
Procedural Modeling and Animation with
Quaternions
Using design grammars for procedural shape synthesis

Master’s thesis in Computer Science

MATTIAS ANDERSSON

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2015

Master’s thesis 2015:06

Procedural Modeling and Animation with
Quaternions

Using design grammars for procedural shape synthesis

MATTIAS ANDERSSON

Department of Computer Science and Engineering
Chalmers University of Technology

Gothenburg, Sweden 2015

Procedural Modeling and Animation with Quaternions
Using design grammars for procedural shape synthesis
MATTIAS ANDERSSON

© MATTIAS ANDERSSON, 2015.

Supervisor: Ulf Assarsson

Master’s Thesis 2015:06
Department of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 Gothenburg
Sweden
Telephone +46 31 772 1000

Cover: Dodecahedron inscribed within the Coxeter complex.

Typeset in LATEX
Printed by Chalmers Reproservice
Gothenburg, Sweden 2015

iv

Procedural Modeling and Animation with Quaternions
Using model design grammars for procedural shape synthesis
MATTIAS ANDERSSON
Department of Computer Science and Engineering
Chalmers University of Technology

Abstract
This master’s thesis investigates a novel approach to procedural modeling using
shape grammars. Model Design Grammars (MDG), a derivative of Context-Free
Design Grammars (CFDG), are presented as a powerful tool for constructing three-
dimensional models. Part of the thesis is about how to represent transforms, such
as rotations, reflections and translations using quaternions. We study the use of
production rules to generate hierarchical procedural models and we add the notion
of compound transformations for animating objects in a bone hierarchy. We show
how the same idea can be used as an additional tool for procedural modeling. We
show that there exists an equivalent representation of a 0L-system as an MDG
grammar.

Keywords: shape grammars, L-systems, procedural modeling, skeletal animation,
quaternions, transformations, CFDG.

v

Acknowledgements
I wish to thank my supervisor, Ulf Assarsson, for proofreading, giving advice and
good feedback on my thesis work.
Thanks to Anders Berg, for accepting the role as an opponent — it should be noted
that he has prepared well, with more than a hundred games as a Wordfeud opponent.
One person that deserves special credits is Michael Hansen, who introduced me to
context-free design grammars in the first place and who has always been a great
friend with a lot of creative ideas.
Thanks to Jon Lennart Aasenden and Eric Grange for creating the development tool
Smart Mobile Studio [2], which has been crucial for the implementation of the MDG
language and for the development of the SaaS online service OnlineModeler.com [4].
I wish to thank my boss, Maral Alaghi, for giving me the opportunity to finish this
thesis work, despite my many other duties.
Thanks to Johan Lodin for many interesting conversations about programming and
for his refreshing insights about functional programming.
Finally, I would also like to thank Ole-Martin Christensen, Vladimir Conde, Bojana
Dukic, Hans Brasch, Donal Murtagh, Joakim Möller, Nima Jamaly, Srikanth Gopal,
Atul Yadav and Patrik Rynell for great friendship and many interesting discussions
throughout the years.

Mattias Andersson, Gothenburg, June 2015

vii

Contents

List of Figures x

1 Introduction 1
1.1 Motivation . 1
1.2 Problem statement . 2

2 Previous Work 5
2.1 Grammars and modeling languages 5

2.1.1 Turtle graphics . 5
2.1.2 Lindenmayer systems . 5
2.1.3 Shape grammars . 6
2.1.4 GEOMED . 6
2.1.5 ASAS . 6
2.1.6 GENMOD . 6
2.1.7 AL . 7
2.1.8 CGA . 7
2.1.9 CFDG . 7
2.1.10 StructureSynth . 8
2.1.11 Fugu . 8

2.2 Quaternions . 8

3 Theory 11
3.1 Grammars . 11

3.1.1 Context-free grammars . 11
3.2 Rotations . 12

3.2.1 Euler angles . 12
3.2.2 Axis-angle . 12
3.2.3 Matrices . 12
3.2.4 Quaternions . 12

3.3 Quaternions . 13
3.3.1 Combining transformations 13
3.3.2 Relation to other representations 15

3.3.2.1 Rotation matrices 15
3.3.2.2 Axis-angle . 15
3.3.2.3 Euler angles . 15

3.3.3 Obtaining the rotation from two vectors 15

ix

Contents

4 Implementation 17
4.1 Syntax and semantics . 17

4.1.1 Directives . 17
4.1.2 Production rules . 17
4.1.3 Drawables . 18
4.1.4 Namespaces . 18
4.1.5 Adjustments . 19
4.1.6 Iterators . 19
4.1.7 Macros . 19

4.2 Evaluation . 20
4.2.1 Transforms . 20

4.2.1.1 Internal representation of transforms 20
4.2.2 Rule selection . 21

4.2.2.1 Probabilistic selection 21
4.2.2.2 Recursion depth selection 22
4.2.2.3 Scale selection . 22
4.2.2.4 Functional selection 23
4.2.2.5 Sequential selection 23

4.2.3 Termination criteria . 23
4.2.4 Continuation . 23

4.3 Curve sweeping . 24
4.3.1 Smooth joints . 24
4.3.2 Spline interpolation . 24
4.3.3 Straight lines . 26

4.4 Animation . 26
4.4.1 Animation frames . 27
4.4.2 Camera trajectories . 27

4.5 Modeling with transform rules . 28

5 Results 29
5.1 Level of detail . 29
5.2 L-systems . 29
5.3 Molecular models . 30
5.4 Polyhedra . 30
5.5 Knots . 32

6 Discussion 35

7 Conclusions 37

Bibliography 39

A Appendix 1 I

B Appendix 2 III

C Appendix 3 VII

x

List of Figures

2.1 Artwork generated with Context Free. 7

4.1 Model generated through probabilistic selection of rules. 22
4.2 Different techniques for creating smooth joints. 25
4.3 Demonstration of a model created with composite transform rules.

Each transform represents a rotation around the path of the parent
transform. See code in C.3. 28

5.1 Sphereflake model, rendered using continuous LOD. 30
5.2 There is a straight-forward conversion between the syntax of L-systems

and the MDG grammars. By selecting rules based on recursion depth,
we will achieve the same effect as an L-system, but without the need
to first construct a symbolic string representation. 31

5.3 One domain, where compact descriptions of models is essential, is
within the field of nanoscale molecular science. 32

5.4 Examples of different knot structures generated with MDG. The mod-
els have been exported as .STL and uploaded to online 3D printing
service Shapeways [1], which permits 3D printing of models in a wide
variety of materials. 33

xi

List of Figures

xii

1
Introduction

This thesis will present a novel approach to procedural shape synthesis based on the
use of quaternions and shape grammars. We will examine previous work within three
seemingly distinct fields — shape grammars, quaternions and procedural modeling
— and we will show how these fields can be used in conjunction to provide a powerful
syntactic tool for describing a wide variety of 3D objects.
The main contribution of this report will be to highlight why quaternions is a useful
tool in the context of procedural modeling and why our implementation of shape
grammars, which we have chosen to term Model Design Grammars (MDG), provide
a compact representation of such models.
Moreover, we will look at the theory of rotations and reflections and we will demon-
strate how rigid transformations can be used to build complex geometrical structures
from a set of predefined rules.
We will look at how common techniques used in modeling, such as extrusions and
surface revolutions can be easily constructed by combining special profile rules with
curve sweeping operations. Additionally, we will examine how to efficiently evaluate
grammar rules and what selection criteria to use for our rule selection. We will
study the topic of skeletal animation and we will show how quaternions can be used
to describe the compound transformations of hierarchical skeletons.

1.1 Motivation
Procedural modeling is a common technique employed by both animators and de-
signers when constructing three-dimensional objects. Oftentimes, the procedural
generator has been hardcoded within the modeling software itself and is exposed
only as a set of adjustable parameters for the designer. This thesis emphasizes a
different approach, where the designer needs to provide a syntactic description of the
model, before it is generated. This approach gives a greater freedom in representing
a large variety of objects. This approach also encourages a scientific understanding
of geometry, where the designer can explore many different shapes and geometries,
by making small adjustments to the model descriptions.
There are many different scientific fields that would benefit from a compact syntac-
tical representation of procedural models. In physics, chemistry and biology, it is
of great interest to be able to find different representations of molecular structures
and crystal lattice models. In architecture, it is essential to be able to explore new
designs and to be able to represent symmetries and geometries in a simple way [32].
Mathematical descriptions of geometry often provide a great aesthetic value, and

1

1. Introduction

this is can be used for more efficient development of designs in the jewelry industry,
where conventional modelmaking is often a major bottleneck [48].
Computer games could benefit from procedural models for the same reasons as any
of the above fields, but here we also have the additional benefit of being able to save
disk space by representing complex geometries with simple formulas.
The most common way to represent transformations in Euclidean space is probably
by using transform matrices. What are quaternions and why would we want to use
them? There are many reasons why quaternions may be a better representation
than matrices. The following is a list of some of the benefits of using quaternions
(the list is partially extracted from the book Visualizing Quaternions by Andrew J
Hanson [21]):

Shape A unit quaternion represents a point on the hypersphere SO(3).

Metric Provides a meaningful metric to compare and understand different orien-
tations.

Interpolability It is possible to perform smooth interpolation between two orien-
tations.

Gimbal lock Quaternions avoid the problem of gimbal lock that is present with
Euler angles.

Memory A quaterion can represent a rotation using only 4 numbers, whereas a
3× 3 rotation matrix requires 9 numbers.

Spinors Unlike rotation matrices, quaternions provide a way to represent spinors,
making it possible to distinguish between 360◦ and a 720◦ rotations.

1.2 Problem statement
The thesis project was conceived from a few independent observations made by the
author:

• Shape grammars is a powerful syntactic tool for representing many different
geometries1.

• With the notable exception of L-systems, there is little research on other types
of shape grammars for procedural modeling in R3 space.

• Recursive evaluation of production rules gives additional expressive power that
is not available in other modeling languages.

Designing a new shape grammar will involve finding an answer to a few substantial
questions:

• What modifications and additions would make this grammar different from
shape grammars in R2 space, such as CFDG?

1This observation was made by studying shape grammars for representing two-dimensional
vector objects, see e.g. [15]

2

1. Introduction

• What set of geometric transformations would be useful in R3 space?

• What would be a suitable representation for vertices and normals?

• Could shape grammars be used to describe camera paths and compound trans-
formations?

• Could shape grammars provide a language for animation?

• What criteria would be used for rule selection and for terminating recursions?

3

1. Introduction

4

2
Previous Work

2.1 Grammars and modeling languages
Noam Chomsky is often credited as the father of modern linguistics. He was a
pioneer in the theory of syntax and in the classification of formal grammars [10, 11].
Chomsky classified different grammars according to their expressive power. Context
Free Grammars (CFG) was one of the formal grammars described by Chomsky.
These grammars have also been important in the development of procedural shape
synthesis, where they can be used to describe a large number of procedural objects.

2.1.1 Turtle graphics
Seymour Papert developed the LOGO programming language in 1967 [17] and he
also invented the notion of a moving turtle that would change location and orien-
tation through a set of commands. The FORWARD and BACKWARD commands would
advance the turtle a number of units, optionally leaving a trail behind it. The LEFT

and RIGHT commands would change the orientation by a specified angle. Papert
proposed turtle graphics as a tool within education to teach young children about
mathematics [35].

2.1.2 Lindenmayer systems
L-systems and parallel rewriting grammars (PRG) were introduced by Lindenmayer
in 1968 [26]. These systems provided a simple formalism for constructing visually
complex imagery of biologically developing systems and plant-like organisms [38].
0L-systems represent the most basic instances of L-systems, where production rules
apply to each symbol independently of its neighbors in the symbol string. This
system is said to be context-free, since the selection process does not depend on
the context. A 2L-system1 will take into account the symbol before and the symbol
after each symbol and use that as a condition for rule expansion. This system can
then be said to be context-sensitive.
The final output of an L-system is a string of symbols, that is later evaluated in
a separate pass to build the procedural model. With bracketed L-systems, bracket
parentheses are used to denote that the current transform space should be pushed
or popped from a stack. This means that it is possible to return to a prior state by

1A 1L-system will use only one more symbol as a condition – either to the left or to the right
of the current symbol.

5

2. Previous Work

encapsulating a subtree within brackets. The tree-like fractals generated by these
systems are sometimes referred to as graftals [45].
Przemyslaw Prusinkiewicz has been a major contributor in the research about L-
systems [39, 40, 8]. His research about self-organizing growth processes of trees [34]
demonstrates how L-systems can be used to achieve a high level of realism. The
TreeSketch system [27], one application of this research, explores the concept of
using a procedural brush for drawing trees.

2.1.3 Shape grammars
James Gips and George Stiny are generally credited as having introduced the concept
of shape grammars in 1971 [47, 18, 19]. Shape grammars built upon the grammar
definitions investigated by Chomsky and added a set of rules for substituting symbols
with a shape. The grammars presented by the authors were very closely related to
L-systems, in terms of representing transforms and shapes as strings of symbols.

2.1.4 GEOMED
An early example of using computers for procedural modeling is the GEOMED soft-
ware, developed by Bruce Baumgart in 1974 [6, 7]. GEOMED provided a compact
notation for many complex geometric objects, including polyhedra. It supported fea-
tures such as curve sweeps along a path using a profile curve and advanced geometric
transformations. While the software was interactive, updating a push-down stack
when commands were entered, the notation of these commands formed a modeling
language that could probably be classified as a shape grammar. Baumgart hardly
cited any references in his papers, which makes it difficult to tell what were the main
influences of his work (possibly because this was also part of a classified ARPA re-
search program.) Unmistakingly, this work was highly original and even by today’s
standards it is interesting to look at some of the aspects of his implementation.

2.1.5 ASAS
An important contribution in the domain of modeling languages is the Actor/Scrip-
tor Animation System (ASAS), introduced by Craig Reynold in 1982 [42]. ASAS
was implemented in LISP and was inspired by partly by formal natural language de-
scribed by Terry Winograd [49]. There were several generations of the ASAS system
and it was developed into a very versatile tool for both modeling and animation (it
was also used in many TV productions.) Reynolds did not explicitly make any ref-
erences to shape grammars, but the language should definitely be considered one of
the precursors to MDG in that it allowed similar recursive definitions of transforms.

2.1.6 GENMOD
Snyder et al. rigorously define the mathematical framework needed for generative
modeling [46]. The authors examine concepts such as generators and manifolds.
Advanced methods for curve sweeping are investigated, where curves are used as

6

2. Previous Work

Figure 2.1: Artwork generated with Context Free.

generators to define profiles and cross sections of objects. Additionally it is demon-
strated how constructive planar geometry (CPG), can be used to build complex
geometry, such as the tip of a screwdriver. The GENMOD system incorporates
many different symbolic operators, such as differentiation, integration and vector
algebra operations.

2.1.7 AL
May et al. used Scheme (one of the main LISP dialects) to implement the ASAS
derivative language AL [31]. May introduced the notion of articulation functions
in animation systems. An articulation function is described as a “time-dependent
function that will interactively animate parameters and variables within the model”.

2.1.8 CGA
CGA is a shape grammar developed by Müller et al. for the purpose of generating
large city models [33]. It is based on the parallel rewriting grammars introduced
in the L-systems, but it is different in one important aspect – rather than using
rules for rewriting strings, this grammar will rewrite the shapes themselves (i.e., one
shape is replaced by another.) Additionally, the CGA shape rules were derived by
studying domain-specific concepts in architecture.

2.1.9 CFDG
Context Free Design Grammars (CFDG) were introduced by Chris Coyne in 2005
and has since been popularized by the open-source software project Context Free
[15].
There is a fairly limited number of publications that have examined the potential
benefits of using CFDG as tool for procedural modeling. Saunders and Grace [43]
examined how CFDG can be used as a tool in the education of design students
in order to improve their understanding of generative processes and evolutionary
design. The authors emphasize that design students do not generally get the same
level of practice with programming languages as computer science students do and
that it is therefore useful to be able to present a domain-specific design language

7

2. Previous Work

that does not add too many new concepts and abstractions. An engine for creating
CFDG grammars using genetic algorithms was implemented in Processing2.
Machado and Nunes [28, 29] investigated how CFDG could be used as a tool for evo-
lutionary art, where genetic algorithms would transform a set of different grammars
using mutation and crossover operators.

2.1.10 StructureSynth
StructureSynth, a software developed by Mikael Christensen in 2009 [13, 12], incor-
porates a CFDG derivative language for threee-dimensional modeling that is prob-
ably the closest relative to the MDG modeling language. The author introduces
the notion of rule retirement and substitutions, which is similar to the rule selection
mechanisms using recursion depth presented in this thesis.
Christensen also highlights the benefits of using CFDG-based systems for con-
strained systems and generative art. Design grammars are restricted in what kind of
objects they are able to encode, unlike most procedural languages and hence there
is a constrained exploration space that can be exploited in order to construct new
models by making small alternations to the grammars and to the model parameters.

2.1.11 Fugu
Fugu is a modeling system based on the Lua scripting language [37]. The implemen-
tation can be used for modeling, manipulation and animation and it is capable of
generating complex organic models. The system encourages both rapid prototyping
and experimentation through a set of flexible 3D mesh operations.

2.2 Quaternions
Quaternions were conceived by William Rowan Hamilton already in 1843 [20].
Hamilton was a strong proponent of using quaternions as the standard algebraic
entity to encode vectors in Euclidean R3 space and for describing their algebraic
operations [21]. In fact, vector algebra operations, such as the cross product and
the dot product were discovered only after analyzing the properties of quaternions.
Perhaps the most important quaternion property, namely that of representing orien-
tations in R3 space, was demonstrated by Hamilton’s contemporary, Arthur Cayley,
in 1845 [9].
Clifford algebras provide a generalization of geometrical transformations in Eu-
clidean Rn space, in which quaternions constitute a special case for n = 3 [5, 23].
H.S.M. Coxeter observed that a quaternion rotation can in fact be represented as
the product of two reflections [14].
Shoemake offers a strong argument for using quaternions for camera trajectories
in computer animation [44]. Why do so many use Euler angles, despite their many
disadvantages? Shoemake argues that this is due to quaternions being a subject that
is generally introduced after the mathematics of Euler angles in higher education.

2Processing is a software tailored specifically for education within media arts [41].

8

2. Previous Work

The use of splining quaternions in keyframe animation systems has also been studied
by Duff [16] and by Pletinckx [36].
A major application area for quaternions is within the aerospace industry, where it
has been used in satellite navigation systems for many years [25].
Some recent developments within the fields of visualization and quaternions is the
use of quaternion maps for representing orientation frames within protein molecular
structures [22]. Quaternions also provide a useful similarity metric for comparison
of protein structures.

9

2. Previous Work

10

3
Theory

We present a theoretical basis for understanding the concepts of our implementation.
We will be concerned mostly with the aspects of transformations in Euclidean R3

space. The mathematical component for representing transformations in our imple-
mentation is quaternions. This is one alternative that provides certain advantages
and disadvantages compared to other representations.

3.1 Grammars

3.1.1 Context-free grammars

Chomsky defined a context-free grammar as a 4-tuple (V,Σ, R, S), where

1. V is a set of non-terminal symbols,

2. Σ is a set of terminal symbols,

3. R is a set of production rules that map from V to (V ∪ Σ),

4. S is the initial symbol.

5. a grammar G generates a language L1.

Each production rule is defined as a symbol v ∈ V that maps to a string of symbols
s1, . . . , sn, such that sk ∈ (V ∪ Σ),∀sk.
Both CFDG and the 0L-systems are examples of context free languages. The pro-
duction rules are derived from exactly one non-terminal symbol. The so called
IL-systems are context-sensitive, since a production rule is subject to the condi-
tion of neighboring symbols in the input string. MDG is a completely context-free
language, meaning that any production rule can map only from one non-terminal
symbol. However, MDG also includes the notion of conflicting rules, such that there
are multiple production rules that maps from the same non-terminal. This is in
fact one of the central aspects of this language, and it allows us to implement very
specific rule selection mechanisms.

1A language L is said to be context-free, if there exists a G such that L = L(G).

11

3. Theory

3.2 Rotations
A few common ways of representing rotations and orientations are outlined. This is
an essential component in rigid body dynamics, where the orientation will determine
the motion of a rigid body.

3.2.1 Euler angles
Probably one of the most intuitive ways of representing rotations, in Euclidean
geometry, is through the use of Euler angles. Three angles, α, β and γ are used to
denote the rotation about three different axes.
Additionally, there is a distinction between classic Euler angles and Tait-Bryan or
Cardan angles2. It is important to realize that for Euclidean geometries in R3 or
higher, rotations are not commutative and it makes a difference in which order you
rotate about the axes.

3.2.2 Axis-angle
Another convenient way to represent rotations, is through the axis-angle represen-
tation, which consists of a vector a and a rotation θ about the same vector:

(axis, angle) =

axay
az

 , θ
 (3.1)

3.2.3 Matrices
Matrices is a common way of representing rotations in computer graphics.
We can use separate matrices in order to describe a rotation around each axis in R3:

R(φ, θ, ψ) =

1 0 0
0 cosφ − sinφ
0 sinφ cosφ

︸ ︷︷ ︸

Rx(φ)

·

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

︸ ︷︷ ︸

Ry(θ)

·

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

︸ ︷︷ ︸

Rz(ψ)

(3.2)

Here φ, θ and ψ corresponds to the Tait-Bryan angle representation of a rotation.
Similarly, Euler angles may be used, by replacing the third rotation matrix with
Rx(ψ).

3.2.4 Quaternions
In quaternion algebra, the vector v is rotated by the quaterion q through the formula

v′ = qvq∗. (3.3)
2Classic Euler angles refers to angles where α and γ represents a rotation about the same axis,

while Tait-Bryan or Cardan angles refers to rotations about three distinct axes (also the same
thing as yaw, pitch and roll.)

12

3. Theory

3.3 Quaternions
We define a quaternion q as a 4-tuple (qx, qy, qz, qw) with the following properties:

q = (qx, qy, qz, qw) = iqx + jqy + kqz + qw (3.4)
i2 = j2 = k2 = −1, jk = −kj = −i, ki = −ik = j, ij = −ji = k. (3.5)

It is usually convenient to divide the quaternion into its vector part qv and its scalar
part qw:

qv = (qx, qy, qw) = iqx + jqy + kqz (3.6)
q = (qv, qw) = iqx + jqy + kqz + qw = qv + qw (3.7)

Multiplication between two quaternions q and r is defined as:

qr =(iqx + jqy + kqz + qz)(irx + jry + krz + rw)
=i(qzrz − qzry + rwqx + qwrx)

+ j(qzrx − qxrz + rwqy + qwry)
+ k(qxry − qyrx + rwqz + qwrz)
+ qwrw − qxrx − qyry − qzrz

=(qv × rv + rwqv + qwrv, qwrw − qv · rv)

(3.8)

We define the quaternion conjugate as

q∗ = (qv, qw)∗ = (−qv, qw) = (−qx,−qy,−qz, qw), (3.9)

and the quaternion norm as

N(q) = qq∗ = q∗q = qv · qv + q2
w = q2

x + q2
y + q2

z + q2
w. (3.10)

For every quaternion, there exists a corresponding unit quaternion, also called a
versor:

U(q) = q√
N(q)

(3.11)

A pure quaternion is defined as a quaternion where qw = 0. These will satisfy the
relations q∗ = −q and q2 = N(q)q. A point p = (px, py, pz) in Euclidean space R3,
may be represented as a pure quaternion quaternion p̂ = (p, 0) = (px, py, pz, 0).

3.3.1 Combining transformations
This section demonstrates how quaternion reflection, rotation and scaling transfor-
mations are combined (similarly to how multiple affine transformations are combined
with rotation matrices.)
A unit quaternion q will rotate a point x through the formula

R(x,q) = qxq∗. (3.12)

13

3. Theory

Let us consider the same function R̂(x,q), defined for any quaternions (i.e. both
unit and non-unit quaternions):

R̂(x,q) = qxq∗ (3.13)

R̂(x,q) =
√

N(q)U(q)x
√

N(q∗)U(q∗) (3.14)

R̂(x,q) =
√

N(q)
√

N(q∗)U(q)xU(q∗) (3.15)
R̂(x,q) = N(q)U(q)xU(q∗) (3.16)
R̂(x,q) = N(q)R(x,q) (3.17)

Hence, the transformation R̂(x,q), represents a rotation of the vector x by U(q),
and a scaling by the norm N(q). Rather than discarding the information about
scale, by using only unit quaternions, this may be used as an additional parameter
in the transformation.
A series of rotations represented by q1,q2 . . . ,qn, can be represented using a single
composite quaternion q:

R̂(x,q1,q2 . . . ,qn) = q1q2 · · ·qnxq∗nq∗n−1 · · ·q∗1 = qxq∗ (3.18)

Similarly, a series of reflections can be represented in the same way:

F̂(x,q1,q2 . . . ,qn) = q1q2 · · ·qnxqnqn−1 · · ·q1 = qxq (3.19)

What is the general quaternion transformation that combines both rotations, reflec-
tions and scaling transformations? Consider the composite function Ψ,

Ψ(x,q1,q2 . . . ,qn) = Ψ1(Ψ2(. . .Ψn(x,qn) . . .),q2),q1), (3.20)

where

Ψk(x,q) = ΨL
k (q)xΨR

k (q) =

F̂(x,q) if reflection
R̂(x,q) if rotation

(3.21)

with

ΨL
k (q) = q, for both rotations and reflections, (3.22)

and ΨR
k (q) =

q for reflections,
q∗ for rotations.

(3.23)

The formula can further be written as

Ψ(x,q1,q2 . . . ,qn) = ΨL
1 (q1) · · ·ΨL

k (qn)xΨR
k (qn) · · ·ΨR

k (q1) = qLxqR (3.24)

with qL and qR being the composite left and right side quaternions describing the
general transformation of rotation, reflection and scaling.

14

3. Theory

3.3.2 Relation to other representations
Quaternions are conveniently converted into any other representation of rotations.
Sometimes a different representation is a better option for a specific domain, such
as shaders, where optimized matrix algebra routines can provide some advantages
compared to quaternions. Rotation matrices also simplify the operations of non-
uniform scaling and skewing.

3.3.2.1 Rotation matrices

Conversion of a quaternion (qx, qy, qz, qw) into a 3× 3 affine matrix:1− 2q2
y − 2q2

z 2qxqy − 2qzqw 2qxqz + 2qyqw
2qxqy + 2qzqw 1− 2q2

x − 2q2
z 2qyz − 2qxqw

2qxqz − 2qyqw 2qyqz + 2qxqw 1− 2q2
x − 2q2

y

 (3.25)

A similar method for converting back to quaternions is described by Akenine-Möller
et al. in [3].

3.3.2.2 Axis-angle

A quaternion is easily obtained from the axis-angle representation:

(qv, qw) =
(

sin
(
θ

2

)
v, cos

(
θ

2

))
(3.26)

The inverse operation (for qw 6= 1):

(v, θ) =
 qv√

1− q2
w

, 2 arccos(qw)
 (3.27)

3.3.2.3 Euler angles

Euler angles to quaternion conversion is straight-forward:

qφ,θ,ψ =

cos(ψ/2) cos(θ/2) sin(φ/2) − sin(ψ/2) sin(θ/2) cos(φ/2)
cos(ψ/2) sin(θ/2) cos(φ/2) + sin(ψ/2) cos(θ/2) sin(φ/2)
sin(ψ/2) cos(θ/2) cos(φ/2) − cos(ψ/2) sin(θ/2) sin(φ/2)
cos(ψ/2) cos(θ/2) cos(φ/2) + sin(ψ/2) sin(θ/2) sin(φ/2)

 (3.28)

3.3.3 Obtaining the rotation from two vectors
Suppose u and v are two known vectors and that v = quq∗ (i.e., v is the vector u
rotated by the quaternion q.)
In this case, it can be shown that

(qv, qw) =
(

u× v,u · v
√

N(u)N(v)
)

(3.29)

15

3. Theory

16

4
Implementation

This chapter will detail the specifics of the implementation of MDG. Moreover,
this chapter will cover the syntactical framework used for the implementation of
the language itself. It will also cover the methods used for evaluating an MDG
grammar in order to synthesize a shape (any procedural model represented in the
MDG language, is considered to be a grammar in itself.) Finally, we will dissect the
topic of compound transformations and animation.

4.1 Syntax and semantics
In this section we present the syntactical elements that are needed to understand
MDG. A reference of the grammar that is used by the MDG parser can be found in
A.1. Additionally a description of the different language elements is provided in B.

4.1.1 Directives
At the most basic level, an MDG model is defined by a set of global directives, such
as RULE, STARTSHAPE and BACKGROUND. The definition of an MDG grammar consists
of one or more RULE declarations.
Support for isosurfaces has been implemented through the ISOSURFACE directive,
which generates a mesh model from evaluating a mathematical function on a 3D
voxel grid, with an explicitly defined bounding box1.
Additionally, some directives are used to control global variables, such as BACKGROUND,
WEIGHT, CAMERAFOV, MINSIZE and MAXDEPTH.
A few directives are related to the shading system. The PROGRAM directive allows us
to control the rendering process of the graphics pipeline, by specifying vertex and
fragment shaders. It supports rendering in several passes as well as rendering to
an off-screen texture. The UNIFORM directive allows us to set the values of specific
uniform variables in the shaders (such as the position of light source.)

4.1.2 Production rules
Production rules are declared according to the pattern where WEIGHT is a value used
as a metric for rule selection. A rule may have multiple declarations, such that there
would be a conflict in name resolution in most procedural programming languages.

1Isosurfaces are generated by the use of an Open Source implementation of the marching cubes
algorithm by Aaron Hochwimmer.

17

4. Implementation

rule RULENAME WEIGHT {

RULEBODY

}

MDG will handle such a conflict according to a rule selection process that depends
on the weight of each conflicting rule.
The RULEBODY is a list of either iterators or references to other production rules that
will be evaluated sequentially when this rule is executed.
The STARTSHAPE directive is used to determine which rule will be evaluated first.
In addition to explicitly defined production rules, there are some built-in implicit
rules.

4.1.3 Drawables
While a production rule can represent both a terminal and a non-terminal, MDG
also provides a few built-in terminal rules, which have been termed drawables:

• The VERTEX drawable will emit a vertex, transformed by the current transform
space. This will also include information about the current normal vector.
Every three vertices will be interpreted as a triangle by the rendering system.

• The MOVETO and LINETO drawables, will connect two vertices by using a separate
profile rule, defined by the LINERULE directive.

• The RESET drawable will reset the transform space to the last coordinate and
orientation of either MOVETO or LINETO.

• The ISOSURFACE command defines new drawables that are generated by eval-
uating a parametric function in R3-space.

MDG uses a modular approach for drawables, where new drawables can be registered
dynamically. Possible extensions would be to import objects from different 3D file
formats.

4.1.4 Namespaces
Rules may be logically grouped into different namespaces, using the NAMESPACE di-
rective. Namespaces are particularly useful when using the MOVETO and LINETO com-
mands (see Section 4.3.) Each namespace will maintain its own buffer for these
commands, which allows us to have multiple lines that are connected using separate
coordinates. It is possible to reference a namespace that has not been declared (e.g.
X.LINETO) and it will remember the last coordinate in this particular namespace.
This could also be used as a mechanism for reading back rotation and coordinate
information at higher recursion levels, if combined with the continuation operator
(see Section 4.2.4.)

18

4. Implementation

4.1.5 Adjustments
One of the main differences between L-Systems and CFDG-based systems, is that
CFDG encodes transformations within the production rules themselves (rather like
many procedural languages.)
The following example will perform a rotation of 20◦ around the x-axis and 30◦
around the y-axis, moving 10 units along the z-axis and flipping across the z-plane,
while simultaneously adding 0.2 and 0.3 to the color parameters R and G:

rule X{

Y {rx 20 ry 30 z 10 fz R 0.2 G 0.3}

}

4.1.6 Iterators
CFDG provides an intuitive method for iteration. Loops have a similar structure
as in many procedural languages, but the code does not include a loop index. The
following rule will perform 10 iterations, rotating 5◦ around the x-axis and moving
3 units along the z-axis in each iteration:

rule X {

10 * { rx 5 z 3 } Y {}

}

These kind of constructs have not been studied in great detail in other shape gram-
mars. Parametric L-systems permit the use of parameter values associated with
each symbol. Such parameters allows a kind of controlled expansion, where termi-
nal rules can be associated with a parametric value. However, this is not the same as
iteration, since it requires that all symbols in the output string are rewritten before
the next parametrically controlled expansion step.
A special construct was added to the syntax of iterators that we term divisors.
Instead of specifying only the number of iterations m, the iterations can also be
specified as m/n, where n is a number that divides the transformation into n smaller
steps.

4.1.7 Macros
A macro preprocessor was implemented. The preprocessor supports several useful
directives:

@IMPORT directive for including other MDG projects;
@FRAGMENTSHADER and @VERTEXSHADER directives for defining shaders;
@DEFINE, @IFDEF, @ELSE, @ENDIF for conditional parsing;
@MACRO defines a macro and allows parametric expansions;
@EXPAND expands a previously defined macro;
@PRESETS defines presets that can be accessed in the user interface;

19

4. Implementation

@PARAM parameter value associated with a preset (int, float or bool.)
The system fully supports the use of custom shaders. There are many reasons not to
use a static shader in a procedural modeling language. Shader design is a whole re-
search field in its own and by combining this with a solution for procedural modeling,
we get a solution with maximum flexibility in terms of visualization options.

4.2 Evaluation
Our production rules are compiled into a derivation tree that can be evaluated either
through depth-first or breadth-first traversal.
Other CFDG-based implementations, such as Context Free and StructureSynth use
a breadth-first evaluation. This has some advantages, but it will not give the same
results if we use some of the novel constructs that are introduced in this section,
such as continuation and sequential selection.

4.2.1 Transforms
For each rule in the grammar, we precompute a composite transformation, repre-
senting translation, scaling, reflection and rotation.
Each expression of adjustments, maintains a compact internal representation of the
transformations needed to be carried out. Rather than computing every transfor-
mation in the evaluation pass of the syntax tree, a composite transformation is
precomputed for each transform expression. This representation will respect the
order of the all of the transformations (scaling, translation, rotation, reflection and
rotation), and it will be represented by three distinct quaternions q, q̂ and u.

4.2.1.1 Internal representation of transforms

The internal representation of transforms requires that we maintain a set of three
quaternions for each transform expression and for each stack frame. The quaternions
associated with a transform expression are computed from the transform expression
according to the procedure outlined below.

Initialization of variables:

u0 = 0 (translation) (4.1)
q0 = q̂0 = 1 (orientation) (4.2)

Translation by v:

uk+1 = uk + qkvq̂k (4.3)

Rotation by r:

qk+1 = qkr (4.4)
q̂k+1 = r∗q̂k (4.5)

20

4. Implementation

Reflection by r:

qk+1 = qkr (4.6)
q̂k+1 = rq̂k (4.7)

Scaling by a scalar s:

qk+1 = sqk (4.8)
q̂k+1 = sq̂k (4.9)

The evaluation process is similar. We initialize our variables:

p0 = 0 (translation) (4.10)
w0 = ŵ0 = 1 (orientation) (4.11)

When a rule is invoked , the precomputed transform is applied as follows:

pk+1 = pk + wkuŵk (4.12)
wk+1 = wkq (4.13)
ŵk+1 = q̂wk (4.14)

Note that these are all the computations that are needed in order to perform all of
the transformations in each adjustment formula. No extra step is needed for scaling
– it is implicit in the multiplication by the (non-unit) quaternions.
Note that any value could be chosen for the initialization of pw. The quaternion
vectors sent to the vertex shader will be multiplied by the projection matrix and
then it is necessary to set pw = 1 for uniform scaling. However, pw could also
serve as an additional parameter for controlling the the scale of our model, since in
effect, the coordinates will be mapped to (x/w, y/w, z/w) after multiplication with
a projection matrix.

4.2.2 Rule selection
One of the main ideas of CFDG, and consequently, of MDG, is that it permits
multiple conflicting production rules. When a rule that has been declared multiple
times is evaluated, only one of its definitions is selected. This does not violate the
principle of the corresponding grammars being context-free.
CFDG resorts exclusively to a stochastic selection process, whereas MDG supports
several different alternatives for selection. This is also a feature that provides sig-
nificant advantages to L-systems, which have limited capabilities in terms of rule
selection (although parametric, stochastic and context-sensitive L-Systems provide
some mechanisms for rule selection.)

4.2.2.1 Probabilistic selection

MDG inherits the default stochastic method for rule selection that is also found in
CFDG. The weight value associated with a rule denotes the probability that this
rule will be selected.

21

4. Implementation

Figure 4.1: Model generated through probabilistic selection of rules.

Listing 4.1: Example of a grammar for generating a stochastic model� �
selector A frequency

rule A 0.01 {}

rule A 0.1 {

A{z 1}

A{rz 0.3 rx 0.35}

rule A 0.9 {

SPHERE{}

A{z 1 ry 0.01}

}� �

4.2.2.2 Recursion depth selection

Rule selection can also depend on recursion depth. The weigh value is interpreted
as the recursion depth and a rule is selected only if its weight value is less than or
equal to the current recursion depth.

4.2.2.3 Scale selection

Scale selection determines which rule to use depending on the scale of the current
transform space. Since scale information is encoded within the quaternions that we
use for transformations, this is simply a matter of using the norm of the quaternion
representing our orientation, i.e. N(q), as our rule selection metric.
If rotation matrices were used instead of quaternions, this would have been a more
expensive computation. Typically this would involve computing the determinant of
the matrix, in order to get a metric of uniform scale.

22

4. Implementation

4.2.2.4 Functional selection

Rule selection can be made by evaluating a custom multivariate function f : Rn → R.
In our current implementation this function can be a custom expression of our
current position, but this could also be extended to include other parameters, such
as the current orientation, or any other custom parameters that are passed on the
stack in the evaluation (similarly to conditions in parametric L-systems.)

4.2.2.5 Sequential selection

Sequential selection provides an ordered deterministic approach to rule selection.
Each rule will be executed sequentially n times, where n is the rule weight. Note
that this kind of scheme will cause different results depending on whether depth-first
or breadth-first evaluation is used.

4.2.3 Termination criteria
From the previous section, it should be evident that we may terminate a recursion
by using a suitable selection criteria.
However, it is also useful to have some default criteria for implicit termination. Two
such criteria have been implemented: Evaluation may stop after a specified number
of recursions, through the maxdepth directive. It may also stop when the scale of the
current transform becomes sufficiently small, by using the minsize directive. This
corresponds to depth selection and scale selection when using explicit rule selection.

4.2.4 Continuation
Each rule will evaluate each of the production rules defined within its body. This
forms parent-child relationship between productions. The child rule automatically
inherits the transform space of its parent rule (transformed by any intermediate
adjustment expressions.) When the next rule is evaluated, again it will be relatively
to the parent transform space.
However, sometimes it is desirable to actually use the transform space of the pre-
ceding rule within the rule body. This concept is denoted continuation, since we
will continue from where the last rule last updated the transform space (possibly at
a completely different recursion depth.)
Below is shown an excerpt from the code used to generate an SiC crystallographic
structure (see C.4 for the complete model):

rule ABCB {

SiC {} \ // A

SiC {} \ // B

SiC {fx} \ // C (flip x axis)

SiC {} \ // B

MOVETO{fx} // (flip x axis -- for the next ABCB)

}

Each invocation of the SiC rule will adjust the translation of the transform space.
By using continuation, we will place the next SiC molecule such that it connects to
its neighbor and forms a crystallographic structure. Finally, we use MOVETO in order

23

4. Implementation

to update the transform space through reflection of the yz-plane, so that the next
ABCB layer will be correctly transformed.

4.3 Curve sweeping
Techniques for performing curve sweeps were implemented. A line is constructed by
extruding a profile curve, defined by the LINERULE command, along a trajectory or
a motion path.
A generalized cylinder is constructed for every line segment that is defined with the
MOVETO and LINETO commands2. When LINETO is called an extrusion is constructed
from the coordinate saved by the last MOVETO or LINETO command. The extrusion
connects the vertices of two profile curves with a triangle strip.
The BLENDTO command was implemented as a special variant of LINETO that creates
a smoothly interpolated path between the two vertices.

4.3.1 Smooth joints
A common problem in modeling is to connect two separate objects that are defined
in two separate transform spaces, so that they join together smoothly. Consider
two different cylinders that are separated by some distance and oriented in different
directions. We want to find an intermediate surface that connects one cylinder to
another. This problem exists not only in modeling, but also in animation, where
different joints of a skeleton model need to be animated.
One technique to address this problem is known as vertex blending or skinning.
We know the shape of the surfaces that we want to connect (circles in the case of
cylinders) and we know the transforms that define their origin and orientation. By
interpolating the two transform spaces using a weight, w ∈ [0, 1], we are able to
compute new vertices that form a smooth joint (our representation of a transform
space and our interpolation function, will determine the smoothness of the surface3.)

4.3.2 Spline interpolation
Quaternions have been studied extensively for the purpose of interpolating orienta-
tions along motion paths and trajectories. In animation systems this is sometimes
referred to as guiding. The spherical interpolation scheme investigated by Shoemake
[44], shows how to perform interpolation such that the orientation changes with even
steps along the unit sphere. This scheme was combined with a Bezier spline inter-
polation scheme for coordinates. Duff proposed another interpolation scheme based
on B-splines [16]. Yet another scheme was investigated by Pletinckx [36].
The BLENDTO drawable was implemented in MDG in order to not only interpolate
position and orientation, but also to interpolate information about the scale. The

2These commands are meant to be 3D analogues of the same commands found in many 2D
canvas libraries.

3It has been demonstrated that Dual Quaternions provide a better solution to this problem
than regular quaternions[24].

24

4. Implementation

� �
rule SMOOTH_TRIANGLE {

LINETO{z 1} \

10/10 * {rx 120} LINETO{} \

LINETO{z 1} \

10/10 * {rx 120} LINETO{} \

LINETO{z 1} \

10/10 * {rx 120} LINETO{} \

}� �
(a) Smooth joints

� �
rule REVOLVE_EXTRUDE {

NEWLINE{}

30/30 * [ry 360] LINETO{}

MOVETO{}

LINETO{x -15 R 1} \

LINETO{x -5 R 1 s 0}

}� �
(b) Extrude and lathe

(c) Vertex blending: two coordinates with different orientation are connected using
a smooth spline curve.

Figure 4.2: Different techniques for creating smooth joints.

25

4. Implementation

implementation assumes that the line is going to continue in the z-direction4 from
the source coordinate and orientation pair (u1,q1) to the target coordinate and
orientation (u2,q2). The implementation below was derived experimentally:

D =
√

N(u1 − u2) · λ (4.15)

v1 = q1

(
0, 0, D

N(q1) , 0
)

q∗1 (4.16)

v2 = q2

(
0, 0,− D

N(q2) , 0
)

q∗2 (4.17)

The interpolated coordinate and orientation (u,q) is computed for the interpolant
w ∈ [0, 1]:

s = SMOOTHSTEP(w) (4.18)
u = LERP(LERP(u1,v1, s), LERP(u2,v2, s), w) (4.19)
q̂ = LERP(q1,q2, w) (4.20)

q = q̂

√√√√LERP(N(q1),N(q2), s)
N(q̂) (4.21)

Figure 4.2c demonstrates the effect of using this technique with the parameter λ =
0.75, when splining between different transform spaces.

4.3.3 Straight lines

The LINETO and BLENDTO commands connect two coordinates with different scale and
orientation using curve sweeping along a line. The orientation at each coordinate
does not necessarily need to correspond to the orientation of the line.
However, sometimes it is desirable to make the extrusion orthogonal to the line
segment. The SLINETO command was added for this purpose. In order to find the
quaternion that represents the orientation of our line, we need to use Equation 3.29.

4.4 Animation

Support for animation was included by observing that in a tree-like recursive repre-
sentation of a model, each branch or each shape along the path could be an object
that could be animated separately.
By assigning an articulation function [31] to each bone, we are able to animate mul-
tiple attributes, such as orientation, position and color. This has been implemented
in a way that permits real-time animation of bones through the use of customized
vertex shaders.

4It is possible to use any direction as a convention.

26

4. Implementation

4.4.1 Animation frames
The concept of animation frames was introduced. In order to understand the im-
plementation, we need to distinguish between model rules and transform rules. A
transform rule is a rule that will emit frames, while a model rule is a rule that will
emit shapes or vertices.
Each rule is associated with a number of transform rules. Animation is achieved
through a number of different steps:

1. Evaluate the procedural model and construct a hierarchical bone structure,
where each bone is a model rule with at least one associated transform rule;

2. Sample animation frames at time t for each bone in the generated model5;
3. Build transform matrices used to animate each bone in the vertex shader6.

This step requires conversion from quaternions to matrices, but it will be done
only once for each transform rule and it has not proven to be a performance
bottleneck.

Listing 4.2: The shape generated by model rule A is associated with a number of
transform rules, X1, . . . , Xn.� �

rule A : X1 : X2 : ... : Xn {

... // generate our model

}

rule X1 {

// rotate 360 degrees around z axis and move 10 steps

// along x axis (emit 100 frames in total)

100 / 100 * {rz 360 x 10} FRAME{}

}

rule X2 {

FRAME{}

X2{z 0.1} // move 0.1 steps along z axis (infinite recursion)

}� �
How do we rewind to an earlier frame, which has already been evaluated? Each
transform rule maintains its own cache of sampled animation frames. Hence, rewind-
ing the animation is simply a look-up process in the local cache of each transform
rule.

4.4.2 Camera trajectories
The camera is assigned a rule of its own through the CAMERARULE directive. This rule
describes a time-dependent trajectory for the motion and orientation of the camera.
Model parameters can be used to animate certain properties of the camera, such as
field-of-view or look-at direction.

5Transform rules will emit a frame at a time interval specified by the fps parameter (which can
be changed globally and can also be modified individually for each rule by adjustment expressions.)

6We will maintain an index for every vertex that will determine which bone matrix to use in
the shader.

27

4. Implementation

Figure 4.3: Demonstration of a model created with composite transform rules.
Each transform represents a rotation around the path of the parent transform. See
code in C.3.

4.5 Modeling with transform rules
It was observed that there exists a class of procedural objects that are not easily
described by the generic MDG grammars. Figure 4.3 shows an object that is con-
structed from tangled transforms. These curves correspond to the trajectories of an
animation with one, two and three orthogonal transforms, respectively.
The key component for this kind of composition is to select one rule to be used as
an iterator. The spiralring rule in the following example, will sample every frame
of the ringpath iterator rule and it will composite this transformation by the same
frame from the firstspiral and secondspiral rules:

rule spiralring * ringpath : firstspiral : secondspiral {

SLINETO{s 0.1}

}

Note that in this situation, we do not perform a time-dependent sampling, as is
necessary in animations, but rather we sample by the index of each frame (it is
also necessary that we sample only a finite number of frames, i.e. the rule needs to
terminate.)

28

5
Results

A motivating factor in this thesis project has been to find a generic language for
the representation of a great number of geometric objects. Ideally, this should be a
language that favors simplicity and that can easily be interpreted, even by a non-
expert.
MDG grammars provide a tool for modeling that not only can represent an object
in a concise way, but can also provide an insight about the geometry of the object at
hand. It is useful to think about geometries in terms of their descriptions in MDG
and to use this as a method for exploration of new structures. In the context of
molecular physics, you might want to ask “what are the different representations of
this specific crystal lattice?” or “how can we describe its symmetries in terms of a
set of transforms?” MDG grammars provide an answer that is usually meaningful
to the interpretation of these kind of physical or theoretical entities.
This section will illustrate with a number of examples how MDG grammars can be
used for many different applications, including molecular structures, fractals and
polyhedra.

5.1 Level of detail
Multiple approaches have been devised to adjust level-of-detail (LOD) when ren-
dering complex scenes with many objects. The method known as continuous LOD,
will adjust the complexity of a model according to some heuristic function (typically
distance to the camera.) However, in our recursively evaluated grammars, we may
want to specify a different heuristics, such as the current scale of our transform
space. Figure 5.1 demonstrates how macros can solve the problem of LOD, where
each expansion of a macro corresponds to an isosurface of a different resolution and
a corresponding rule with a weight that is used as a metric for scale selection. The
smallest spheres are represented as an octahedron with no more than eight vertices.

5.2 L-systems
One of the questions that arose during the course of this thesis work was whether
or not L-systems can be represented in MDG. As we shall see, there is in fact a
straight-forward conversion between 0L-systems and MDG grammars.
This involves using depth selection to limit the recursion depth and continuation,
to continue from the coordinate and transform of the last rule. Figure 5.2 shows

29

5. Results

� �
@macro SPHERE_LOD(SIZE,RES)

isosurface SPHERE(RES) {

xyz -1 1 (RES)

function { 1.0 - (x*x+y*y+z*z) }

}

rule SPHERE (SIZE) {

SPHERE(RES) {}

}

@endmacro

@expand SPHERE_LOD(0.02,2)

@expand SPHERE_LOD(0.04,3)

@expand SPHERE_LOD(0.08,4)

@expand SPHERE_LOD(0.60,6)

@expand SPHERE_LOD(1.00,9)

selector SPHERE scale� �
Figure 5.1: Sphereflake model, rendered using continuous LOD.

two very basic L-systems that have been converted to their corresponding MDG
grammars.

5.3 Molecular models

During the course of the thesis project, I was contacted by M.Sc. student Maria
Karani. Maria had seen an early prototype of my system and inquired about whether
it would be possible to use it for rendering a crystallographic lattice model of a
specific silicon carbide molecule. This proved to be a rather trivial structure to
represent in MDG. Figure 5.3a shows the rendered version of the 4-H SiC molecule
examined by Maria (see code in C.4.)

5.4 Polyhedra

MDG provides compact representations of many geometrical objects. Regular poly-
hedra is an interesting class of objects that can be modeled in a straight-forward
way with MDG (provided that you manage to devise the appropriate angles and
distances.)
The following code will generate the complete skeleton model of a truncated icosa-
hedron as shown in Figure 5.3b:� �

rule truncated_icosahedron{

5/5*{rx 1} 2/2*{ry 1} 1*{ry -.2376862591} 2*{ry .3838602364} {

NEWLINE{}

6/6*[rz 1] LINETO{rx 0.4410563588t z 10}

}

}� �
30

5. Results

� �
n = 6, d = 4, δ = 60◦

YF

XF → YF+XF+YF

YF → XF-YF-XF� �
(a) The Sirepinski arrowhead curve and
its representation using L-system nota-
tion. One of the models presented in
Prusinkiewicz’s seminal paper [39].

� �
n = 4, d = 5, δ = 60◦

XF

XF → XF+YF++YF-XF--XFXF-YF+

YF → -XF+YFYF++YF+XF--XF-YF� �
(b) Peano-Gosper space-filling curve,
originally named flowsnake. One of the
fractals studied by Mandelbrot in 1977
[30].

Figure 5.2: There is a straight-forward conversion between the syntax of L-systems
and the MDG grammars. By selecting rules based on recursion depth, we will achieve
the same effect as an L-system, but without the need to first construct a symbolic
string representation.� �

startshape YF

selector XF, YF depth

rule XF 6 { YF{} \ XF{rx 60} \ YF{rx 60} }

rule YF 6 { XF{} \ YF{rx -60} \ XF{rx -60} }

rule XF 7 { SLINETO{z 1} }

rule YF 7 { SLINETO{z 1} }� �
Listing 5.1: Equivalent Sirepinski arrowhead curve written in MDG. Note the
use of the continuation character in order to continue from the position and
orientation of the last terminal rule.

31

5. Results

(a) 4-H SiC ABCB structure examined by Maria
Karani, in her M.Sc. thesis.

(b) Model of a fullerene
molecule, also known as a
buckeyball.

Figure 5.3: One domain, where compact descriptions of models is essential, is
within the field of nanoscale molecular science.

The constants used in this code have been derived analytically, through the formula
for dihedral angles of an icosahedron:

a = 4r
3 +
√

5
(5.1)

r = 1 ⇒ a0 = 0.7639320224 (5.2)
r = 1/

√
3 ⇒ a1 = 0.4410563588 (5.3)

arctan a0 + arctan 2
2π = 0.3838602364 (5.4)

1
4 −

3 arctan a0 + arctan 2
2π = −0.2376862591 (5.5)

5.5 Knots
Some experimenting with compound transforms resulted in an interesting family of
knot-like models, as shown in Figure 5.4. Despite the simple description of this model
(see C.2), it lends itself to experimentation by adjusting the number of revolutions
about each axis. It was also discovered that if the number of revolutions about each
axis is denoted nx, ny, nz, then at least two of these numbers need to be co-prime in
order for the path to be connected.

32

5. Results

Figure 5.4: Examples of different knot structures generated with MDG. The mod-
els have been exported as .STL and uploaded to online 3D printing service Shape-
ways [1], which permits 3D printing of models in a wide variety of materials.

33

5. Results

34

6
Discussion

While MDG has been inspired by CFDG, it has also been augmented with several
language features that are not part of the latter. The use of divisors in iterated
statements has been very useful in that it provides an easy way to divide a sequence
of transformations into smaller steps. A common task in modeling is to perform
a rotation around an axis through a number of steps, which is simply a matter of
dividing by the number of iterations.
Unlike CFDG, which performs a breadth-first traversal of the syntax tree, MDG
performs depth-first traversal. This requires less memory (and memory is more ex-
pensive in 3D, due to the overhead of additional parameters passed on the stack.)
The major drawback of depth-first evaluation is when the evaluation process is visu-
alized in real-time, since it will show only sub-branches of the final model (consider
a tree that grows by one arm at a time, rather than all arms growing by a small
amount simultaneously.) Breadth-first evaluation might also be an advantage in
context-sensitive grammars, such as IL-systems, since the context should be sensi-
tive to the current growth iteration. Probably MDG will never be able to support
the kind of context-sensitive features described by IL-systems (since that actually
relies on the parallel rewriting paradigm.)
There are also certain observations to be made about the use of transforms in MDG.
Should a transform be implemented as a 3 × 3 matrix or as a quaternion? There
are many reasons to choose one representation or the other. Matrix-matrix and
matrix-vector multiplication is generally faster than the corresponding quaternion
methods. However, quaternions allow us to reduce our memory footprint, by storing
only four values. Additionally, interpolation of orientations is a non-trivial task with
transform matrices. For this application quaternions provide a great advantage.
Many textbooks refer to unit quaternions as the only feasible entity in which rota-
tions are properly represented. The author of this thesis feels that this is a vaguely
misleading observation. Sometimes it is desirable to use unit quaternions (it simpli-
fies some of the analytical expressions and it can be a way to avoid floating-point drift
when performing many compound transformations.) However, as has been shown
in this thesis, a quaternion will still represent a rotation if it is scaled. Additionally,
the magnitude of the quaternion provides a useful metric for rule selection.
Rule selection can also be made interactive, by reading the state of an input device,
such as a mouse or a keyboard. This would be particularly interesting in the context
of transform rules, where an input device could be used to control the animation.
Some other interactive aspects would be to make it possible to select different objects
defined by the transform hierarchies and to manually adjust their orientation and
parameter values.

35

6. Discussion

36

7
Conclusions

Development of MDG has been an exciting journey and a fruitful learning experi-
ence. The result of this thesis is an advanced solution for both animation and mod-
eling. Using shape grammars for procedural modeling is not a new phenomenon,
but research has been fairly constricted to a few different shape grammars, such as
the many variations of L-systems. CFDG-based modeling systems, prove to be a
very powerful alternative to these grammars. The similarity with procedural lan-
guages, makes it easy for people with little prior experience of shape grammars to
start modeling. By embedding transformations within the production rules of the
language, we add clarity and readability that is sometimes lost when representing
grammars only as symbols.
The approach towards motion paths and compound transformation is a novel con-
cept in MDG, and has little resemblance with previous implementations. By uniting
the two processes of modeling and animation, it is possible to think about these con-
cepts not as distinct abstractions, but rather as two interchangeable methods, where
there is no firm boundary between an animation path and a shape that is generated
procedurally along the same path.
MDG provides several options for intuitively and easily representing many different
scientific models, such as planetary systems, rigid body dynamics, molecular models
and plant models. It offers a solution for rapid prototyping and for experimental
designs in generative art. There is also a strong case to be made for the use of MDG
as a tool within education. Similarly to how CFDG has been used in the education
programs of design students [43], MDG will provide the same kind of benefits and
it will extend the design space into the realm of three dimensions.
While it is a subject that deserves further research, this thesis also shows that MDG
provides an excellent option for representing complex geometry, such as regular
polyhedra. These kind of models will also benefit from the reflectional symmetry of
quaternion transformations.
We have demonstrated that there exists en easy transformation for converting a
Lindemayer 0L-system into an MDG grammar. Curiously, 0L-systems are evaluated
breadth-first, while our implementation requires a depth-first evaluation combined
with continuation in order to simulate the same system. While it was not demon-
strated, it should also be noted that this transformation applies also to stochastic
0L-systems. What about bracketed and parametric L-systems? It has not been
demonstrated how these systems can be represented in MDG, but this is certainly
another possible path of future research.

37

7. Conclusions

38

Bibliography

[1] Shapeways. http://www.shapeways.com/.
[2] Jon Lennart Aasenden and Eric Grange. Smart mobile studio. http://

smartmobilestudio.com/.
[3] Tomas Akenine-Möller, Eric Haines, and Naty Hoffman. Real-time rendering.

CRC Press, 2008.
[4] Mattias Andersson. Onlinemodeler. http://www.onlinemodeler.com/.
[5] Michael F Atiyah, Raoul Bott, and Arnold Shapiro. Clifford modules. Topology,

3:3–38, 1964.
[6] Bruce G Baumgart. Geomed: Geometric editor. Technical report, DTIC Doc-

ument, 1974.
[7] Bruce Guenther Baumgart. Geometric modeling for computer vision. Technical

report, DTIC Document, 1974.
[8] Frédéric Boudon, Christophe Pradal, Thomas Cokelaer, Przemyslaw

Prusinkiewicz, and Christophe Godin. L-py: an l-system simulation framework
for modeling plant architecture development based on a dynamic language.
Frontiers in Plant Science, 3, 2012.

[9] Arthur Cayley. Xiii. on certain results relating to quaternions: To the editors
of the philosophical magazine and journal. 1845.

[10] Noam Chomsky. Syntactic structures. 1957.
[11] Noam Chomsky. Aspects of the Theory of Syntax, volume 11. MIT press, 1969.
[12] Mikael Hvidtfeldt Christensen. Structuresynth. http://structuresynth.

sourceforge.net/.
[13] Mikael Hvidtfeldt Christensen. Structural synthesis using a context free design

grammar approach. In Generative Art International Conference, 2009.
[14] HSM Coxeter. Quaternions and reflections. American Mathematical Monthly,

pages 136–146, 1946.
[15] Chris Coyne, Mark Lentczner, and John Horigan. Context free art. http:

//www.contextfreeart.org, 2010.
[16] Tom Duff. Splines in animation and modeling. State of the Art in Image

Synthesis (SIGGRAPH’86 course notes Number 15, Dallas, TX), 1986.
[17] Wallace Feurzeig and Seymour Papert. The logo programming language, 1967.

39

http://www.shapeways.com/
http://smartmobilestudio.com/
http://smartmobilestudio.com/
http://www.onlinemodeler.com/
http://structuresynth.sourceforge.net/
http://structuresynth.sourceforge.net/
http://www.contextfreeart.org
http://www.contextfreeart.org

Bibliography

[18] James Gips. Shape grammars and their uses. PhD thesis, Stanford University
Palo Alto, CA, 1974.

[19] James Gips. A syntax-directed program that performs a three-dimensional
perceptual task. Pattern Recognition, 6(3):189–199, 1974.

[20] William Rowan Hamilton. On quaternions. In Proceedings of the Royal Irish
Academy, volume 3, pages 1–16, 1847.

[21] Andrew J Hanson. Visualizing quaternions. In ACM SIGGRAPH 2005 Courses,
page 1. ACM, 2005.

[22] Andrew J Hanson and Sidharth Thakur. Quaternion maps of global protein
structure. Journal of Molecular Graphics and Modelling, 38:256–278, 2012.

[23] David Hestenes and Garret Sobczyk. Clifford algebra to geometric calculus: a
unified language for mathematics and physics, volume 5. Springer Science &
Business Media, 1987.

[24] Ladislav Kavan, Steven Collins, Jiří Žára, and Carol O’Sullivan. Skinning with
dual quaternions. In Proceedings of the 2007 symposium on Interactive 3D
graphics and games, pages 39–46. ACM, 2007.

[25] Jack B Kuipers. Quaternions and rotation sequences, volume 66. Princeton
university press Princeton, 1999.

[26] Aristid Lindenmayer. Mathematical models for cellular interactions in de-
velopment i. filaments with one-sided inputs. Journal of theoretical biology,
18(3):280–299, 1968.

[27] Steven Longay, Adam Runions, Frédéric Boudon, and Przemyslaw
Prusinkiewicz. Treesketch: interactive procedural modeling of trees on a tablet.
In Proceedings of the international symposium on sketch-based interfaces and
modeling, pages 107–120. Eurographics Association, 2012.

[28] Penousal Machado and Henrique Nunes. A step towards the evolution of vi-
sual languages. In First International Conference on Computational Creativity,
Lisbon, Portugal, 2010.

[29] Penousal Machado, Henrique Nunes, and Juan Romero. Graph-based evolution
of visual languages. In Applications of Evolutionary Computation, pages 271–
280. Springer, 2010.

[30] Benoit B Mandelbrot. Fractals: form, chance, and dimension. WH Freeman
San Francisco, 1977.

[31] Stephen F May, Wayne Carlson, Flip Phillips, and Ferdi Scheepers. Al: A
language for procedural modeling and animation. Technical report, Citeseer,
1996.

[32] William J Mitchell. The logic of architecture: Design, computation, and cogni-
tion. MIT press, 1990.

[33] Pascal Müller, Peter Wonka, Simon Haegler, Andreas Ulmer, and Luc Van Gool.
Procedural modeling of buildings, volume 25. ACM, 2006.

40

Bibliography

[34] Wojciech Palubicki, Kipp Horel, Steven Longay, Adam Runions, Brendan Lane,
Radomír Měch, and Przemyslaw Prusinkiewicz. Self-organizing tree models for
image synthesis. In ACM Transactions on Graphics (TOG), volume 28, page 58.
ACM, 2009.

[35] Seymour Papert. Teaching children to be mathematicians versus teaching about
mathematics. International journal of mathematical education in science and
technology, 3(3):249–262, 1972.

[36] Daniel Pletinckx. Quaternion calculus as a basic tool in computer graphics.
The Visual Computer, 5(1-2):2–13, 1989.

[37] Ben Porter, Jon McCormack, James Wetter, and Alan Dorin. A procedural 3d
modelling and animation system based on lua. Technical report, 2011.

[38] Aristid Lindenmayer Przemyslaw Prusinkiewicz, Aristid Lindenmayer, James S
Hanan, F David Fracchia, and Deborah Fowler. The algorithmic beauty of
plants with. 1990.

[39] Przemyslaw Prusinkiewicz. Graphical applications of l-systems. In Proceedings
of graphics interface, volume 86, pages 247–253, 1986.

[40] Przemyslaw Prusinkiewicz, Radoslaw Karwowski, Radomír Měch, and Jim
Hanan. L-studio/cpfg: A software system for modeling plants. In Applications
of Graph Transformations with Industrial Relevance, pages 457–464. Springer,
2000.

[41] Casey Reas and Ben Fry. Processing: a programming handbook for visual de-
signers and artists, volume 6812. Mit Press, 2007.

[42] Craig W Reynolds. Computer animation with scripts and actors. In ACM
SIGGRAPH Computer Graphics, volume 16, pages 289–296. ACM, 1982.

[43] Rob Saunders and Kazjon Grace. Teaching evolutionary design systems by
extending “context free”. In Applications of Evolutionary Computing, pages
591–596. Springer, 2009.

[44] Ken Shoemake. Animating rotation with quaternion curves. In ACM SIG-
GRAPH computer graphics, volume 19, pages 245–254. ACM, 1985.

[45] Alvy Ray Smith. Plants, fractals, and formal languages. ACM SIGGRAPH
Computer Graphics, 18(3):1–10, 1984.

[46] John M Snyder and James T Kajiya. Generative modeling: A symbolic system
for geometric modeling. In ACM SIGGRAPH Computer Graphics, volume 26,
pages 369–378. ACM, 1992.

[47] George Stiny and James Gips. Shape grammars and the generative specification
of painting and sculpture. In IFIP Congress (2), pages 1460–1465, 1971.

[48] Somlak Wannarumon, Erik LJ Bohez, and Kittinan Annanon. Aesthetic evo-
lutionary algorithm for fractal-based user-centered jewelry design. Artificial
Intelligence for Engineering Design, Analysis and Manufacturing, 22(01):19–
39, 2008.

[49] Terry Winograd. Understanding natural language. Cognitive psychology,
3(1):1–191, 1972.

41

Bibliography

42

A
Appendix 1

Listing A.1: A subset of the MDG language grammar.

commands→ command [command]
command→ 〈 startshape | rule | namespace | program | selector |

linerule | camerarule | normal | background | weight | color |
function | isosurface | maxiter | maxdepth | minsize |
duration | uniform | cameramode | camerafov | fps | . . . 〉

startshape→ startshape rulename

rule→ rule rulename [transform] weight { rulebody }
program→ program { programcommands }

programcommands→ 〈 shader | target | render 〉
shader → 〈 vertexshader | fragmentshader 〉 shadername

shadername→ STRING

target→ 〈 screen | texture 〉
selector → selector rulenameref 〈 depth | scale | sequential |

pattern | function functionref 〉
function→ function functionname functionbody

functionname→ STRING

functionbody → { EXPR }
functionref → 〈 [namespaceref] functionname | functionbody 〉
transform→ 〈 convolve | animate 〉 [transform]
convolve→ ∗ rulenameref

animate→ : rulenameref

rulebody → [〈 ruleoriterator | terminal 〉] [rulebody]
ruleoriterator → 〈 iterator | ruleparams | \ | { rulebody } 〉

terminal→ 〈 VERTEX | MOVETO | LINETO | FRAME | . . . 〉
iterator → iterations [/ divisor] ∗ { transforms } ruleoriterator

ruleparams→ rulenameref { transforms }
transforms→ 〈 translate | rotate | flip | scale | color 〉 [transforms]
namespace→ namespacename { commands }
rulename→ STRING

rulenameref → [namespaceref] rulename
namespaceref → namespacename . [namespaceref]

namespacename→ STRING

iterations→ NUMBER

I

A. Appendix 1

divisor → NUMBER

translate→ 〈 x X [Y [Z]] | x X | y Y | z Z 〉
rotate→ 〈 r X [Y [Z]] | rx X | ry Y | rz Z 〉
flip→ 〈 f X [Y [Z]] | fx X | fy Y | fz Z 〉
scale→ s S

X, Y, Z, S → NUMBER

II

B
Appendix 2

Table B.1: MDG directives

Directive Meaning

startshape rulename shapename is the default rule to be rendered when the program is
executed

rule rulename [: ta [: tb [: tc
...]]] { ... } prototype code for a rule with associated transforms ta, tb, tc, ...

program { ‹commands› } prototype code for a program
linerule rulename default rule to use for MOVETO and LINETO operations
camerarule rulename transformation rule used for adjusting camera position and direction
namespace ns { ... } defines a namespace section; rule names will be prepended ns
duration dur the duration in seconds of the animation
isosurface name {
‹commands› } declaration of an isosurface

function name { ‹expr› } declaration of a function (mathematical expression with variables x, y, z)
selector rulename
selectorname

defines a selector for the rule (valid options for selectorname is ’random’,
’scale’ and ’sequential’.)

normal x y z the untransformed normal used by the VERTEX operation
fps num num is the default fps (frames per second)

color a b c d a, b, c, d are the strings that represent the four components of the color
attribute (R, G, B, A by default)

weight a b c d a, b, c, d are the strings that represent the four components of the
weight attribute (u, v, w, q by default)

randseed num integer that will be used as a seed value for the random number
generator

uniform uniformname x [y [z
[w]]] sets a uniform in the shader program(s) to the values given by (x y z w)

uniform uniformname
rulename prop

sets a uniform in the shader program(s) to the value given by property
prop of the current frame of a rule (prop can be ’pos’, ’dir’, ’conj’,
’color’, ’weight’ and ’normal’)

angle anglemode changes how angles are interpreted (anglemode may be one of ’degrees’,
’arcdegrees’, ’radians’, ’orbits’ and ’frequency’)

minsize value a minimum threshold value of the scale to indicate when recursion
should stop

stacksize value a maximum threshold value for the stack, to indicate when recursion
should stop (advanced)

buffersize value how many values to buffer in each asynchronous computation (advanced)
invalidateskipframes value how many frames to skip before invalidating the current scene buffers
camerafov value field-of-view angle of camera in degrees (default 40°)
cameranearplane value camera near plane (default 0.1)
camerafarplane value camera far plane (default 1000)
background r g b a change the background color

III

B. Appendix 2

Table B.2: MDG preprocessor directives

Directive Meaning
@import project1 [project2
[project3 ...]] imports source code and textures from projects

@presets preset1 [preset2
[preset3 ...]] define preset names

@param int paramname
defvalue minvalue maxvalue defines an integer parameter

@param float paramname
defvalue minvalue maxvalue defines a float parameter

@param bool paramname
defvalue defines a boolean parameter

@fragmentshader shadername
‹shadercode› @endshader defines a fragment shader named ’shadername’

@vertexshader shadername
‹shadercode› @endshader defines a vertex shader named ’shadername’

@macro macroname(arg1 [,
arg2 [, arg3 ...]])
‹macrodefinition› @endmacro

defines a macro named ’macroname’ with parameters named arg1, arg2,
arg3, ...

@expand macroname(arg1 [,
arg2 [, arg3 ...]]) expands a macro with the parameter values given by arg1, arg2, arg3, ...

Table B.3: MDG adjustment operators

Adjustment Meaning
x x1 [y1 [z1]] translation along the x-axis by x1, y-axis by y1, and z-axis by z1
y y1 translation along the y-axis by y1
z z1 translation along the z-axis by z1
r x1 [y1 [z1]] or rotate x1 [y1
[z1]] rotation around the x-axis by angle by x1, y-axis by y1, and z-axis by z1

rx x or pitch x rotation around the x-axis by angle x
ry y or yaw y rotation around the y-axis by angle y
rz z or roll z rotation around the z-axis by angle z
down [x] rotate -90° or -x° around the x-axis
up [x] rotate 90° or x° around the x-axis
left [y] rotate -90° or -y° around the y-axis
right [y] rotate 90° or y° around the y-axis
rollleft [z] rotate -90° or z° around the z-axis
rollright [z] rotate 90° or z° around the z-axis
s num scale by num
f x y z flip along the plane with a normal (x, y, z)
fx flip along the x-axis
fy flip along the y-axis
fz flip along the z-axis
fps num adjust fps by num
R num adjust color component R by num (can be renamed)
G num adjust color component G by num (can be renamed)
B num adjust color component B by num (can be renamed)
A num adjust color component A by num (can be renamed)
u num adjust weight component u by num (can be renamed)
v num adjust weight component v by num (can be renamed)
w num adjust weight component w by num (can be renamed)
q num adjust weight component q by num (can be renamed)

IV

B. Appendix 2

Table B.4: MDG program commands

Command Meaning
vertexshader shadername select a vertex shader for the next rendering step
fragmentshader shadername select a fragment shader for the next rendering step
target screen render to the screen (default)
target texture texturename render to a texture (n.b. unimplemented)
render render the shape given by the startshape command

Table B.5: MDG isosurfaces

Command Meaning

x xmin xmax xres defines the minimum and maximum values as well as the resolution
along the x-axis

y ymin ymax yres defines the minimum and maximum values as well as the resolution
along the y-axis

z zmin zmax zres defines the minimum and maximum values as well as the resolution
along the z-axis

xyz min max res defines the minimum and maximum values as well as the resolution for
all axes

function { ‹expr› } mathematical expression to be evaluated at each grid point of the
isosurface

function funcname reference to a function that will be evaluated at each grid point of the
isosurface

Table B.6: MDG rule operators

Operator Meaning

VERTEX {} a vertex is defined at the current position (every three vertices makes up
a triangle)

[namespace.]MOVETO
[rulename] {}

moves to the context of the namespace current position, rasterizing the
path of the rule ’rulename’ (if provided) or else the rule given by the
’linerule’ command

[namespace.]LINETO
[rulename] {}

works like MOVETO, but also emits triangles that connects with the
last MOVETO/LINETO position

[namespace.]BLENDTO
[rulename] {}

similar to LINETO, but smoothly joins two orientation frames through
several smaller line segments

FACENORMALS {} recomputes the normals for the last three vertices so that they represent
the normal of the triangle plane

FRAME {} emits an animation frame at the current position
[namespace.]RESET {} reset transforms to the MOVETO context of the associated namespace
[namespace.]DEBUG {} write information to debug console output

V

B. Appendix 2

VI

C
Appendix 3

Listing C.1: Basic vertex and fragment shaders used for models.

@fragmentshader FS

precision mediump float;

varying vec3 normal;

varying vec4 vertPos;

varying vec3 cameraPos;

varying vec4 weight;

varying vec4 color;

uniform vec3 lightPos;

uniform vec3 specColor;

uniform float phongPower;

void main() {

vec3 normal = normalize(normal);

if (!gl_FrontFacing) {

normal = -normal;

}

vec3 lightDir = normalize(vertPos.xyz - lightPos);

float lambertian = max(dot(lightDir,normal), 0.0);

float specular = 0.0;

if(lambertian > 0.0) {

vec3 reflectDir = normalize(reflect(lightDir, normal));

vec3 viewDir = normalize(cameraPos - vertPos.xyz);

float specAngle = max(dot(reflectDir, viewDir), 0.0);

specular = pow(specAngle, phongPower);

}

gl_FragColor = vec4(lambertian*color.rgb +

specular*specColor, 1.0 + color.a);

}

@endshader

@vertexshader VS

attribute vec4 aVertexPosition;

attribute vec3 aVertexNormal;

attribute vec4 aVertexWeight;

attribute vec4 aVertexColor;

attribute float aVertexBone;

uniform mat3 uNMatrix;

uniform mat4 uPMatrix;

uniform mat4 uBoneMatrix[60];

uniform vec3 uCameraPos;

varying vec4 vertPos;

varying vec3 cameraPos;

varying vec3 normal;

varying vec4 weight;

varying vec4 color;

mat3 getNormalMat(mat4 mat) {

return mat3(mat[0][0], mat[1][0], mat[2][0], mat[0][1], mat

[1][1], mat[2][1], mat[0][2], mat[1][2], mat[2][2]);

}

void main(void) {

mat4 uMVMatrix = uBoneMatrix[int(aVertexBone)];

vertPos = uMVMatrix * aVertexPosition;

cameraPos = uCameraPos;

gl_Position = uPMatrix * vertPos;

normal = aVertexNormal * getNormalMat(uMVMatrix);

weight = aVertexWeight;

color = aVertexColor;

}

@endshader

program {

vertexshader VS

fragmentshader FS

target screen

render

}

Listing C.2: Model describing a class of knots with a number of revolutions about
each axis.

startshape START

linerule LINERULE

angle orbits

rule LINERULE {

12/12*{rz 1} VERTEX{x 1}

}

rule START{

NEWLINE{}

ring{s 2 R 1 G 0.3}

}

rule ring * zpath : ypath : xpath {

ALINETO{z 0.2 s 0.3}

}

rule zpath {

4000/4000*[rz 9] FRAME{}

}

rule ypath {

4000/4000*[ry 81] FRAME{}

}

rule xpath {

4000/4000*[rx 16] FRAME{}

}

VII

C. Appendix 3

Listing C.3: Model generated with transform rules.

uniform lightPos 0 0 -400

uniform specColor 1 1 1

uniform phongPower 40

startshape START

minsize 0.0015

duration 60

linerule LINERULE

camerarule CAMERARULE

normal 0 0 1

// adjust camera distance here (-5)

rule CAMERARULE {

FRAME{z -20}

CAMERARULE {}

}

// 12-sided extrusion along the line

rule LINERULE {

12/12*[rx 360] VERTEX{z -1}

}

// render two spiral rings

rule START : transform{

NEWLINE{}

spiralring{R 1 B 0.5}

NEWLINE{}

spiralring{rz 36 B 1 G 0.5}

}

// spiralring uses ringpath as its ’iterator’

rule spiralring * ringpath : firstspiral : secondspiral {

LINETO{s 0.25}

}

// the outer circle (2000 steps)

rule ringpath {

2000/2000*[rz 360] FRAME{x 5}

}

// spiral with 5 twirls (2000/400)

rule firstspiral {

2000/400*[ry 360] FRAME{x 0.75}

}

// spiral with 100 twirls (2000/20)

rule secondspiral {

2000/20*[rz 360] FRAME{y 0.65}

}

// animation frames

rule transform{

FRAME{}

transform{ry 1 rx 0.7 rz 0.3}

}

Listing C.4: Silicon carbide molecular model.

rule SILICON {

// the ’s’ parameter adjusts the scale

SPHERE{s 0.2 s 1.17 G 0.8}

}

// Carbon, 0.25 * (0.077/0.117)

rule CARBON {

// the ’R’, ’G’, ’B’ parameters adjust the color

SPHERE{s 0.2 s 0.77 R 0.2 G 0.2 B 0.2}

}

rule BOND {

MOVETO{}

LINETO{z 1}

}

//selector SiC function { max(x,y,z) }

// face-edge-face angle: 70.5288 degrees

rule SiC {

// CARBON{z -1}

BOND{z -1}

SILICON{}

3*{rz 120} 1*{ry 70.5288} {

CARBON{z 1}

BOND{}

}

// move to the right position for the next SiC

MOVETO{z 1 ry 70.5288 z 1 ry -70.5288}

}

rule ABCB {

SiC {} \ // A

SiC {} \ // B

SiC {fx} \ // C (flip x axis)

SiC {} \ // B

MOVETO{fx} // (flip x axis -- for the next ABCB)

}

rule LAYERS {

// height of pyramid: sqrt(6)/3 = 0.8164965809

// height of two pyramids: 2*sqrt(6)/3 = 1.632993162

// edge-to-opposite-edge x 2: sqrt(2) = 1.414213562

// 4 repetitions along the [1120] direction

// 3 repetitions along the [1100] direction

// 2 repetitions along the [0001] direction

4 * {x 1.414213562 y 0.8164965809} 3 * {y 1.632993162} 2 * {} \ ABCB{}

}

rule START {

LAYERS{x -3 y -4 z -2} // adjust the origin

}

Listing C.5: Dodecahedron inscribed within the Coxeter complex (cover page
illustration.)

@import projects/basic-shaders

uniform lightPos 0 0 -400

uniform specColor 1 1 1

uniform phongPower 40

background 0.4 0.6 0.8 1

startshape START

minsize 0.0015

duration 60

maxiter 4000

maxdepth 1000

linerule LINERULE

camerarule CAMERARULE

normal 0 0 1

angle orbits

rule CAMERARULE {

FRAME{z -74}

CAMERARULE {}

}

rule TRANSFORM {

FRAME{}

TRANSFORM{ry 1d rx 0.7d rz 0.3d}

}

rule LINERULE {

12/12*[rx 1] VERTEX{z 0.1}

VIII

C. Appendix 3

}

isosurface SPHERE {

xyz -1 1 6

function {1.0 - (x*x+y*y+z*z)}

}

// a = 4*r/(3+sqrt(5))

// r = 1 => a = 4/(3+sqrt(5)) = .7639320224

rule PVERTEX{

VERTEX{ry -0.7639320227t z 10}

}

rule pentagon{

NEWLINE{}

PVERTEX{}

PVERTEX{rz 0.2}

PVERTEX{rz 0.4}

FACENORMALS{}

PVERTEX{rz 0.4}

PVERTEX{rz 0.6}

PVERTEX{rz 0.8}

FACENORMALS{}

PVERTEX{}

PVERTEX{rz 0.8}

PVERTEX{rz 0.4}

FACENORMALS{}

}

rule START : TRANSFORM {

dodecahedron{s 2 B 0.4 R 0.6 G 0.8}

symplanes{s 2 G 0.8 R 1}

}

rule dodecahedron {

dodec_faces{fz}

5/5*{rx 1} dodec_faces{ry -2t}

}

rule dodec_faces {

pentagon{ry -0.25}

pentagon{ry 0.25}

}

rule symplanes {

5/5*{rx 1} dihedral{}

}

rule dihedral {

circle{fz}

1*{ry -2t} 2/5*{rx 1} circle{}

}

rule circle {

SPHERE{ry 0.25 z 10 B 0.8 G -0.4 R -0.8 s 0.6}

SPHERE{ry -0.25 z 10 B 0.8 G -0.4 R -0.8 s 0.6}

torus{}

}

rule torus {

NEWLINE{}

MOVETO{z 10}

48/48*{ry 1} LINETO{z 10}

}

IX

	List of Figures
	Introduction
	Motivation
	Problem statement

	Previous Work
	Grammars and modeling languages
	Turtle graphics
	Lindenmayer systems
	Shape grammars
	GEOMED
	ASAS
	GENMOD
	AL
	CGA
	CFDG
	StructureSynth
	Fugu

	Quaternions

	Theory
	Grammars
	Context-free grammars

	Rotations
	Euler angles
	Axis-angle
	Matrices
	Quaternions

	Quaternions
	Combining transformations
	Relation to other representations
	Rotation matrices
	Axis-angle
	Euler angles

	Obtaining the rotation from two vectors

	Implementation
	Syntax and semantics
	Directives
	Production rules
	Drawables
	Namespaces
	Adjustments
	Iterators
	Macros

	Evaluation
	Transforms
	Internal representation of transforms

	Rule selection
	Probabilistic selection
	Recursion depth selection
	Scale selection
	Functional selection
	Sequential selection

	Termination criteria
	Continuation

	Curve sweeping
	Smooth joints
	Spline interpolation
	Straight lines

	Animation
	Animation frames
	Camera trajectories

	Modeling with transform rules

	Results
	Level of detail
	L-systems
	Molecular models
	Polyhedra
	Knots

	Discussion
	Conclusions
	Bibliography
	Appendix 1
	Appendix 2
	Appendix 3

