and JIC can be seen in
Algorithm 9. On line 4 of the algorithm L sub-samples, X(l), are sampled, and for each
sub-sample the indicator matrix (line 5) is updated. JIVE is then run with the ranks
r, r1, . . . , rI on line 6. On line 8-12 k-means is run with K = j + 1, for j = 1, . . . ,r using
only the j first columns of the joint scores, ZJ [j], as input. The same procedure is done
for the individual scores, ZA1[j], . . . , ZAI [j] on line 14-20. On line 10-11 and 17-18 one
can see how the result of k-means is used to form the joint and individual connectivity
matrices for each sub-sample X(l). The connectivity matrices is then divided with the
indicator matrix, using the element-wise division operation ”./”, on line 23-31 in order to
form the joint and individual consensus matrices. Finally, the consensus statistic (2.26)
for each consensus matrix is returned. The consensus statistics can then be plotted to
determine the correct rank.

The consensus rank selection algorithm is best applied in a two-step procedure. Since
the joint and individual components are independent of each other, one can estimate the
joint rank by fixing the individual ranks to be 0 in the first run of the rank selection
algorithm. In the second step one can fix the joint rank to the suggested value from the
first run and in that way find the correct individual ranks. The first step would be to
call the algorithm with the parameters X,r,0, . . . ,0,L,m. With r∗ being the joint rank
suggested in the first step, the second step is to call the algorithm with the parameters
X,r∗,r1, . . . ,rI ,L,m.
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Algorithm 9 Consensus Rank selection

1: procedure CRS(X,r,r1, . . . ,rI ,L,m)
2: I, C1J , . . . , CrJ , C1A1

, . . . , Cr1A1
, . . . , C1AI

, . . . , CrIAI
= 0n×n

3: for l = 1, . . . , L do
4: X(l) = sub-sample(X,m) // 0 < m < 1

5: Iij =

Iij + 1 if xi,xj ∈X(l)

Iij + 0 else

6: WJ ,ZJ ,WA1 ,ZA1 , . . . ,WAI
,ZAI

= JIV E(X(l),r,r1, . . . ,rI)
7:

8: for j = 1, . . . ,r do
9: C = k-means(ZJ [j],j + 1)

10: C(l)ij =

1 if object i and j are assigned to the same cluster in C

0 else

11: CjJ = CjJ + C(l)
12: end for
13:

14: for i = 1, . . . ,I do
15: for j = 1, . . . ,ri do
16: C = k-means(ZAi[j],j + 1)

17: C(l)ij =

1 if object i and j are assigned to the same cluster in C

0 else

18: CjAi
= CjAi

+ C(l)
19: end for
20: end for
21: end for
22:

23: for j = 1, . . . ,r do
24: CjJ = CjJ ./I
25: end for
26:

27: for i = 1, . . . ,I do
28: for j = 1, . . . ,ri do
29: CjAi

= CjAi
./I

30: end for
31: end for
32:

33: return T (C1J), . . . , T (CrJ), T (C1A1
), . . . , T (Cr1A1

), . . . , T (C1AI
), . . . , T (CrIAI

)
34: end procedure
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2.6.2 Selecting the penalization parameters λ1, λ2

As stated in the Limitations section (section 1.3) the selection of the parameters λ1, for
sPCA and FLJIVE, and λ2, for FLJIVE, is done via visual guidance. Figure 2.2 shows
an example of the first joint loading found by JIVE (green), sJIVE (blue) and FLJIVE
(red). By looking at the figure one can see that the JIVE’s estimation of the first loading
fluctuates around 0 for values between 600 and 900 on the x-axis. The parameter λ1
is chosen such that sJIVE and FLJIVE successfully shrinks these values to 0 without
affecting the other values too much. For values between 200 and 500 on the x-axis one
can see that the values for JIVE and sJIVE fluctuates around the same value on y-axis.
The parameter λ2 is chosen such that these values are smoothed out without having too
much impact on the rest of the fitted loading.

Figure 2.2: Showing an example of the first estimated joint loading for JIVE (green), sJIVE
(blue) and FLJIVE (red) where the value of the loading (y-axis) is shown as a function of
the genomic position (x-axis).

2.7 Visualization

All mathematics in this thesis assumes the data matrices to have the objects as rows
and the corresponding features as columns (n × p-matrices). The motivation behind
this is that most literature assumes this form, and therefore, adapting this form would
benefit the reader and improve the reader’s ability to understand the methods. However,
the visualization of the results from JIVE and JIC benefit from having the observations
as columns and the corresponding features as rows. The main advantage is that joint
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Figure 2.3: Showing an example of how the JIC result is visualized. Note that in the figure
objects plotted along the columns (x-axis) while the corresponding features are plotted along
the rows (y-axis).

clusters can more easily be seen and compared vertically by stacking the data types on
top of each other.

Figure 2.3 shows an example of how the results from JIVE/JIC is visualized throughout
the rest of the thesis. Note that in the figure the objects are plotted along the columns
(x-axis) of the heatmaps and the features are plotted along the rows (y-axis) of the
heatmaps. The first column of the figure shows the joint and individual components
added together. The second and third columns show the joint and individual compo-
nents. The three first columns are ordered according to the joint clustering. The last
column shows the individual component re-ordered by it’s own clustering. The actual
clusters are represented by the color bars on top of each heatmap. The rows of the figure
show the different data types where X1 correspond the first data type, X2 to the second
data type and so on. In all plots, positive values (amplifications) are represented by red
and negative values (deletions) are represented as blue. White corresponds to values
equal to zero.
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3
Simulation study

This section describes a study conducted on different simulated data sets. The goal of
the simulation study is to compare the results of applying the consensus rank selection
procedure with the different JIVE methods. The goal is also to compare the resulting
fits of applying JIVE, sJIVE and FLJIVE to the simulated data sets, with the correct
ranks, and to analyse how close the fits are to the original data. This section aims to
provide evidence that FLJIVE exceeds sJIVE and JIVE when the data has underlying
fused structure and to explore how FLJIVE compares to sJIVE and JIVE when the data
has no underlying fused structure.

3.1 Data set creation

For the simulation study two different procedures are used in order to create simulated
data sets. The first procedure will create a data set containing clusters where the un-
derlying loadings have no fused properties. The second procedure will create a data set
where the underlying joint loadings have fused properties, and where the data contains
clusters. Both procedures create data sets according to the decomposed JIVE model
(2.8).

3.1.1 No underlying fused PC loading

Given the number of objects n, features sizes p1,...,pI and the ranks r = (r, r1, . . . , rI),
the scores Z,Z1, . . . ,ZI (n × ri-matrices) are created of the form Z = (z1, . . . zr) and
Zi = (z1, . . . zri) where

zTk =
1
√
nk

0, . . . ,0, 1, . . . ,1︸ ︷︷ ︸
nk

,0, . . . ,0


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Figure 3.1: Showing a data set created as described in section 3.1.1 where n = 100, p1 =
200, p3 = 200, r = 3, r1 = 4, r2 = 5, σ = 0.05. For each heatmap in the figure, objects are
plotted along the x-axis and the corresponding features are plotted along the y-axis.

and nk = n
r+1 . In this way the first column of Z will have ones on the first n

r+1 rows,
the second column will have ones on the next n

r+1 rows and so on. The last n
r+1 rows of

Z will have zeros for all columns and can in that way be identified as the last cluster.
As the individual components must be independent of the joint component, the rows of
Z1, . . . ,ZI are permuted with one random permutation for each Zi.

The loadings W1, . . .WI and V1, . . .VI (pi×ri-matrices) are taken to be the loadings from
principal component analyses of equally many standard normal distributed matrices.
In this way the created Zs and W s fulfil the PCA criteria of orthonormal loadings
and orthogonal scores and the JIVE criterion of individual and joint components being
orthogonal. The actual data sets are then created as (2.8) where ε1, . . . ,εI are normal
distributed matrices with zero mean and σ standard deviation. An example of a data
set created with this procedure can be seen in Figure 3.1. The data set in the figure
was created using n = 100, p1 = 200, p3 = 200, r = 3, r1 = 4, r2 = 5, σ = 0.05. In the
joint structure one can clearly see the 4 clusters (r + 1 clusters), but in the individual
components the objects have been permuted and the clusters are not visibly clear. The
individual clusters can be retrieved by clustering the individual components.
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3.1.2 Underlying fused PC loading

This procedure creates the data set very similarly to the procedure in the subsection
above. The only difference is that the joint loadings W1, . . .WI are now created to have
fused properties. The Wi’s are created on the form Wi = (w1, . . .wri) where

wT
k =

1√
pk

0, . . . ,0, 1, . . . ,1,− 1, . . . ,−1︸ ︷︷ ︸
pk

,0, . . . ,0


and pk = pi

ri
. Differently from Z, all rows of W have non-zero entries for one of the

columns. The matrix Ji = ZW T
i will now be very sparse but also have fused properties.

The reason why the individual components are not created in this way is that they
cannot be made truly independent of the joint component when being really sparse.
This problem is due to the fact that a lack of signal, due to sparsity, is in fact a signal as
well, and if both the joint and individual components are very sparse, overlap between
them cannot be avoided. Therefore, the individual components are created as in previous
subsection. An example of a data set created using this procedure, with n = 50, p1 =
100, p3 = 200, r = 5, r1 = 3, r2 = 5, σ = 0.05, can be seen in Figure 3.2.
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Figure 3.2: Showing a simulated data set, as described in section 3.1.2, where the joint
loadings have fused properties. The data set was created with n = 50, p1 = 100, p3 =
200, r = 5, r1 = 3, r2 = 5, σ = 0.05. For each heatmap in the figure, objects are plotted
along the x-axis and the corresponding features are plotted along the y-axis.

3.2 Rank selection study

In this section the consensus rank selection procedure, with JIVE, sJIVE and FLJIVE,
is applied to different simulated data sets. In the first subsection the simulated data sets
will have no fused properties, and in the second subsection the rank selection procedure
is applied to data with fused joint structure. Common for all subsections in this rank
selection study is that the consensus rank selection algorithm will be run on 10 different
data sets for each set of ranks. Each data set will be sub-sampled 100 times where each
sub-sample is created by drawing 90% of the original data set’s objects randomly.

3.2.1 Data with no underlying fused PC loading

Given a vector of ranks r the simulated data sets are created as described in section
3.1.1. As described in section 2.6.1, the consensus rank selection algorithm is applied
in a two-step procedure where the first step aims to find the joint rank r by setting
r1, . . . , rI = 0. The second step fixates r to the rank suggested by the first step and then
aims to find the individual ranks.
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Rank setup r1 = (r = 3, r1 = 4, r2 = 5)

Figure 3.3 shows the consensus validation statistic, for JIVE, sJIVE and FLJIVE, as a
function of the joint rank r when the individual ranks are set to 0. The red line in the
figure corresponds to the average statistic over 10 trials, and the grey lines represents
the statistic for each trial. From the figure it is clear that the rank selection procedure
succeeds in finding the correct rank r = 3 using all three methods.

Given that r = 3, the rank selection procedure is run again in order to find the individual
ranks. Figure 3.4 shows the statistic as a function of the first individual rank r1. The
top three plots in the figure show the entire curves while in the bottom three plots the
curves have been zoomed in order to see the minima clearer. Both JIVE and FLJIVE
have minima at r1 = 4, which is the correct rank. For sparse JIVE (sJIVE) the minimum
occurs at r1 = 3 and r1 = 4. In this case the higher rank should be favoured since the
statistic is by purpose defined to penalize over-fits harder than under-fits.

In Figure 3.5 the consensus statistic for r2 can be seen. Looking at (d), (e) and (f) in
the figure, one can see that the minima at r2 = 5 is clearest for FLJIVE since both JIVE
and sJIVE seem to have minima at r2 = 4 and r2 = 5.

(a) (b) (c)

Figure 3.3: Showing the consensus validation statistic (y-axis) as a function of the joint
component rank, r, (x-axis) for JIVE (a), sJIVE (b) and FLJIVE (c). The grey lines
correspond to the statistic for each of the ten trials, and the red line shows the mean of the
ten trials. The correct rank is 3 which is also where the minima occurs in the three plots.
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(a) (b) (c)

(d) (e) (f)

Figure 3.4: Showing the consensus validation statistic (y-axis) as a function of the first
individual component rank, r1, (x-axis) for JIVE (a), sJIVE (b) and FLJIVE (c). The grey
lines correspond to the statistic for each of the ten trials, and the red line shows the mean
of the ten trials. The correct rank is 4 and is found by looking at the zoomed plots (d), (e)
and (f).
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(a) (b) (c)

(d) (e) (f)

Figure 3.5: Showing the consensus validation statistic (y-axis) as a function of the second
individual component rank, r2, (x-axis) for JIVE (a), sJIVE (b) and FLJIVE (c). The grey
lines correspond to the statistic for each of the ten trials, and the red line shows the mean
of the ten trials. The correct rank is 5 which can be found by looking at the zoomed plots
(d), (e) and (f).
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Rank setup r2 = (r = 9, r1 = 11, r2 = 7)

In Figure 3.6, the consensus rank selection statistic as a function of the joint rank r can
be seen. As before, the individual ranks have been set to 0 when first trying to identify
the joint rank. In the figure, (d), (e) and (f) are zoomed in versions of (a), (b) and (c).
In the zoomed in versions one can see that the rank selection algorithm is successful in
finding the correct rank r = 9 for all three methods.

Figure 3.7 and 3.8 shows plots over the statistic for the individual ranks r1 and r2 when
r have been fixed to 9. In Figure 3.7 (d), (e) and (f), one can see that the minimum is
clearest for JIVE, which is also finds the correct rank. Both sJIVE and FLJIVE seem
to have two minima at r1 = 10 and r1 = 11, and as motivated previously, the higher
rank should be favoured in this case. For the second individual rank, JIVE is again the
method which gives the clearest correct minimum at r2 = 7 which can be seen by looking
at (d), (e) and (f) in Figure 3.8. Sparse JIVE seem to have two minima at r2 = 6 and
r2 = 7 for which r2 = 7 should be favoured. In (f) one can see that FLJIVE does in fact
suggest that r2 = 6 is the correct rank even though r2 = 7 is not much worse.

(a) (b) (c)

(d) (e) (f)

Figure 3.6: Showing the consensus validation statistic (y-axis) as a function of the joint
component rank, r, (x-axis) for JIVE (a), sJIVE (b) and FLJIVE (c). The grey lines
correspond to the statistic for each of the ten trials, and the red line shows the mean of the
ten trials. The correct rank is 9 which is also where the minima occurs in all three curves.
Zoomed versions of (a), (b) and (c) are shown in (d), (e) and (f).
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(a) (b) (c)

(d) (e) (f)

Figure 3.7: Showing the consensus validation statistic (y-axis) as a function of the first
individual component rank, r1, (x-axis) for JIVE (a), sJIVE (b) and FLJIVE (c). The grey
lines correspond to the statistic for each of the ten trials, and the red line shows the mean
of the ten trials. The correct rank is 11 which, by looking at (d), (e) and (f), is found by
JIVE. Sparse JIVE and FLJIVE have two subsequent minima for which the higher should
be favoured
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(a) (b) (c)

(d) (e) (f)

Figure 3.8: Showing the consensus validation statistic (y-axis) as a function of the second
individual component rank, r2, (x-axis) for JIVE (a), sJIVE (b) and FLJIVE (c). The grey
lines correspond to the statistic for each of the ten trials, and the red line shows the mean
of the ten trials. The correct rank is 7 which, by looking at the zoomed plots (d), (e) and
(f), is only found by JIVE. Sparse JIVE have two subsequent minima, for which the higher
should be favoured, and FLJIVE suggests that 6 is the correct rank.
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3.2.2 Data with underlying fused PC loading

The data used in this study have fused loadings only for the joint components as de-
scribed in section 3.1.2. However, it is enough for the joint component to have fused
properties in order to prove the concept of FLJIVE exceeding sJIVE and JIVE when
the data have such underlying properties. The argument can be extended to situations
where also the individual components show fused properties.

Rank setup r3 = (r = 3, r1 = 5, r2 = 7)

As in previous subsection, the rank selection algorithm is first run with the individual
ranks set to 0. Figure 3.9 shows the consensus statistic as a function of the joint rank
r. In (a) and (b) in the figure it is clear that JIVE and sJIVE fails to find the correct
rank. In (c) one can see that in this case FLJIVE is superior compared to the two other
methods since it has no problem finding the correct rank r = 3.

The rank selection algorithm is then run again with r = 3 being fixed. For JIVE,
sJIVE and FLJIVE the corresponding PCA-methods are used to approximate the joint
structure with r = 3. However, as the underlying individual structures have no fused
properties the ordinary PCA is used to find the individual structures in the rank pro-
cedure. This is equivalent to setting the penalization parameters λ1, λ2 = 0 for the
individual components in the sJIVE and FLJIVE methods. This can be seen as hybrid
versions between sJIVE/JIVE and FLJIVE/JIVE.

Figure 3.10 shows the result for this procedure for both the first and second individual
component. In (a) and (b) one can see that JIVE and the hybrid version sJIVE/JIVE
suggests that the rank for the first individual component, r1, is 4. As seen in (c) only
FLJIVE/JIVE finds the correct rank which is 5. In (d), (e) and (f) of Figure 3.10 it is
rather clear that all three methods, JIVE, sJIVE/JIVE, FLJIVE/JIVE, fails to find the
correct rank for the second individual component, r2 = 7, since they all suggests that 6
is optimal.
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(a) (b) (c)

Figure 3.9: Showing the consensus validation statistic (y-axis) as a function of the joint
component rank, r, (x-axis) for JIVE (a), sJIVE (b) and FLJIVE (c). The grey lines
correspond to the statistic for each of the ten trials, and the red line shows the mean of the
ten trials. The correct rank is 3 which is only found by FLJIVE.

(a) (b) (c)

(d) (e) (f)

Figure 3.10: Showing the consensus validation statistic (y-axis) as a function of the first
individual component rank, r1, (x-axis) for JIVE (a), sJIVE (b) and FLJIVE (c) and for
the second individual component rank, r2, for JIVE (d), sJIVE (e) and FLJIVE (f). The
grey lines correspond to the statistic for each of the ten trials, and the red line shows the
mean of the ten trials. The correct rank for the first individual component rank is 5 and for
the second it is 7.

37



3.3. ESTIMATION STUDY CHAPTER 3. SIMULATION STUDY

3.3 Estimation study

In this section the actual fit of the underlying components will be reviewed given that
the correct ranks are known. The rank setups are the same as in the previous section.

3.3.1 Data with no underlying fused PC loading

Rank setup r1 = (r = 3, r1 = 4, r2 = 5)

Figure 3.11 shows the simulated data set, with n = 100, p1 = 200, p3 = 300, r = 3, r1 =
4, r2 = 5, σ = 0.05, on which the first estimation study will be performed. JIVE, sJIVE
and FLJIVE will be used to estimate the underlying components of the data set. The
estimated joint and individual components are then compared to the true components.

Figure 3.11: Showing the simulated data set used for the estimation study for the rank
setup r1 = (r = 3, r1 = 4, r2 = 5). For each heatmap in the figure, objects are plotted along
the x-axis and the corresponding features are plotted along the y-axis.

The three methods, JIVE, sJIVE and FLJIVE, were applied to the data set in Figure
3.11, and the result of this can be seen in Figure 3.12. In (a) in the figure, the true
data set with only the joint and individual components is shown (noise component not
added). Visually, there are small differences, which can be hard to spot, between the fit
of JIVE (b) and sJIVE (c). In (d) one can see that the fit of FLJIVE deviates even more
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than sJIVE from the fit of JIVE. Looking carefully at the figure one can determine that
JIVE actually provides the best fit in this scenario while the fit of FLJIVE is the worst.

In order to compare the fits more formally, the squared Frobenious norm of the differ-
ences between the fitted components and the true components are shown in Table 3.1.
As suggested by looking at Figure 3.12, JIVE is the best at finding the true underlying
components with the differences 31.45, 18.78 and 15.88 for J ,A1A2. The second best
method is sJIVE with the corresponding differences 34.22, 22.03 and 17.91, and worst of
the methods is FLJIVE with 54.63, 26.02 and 24.44. In this simulated setting FLJIVE
performs on average 60% worse than JIVE while sJIVE performs only 12% worse.

Figures of the fitted joint loadings and scores of the three methods can be seen in
Appendix B.

39



3.3. ESTIMATION STUDY CHAPTER 3. SIMULATION STUDY

(a) (b)

(c) (d)

Figure 3.12: Showing the original data set from Figure 3.11 with the noise component
being removed from the data (a), the fit from running JIVE on the simulated data (b), the
fit from sJIVE (c) and the fit from FLJIVE (d). For each heatmap in the sub-figures, objects
are plotted along the x-axis and the corresponding features are plotted along the y-axis.
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Table 3.1: Showing the squared Frobenious norm of the differences between the simulated
data set, with ranks r1, and the fits of the different components for JIVE, sJIVE and
FLJIVE.

Component JIVE sJIVE FLJIVE

J 31.45 34.22 54.63

A1 18.78 22.03 26.02

A2 15.88 17.91 24.44

Average 22.03 24.72 35.03

Rank setup r2 = (r = 9, r1 = 11, r2 = 7)

The data set used for this estimation study is created with the parameters n = 100, p1 =
200, p3 = 300, r = 9, r1 = 11, r2 = 7, σ = 0.05. The data set including the noise
component can be seen in Figure 3.13.

Figure 3.13: Showing the simulated data set used for the estimation study for the rank
setup r2 = (r = 9, r1 = 11, r2 = 7). For each heatmap in the figure, objects are plotted
along the x-axis and the corresponding features are plotted along the y-axis.

Figure 3.14 shows JIVE (b), sJIVE (c), FLJIVE(d) applied to the data. In (a) one
can see the data set without the noise component. As for the previous rank setup, the
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difference between JIVE and sJIVE is marginal. The fit for FLJIVE is on the other hand
visually different from JIVE and sJIVE. Looking at Table 3.2 this can be confirmed. In
the table one can see that FLJIVE is roughly 70% percent worse in estimating all three
components compared to JIVE while sJIVE is approximately 30% worse on average.
Figures of the first three actual joint loadings and scores for the different methods can
be seen in Appendix B.
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(a) (b)

(c) (d)

Figure 3.14: Showing the original data set from Figure 3.13 with the noise component
being removed from the data (a), the fit from running JIVE on the simulated data (b), the
fit from sJIVE (c) and the fit from FLJIVE (d). For each heatmap in the sub-figures, objects
are plotted along the x-axis and the corresponding features are plotted along the y-axis.
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Table 3.2: Showing the squared Frobenious norm of the differences between the simulated
data set, with ranks r2, and the fits of the different components for JIVE, sJIVE and
FLJIVE.

Component JIVE sJIVE FLJIVE

J 43.65 52.53 75.72

A1 22.40 32.65 35.38

A2 23.16 29.19 36.24

Average 29.74 38.13 49.11

3.3.2 Data with underlying fused PC loading

The data set in this subsection has fused joint loadings as described in section 3.1.2.
For this data set FLJIVE is expected to perform significantly better than the other two
methods. This subsection also explores hybrid versions of the methods where sPCA
and FLPCA are used for finding the joint component while regular PCA is used for the
individual component (equivalent to setting the penalization parameters λ1, λ2 = 0 for
the individual components).

Rank setup r = (r = 3, r1 = 5, r2 = 7)

The simulated data set, with parameters n = 100, p1 = 200, p3 = 300, r = 3, r1 = 4, r2 =
5, σ = 0.15, used in this subsection can be seen in Figure 3.15. As seen in the figure,
the joint component exhibits both sparse and fused properties. Also, since the joint
component is very sparse, the noise component have been increased.
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Figure 3.15: Showing the simulated data set used for the estimation study for the rank
setup r = (r = 3, r1 = 5, r2 = 7). For each heatmap in the figure, objects are plotted along
the x-axis and the corresponding features are plotted along the y-axis.

In Figure 3.16 one can see the result of fitting JIVE (b), sJIVE (c) and FLJIVE (d)
with the correct ranks. Looking at (b) one can still see the fused properties in the joint
component for JIVE. However, JIVE also captures a lot of noise in the joint compo-
nent which is not desirable in real scenario when the true components are not available
for comparison. Sparse JIVE (b) managed to reduce the amount of noise in the joint
component, but at the same time the signal for the fused parts have been decreased.
FLJIVE has on the other hand done a great job in capturing the fused parts without
capturing the majority of the noise.

Table 3.3 supports the observations that can be made in Figure 3.16. The squared
Frobenious norm between the fitted J and the true J for JIVE and sJIVE is as high
51.08 and 53.14, which is approximately 700% higher than FLJIVE’s 7.45. The result
of using FLPCA to estimate the joint component and regular PCA to estimate the
individual components is around 15% better for the first individual component and 5%
better for the second individual component than the other two methods.
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(a) (b)

(c) (d)

Figure 3.16: Showing the original data set from Figure 3.15 with the noise component
being removed from the data (a), the fit from running JIVE on the simulated data (b), the
fit from sJIVE (c) and the fit from FLJIVE (d). For each heatmap in the sub-figures, objects
are plotted along the x-axis and the corresponding features are plotted along the y-axis.
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Table 3.3: Showing the squared Frobenious norm of the differences between the simulated
data set, with ranks r3, and the fits of the different components for JIVE, sJIVE and
FLJIVE.

Component JIVE sJIVE FLJIVE

J 51.08 53.14 7.45

A1 35.68 35.38 30.75

A2 63.77 63.17 60.05

Average 50.17 50.56 32.75

In this case it is interesting to look at the underlying loading and scores of the true
data and the three methods. Figure 3.17 shows the true loadings together with the
estimated loadings (a) and the true scores together with the estimated scores (b) for the
three different methods. Since the underlying singular values are all equal, the methods
finds the loadings and scores in a random order. As seen in (a) JIVE and sJIVE does
not succeed in capturing the true loadings. On the contrary, FLJIVE does surprisingly
well when it comes to finding the true loadings. In (b) one can see that the scores for
JIVE and sJIVE does not resemble the true underlying scores. The estimated scores for
FLJIVE are almost identical to the real scores with the exception of some minor noise.

(a) (b)

Figure 3.17: Showing the underlying joint loadings together with the estimated joint
loadings by JIVE, sJIVE and FLJIVE (a) and the underlying joint scores together with the
estimated joint scores by JIVE, sJIVE and FLJIVE (b). In the figure the joint loadings
(a) and the joint scores (b) are plotted on the x-axis and the corresponding entries of the
vectors on the y-axis.
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4
TCGA data

The Cancer Genome Atlas (TCGA) provides publicly available data for a variety of
cancer types. The cancer type which is the focus of this thesis is Glioblastoma Multiforme
(GBM) which is the most aggressive, and common, malignant brain tumor in humans.
For each cancer type, TCGA provides data for a relatively large number of objects and
multiple data types. The data types provided by TCGA for GBM include copy number
aberrations (CNA), gene expression, DNA methylation and a few more. The focus here
will lie on the CNA data type which can also be downloaded via the UC Santa Cruz
Cancer Browser (Link: https://genome-cancer.ucsc.edu/proj/site/hgHeatmap/ ).

4.1 The data set

The TCGA GMB CNA (gistic2) data originally consists of 577 samples measured over
24174 different gene positions. In order to, in the future, be able to easily extend the
analysis in this section, only the samples and genes that intersect with the samples
and genes of the gene expression data type is used. The intersection between the CNA
(gistic2) and gene expression (AffyU133a) data types consists of 508 samples measure
over 11076 gene positions. However, in this analysis the gene expression data type will
not be included. Instead, each chromosome of the CNA data will be interpreted as its
own data type. In this way JIVE can be used to identify how much of the underlying
mutational process is shared between the chromosomes.

4.1.1 CNA

Copy Number Aberrations (CNA or also Copy Number) can be explained as the number
of abnormal copies of larger strings of DNA on a certain position on the genome of a
cell. A position on the genome of a cell can carry duplications of DNA, referred to as
an amplification, or parts of the DNA might have been deleted which is referred to as a
deletion. Humans normally carry two copies of all autosomes (chromosome not related
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to the person’s sex) which makes it favourable to measure CNA in a log2-scale. In this
way deviations above 0 represents amplifications while deviations below zero represents
deletions. Also, CNA data is assumed to have regions of equal copy number even in the
pre-processing stage [14], and therefore, it is natural to adapt the Fused Lasso approach
when working with this kind of data.

4.2 Rank selection

Here the rank selection procedure is applied to three different sets of chromosomes (in-
terpreted as data types). In the first scenario chromosome 7, 9 and 10 will pose as three
different data types. These three chromosomes are commonly known for having muta-
tions strongly linked to this cancer type. The aim of this analysis is to discover if and
how the underlying mutational process is linked between the three chromosomes. The
second analysis will be conducted on chromosome 1, 7, 9 and 10, and the last set of chro-
mosomes that will be analysed is 7, 9, 10 and 15. The aim of adding one chromosome to
the original set (7, 9 and 10) is to discover if the added chromosome’s underlying process
is independent or not of the process behind chromosome 7, 9 and 10.

4.2.1 Chromosome 7,9,10

In this section the consensus rank selection algorithm will be applied to the data with
chromosome 7, 9 and 10 being the data types. As described in the methods section for
rank selection the CRS algorithm is best applied in a two-step procedure. Figure 4.1
shows the rank selection statistic as a function of the joint rank r with the individual
ranks, r1,r2,r3, set to 0. In (a)-(c) one can see that JIVE, sJIVE and FLJIVE all agree
that r = 4 is the correct rank. The minimum is least clear for JIVE while sJIVE provides
the second most clearest minimum and FLJIVE the clearest minimum.

(a) (b) (c)

Figure 4.1: Showing the consensus validation statistic (y-axis) as a function of the joint
component rank, r, (x-axis) for JIVE (a), sJIVE (b) and FLJIVE (c) applied to chromosome
7, 9, and 10 of the TCGA CNA data. The local minima at r = 4 is strongly suggested by
all three methods.
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In Figure 4.2 one can see the rank selection statistic for chromosome 7 ((a)-(c)), chro-
mosome 9 ((d)-(f)) and chromosome 10 ((g)-(i)) given that the joint rank is equal to 4.
All three methods agree that r1 = 2 gives a stable clustering for chromosome 1 which
can be seen in (a)-(c) of the figure. However, JIVE has a clear local minimum at r1 = 4,
sJIVE has a local minimum at r1 = 7 and FLJIVE has a distinct local minimum at
r1 = 6. Given that all methods agree on r1 = 2 being stable and that they do not share
any other local minima, r1 = 2 is probably the best choice.

In (d)-(f) of Figure 4.2 JIVE, and perhaps also sJIVE, show weak signs of a local mini-
mum at r2 = 5. In (f) one can see that FLJIVE does not support r2 = 5 as being a local
minimum. However, all three methods agree that the clustering is stable for r2 = 2.
Looking at the plotted statistics in (g) and (h), the almost linearly increasing curves
supports the fact that an overfit has already occurred. This means that the individual
rank for chromosome 10 is small and probably either 0 or 1. On the contrary, FLJIVE
provides evidence for r3 = 7 being an obvious local minimum.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.2: Showing the consensus validation statistic (y-axis) as a function of the individ-
ual components’ ranks (x-axis) for JIVE (left column), sJIVE (middle column) and FLJIVE
(right column) applied to chromosome 7 (first row), 9 (second row) and 10 (third row) of the
TCGA CNA data. For chromosome 7, in (a)-(c), all three methods disagree on which rank
is correct since JIVE, in (a), have a clear local minimum at r1 = 4 and FLJIVE, in (c), have
a clear minimum at r1 = 6. However, all three methods agree that r1 = 2 provides a stable
clustering for chromosome 7. In (d)-(f) there is a lack of clear local minima larger than 2
which suggest that the correct individual rank for chromosome 9 is r2 = 2. For chromosome
10 FLJIVE, in (i), show a clear local minimum at r3 = 7. In (g) and (h) one can see that
JIVE and sJIVE does not provide evidence for the correct rank being r3 = 7 for chromosome
10.
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4.2.2 Chromosome 1,7,9,10

The analysis in this subsection is extended to include chromosome 1 in addition to chro-
mosome 7, 9 and 10. In Figure 4.3 one can see the result of the first step in the rank
selection process. JIVE (a), sJIVE (b) and FLJIVE all consent to the joint clustering
being stable for r = 3. In the figure one can also see that the three methods also show
weak signs of a local minimum at r = 5.

Given that the joint rank is r = 3 Figure 4.4 show the rank selection statistic, for chro-
mosome 1 (first row) to chromosome 10 (last row), as a function of the individual ranks
r1,...,r4. The plots in (a)-(c) suggests that r1 = 3 provides the most stable clustering.
In (d)-(f) one can see that there is a lack of local minima for r2 > 2 which suggests
r2 = 2 being the best choice. In (g), JIVE shows signs of a local minimum at r3 = 6
while FLJIVE has a local minimum at r3 = 5, and perhaps also r3 = 6, for chromosome
9 which can be seen in (i). Sparse JIVE on the other hand, does in (h) not show any
sign of local minima which suggests the correct rank being in the range 0 to 2. For
chromosome 10, JIVE has a local minimum at r4 = 2 which can be seen by looking at
(j) in the figure. Looking at (k) and (l) one can see that sJIVE and FLJIVE agree on
r4 = 3 as being the best choice.

(a) (b) (c)

Figure 4.3: Showing the consensus validation statistic (y-axis) as a function of the joint
component rank, r, (x-axis) for JIVE (a), sJIVE (b) and FLJIVE (c) applied to chromosome
1, 7, 9, and 10 of the TCGA CNA data. All three methods suggest r = 3 gives a stable
clustering, but all of them also show small local minima at r = 5.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.4: Showing the consensus validation statistic (y-axis) as a function of the individ-
ual components’ ranks (x-axis) for JIVE (left column), sJIVE (middle column) and FLJIVE
(right column) applied to chromosome 1 (first row), 7 (second row), 9 (third row) and 10
(fourth row) of the TCGA CNA data. For chromosome 1, in (a)-(c), all three methods seem
agree that r1 = 3 is the correct rank. The lack of clear local minima in (d)-(f) suggest that
the correct individual rank for chromosome 7 is r2 = 1 or r2 = 2 for which the higher should
be favoured. The statistic for JIVE and FLJIVE, in (g) and (i), suggest that the individual
rank for chromosome 9 is either r3 = 2, r3 = 5 or r3 = 6, while sJIVE, in (h), favoures
r3 = 2. Both sJIVE and FLJIVE, in (k) and (l), seem to agree that r4 = 3 is the correct
rank for chromosome 10 while JIVE, in (j), have its local minimum at r4 = 2.
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4.2.3 Chromosome 7,9,10,15

In this subsection the analysis includes chromosomes 7, 9, 10 and 15. In Figure 4.5 the
rank selection statistic as a function of the joint rank r can be seen. JIVE (a) suggests
that either r = 3 or r = 7 is the correct estimate of the joint rank. This is also supported
by sJIVE in (b). FLJIVE also has a local minimum at r = 7 but indicates at the same
time that the clustering is stable for r = 2. It is most probable that the correct joint
rank is r = 7 since all three methods share a local minimum at that rank.

Figure 4.6 shows the results from the rank selection procedure for the individual com-
ponents given that the joint rank is r = 7. In (a) and (b) it is clear that both JIVE and
sJIVE have a local minimum at r1 = 5 for chromosome 7. As seen in (c), FLJIVE does
also have a local minimum at r1 = 5, even though it is rather weak, and instead, the
clearest local minimum for FLJIVE appears at r1 = 8. For chromosome 9 JIVE (d) and
sJIVE (e) show weak signs of local minima at r2 = 6 while FLJIVE (f) have a slight
local minimum at r2 = 5. The lack of clear common local minima in all three methods
indicates that the rank r3 should either be set to 0 or 1. In (g)-(i) none of the methods
demonstrates the existence of distinct local minima for chromosome 10. Instead, the
continuously increasing statistic in all three methods indicates that r3 = 0 or r3 = 1 is
the most favourable choice.

The statistics for chromosome 15 differs from the statistics shown so far. JIVE shows,
in (j), that all ranks provides a stable clustering. For sJIVE (k) all ranks give s stable
clustering except r4 = 8, and all clusterings except r4 = 6,8,10 is stable for FLJIVE as
seen in (l). These unusual statistic plots in (j)-(l) appears partly because of the definition
of the rank selection statistic and that the clusterings are in fact rather stable. As the
rank selection statistic is defined in section 2.6.1 the statistic will be 0 if the median of
the values greater than 0.5 is equal to 1. This will occur if 50%, or more, of the values
greater than 0.5 are equal to 1. This is what happens for all ranks in (j) and most of
the ranks in (k) and (l).

(a) (b) (c)

Figure 4.5: Showing the consensus validation statistic (y-axis) as a function of the joint
component rank, r, (x-axis) for JIVE (a), sJIVE (b) and FLJIVE (c) applied to chromosome
7, 9, 10 and 15 of the TCGA CNA data. All three methods suggest r = 7 as being the correct
rank.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.6: Showing the consensus validation statistic (y-axis) as a function of the individ-
ual components’ ranks (x-axis) for JIVE (left column), sJIVE (middle column) and FLJIVE
(right column) applied to chromosome 7 (first row), 9 (second row), 10 (third row) and 15
(fourth row) of the TCGA CNA data. For chromosome 7, in (a)-(c), all three methods seem
to have a local minima at r1 = 5 even though the clearest local minimum for FLJIVE is at
r1 = 8. The lack of clear local minima in (d)-(f) and (g)-(i) suggest that the correct individ-
ual rank for chromosome 9 and 10 is r2,r3 = 0 or r2,r3 = 1. The statistic in (j)-(l) suggest
that the individual clustering is stable for chromosome 15 independent of the number of
clusters.
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4.3 Estimation

In this section the focus will lie on the actual fit of JIVE, sJIVE and FLJIVE for the
three set of chromosomes. As the true underlying ranks are not known, and that the rank
selection procedure in previous section suggested more than one possible rank setup for
each set of chromosome, one cannot be entirely sure of which ranks to use for estimation.
For each set of chromosomes one fit will be presented using one of the possible rank setups
suggested from previous section. Note that fitting the methods with other ranks than
presented here might give slightly different results.

4.3.1 Chromosome 7,9,10

The rank selection for chromosome 7, 9 and 10 strongly suggested that r = 4 was the
most favourable joint rank. However, the three methods were not unanimous in their
suggestions about the individual ranks. In Figure 4.7 (a) the CNA data for chromosomes
7, 9 and 10 is shown together with the fit of JIVE (b), sJIVE (c) and FLJIVE (d). In the
figure the three different methods are fitted with the ranks r = 4, r1 = 2, r2 = 2, r3 = 1.

The difference in the resulting fits can be hard to visually distinguish between the three
methods. The differences are most obvious in the individual components. Comparing
(b) and (c) in Figure 4.7 one can see that some of the weak signals in (b) have been
removed by sJIVE in (c). In the individual component for chromosome 10, in (c), one
can actually see that the lack of weak signals have given room for some of the originally
strong signals to appear even stronger. In (d) one can see that FLJIVE have instead
increased the strength in some of the weak signals that have fused properties.

Looking at the joint components in Figure 4.7 one can see that there are in fact 5 distinct
joint subgroups (remember: r + 1 = 5 clusters). The first subgroup (green) have am-
plifications throughout entire chromosome 7, deletions on the beginning of chromosome
9 and that entire chromosome 10 carries deletions. The fifth subgroup (red) is similar
to subgroup 1 except for chromosome 9 where instead the entire chromosome carries
deletions. Other interesting subgroups are subgroup 4 (yellow) which have amplification
on almost entire chromosome 9 and subgroup 2 (blue) which have less activity than the
other subgroups. One can also see that the five subgroups differ only slightly between
the three methods.
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(a) (b)

(c) (d)

Figure 4.7: Showing chromosomes 7, 9 and 10 for the TCGA CNA data set (a) and the
result of fitting JIVE (b), sJIVE (c) and FLJIVE (d) with ranks r = 4, r1 = 2, r2 = 2, r3 = 1.
The observations have been ordered according to their corresponding k-means clustering
shown by the color coding on top of each heatmap. For each heatmap in the sub-figures,
objects are plotted along the x-axis and the corresponding features are plotted along the
y-axis.

Figure 4.8 shows the fitted joint loadings for the three different methods. In (a) one
can see small differences in the first loading between the three different methods. One
difference is that between x ≈ 600 and x ≈ 900 sJIVE and FLJIVE have successfully
shrunken the loading to 0 while JIVE fluctuates around 0. Generally, in (a)-(d) one
can see that sJIVE has decreased weak signals which in turn gives more room for the
stronger signals. One can also see that the loadings for FLJIVE are much smoother and
step-function-like than the loadings for sJIVE and JIVE.
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(a) (b)

(c) (d)

Figure 4.8: Showing the value of the 4 joint loadings (y-axis) as a function of genomic
position (x-axis) in (a)-(d) for JIVE, sJIVE and FLJIVE.

4.3.2 Chromosome 1,7,9,10

For chromosomes 1, 7, 9 and 10 the rank selection suggested that r = 3 gave the most
stable joint clustering and that another candidate rank was r = 5. As for the previous
set of chromosomes, the results of the rank selection was not as clear when it came
to the individual ranks. For the estimation of chromosomes 1, 7, 9 and 10 the ranks
r = 3, r1 = 3, r2 = 2, r3 = 5, r4 = 3 was chosen.

Figure 4.9 shows the data for the chromosomes (a) and the corresponding fits for JIVE
(b), sJIVE (c) and FLJIVE (d). The differences between the fits are again minor but
can best be seen by looking at the individual components. In (b) one can see that JIVE
captures alot of structure in the individual component for chromosome 9. Both sJIVE
(c) and FLJIVE (d) suggest that this structure is in fact noise. If one looks carefully
at the joint component for chromosome 9 one can see that also structure in this compo-
nent have been reduced, even though the sum of the joint and individual component is
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more or less the same. This is an indication that JIVE has captured noise in both the
joint and individual components which, when added together, cancel each other out. In
chromosome 1 both sJIVE and FLJIVE reduce some of the signals (comparing to JIVE)
while FLJIVE also make the signals more smooth. The difference between sJIVE and
FLJIVE is visually hard to see without zooming.

For this set of chromosomes the four joint clusters differs significantly between FLJIVE
and the other two methods. Independent of which clustering one looks at, one can see
that the clusters are not as distinct as when only chromosome 7, 9 and 10 was used.
However, one can still identify jointly defined clusters between the chromosomes. There
is also more activity and more clearly defined clusters in the individual components com-
pared to the previous chromosome set.

The differences between the methods are more clear when looking at the underlying
loadings. Figure 4.10 shows the loadings for the joint components of JIVE, sJIVE and
FLJIVE. As seen in (b) sJIVE reduces, and sometimes removes, some of the weak signals
present in JIVE. This is most easily seen for x > 2100 in (b) where the loading for sJIVE
is significantly more sparse than the loading for JIVE. The difference between sJIVE
and FLJIVE is much more clear when looking at the loadings. Looking at the three
loadings one can see that FLJIVE is generally more sparse than JIVE but not as sparse
as sJIVE. Another obvious difference is that FLJIVE has also fused subsequent values
together which results in more smooth loadings.
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(a) (b)

(c) (d)

Figure 4.9: Showing chromosomes 1, 7, 9 and 10 for the TCGA CNA data set (a) and the
result of fitting JIVE (b), sJIVE (c) and FLJIVE (d) with ranks r = 3, r1 = 3, r2 = 2, r3 =
5, r4 = 3. The observations have been ordered according to their corresponding k-means
clustering shown by the color coding on top of each heatmap. For each heatmap in the
sub-figures, objects are plotted along the x-axis and the corresponding features are plotted
along the y-axis.
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(a) (b)

(c)

Figure 4.10: Showing the value of the 3 joint loadings (y-axis) as a function of genomic
position (x-axis) in (a)-(c) for JIVE, sJIVE and FLJIVE.

4.3.3 Chromosome 7,9,10,15

For the last set of chromosomes, 7, 9, 10 and 15, the joint rank selection for the three
methods was not quite as consensual as for the other sets of chromosomes. All three
methods did however provide evidence for the joint rank being r = 7. As for the indi-
vidual ranks, the three methods seemed to agree that the most favourable ranks were
r1 = 5, r2 = 1, r3 = 1. On the other hand, the rank selection statistic for chromosome
15 behaved very unexpectedly. The ranks used for the estimation of chromosomes 7, 9,
10 and 15 was chosen to be r = 7, r1 = 5, r2 = 1, r3 = 1, r4 = 1.

In Figure 4.11 one can see the data for chromosomes 7, 9, 10 and 15 (a) and the three
different fits for JIVE (b), sJIVE (c) and FLJIVE (d). As seen in (b)-(d) a lot less
structure is captured in the individual components compared to the estimations of the
previous sets of chromosomes. This is due to the joint rank being higher, and therefore
capturing more of the data, but also due to the fact that the individual ranks are, on
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average, lower. The joint rank being as high as 7 makes the differences between the fits
of the three methods even smaller since differences in the first few loadings can be com-
pensated for in the last loadings. The most significant difference between the methods
is that FLJIVE has moved the signal in the top of chromosome 10 from the individual
component to the joint component. By fusing, and thereby increasing, the signal in the
top of the joint component, FLJIVE has to compensate by decreasing the signal in the
top of the individual component. The differences between the methods are again most
clear by looking at the joint loadings.

Looking at the actual clusterings of the joint component it is hard to identify joint clus-
ters that are truly defined for all chromosomes. Most of the clusters make sense in only
a few of the chromosomes at the same time. This, and the fact that as much as 8 clus-
ters were needed for a stable clustering, suggests that chromosome 15 share little joint
structure with chromosome 7, 9 and 10.

In Figure 4.12 one can see the fitted joint loadings (a)-(g) for the three methods. Gener-
ally, sJIVE and FLJIVE encourage more sparsity in the loadings. One can also see that
FLJIVE finds loadings with both sparse and fused properties. Even though the loadings
have differences between the methods, the resulting fits when adding the components
together are very similar. This is mostly due to the fact that the joint component is
estimated using as many as 7 components. Even though sJIVE and FLJIVE estimates
the first components such that they are sparse, and fused in the case for FLJIVE, the
subsequent components compensate for this change in structure, which in the end make
the resulting fits almost the same for all three methods.
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(a) (b)

(c) (d)

Figure 4.11: Showing chromosomes 7, 9, 10 and 15 for the TCGA CNA data set (a) and
the result of fitting JIVE (b), sJIVE (c) and FLJIVE (d) with ranks r = 7, r1 = 5, r2 =
1, r3 = 1, r4 = 1. The observations have been ordered according to their corresponding
k-means clustering shown by the color coding on top of each heatmap. For each heatmap
in the sub-figures, objects are plotted along the x-axis and the corresponding features are
plotted along the y-axis.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4.12: Showing the value of the 7 joint loadings (y-axis) as a function of genomic
position (x-axis) in (a)-(g) for JIVE, sJIVE and FLJIVE.
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5
Discussion

This discussion will mainly focus on three parts: Firstly, the discussion will cover the
results of the simulation study and how the proposed consensus rank selection algorithm
and FLJIVE, as well as JIVE and sJIVE, performed in a setting where the underlying
structures were known. Secondly, the results of applying these methods to the TCGA
data set will be discussed. Lastly, a discussion is held about possible future directions
to the work presented in this thesis.

5.1 Simulation study

The results in the Simulation Study section provided evidence for that the proposed
Consensus Rank Selection method, together with the proposed consensus statistic, is
successful in finding the correct underlying ranks. The results also indicated that es-
timating the individual ranks is a harder problem than finding the joint rank. This
conclusion can be made based on the demonstrated difference in degree of distinction
between the local minima for the joint and individual components.

The rank selection algorithm was also more successful for the simulated data sets with
lower ranks. This is not surprising since having a more complicated underlying structure
should also make the rank selection problem harder. When the simulated data did not
have underlying sparse or fused structure, the rank selection algorithm with sJIVE and
FLJIVE did not perform significantly worse than rank selection with JIVE. However,
when the data had underlying fused joint components JIVE and sJIVE failed to find
the correct estimate for the joint rank. Only FLJIVE managed to correctly estimate
the true joint rank which demonstrates the power of the method when the Fused Lasso
assumption of the underlying components are being fulfilled.

The proposed consensus statistic worked rather well for the simulated data sets, although
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it was sometimes hard to distinguish the correct rank without having pre-knowledge
about the true underlying rank. Therefore, for future analyses a change to the statis-
tic that would highlight local minima more significantly is desired. The statistic also
demonstrated some other drawbacks, which were most obvious when being applied to
the TCGA data. The most obvious drawback was that if more than 50% of the values
greater than 0.5 was equal to 1, the statistic would be 0. This is more probable to hap-
pen for lower ranks since with a fewer number of clusters objects are more likely to be
clustered together. That is also the reason to why the statistic was 0 for r = 1 and r = 2
in many of the rank selection plots. The problem could be reduced by switching the
0.5th quantile (the median) in the definition of the statistic for a much lower quantile.
This would not solve the problem completely, but it would make it more unlikely to occur.

When taking a closer look at the actual estimates of the different methods FLJIVE did
significantly worse than the other two methods when trying to estimate the simulated
data sets without fused properties. This is not surprising since FLJIVE will try to fuse
subsequent values in the loadings even though they are not close to each other. By
chance some of the values in the underlying loadings will be rather close to 0, and in
these cases sJIVE will shrink them to be exactly 0. This is the reason to why sJIVE
performed slightly worse than JIVE in estimating the components of the data.

However, when the loadings of the data had clear fused properties FLJIVE was superior
the other two methods. JIVE captured a significant amount of the noise in the compo-
nents, and while sJIVE did reduce this level of noise it also reduced the actual underlying
signal. FLJIVE was the only method that managed to find the true underlying loadings
despite the high level of noise. From this one can learn that using sJIVE and FLJIVE
for estimation should be done with caution if there are no evidence of sparse or fused
properties in the data and/or there is reason to believe that, or there is prior knowledge
of, the data having underlying sparse or fused structure in the loadings.

5.2 TCGA Data

The rank selection section for the TCGA data provided evidence for 5 jointly defined
clusters between chromosome 7, 9 and 10. This is still not a large number of clusters
needed in order to summarize the joint structure shared between the data types. The
plots for the rank selection statistic showed that the local minimum at r = 4 was least
clear for JIVE and most distinct for FLJIVE which was slightly more clear than the
local minimum of sJIVE. This observation, together with the results from the estima-
tion study of the fused data set, suggests, without visually looking at the data, that the
TCGA GMB CNA data set has underlying fused structures. This is a confirmation that
the assumption of underlying fused loadings, that was made on the both the model in
FLJIVE and the data itself, was sound. From the figure of the fitted joint loadings one
could also draw the conclusion that the underlying loadings of the data showed charac-
teristics of both sparsity and fusion.
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The results of the rank selection for the individual components were not as clear as
for the joint component. The estimation study suggested that the individual ranks are
harder to estimate, and this results strengthens this hypothesis. Some of the plots did
however show clear local minima, but since the methods did not agree on a local mini-
mum it is hard to determine if there is a commonly correct individual rank for the three
methods. Possibly, since the methods provide different fits, depending on the penaliza-
tion parameters, the most favourable individual ranks might also be dependent on the
method itself and it’s parameters which affect the fit. This is a possible explanation to
why two or three methods show clear local individual minima, but for different ranks.

In the estimation section of chromosome 7, 9 and 10 the results from fitting JIVE, sJIVE
and FLJIVE was presented. The actual fits differed only moderately between the three
methods, and instead, the most interesting observations could be made by looking at
the actual clusters. In the figure for the three different fits one could clearly see that
there existed 5 distinct clusters and that they were in fact jointly represented. This sug-
gests that there is reason to believe that chromosome 7, 9 and 10 share some underlying
mutational process. Although there were not as much activity in the individual com-
ponents, there were still clusters defined which can be interpreted as deviations within
the jointly defined structures. An example of this can be seen by looking back at Figure
4.7 which shows the estimation results of the three methods, together with the original
data. In the figure the first cluster (green) for chromosome 9 (middle row) represents
a subgroup which have deletions on approximately the first third/fourth of the chromo-
some. The individual component corresponding to these objects can then be interpreted
as variations in both strength of the signal, but also start- and end-points of the deletion.

Rank selection statistic plots for joint and individual ranks, throughout the rank selec-
tion of the TCGA data set, highlighted one of the previously mentioned disadvantages
with the current consensus statistic. If majority of the values greater than 0.5, in the
consensus matrix, is equal to 1, the statistic will be exactly 0. One example where this
was highlighted was for the joint rank selection of chromosomes 1, 7, 9 and 10 for where
there were signs of a local minimum at r = 5. However, all three methods also agreed
on r = 1,r = 2 and r = 3 providing stable clusterings since the statistic was 0 for those
values of r. If the statistic was defined to work with a much lower quantile than the
median, which is the 0.5 quantile, the statistic plot for r = 1 to r = 3 might have looked
different. There is a chance that there was a local minimum in the range r = 1 to r = 3
which was not visible due to the current definition of the consensus statistic. Another
possible scenario is that the statistic for r = 1 to r = 3 should in fact be separated
from 0 and continuously increasing which would make r = 5 the only true local mini-
mum. Future work for the consensus statistic will provide more insight into this problem.

The actual fits of the methods to chromosome 1, 7, 9 and 10 was different from the fits
to the original set of chromosomes. Most of the joint clusters made sense in only two or
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three of the chromosomes at the same time. Although the rank was set to r = 3, which
was only one less than for chromosome 7, 9 and 10, significantly more structure was put
into the individual components. This is a strong indication that the individual compo-
nents are compensating for structure that could not by captured jointly. The suggestion
of these results are that adding chromosome 1 to the original set of chromosomes dis-
turbs the joint structure of chromosome 7, 9 and 10. This would mean that chromosome
1 most likely shares some, but not all, parts of the underlying mutational process with
chromosome 7, 9 and 10.

The joint rank selection for chromosome 7, 9, 10 and 15 was not as unanimous across
the methods as for the other sets of chromosomes. Another obvious difference is that
the rank selection suggested a joint rank as large as r = 7. This means that it would
take three more clusters to summarize the joint component when adding chromosome
15 to the analysis. This alone is an indicator that chromosome 15 does not have struc-
tures that are shared jointly with all, or most of, the other chromosomes at the same time.

The estimation results for JIVE, sJIVE and FLJIVE supports the hypothesis that the
mutational process for chromosome 15 is weakly linked to the process shared by the other
chromosomes. Many of the clusters seen in chromosome 15 are not distinct clusters in
the other data types. This most likely means that JIVE used the three extra clusters just
for chromosome 15. However, there are a few clusters shared between chromosome 15
and one, or at most two, other data types at the same time. This could mean that there
are weak links between chromosome 15 and some of the other chromosomes. It could
also have happened by chance. Another support for chromosome 15 being independent
of the other chromosomes would be if the individual components contained lots of the
information, which is not the case. Still, since the join rank is large, the activity in the
individual components is expected to be small. In summary, the majority of evidence
points toward chromosome 15 sharing very limited portions of the mutational process
with chromosome 7, 9 and 10.

5.3 Future work

For the future it would be natural to conduct a more in depth analysis of the actual
subgroups found in this thesis and their relation to survival data. The goal of that
analysis would be to discover how the different groups correlate with how long the pa-
tients survived after being diagnosed. It would also be of great importance if one can
link therapies that are more successful to each of the subgroups. Extending the analysis
to cell lines, where there are opportunities to test novel drugs, is also a possible, and
very important, future direction. This future direction would benefit from extending the
current JIVE model to also incorporate multiple data sets, and not just multiple data
types. In this way one can gain insight into the relation between the cell lines and data
from late stage cancer patients. A strong link between cell lines and late stage patients
would mean that one could more easily test and specify efficient group or possibly patient
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specific treatments on cell lines.

As briefly mentioned in section 4 the next step would be to also include gene expression
as a data type into the analysis. This was also the motivation to why the intersection
between the objects and gene positions of the CNA and gene expression data types was
used for the analysis in this thesis. However, the assumption of fused loadings does not
apply to gene expression data as it does to CNA data. Instead, gene expression data
can be divided into groups referred to as pathways. For the gene expression data type
a penalization method referred to as Group Lasso [15] could be applied instead of the
Fused Lasso. For that to be possible JIVE must allow different penalization methods for
each data type. However, allowing different penalization methods for each data type is
a very straight forward implementation.

The consensus rank selection algorithm was proven to be a successful tool for finding the
joint and individual ranks of the JIVE decomposition. However, the proposed consen-
sus statistic had some obvious drawbacks. Future work includes improving the current
statistic and also to compare it to already existing statistics such as the one proposed by
S. Minto et al. [11]. The consensus rank selection algorithm itself is not a tool for select-
ing the penalization parameters λ1 and λ2. Instead, other model selection methodologies
should be included into the analysis in order to more efficiently select λ1 and λ2 since
one can argue that maybe the parameters should have been set even higher throughout
section 4. However, the model selection problem for λ1 and λ2 is future work, and it is
still an open problem in the literature.

The last possible future direction, that will be discussed in this thesis, is related to the
analysis of the results in section 4. In the current state the JIVE model assumes that
all data types contribute equally to the joint component. However, this assumption may
be too strict since in reality it might be the case that not all data types share an equal
amount of joint structure with each other. Therefore, it might be more reasonable for
the data types to contribute unequally to the joint component. This kind of extension
of JIVE would allow for an easier analysis of which data types that share joint structure
with each other. It would also serve as an automatic model selection tool for the data
types. Since if one data type does not share joint structures with the other data types,
it would not be allowed to contribute to the joint component. After fitting this extended
JIVE model one should be able to identify the proportion to which the data types
contribute to the joint component, and one can in this way make easier decisions about
which data types to include in further analyses.
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A
Mathematical derivations

Lemma A.1 Given that zTz = 1:

min
w

1

2
‖X − zwT ‖2F + λ1‖w‖ ⇔ min

w

1

2
(Tr(XTX)− 2wXTz + zTzwTw) + λ1‖w‖

⇔ min
w
−wXTz +

1

2
wTw + λ1‖w‖.

By setting the derivative, with respect to w, to 0 and assuming that w > 0 then one gets:

∂

∂w

(
−wXTz +

1

2
wTw + λ1w

)
= 0

⇔ −XTz + w + λ1 = 0

⇔ w = max
(
XTz − λ1, 0

)
.

If one instead assume that w < 0 one gets that:

w = min
(
XTz + λ1, 0

)
.

Combining these two cases one gets that the minimizing w is:

w = T softλ1

(
XTz

)
Lemma A.2

min
x
λ‖x‖+ yT (z − x) +

µ

2
‖z − x‖22 ⇔

min
x
λ‖x‖+ yTz − yTx +

µ

2
(zTz − 2zTx + xTx)
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APPENDIX A. MATHEMATICAL DERIVATIONS

By setting the derivative, with respect to x, to 0 and assuming that x > 0 then one gets:

∂

∂x

(
λx + yTz − yTx +

µ

2
(zTz − 2zTx + xTx)

)
= 0

⇔ λ− y + µ(x− z) = 0

⇔ µx = µz + y − λ

⇔ x = max

(
z +

y

µ
− λ

µ
, 0

)
Instead, by assuming that x < 0 then:

x = min

(
z +

y

µ
+
λ

µ
, 0

)
Combining the two cases one gets that the minimizing x is:

x = T softλ/µ

(
z +

y

µ

)
Lemma A.3 With zTz = 1, the minimizing w for

min
w

1

2
‖X−zwT ‖2F +u(t)T (w−a(t))+v(t)T (Lw−b(t))+

µ1
2
‖w−a(t)‖22+

µ2
2
‖Lw−b(t)‖22

is found by setting the derivative, with respect to w, to 0:

∂

∂w

(1

2
‖X − zwT ‖2F + u(t)T (w − a(t)) + v(t)T (Lw − b(t))+

µ1
2
‖w − a(t)‖22 +

µ2
2
‖Lw − b(t)‖22

)
= 0

⇔
∂

∂w

(1

2
(Tr(XTX)− 2wTXTz + wTw) + u(t)T (w − a(t)) + v(t)T (Lw − b(t))+

µ1
2

(wTw − 2wTa(t) + a(t)Ta(t)) +
µ2
2

(wTLTLw − 2wTLTb(t) + b(t)Tb(t))
)

= 0

⇔
−XTz + w + u(t) + LTv(t) + µ1(w − a(t)) + µ2(L

TLw −LTb(t)) = 0

⇔
w + µ1w + µ2L

TLw = XTz − u(t) − LTv(t) + µ1a
(t) + µ2L

Tb(t)

⇔
((1 + µ1)I + µ2L

TL)w = XTz + (µ1a
(t) − u(t)) + LT (µ2b

(t) − v(t)).
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APPENDIX B. SUPPLEMENTARY FIGURES

(a) (b)

(c) (d)

(e) (f)

Figure B.1: Showing the joint loadings (a),(c),(e) and scores (b),(d),(f) for JIVE (green),
sJIVE (blue) and FLJIVE (red) for the estimation study in section 3.2.2 for the rank setup
r1 = (r = 3, r1 = 4, r2 = 5).
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(a) (b)

(c) (d)

(e) (f)

Figure B.2: Showing the first three joint loadings (a),(c),(e) and scores (b),(d),(f) for JIVE
(green), sJIVE (blue) and FLJIVE (red) for the estimation study in section 3.2.2 for the
rank setup r2 = (r = 9, r1 = 11, r2 = 7).

76


	Introduction
	Background
	Aim
	Limitations
	Thesis outline

	Methods
	Principal Component Analysis (PCA)
	k-means
	Conventional k-means
	Reduced k-means (k-means via PCA)

	Joint and Individual Variation Explained (JIVE)
	Joint and Individual Clustering (JIC)
	Sparsity framework
	Sparse PCA (sPCA)
	The generalized Fused Lasso
	Fused Lasso PCA (FLPCA)

	Model selection
	Rank selection
	Selecting the penalization parameters 1, 2

	Visualization

	Simulation study
	Data set creation
	No underlying fused PC loading
	Underlying fused PC loading

	Rank selection study
	Data with no underlying fused PC loading
	Data with underlying fused PC loading

	Estimation study
	Data with no underlying fused PC loading
	Data with underlying fused PC loading


	TCGA data
	The data set
	CNA

	Rank selection
	Chromosome 7,9,10
	Chromosome 1,7,9,10
	Chromosome 7,9,10,15

	Estimation
	Chromosome 7,9,10
	Chromosome 1,7,9,10
	Chromosome 7,9,10,15


	Discussion
	Simulation study
	TCGA Data
	Future work

	Mathematical derivations
	Supplementary figures

