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Motion and gravity effects in the 
precision of quantum clocks
Joel Lindkvist1, Carlos Sabín2, Göran Johansson1 & Ivette Fuentes3

We show that motion and gravity affect the precision of quantum clocks. We consider a localised 
quantum field as a fundamental model of a quantum clock moving in spacetime and show that its 
state is modified due to changes in acceleration. By computing the quantum Fisher information we 
determine how relativistic motion modifies the ultimate bound in the precision of the measurement 
of time. While in the absence of motion the squeezed vacuum is the ideal state for time estimation, 
we find that it is highly sensitive to the motion-induced degradation of the quantum Fisher 
information. We show that coherent states are generally more resilient to this degradation and that 
in the case of very low initial number of photons, the optimal precision can be even increased by 
motion. These results can be tested with current technology by using superconducting resonators 
with tunable boundary conditions.

Precise time keeping is a key ingredient of countless applications in the information era, ranging from 
high-speed data transmission and communication to the Global Positioning System (GPS).

In the last years, quantum clocks based on optical transitions of ions or neutral atoms in optical lat-
tices have achieved unprecedented levels of precision and accuracy1,2. Moreover, the use of entanglement 
will enable to overcome the current limitations and build up networks of clocks operating close to the 
Heisenberg limit3, the ultimate fundamental bound imposed by quantum mechanics. Space agencies are 
planning to use ultra-precise and portable atomic clocks in space, which will allow for important new 
applications in fundamental physics, geophysics, astronomy and navigation. In this regime it is expected 
that Einstein’s theory of relativity becomes relevant. This is not surprising since time dilation effects can 
be detected due to a difference of even less than 1 m in the gravitational field of the Earth4. However, 
current designs of quantum clocks are described by non-relativistic quantum mechanics. In order to 
analyse the effects of gravity and motion on quantum clocks we need to work within Quantum Field 
Theory (QFT) since this theory allows to properly incorporate both quantum and relativistic effects. In 
QFT in curved spacetime5, light and matter is described by quantised fields while the spacetime remains 
classical, which is a good approximation in the regime at which satellites operate. Tantalising predic-
tions of QFT in curved spacetime such as Unruh-Hawking radiation or the Dynamical Casimir Effect6 
are starting to receive experimental confirmation7. Moreover, the use of Quantum Information and 
Quantum Metrology tools within a QFT framework has recently enabled the prediction of non-trivial 
effects of gravity, accelerated motion and spacetime dynamics on key quantum properties such as entan-
glement8–14. Thus it is natural to ask whether motion and gravity can affect the performance of quantum 
clocks. In order to address this question we need to consider a fundamental model of a clock that is both 
quantum and relativistic, that is a localised quantum system with periodic dynamics and whose motion 
through the spacetime can be properly described. Therefore, we need to consider a single mode of a 
localised quantum field. For the sake of simplicity we can assume that the field is confined within a cavity. 
The phase of this cavity mode can be used as the pointer of our clock, as we will see in more detail below.

In this paper, we show that relativistic motion affects the precision of a quantum clock. Via the equiva-
lence principle we conclude that the same effect occurs in the case of non-uniform gravitational fields. In 
particular, we consider the general model of a relativistic quantum clock described above and assume that 
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it undergoes a trajectory with non-uniform acceleration. The motion generates new particles due to the 
Dynamical Casimir Effect6,7, together with mode-mixing among the different modes inside the cavity15. 
Therefore, the precision of the clock is affected. We characterise this change by computing the quantum 
Fisher information (QFI) of the state, which provides the fundamental bound imposed by quantum 
mechanics to the precision of the clock. A similar problem was studied in16,17, although the techniques 
developed there are not directly applicable in our case. We find that while the best choice of state for 
estimation of time in the absence of motion is a squeezed vacuum, this state also experiences a relatively 
big loss of precision due to motion. Coherent states are more robust to this degradation, and in the case 
of very low initial number of photons we find that the precision can be even increased by motion.

The results can be readily implemented in the laboratory by using superconducting resonators with 
tunable boundary conditions. The boundary conditions are provided by the magnetic flux threading a 
SQUID, which can undergo ultrafast variations mimicking the motion of a mirror at velocities close to 
the speed of light, like in the first observation of the Dynamical Casimir Effect7. This setup paved the 
way for several tests of the interplay between quantum and relativistic effects9,18. In particular, in18 we 
showed how to implement a test of relativistic time dilation with superconducting circuits, analysing 
the effects of particle creation in the twin paradox scenario. In this case, by ultrafast modulation of the 
electric length of the cavity, the clock experiences similar boundary conditions as in a spaceship moving 
at relativistic speeds.

Cavity clock
Let us now explain our model in more detail. As explained above, we need to consider a localised quan-
tum field. For the sake of simplicity we will assume that the field is confined in a box-type potential. The 
clock will thus be a cavity containing a quantized one-dimensional electromagnetic field in a Gaussian 
state. The proper length L, i. e. length measured by a comoving observer, is constant. Although we can 
consider general trajectories, in order to illustrate our results we choose the trajectory so that the clock 
undergoes a round trip (see fig. 1a), composed of four accelerated segments and two segments of inertial 
motion, similar to the one of the travelling twin in the twin paradox scenario18. During each accelerated 
segment of duration ta in lab coordinates, an observer in the center of the cavity moves with constant 
proper acceleration a. During the inertial segments, the observer moves with a constant velocity that is 
set by a and ta and we denote the duration of these segments by t i. Thus, the trajectory is completely 
described by a, ta and t i. In the lab frame, the duration of the trip is t t t4 2t a i≡ + . For an inertial 
observer, a 1D electromagnetic field φ obeys the Klein-Gordon equation

φ(∂ − ∂ ) = , ( )c 0 1t x
2 2 2

Figure 1.  a) A clock undergoes a round trip characterised by four intervals of proper constant acceleration 
a and duration ta and two intervals of constant velocity of duration ti. After the trip the precision of the 
clock has changed. b) Experimental setup where the clock is the phase θ of a Gaussian state of the 
electromagnetic field in a superconducting resonator with tunable boundary conditions. A superconducting 
transmission line is interrupted by two SQUIDs generating a cavity of effective length L. The position of the 
effective mirrors can be moved at relativistic speeds by ultrafast variation of the magnetic fluxes Φ+, Φ−, thus 
the clock can undergo the trajectory depicted in a).
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where c is the speed of light. The two cavity mirrors introduce Dirichlet boundary conditions 0φ=  at two 
points separated by a distance L. Quantizing the field in Minkowski coordinates, we obtain a discrete set 
of cavity modes with frequencies n c L n 1 2nω π= / , = , ,....

For periods involving uniform acceleration we consider an observer moving with constant proper 
acceleration a. This observer is static in the Rindler coordinates η ξ( , ), defined by

η= ( / ), ( )
ξ/x c

a
e a ccosh 2

a c
2 2

η= ( / ). ( )
ξ/t c

a
e a csinh 3

a c2

In these coordinates, the wave equation is also a Klein-Gordon equation. Thus the quantization of the 
field gives rise to a similar set of cavity modes. The mirrors introduce Dirichlet boundary conditions at 
two points separated by a distance L arctanhc

a
aL
c2

2

2( )′ =  with respect to Rindler position ξ, corresponding 
to a proper distance L, and the mode frequencies with respect to Rindler time η  are  n c L n 1 2nΩ π= / ′, = , ,...

The initial and final states of the cavity are related by a Bogoliubov transformation which in this case 
is a combination of the Bogoliubov transformation between the inertial and uniformly accelerated modes 
and the phases acquired during the free evolution19. More specifically, before the trip, the modes in the 
cavity are described by a set of annilhilation and creation operators, an and an

†, satisfying the canonical 
commutation relations a a[ ]m n mnδ, =† . The modes in the cavity after the trip are similarly described by 
another set of operators, bn and bn

†, satisfying similar commutation relations. These two sets are related 
by a Bogoliubov transformation, defined by

b A a B a
4m

n
mn n mn n∑= ( − ).

( )
⁎ ⁎ †

The Bogoliubov coefficients Amn and Bmn are functions of the trajectory parameters a, ta and t i and the 
proper length L of the cavity. They can be computed analytically as power series expansions in the 
dimensionless parameter h aL c 2≡ /  18.

The first mode of the cavity is prepared in a Gaussian state, with vacuum in the higher modes. Free 
time-evolution of a Gaussian state corresponds to a phase rotation. Since the proper length of the cav-
ity is preserved throughout the trip, that is true also for the mode frequencies. Thus, we can relate the 
accumulated phase shift during the trip to an elapsed proper time by simply dividing with the frequency 
of the first mode. This allows us to use the phase of the single-mode state of the electromagnetic field 
in the cavity as a clock.

Clock precision
Now, let us introduce quantum metrology tools for the computation of the optimal bounds to the preci-
sion of the clock. We will take advantage of the elegance of the covariance matrix formalism for Gaussian 
states. Initially preparing the cavity in a Gaussian state ensures that the final state will also be Gaussian. 
A Gaussian state is completely characterized by the first moments, Xn , and the covariance matrix

σ = , − ,
( ){ }X X X X1

2 5mn m n m n

where we defined the quadrature operators by X a an n n2 1
1
2

= ( + )−
†  and X a an

i
n n2 2

= − ( − )† . In the 
following, we will consider only the case where we start with the cavity in a single-mode state, since we 
can use the phase of one mode with fixed frequency as the pointer of our clock. We will focus only on 
that particular mode after the transformation, and trace out the other modes. As stated above, the fun-
damental mode of the cavity is used as the clock mode. A single-mode Gaussian state can always be 
parametrized by the real displacement parameter α, the complex squeezing parameter reiξ = φ and the 
phase θ, as well as the purity P. The position in phase space is encoded in the first moments

α = + , ( )X X 61
2

2
2

X Xtan 72 1θ = / , ( )

while the squeezing ξ and the purity P are encoded in the covariance matrix σ:
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The QFI of a state quantifies the maximum precision that can be achieved in the estimation of a param-
eter encoded in the state. The QFI for estimation of a parameter τ using a single-mode Gaussian state is 
given by20

τ σ τ τ
σ τ σ τ

τ

τ

τ
= ′ ( ) ( ) ′( ) +

( ( ) ′( ))
+ ( )

+
′( )

− ( )
,

( )
τ

−
−

H X X
P

P
P

1
2

tr[ ]
1

2
1 9

T 1
1 2

2

2

4

where the prime denotes a derivative with respect to τ. Now, as explained above, our parameter of inter-
est is the phase θ, since we will use it as the pointer of our clock. Expressed in the state parameters, the 
QFI is

H P r r
r

P
4 [cosh 2 sinh 2 cos ]

4 sinh 2
1 10

2
2

2α φ= ( ) + ( ) +
( )

+
.

( )θ

We note that this expression is independent of θ. The mean number of photons for a general single-mode 
Gaussian state can be written as

N
P

r
P

1
2

1 1
sinh

11
2

2

α= +


 −



 +

( )
.

( )

Optimizing (10) with a fixed photon number, it can be shown that the choice of state that maximizes the 
quantum Fisher information is the squeezed vacuum20. In other words, all available energy should be put 
into squeezing for the best possible phase estimation.

The Cramér-Rao inequality gives a lower bound on the mean-square error of parameter estimation 
and is satisfied for optimal measurements. For M optimal measurements, this yields the following expres-
sion for the phase variance

M H
1

12
∆θ = .

( )θ

Bogoliubov transformation
Let us now examine how the QFI of an initial single-mode Gaussian state is affected by the motion 
described by a Bogoliubov transformation with coefficients Amn and Bmn. The reduced covariance matrix 
of mode k after the Bogoliubov transformation can be written as17

   
1
4 13k kk kk

T

n k
kn kn

T
0 ∑σ θ θ σ θ θ θ( ) = ( ) ( ) + ( ) ( ),

( )≠

where 0σ  is the initial covariance matrix and mn are the 2 2×  matrices


A B A B
A B A B 14

mn
mn mn mn mn

mn mn mn mn
=





( − ) ( + )
− ( − ) ( + )





.

( )

R I

I R

Here R and I denote the real and imaginary parts, respectively. The first moments transform as

= ( − ) + ( + ) ,

= − ( − ) + ( + ) . ( )

X Re A B X Im A B X

X Im A B X Re A B X 15

1 11 11 1 0 11 11 2 0

2 11 11 1 0 11 11 2 0

The main aim of this paper is to compare the QFI of the state after the motion, described by the 
covariance matrix (13) and the first moments (15), with the one of the initial state described by 0σ , X1 0

 
and X 2 0

. This allows us to analyse the effects of relativistic motion in the precision of a clock. To qual-
itatively describe the effects, it will be enough to consider the so-called building block transformation. 



www.nature.com/scientificreports/

5Scientific Reports | 5:10070 | DOI: 10.1038/srep10070

This transformation consists of the Bogoliubov transformation between inertial and accelerated modes, 
a phase shift k k at c harcsinh 2arctanh 2a aθ π= ( / )/( ( / )) of mode k acquired during the acceleration, and 
the inverse of the first transformation. For details on how to compute the coefficients, see18. The trans-
formation, and thus all the quantities of interest, are 2π-periodic in aθ . The transformation for a more 
general trajectory can be composed of such building-block transformations, with phase shifts k iθ  for the 
inertial motion in between.

As discussed in18, the rate of the cavity clock is modified by uniform acceleration. This is due to the 
fact that different points in the cavity experience different proper times, and the effect can be understood 
classically. On top of that, however, there is also an extra phase shift due to mode-mixing and particle 
creation that depends on changes in acceleration. Since the QFI in equation (10) is independent of the 
phase, it stays constant during free Minkowski or Rindler time-evolution. Thus, it is only affected by the 
mode-mixing and particle creation induced by changes in acceleration.

Results
We start by considering the QFI in the case when the initial state is coherent, with a mean photon number 
N 0

2α= . In fig. 2a we plot the ratio of the QFI for a clock having undergone motion and an inertial clock. 
The motion of the cavity generates mode-mixing between the clock mode and the higher modes. Tracing 
out these consequently leads to a suppression of the displacement parameter α and the purity P, resulting 
in the degradation of the QFI seen in fig. 2a. This effect is independent of the initial phase 0θ  and largest 
for aθ π= . Apart from mode-mixing, particle creation effects also lead to a shift in the QFI, which may 
be positive or negative depending on 0θ  and aθ . This is a genuine quantum effect affecting the precision of 
the clock. To estimate the magnitude of the effect, we compare the QFI with the particle creation coeffi-
cients in the Bogoliubov transformation neglected, to the QFI obtained using the full transformation. In 
fig. 3a we plot this difference as a function of 0θ  and aθ . In the regime interesting for clock purposes (N > 1), 
the QFI degradation of a coherent state is independent of the initial mean photon number.

Next, we treat the case when the initial state is the squeezed vacuum, with a mean photon number 
N rsinh2

0= . Now, only the second term in equation (10) is relevant. In fig. 2b, we plot again the ratio 
of the transformed and initial QFI. Here, the mode-mixing leads to a suppression of the squeezing 
parameter r and a corresponding QFI degradation. Fig. 3b shows the shift due to particle creation, com-
puted in the same way as for the coherent state.

The QFI degradation for the two classes of initial states above show similar traits. The main difference 
is that, for the squeezed vacuum, it depends on the initial mean photon number N  and is generally larger 
than for the coherent state in the regime of interest. The reason for this is that the QFI scales differently 
with N  in the two cases. An equal percentage of the clock mode photons is lost due to mode-mixing, 
independently of N  and the type of state. In the coherent case, the QFI is proportional to N , while for 
the squeezed vacuum it is not.

Let us now consider more general initial states, containing both displacement and squeezing, while 
we keep the mean photon number N rsinh0

2 2
0α= +  constant. Fig. 4 shows the QFI ratio for different 

mean photon numbers in the initial state, as a function of how the photons are distributed between 
displacement and squeezing. In the intermediate cases, we see an interplay between the two terms in 
equation (10). There are qualitative differences between the initially phase squeezed ( 00φ = ) and ampli-
tude squeezed ( 0φ π= ) states. In the case of phase(amplitude) squeezing, the first term in equation (10) 
increases(decreases) with the squeezing, leading to the local minima(maxima) in fig. 4. In general, the 
degradation of the QFI tends to be larger for squeezing-dominated states. As mentioned before, however, 
the squeezed vacuum is the optimal single-mode clock state. In the regime considered here, it would still 
be the best choice, despite the increased degradation.

Figure 2.  Ratio of the transformed and original QFI as a function of h, for aθ π= . In a), the initial state is 
coherent with N > 1. In b), the initial state is the squeezed vacuum with N = 1 (blue), N = 5 (red) and N = 10 
(green). The solid curves show the effect of mode-mixing, while the dotted (dashed) curves include the 
effects of particle creation for 0 20θ π= ( / ).
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So far, we have only discussed initial states with N > 1 since these are the ones interesting for clock 
purposes. The QFI, and thus the clock precision, generally increases with N. The main effect of the 
motion is that the clock mode loses photons due to mode-mixing, resulting in a degraded QFI. In the 
case of smaller N , however, the particle creation effects are more dominant. Starting with the vacuum 
(N = 0), the trip generates a certain amount of squeezing (see fig. 5a) and an associated QFI. For small 
enough initial N , this is enough to enhance the QFI (see fig.  5b). In the regime treated in this paper 
(h 0 1≤ . ), these effects are seen only for very small N . For larger h, however, we expect to see this kind 
of effects also for higher-power states. In order to examine the case of larger h, though, we need to aban-
don our perturbative treatment of the Bogoliubov coefficients, which is out of scope for this paper.

Photon leakage.  In this section, we analyse how the precision of the moving clock is affected in the 
recent proposal of an experimental test of the twin paradox with circuit QED18. In18 the accelerated clock 
is implemented by a superconducting resonator consisting of a transmission line interrupted by two 
SQUIDs (see fig. 1b), which provide highly tunable boundary conditions that can be used to let the clock 
experience the changes in boundary condition of a round-trip trajectory. As concluded in21, the corre-
spondence between the SQUID boundary condition and a moving mirror is valid only when the effective 
length modulation is small compared to the wavelength of the field. In this round trip scenario, the 
circuit parameters can be chosen so that we safely stay within that regime. Moreover, in this more real-
istic scenario, photon leakage from the cavity will also degrade the QFI. For the experimental regimes 
suggested in18, corresponding to a maximal h-value of 7 10 3× − , the QFI degradation effects discussed 
in the previous section are small compared to the effect of photon leakage.

Let us consider that before the trip, the cavity is prepared in a state with a mean photon number  
N i. For a trip of time ttot, the number of photons at the end would be approximately N N ef i

ttot= τ− / , 

Figure 3.  Difference in transformed QFI with and without particle creation coefficients, as a function of the 
transformation angle aθ  and initial phase 0θ  and normalized to the initial QFI. In a), the initial state is 
coherent with N > 1. In b), the initial state is the squeezed vacuum with N = 5. The transformation parameter 
is h = 0.1.
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Figure 4.  Ratio of the transformed and original QFI as a function of how the photons are distributed 
between displacement and squeezing. N 10

2α / =  corresponds to a coherent state and N 00
2α / =  to the 

squeezed vacuum. The transformation parameters are h = 0.1 and aθ π= . The initial number of photons is 
N = 1 (blue), N = 5 (red) and N = 10 (green). The solid(dashed) curves are for 00φ π= ( ).
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where the decay time τ can be written as Q2τ =
ω

 and Q is the Q-value of the cavity. In order to treat 
the SQUID as a tunable boundary condition, we need to stay in the regime 2φ π<< , where φ is the 
phase drop over the SQUID. By the Josephson relation I I sinc φ= , this sets a limit on the ratio of the 
current I through the SQUID and the effective flux-dependent critical current, given by 
I I2 cosc ext c

ext

0
( )π(Φ )= ,Φ

Φ
 where Ic is the critical current of each Josephson junction in the SQUID. 

Since the current through the SQUID depends on the number of photons in the cavity, this also limits 
the maximal photon number and thus the precision in estimating the phase. Let us now estimate the 
number of photons N  corresponding to a current I. The effective inductance for each SQUID is 
LSQ I2

1 1
cosc ext

0=
π φ
Φ

(Φ )
 and for the cavity L Lcav 0λ= , where L0 is the inductance per unit length and λ the 

physical cavity length, related to L by taking into account the initial external fluxes through the SQUIDs. 
Using the standard expression for the energy stored in an inductor, the number of photons in the cavity 
can thus be expressed as

ω

ω
λ

π

= +

=








+
Φ

(Φ ) − ( / (Φ ))








.

( )





N L L I

L
I I I

I

1
2

[ 2 ]

1
2

1 1

1 16

cav SQ

c ext c ext

2

0
0

2
2

Now, setting the current to I Ic extκ= (Φ ), 1κ< , we observe that this function increases with Ic ext(Φ ). In 
order to determine the maximal number of photons that can be stored in the cavity, we should thus use 
the smallest value of Ic ext(Φ ), or equivalently the largest value of the external flux extΦ .

In18 we considered two different scenarios, corresponding to L 1 1= .  cm and L 6=  cm. Now, for 
L 0 440 µ= . F/m, I 0 5c µ= . A, 0 4ext 0φΦ = .  and 0 2κ= . , we obtain a maximal photon number of N 2 98 78 5= . ( . ) 
in the short(long) cavity case. The number of photons available at the measurement stage depends on 
the total travel time. For the experimental values suggested in18, each trajectory lasts 4 ns and leads to a 
phase shift of 4 55 10 0 94 103 3. × ( . × )− −  for the short(long) cavity. Increasing the number of trajectories 
leads to a larger phase shift, but also to a worse precision by decreasing the number of available photons. 
By using (12) with M 1=  we can compute the phase variance ∆θ for one optimal measurement. In fig. 6, 
we plot the ratio of the phase shift and the phase variance (signal-to-noise ratio) as a function of the 
number of trajectories k. We assume a cavity Q-value of 10000. For a given state, there is a certain value 
of k maximizing the signal-to-noise ratio.

Summary and conclusions
In summary, we show that motion and gravity can modify the fundamental bounds imposed by quantum 
mechanics in the measurement of time. We compute the QFI of the state of the electromagnetic field in a 
cavity that undergoes non-uniform accelerated motion for several initial Gaussian states. While squeezed 
vacuum is the optimal state for time estimation in the absence of motion, we find that it is also relatively 
sensitive to the loss of precision induced by motion. Coherent states are more robust to this effect, and 
we find that for a very low number of initial photons the QFI is even increased with motion. Our results 
can be tested with current technology by using superconducting resonators with tunable boundary con-
ditions. This low-cost Earth-based experiment will inform the ongoing projects involving space-based 
ultra-precise quantum clocks. Moreover, we show that the application of quantum metrology tools to 
QFT allows us to deepen our understanding on the fundamental limits imposed by quantum mechanics 
in the measurement of spacetime parameters.

Figure 5.  a) Squeezing r as a function of aθ  with vacuum as the initial state, for h = 0.1. b) Ratio of the 
transformed and original QFI for an initial low-power coherent state as a function of N , for h = 0.1 and 

aθ π= .
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Figure 6.  Signal-to-noise ratio θ ∆θ/  for phase estimation as a function of the number of trajectories k. The 
plot in a) (b) is for the case of L = 1.1(6) cm and a corresponding maximal initial photon number of 
N = 2.98(78.5). The blue(red) curves are for a coherent state(squeezed vacuum).
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