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Parallelization in Rust with fork-join and friends
Creating the ForkJoin framework
LINUS FÄRNSTRAND
Department of Computer Science and Engineering
Chalmers University of Technology

Abstract

This thesis describes the design, implementation and benchmarking of a work stealing
fork-join library, called ForkJoin, for the new language Rust. Rust is a programming
language with a novel approach to memory safety and concurrency, and guarantees
memory safety through zero-cost abstractions and thorough checks at compile time
rather than run time.
Rust is very well suited for computationally intensive applications, but it is lacking
some basic tools for creating parallelism, something that is essential for utilizing
modern hardware. This paper takes existing algorithms for fork-join parallelism
and work stealing and implements them in Rust. The resulting library provides a
safe and fast interface to a fork-join thread pool with low work overhead and a good
ability to scale up to many processors.
Inspiration for the implementation done during this project comes partly from Cilk,
a work stealing fork-join framework for C, but also from other, more modern papers
within the same topic.
Three main types of algorithms that fit fork-join parallelism are identified and
discussed in this report. This thesis and the design and implementation of ForkJoin,
focuses on providing a simple framework for working with these different algorithms,
in spite of their internal differences.
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1
Introduction

1.1 Background

Today it is common knowledge within the computer science community that the
way to speed up computations is to make them parallel and make use of the many
cores that modern processors have. However, writing parallel software is difficult,
since it is complex to avoid deadlocks and race conditions, as described by Sutter [1].
Much of what makes it difficult is shared state, where multiple threads of execution
access the same memory location. If a thread writes to a memory location at the
same time as another thread reads or writes to it, content will not be consistent and
likely produce an error. [2]
There are many ways to make programs parallel, some trade control for safety

and others only work for very specialized algorithms. No silver bullet for parallelism
exists. Different algorithms might be able to make use of different paradigms and
styles. Sometimes multiple styles can be used together, but no generic solution exists
for parallelizing any algorithm. [3]

1.1.1 The three layer cake

Parallelization comes in many forms, each solving different problems and providing
different benefits. However, these different styles of parallel programming can clash
with others and create problems if not used correctly together with each other. If
used correctly the use of multiple different styles can increase performance. [3]
In the paper by Robison and Johnson, titled Three Layer Cake for Shared-Memory

Programming, an approach to parallelization is proposed that involves three styles of
parallelism arranged in three hierarchical layers. The styles introduced are message
passing, fork-join and SIMD. The paper argues that the styles should be used with
message passing at the top followed by fork-join, with SIMD at the bottom. The
hierarchy means that a layer can use parallelization of layers below itself. The main
reason for the hierarchy is that the more restrictions one applies to a computation
model, the easier it becomes to reason about how it works at the same time as
it becomes less expressive. As such, the least expressive is placed in the bottom
where it is easy to reason about it and to use in other, higher, styles without losing
correctness guarantees. [3]

1



1. Introduction

1.1.2 The Rust language

Rust (see [4]) is aiming to be a modern, safe and fast systems programming language.
Rust is safe from data races between its threads and it is easy to write concurrent
message passing programs in it. The drawback is that it only provides kernel threads
as a concurrency mechanism. Threads are very low level and are difficult to use
directly for parallelizing algorithms. As described in the Theory chapter, general
purpose operating system threads introduce too much overhead to be suitable for
fork-join parallelism and other styles that handle many small units of computation.
In the library repositories for Rust there are libraries for thread pools and for

lightweight threads with much less overhead than kernel threads. These libraries
make it possible to spawn lightweight tasks and parallelize programs. However bare
threads are, as described, very low level and does not allow algorithms to easily be
parallelized.
The topic and goal of this thesis is set partly because of the thoughts and wishes

of the project manager of Rust itself, Nicholas Matsakis. Matsakis writes on his
blog [5] about Rust’s lack of, and need to implement, parallelization primitives. In
the blog post he writes about the three layer cake [3], presented earlier and about
how he thinks the three layer cake approach will suit Rust perfectly. Matsakis has
experimented with some APIs for fork-join1 and in personal communication2 he has
stated that this is still an unsolved problem. [5]

1See Rayon under section 3.1.2
2Lars Bergstrom, this project’s advisor, has been in contact with Matsakis about suitable

master’s thesis topics within Rust.
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1. Introduction

1.2 Purpose and goals

The goal of this project is to provide Rust with one of the missing layers in the three
layer cake model, and thus to implement tools to simplify parallelizing applications
in Rust. The tools to be created include primitives for high performance fork-join
parallelism. These tools should allow developers to easily create applications in Rust
that are highly parallel, memory safe and run with high performance.

1.3 Scope and limitations

Work stealing is a scheduling strategy where idle worker threads steal work from
busy threads to perform load balancing. Many papers have been published on work
stealing [6, 7, 8, 3, 9, 10, 11, 12] and its internal data collection, deque [13, 12,
8]. This project does not invent new techniques for making work stealing fork-join
effective, but instead it explores how to use many of these existing techniques and
algorithms to create an effective and fast fork-join library in Rust. It is particularly
interesting to implement in Rust since the language has a quite special approach to
shared state, see section 2.6 of the theory chapter.
The message passing layer will not be in the scope of this project since it is

already implemented. Message passing is one layer in the three layer cake, but
Rust contains a high performance implementation of channels that make this layer
already available as a way to parallelize Rust applications.
The last layer in the cake, SIMD, will not be reviewed in this thesis. In the library

repositories for Rust there are already a couple of SIMD libraries. No work will be
directed towards testing these libraries and evaluate if they provide what is needed
for the three layer cake model.
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2
Theory

Implementing tools for fork-join parallelism in Rust require a good theoretical ground
in both Rust and parallelization. There are many papers about fork-join implementations
in other languages, and these build the foundations for the tools that this thesis
will create for Rust. This chapter will present the research that has been done on
parallelism and what is special about Rust and its memory model.

2.1 Fork-Join

Fork-join is a parallelization style where computations are broken down into smaller
subcomputations whose results are then joined together to form the solution to the
original computation. Splitting of computations is usually done recursively, and the
parallelism comes from the property that the subcomputations are independent and
solving them can be done in parallel. The computations and subcomputations will
be called tasks and subtasks throughout this thesis. [12]
One example of an algorithm that can be implemented in the fork-join style is a

recursive algorithm for finding the n:th fibonacci number. Finding the n:th number
consists of finding the two previous numbers, n − 1 and n − 2, and adding these
together. Finding the two previous numbers can be done in parallel and represents
the fork. Joining is represented by adding the two results together. This algorithm is
recursive because finding number n−1 consists of forking and finding the (n−1)−1
and (n− 1) − 2 numbers etcetera.
Fork-join can be implemented on any system supporting starting subtasks in

parallel and waiting for their completion. However, fork-join tasks require very
simple scheduling, and they never block except when waiting for subtasks. The
simplicity in the tasks make general purpose threads with extensive support for
bookkeeping around blocked threads add unnecessary overhead. Tasks in fork-join
are usually small and execute for a short period of time, thus the scheduler needs to
have a minimal overhead to not slow down the entire computation noticeably. [12]
Many languages have support for fork-join parallelism in one way or another. In

C one can for example use the popular Cilk library described in section 2.3 or the
more general OpenMP [14] multiprocessing API. In Java it is possible to use the
FJTask library by Lea [12], which is implemented with inspiration from Cilk and
works in a similar way. When it comes to functional programming, Haskell has a few

5



2. Theory

tools for fork-join parallelism. One tool is the Par monad as described in a paper
by Marlow et al. [9], which implements mechanisms for deterministic parallelism in
Haskell as well as a complete work stealing scheduler to be used with it.
The different tools for parallelism work a little bit different, and even though

they all enable fork-join parallelism they do so in slightly different ways and offer
different expressiveness. Cilk only provides a small set of extra keywords on top
of ordinary C code. The main keywords in Cilk are cilk, spawn and sync which
mark a function as a Cilk procedure, spawn off a parallel computation and wait
for all parallel computations to finish (join) respectively. These keywords allow a
Cilk procedure to split up control flow in any number of independent threads for
parallel execution and then join the control flow again. An implicit join is forced on
the return of a Cilk procedure, guaranteeing that the control flow is joined and a
call to a Cilk procedure will never leave work or running tasks in the system when
returning. Java’s FJTask works very similar to Cilk, since it was heavily inspired
by it. It allows splitting of control flow and force joining before returning, just like
Cilk. [8, 12]
The Par monad by Marlow et al. is more expressive than Cilk and FJTask.

The library allows the programmer to express a dynamic data flow graph with
multiple listeners for each independent task and can also express producer-consumer
parallelism with actors that process messages from each other. In the paper it is
demonstrated that it is easy to build algorithmic skeletons that provide functionality
specialized for different needs. An example of an algorithmic skeleton from the paper
is a divide and conquer skeleton that makes it easy to implement all the algorithms
that will be introduced as examples for fork-join algorithms later in this thesis. [9]
OpenMP [14] is another framework for parallelism. It is available for C, C++

and Fortran. The framework consists of a number of compiler directives and library
routines that allows the programmer to create both task and data parallelism.
OpenMP is much lower level than Cilk and while it allows fork-join parallelism it can
also be used for other forms of parallelism. While Cilk provides a very limited set of
operations and a clear distinction of what data belongs to what task, OpenMP has
many directives for forking control flow in different ways and leaves control over data
sharing to the programmer. Managing access to data and what should be accessible
where is up to the programmer to define, and is not limited by the framework. [15]

2.2 Work stealing

Work stealing is an algorithm used for scheduling tasks between threads. The
algorithm was first introduced by Sleep and Burton back in 1981 [6], and works
by letting threads which run out of work steal units of work (tasks) from the other
threads. Each thread has its own double-ended queue (deque) where it stores tasks
ready for execution. When a thread finishes execution of a task, it places the

6



2. Theory

subtasks spawned by that task, if any, on the bottom1 of the deque, then it fetches
the next task for execution from the bottom of the deque. If a deque becomes empty
and the associated thread runs out of work it tries to steal tasks from the top1 of a
randomly selected deque belonging to some other thread. [12]
A property of the recursive divide and conquer algorithms is that they generate

large tasks first and split them into smaller tasks later. Thus the oldest tasks, which
are located closer to the top of the deque than newer tasks, are likely to be the
largest units of work. Because of this a stolen task is likely to generate a lot of
work for the thief, reducing the number of steals and thus reducing communication
between the workers. Reducing the amount of communication between threads is
desired since that includes synchronization, which is expensive. The splitting of
tasks is something that continues during the run of the program, not just in the
beginning of the computation. A task can be executed at any time, and it is during
the run of this task that subtasks are forked. [12]
One of the benefits with work stealing is the trait that worker threads only

communicate when they need to. The contrast is work sharing algorithms where the
threads that are producing more tasks schedule them on the other threads. Making
threads keep all produced tasks for themselves and only interact with other threads
when needed improves performance, cache behavior and reduces the need for locking
and other synchronization. [16]

2.2.1 Deque

A double-ended queue, a deque, is a data type representing an ordered collection,
and is similar to a normal queue. The main difference from a queue is that in a
deque, items can be added and removed from both ends of the collection.
In work stealing, a deque is more specialized than the general deque. The bottom

of the queue, where both inserting and removing of items are allowed, can only be
used by the thread owning the deque. The thread owning the the deque use it as
a stack rather than a queue. The top1 of the queue, where only removal (stealing)
of items is allowed, can be accessed by any thread wishing to steal tasks. The goal
for a good work stealing deque implementation is to be able to let threads interact
with the deque in a thread safe way that adds minimal synchronization overhead.
Synchronizing is expensive, and since the deque is so heavily used by the worker
threads it needs to introduce as little overhead and waiting for other threads as
possible. [13]

2.3 Cilk

Cilk is a runtime system for fork-join parallelism that uses a work stealing load
balancing algorithm which is provably efficient. Cilk is implemented as a Cilk-to-C

1The front and back of a deque is called its bottom and top in the paper by Chase and Lev
[13], and that is the terminology that will be used in this thesis.
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2. Theory

source-to-source translator and it produces C as its output which is later linked with
the Cilk runtime to produce a program with efficient fork-join capabilities. [8]
There are many existing versions of Cilk. This paper will mostly use and discuss

the functionality and implementation of Cilk-5, the latest open source version of the
system at the time of the writing of this report.
A multithreaded Cilk program is built up of procedures and threads that together

build a computation tree shaped as a directed acyclic graph (DAG). A Cilk procedure
is a unit of work that can spawn subtasks, wait for their result and return a value. A
thread in Cilk is a part of the procedure, the longest sequence of instructions ending
with spawning a subtask, waiting for a subtask or returning from the procedure. [8,
3]
Threads in Cilk are never allowed to block, this follows directly from their definition:

they are the longest sequence of instructions that do not block. Since a thread is not
allowed to block, a join is not really waiting for the children to complete. Instead
a join compiles down to a successor thread that receives the return values of the
children and is started when all children have completed. [7]
As long as all processors are busy, the execution path of a Cilk calculation is

identical to the serial version of the algorithm. Spawning of a child directly executes
the child instead of putting it in the queue. When Cilk reaches a spawn statement
it suspends the parent and directly executes the child. While the child is running
the parent can be stolen by other processors. If the child is done executing before
the parent has been stolen the processor simply continues to execute the parent,
allowing an execution path identical to the serial program. [3]

cilk int fib (int n) {
if (n<2) return n;
else {

int x, y;
x = spawn fib (n-1);
y = spawn fib (n-2);
sync;
return (x+y);

}
}

Listing 1: Example implementation of fib in Cilk. Finding the n:th fibonacci
number in a recursive and parallel way. The code is an exact copy of the
demonstration code from the Cilk paper [8].

Listing 1 is a copy of the code used in the Cilk paper do demonstrate how Cilk
can be used to find the n:th fibonacci number recursively and in parallel. This
algorithm will be used throughout this report to demonstrate how to use different
fork-join libraries and frameworks for creating parallelism. The cilk keyword is

8



2. Theory

used to mark a function as a Cilk procedure. The spawn keyword creates a subtask,
or rather makes the current task available for stealing and directly starts executing
the subtask. Lastly the sync keyword is used for joining and the code after the
sync statement will be executed when all subtasks spawned before it have finished
executing.

2.4 Measuring performance

The two concepts used in Cilk to measure algorithm execution speed and efficiency
is work and critical-path, but only the work will be introduced here. TP is defined
as the execution time of a computation on P processors. T1 then is the time it takes
to execute the parallel code on one processor and becomes the work required by the
computation. Further, the execution time of the corresponding serial computation
running without Cilk code, but with the same algorithm, is denoted TS. Using this
measurement the work overhead is defined as T1/TS, and becomes an important
measurement of the overhead that will be added to a computation when converted
to use the parallelization library. One more term used in the Cilk paper and that
will be used here to discuss algorithms and their properties is parallel slackness. The
term parallel slackness means that the executed algorithm has an average parallelism
considerably higher than the number of available processors used to run it. Thus
being able to fully use all available processing power. [8]

2.5 Memory errors

When choosing a programming language developers usually have to choose between
managing the memory manually or having a built in garbage collector do it for them.
Manually managing memory, like in C/C++, provides a certain amount of control.
Manually managing memory gives the ability to specify exactly when to allocate and
free as well as what to do with it. This freedom comes at the cost of responsibility
and error prone code. On the other hand, garbage collectors mitigate the common
errors, but at the cost of lost control and usually with some performance penalty.
Most modern languages are more or less making a tradeoff between control and
safety. [17]
One error that may arise when manually managing memory is use after free, also

called a dangling pointer. Use after free occurs when a reference is taken to some
data, and the reference is kept alive even though the data goes out of scope and
is freed. After the free the reference points to invalid memory and usage of the
reference will yield undefined behavior. [17]
Another common memory problem is data races in parallel code. A data race is

when multiple threads reference the same data and one thread writes to that data
at the same time as another thread reads or writes to it. During a write operation
the data is in an inconsistent state and another read or write of that data will yield
undefined behavior. [17]

9



2. Theory

2.6 Rust

Rust is a new open source programming language spearheaded by Mozilla. The
language is a systems programming language aiming to be useable in every place
where C and C++ is used today. In contrast to most existing systems programming
languages, Rust provides many high level elements such as closures, pattern matching,
algebraic datatypes and most notably safe memory management without a garbage
collector. [4, 18]
Rust is avoiding the tradeoff between control and safety, described in section 2.5,

and instead gets both by taking another approach to memory safety. The goal is
to get the performance and control of C/C++ and statically guarantee that the
program cannot use the memory in the wrong way. Rust statically checks for
memory correctness at compile time and introduces zero runtime overhead while
still guaranteeing memory safety. [18, 17]
Rust solves the use after free problem by introducing the concepts of ownership

and borrowing. Ownership means that there is always a clear owner of a piece of
data, and when the data goes out of scope, meaning the owner is done with it, Rust
automatically frees it. Rust can automatically free the data since the compiler has
already checked that any references created to it has gone out of scope before the
data itself. Borrowing in Rust is the act of creating a reference to a piece of data.
The compiler checks that references always go out of scope before the data they
are pointing to, giving an error if it does not, thus guaranteeing that references will
never be dangling pointers. [18]
Rust solves the issue of data races by only allowing mutation2 of data when no

aliases for that data exist. Either the owner of the data can mutate it or someone
holding the exclusive mutable reference to it. A mutable reference to data can be
created when no other references exist, and during the lifetime of that reference no
other references can be created to that same data. [17]
Ownership and borrowing, how ownership is transferred between functions, is

illustrated in listing 2. In the listing, on row 2, a vector is created and it is owned
by the variable vec. Since vec owns the data it can mutate it, shown by a push at
line 3. On lines 6 and 7 two references to the data are created with the &-operator
and one is sent to the function borrow. The function borrow has now borrowed the
data in vec, but vec is still the owner. When borrow returns, the reference goes
out of scope, the same happens for vecref one row later. When all references have
gone out of scope the data is no longer borrowed by anyone. The two references are
a demonstration of the possibility to simultaneously create more than one reference
to the same data, as long as no reference is mutable.
On line 10 of listing 2 a new mutable reference is created with the &mut-operator,

and the data in vec is lended again. While data is borrowed mutably no other
references to that data can exist, in contrast to non mutable references, where any

2Changing the data by writing to it.
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number of concurrent borrowing can occur. When borrow_mut returns the reference
goes of scope and vec is not borrowed by anyone.
When the function foo of listing 2 reaches line 11 and the call to take occurs,

ownership is transferred to the new function and the variable my_data is now the
owner of that data. Ownership is transferred because take is defined to take its
argument by value rather than by reference. If a type taken by value has been
marked as copyable, a copy of the argument is created and sent to the function,
yielding two instances of the data with two separate owners. Without being marked
as copyable the existing object is moved and ownership is transferred. When trying
to use vec after the call to take the compiler will give an error saying that vec has
been moved and can no longer be used, this is because take took over the data and
freed it when it returned. Thus vec would have been a dangling pointer if used after
take. [17, 19]

1 fn foo() {
2 let mut vec = Vec::new();
3 vec.push(13);
4

5 { // Two references are created and ‘vec‘ is lended to ‘borrow‘
6 let vecref = &vec;
7 borrow(&vec); // Ref goes out of scope when borrow returns
8 } // vecref goes out of scope here
9

10 borrow_mut(&mut vec);// Lend ‘vec‘ mutably to ‘borrow_mut‘
11 take(vec); // Ownership transferred to ‘take‘
12 vec.push(37); // error: use of moved value: ‘vec‘
13 }
14 fn take(mut my_data: Vec<i32>) {
15 my_data.push(99); // ‘my_data‘ is owner, can perform mutation
16 } // ‘my_data‘ goes out of scope and will be freed here
17

18 fn borrow(vec: &Vec<i32>) {
19 vec.push(10); // error: cannot borrow immutable borrowed ...
20 let element = vec.get(0); // Read is possible.
21 } // Borrowing ends, but ‘vec‘ continues to live in ‘foo‘
22

23 fn borrow_mut(vec: &mut Vec<i32>) {
24 vec.push(0); // Mutable borrow of ‘vec‘, can mutate.
25 }

Listing 2: Examples of ownership and borrowing in Rust
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3
Methodology

The library for fork-join parallelism created during this project has been named
ForkJoin [20]. This chapter will describe how it was developed and designed.

3.1 Other implementations

Inspiration for the API and the implementation of ForkJoin has been taken from
both Cilk and other Rust libraries solving similar or other problems. The following
sections describe these Rust libraries, what problems they solve and how.

3.1.1 Servo’s WorkQueue

The web browser engine Servo [21] is built in Rust and aims to deliver performance
far above today’s browser engines. Servo claims to rethink the browser engine design
from the ground up to optimize for power efficiency and maximize parallelism. One
component of Servo is a built-in work stealing fork-join component consisting of a
deque implementation and a set of classes for running and managing worker threads.
The class WorkQueue is the component providing the API to the user.

struct WorkUnit<QueueData, WorkData> {
pub fun: extern "Rust" fn(

WorkData,
&mut WorkerProxy<QueueData, WorkData>),

pub data: WorkData,
}

// push looks the same for WorkQueue and WorkerProxy
fn push(&mut self, work_unit: WorkUnit<QueueData, WorkData>)

Listing 3: API signature of Servo’s WorkQueue

The public API of WorkQueue is shown in listing 3. The only method to add
tasks (WorkUnits) for computation is through the push method. Both the top level

13



3. Methodology

submitter of the original computation and the subtasks inside the computation use
this push method. The task functions themselves, represented by WorkUnit.fun,
return nothing and there is no way for a task to get the results of submitted subtasks.
Listing 4 contains code for calculating the 40th Fibonacci number using the

WorkQueue. The algorithm increments a global variable by one every time the
algorithm hits the base case, as seen on line 19. After the calculation terminates
the global counter is read, yielding the result.

1 fn main() {
2 let n = 40;
3 let threads = 4;
4 let shared_variable = AtomicUsize::new(0);
5 let mut wq: WorkQueue<AtomicUsize, usize> =
6 WorkQueue::new("name", threads, shared_variable);
7

8 wq.push(WorkUnit{fun: fib, data: n});
9 wq.run();

10 let result = wq.data.load(Ordering::SeqCst);
11 wq.shutdown();
12 }
13 fn fib(n: usize, p: &mut WorkerProxy<AtomicUsize, usize>) {
14 if n >= 2 {
15 p.push(WorkUnit{fun: fib, data: n-1});
16 p.push(WorkUnit{fun: fib, data: n-2});
17 } else if n > 0 {
18 p.user_data().fetch_add(1, Ordering::SeqCst);
19 }
20 }

Listing 4: Finding the n:th fibonacci number using Servo’s WorkQueue with 4
kernel threads.

Servo’s component does not allow tasks to return any value to their parent task.
Everything a task can do is to modify a shared variable or submit subtasks to be
executed in parallel. Thus the component does not really allow any join to be
performed, rather forking only. WorkQueue does not work well for reduce style1 fork-
join algorithms. As one might expect the implementation in listing 4 is extremely
slow. In practice what happens is that an extremely large number of lightweight
tasks try to increment one single shared value. Thus, the WorkQueue API might be
more useful for algorithms in the in-place mutation style1 or algorithms where the
side effects of the execution is the goal.

1An explanation of this under section 3.3.1
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3.1.2 Rayon

As stated in section 1.1.2, one of the core developers of Rust, Nicholas Matsakis,
has looked into parallelization in Rust. At this time he developed a proof-of-concept
library doing fork-join parallelism called Rayon. It does not implement work stealing
or any kind of load balancing, it simply spawns one kernel thread per submitted task.
It mostly shows how he wanted the API to look.
Listing 5 shows the public API of Rayon. A single function, execute, that takes

an array of closures with mutable environments. Rayon spawns one thread for each
closure, wait for all threads to terminate and then return control to the user.

pub type TaskBody<’s> = &’s mut (FnMut() + Send);
pub fn execute<’s>(closures: &’s mut [TaskBody])

Listing 5: API signature of Rayon

The API of Rayon makes it difficult to convert to a thread pool implementing
work stealing and lightweight tasks on top of a pool of kernel threads. Listing 6
shows what a very naive and basic implementation of finding the n:th fibonacci
number would look like. Here the kernel thread running fib would have to block
while waiting for the call to execute to finish, since the mutable closures refer to
variables on the stack (r1, r2). Thus, it looks difficult to move away from kernel
threads to lightweight tasks and keep a similar public API and usage pattern.

fn fib(n: usize) -> usize {
if n < 2 {

n
} else {

let mut r1: usize = 0;
let mut r2: usize = 0;
execute(&mut [

&mut || r1 = fib(n-1),
&mut || r2 = fib(n-2),

]);
r1 + r2

}
}

Listing 6: Sample implementation to find the n:th fibonacci number in a recursive
fashion using the Rayon library.
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Lessons learned from looking at Rayon include blocking of threads and the splitting
of code before and after the forking. Rayon lets the user execute subtasks inside the
task itself and use the results in the same function. A design like Rayon’s forces the
library to save the stack in some way that allows the parent to continue execution
after all the subtasks have completed. A simpler solution is to let the library user
break their function into two and let the first one return the forking and the second
be called with the forking results.

3.2 Deque

An efficient and fast implementation of the double-ended queue is important for
making the work stealing fast. As described in section 2.2.1, an implementation
with little synchronization overhead can be vital for the performance of the work
stealing algorithm. Such an implementation is demonstrated in the paper by Chase
and Lev [13].
The deque implementation used in ForkJoin works as described by Chase and Lev

[13], and is available in the Rust package repositories. The implementation is not
created as part of this thesis or by the author of this thesis, but the code has been
maintained during this project to keep it working as the Rust language and compiler
changed prior to the stable release of the language.

3.3 API design of ForkJoin

The main functionality of the ForkJoin library is to manage a thread pool onto which
tasks can be submitted and computed results can be fetched. Implementation of the
ForkJoin library was done iteratively and the API together with it. The interface
was adapted during the entire project to facilitate and enable the implementation
of new test and benchmark algorithms.
The API was designed by looking at what functionality other fork-join libraries

provided and what different fork-join algorithms needed. Three main types of
algorithms that suit fork-join were identified. In this paper the different styles are
called reduce style, in-place mutation style and search style. The API and internal
design was formed after the requirements of these styles.
Other than the algorithm styles used as a reference, the design was based on

the expressiveness and design of Cilk. More specifically the way tasks can fork out
in an arbitrary number of independent tasks that later have to be joined together
before the task itself returns. A design like this makes it possible to model every
computation as a DAG and the execution becomes fairly easy to reason about and
get an overview of. Unlike Cilk, ForkJoin has a limitation in the forking, making
it possible to only fork and join a task once. In Cilk it is possible to fork, join and
then fork again within the same Cilk procedure, something that is not possible in
ForkJoin.
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There were multiple reasons for selecting Cilk as the reference implementation
and source of inspiration for ForkJoin. One reason was that the paper about the
three layer cake, which was a large part of the background and motivation behind
this thesis, talk about Cilk when discussing the fork-join layer of the cake. Another
reason was that Cilk provides a relatively simple and limited way to express fork-join
parallelism that still provides the functionality required by most algorithms suitable
for this style.

3.3.1 Algorithm styles

Reduce style is where the algorithm receives an argument, recursively computes a
value from this argument and returns exactly one answer. Examples of reduce style
include recursively finding the n:th Fibonacci number and traversing a tree structure
by summing up values in each node. Characteristics of the style is that the algorithm
does not need to mutate its argument and the final value is only available after all
subtasks have been executed.
In-place mutation style algorithms receive a mutable argument, recursively modifies

this value and the result is the argument itself. Sorting algorithms that sort their
input arrays are cases of in-place mutation style. Characteristics of the style is that
they mutate their input argument instead of producing any output.
Search style algorithms return results continuously and can sometimes start without

any argument, or start with some initial state. The algorithm produces one or
multiple output values during the execution, possibly aborting anywhere in the
middle. Algorithms where leafs in the problem tree represent a complete solution to
the problem2, for example nqueens and sudoku solvers, are search style algorithms.
Characteristics of the style is that they can produce multiple results and can abort3

before all tasks in the tree have been computed.

3.3.2 The ForkPool class

The ForkJoin library exposes its API through the class ForkPool. A ForkPool is a
class that manages the threads which are performing the actual work, and is created
with the number of worker threads to use. Listing 7 shows ForkPools interface, with
its two methods, and lines 5-6 of listing 8 show how to create a ForkPool that is
ready to accept work.
Computations are submitted to the ForkPool by creating an AlgoOnPool via the

ForkPool::init_algorithm method, and calling schedule on that object. Thus
a ForkPool is never used directly, except for creating AlgoOnPool instances which
are then used to schedule the actual work.

2Unless the leaf represents a dead end that is not a solution and does not spawn any subtasks.
3The current version of ForkJoin does not support aborting.
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1 type TaskFun<Arg, Ret> = extern "Rust" fn(Arg)
2 -> TaskResult<Arg, Ret>;
3 type TaskJoin<Ret> = extern "Rust" fn(&[Ret]) -> Ret;
4 type TaskJoinArg<Ret> = extern "Rust" fn(&Ret, &[Ret]) -> Ret;
5

6 enum TaskResult<Arg, Ret> {
7 Done(Ret),
8 Fork(Vec<Arg>, Option<Ret>),
9 }

10 struct Algorithm<Arg: Send, Ret: Send + Sync> {
11 pub fun: TaskFun<Arg, Ret>,
12 pub style: AlgoStyle<Ret>,
13 }
14 enum AlgoStyle<Ret> { Reduce(ReduceStyle<Ret>), Search }
15 enum ReduceStyle<Ret> { NoArg(TaskJoin<Ret>), Arg(TaskJoinArg<Ret>) }
16

17 impl<Ret> Job<Ret> {
18 pub fn try_recv(&self) -> Result<Ret, ResultError> {...}
19 pub fn recv(&self) -> Result<Ret, ResultError> {...}
20 }
21 impl<...> ForkPool<’a, Arg, Ret> {
22 pub fn with_threads(nthreads: usize)
23 -> ForkPool<’a, Arg, Ret> {...}
24

25 pub fn init_algorithm(&self, algorithm: Algorithm<Arg, Ret>)
26 -> AlgoOnPool<Arg, Ret> {...}
27 }
28 impl<...> AlgoOnPool<...> {
29 pub fn schedule(&self, arg: Arg) -> Job<Ret> {...}
30 }

Listing 7: The signatures of the public methods for creating a ForkPool, instantiate
an algorithm on it and schedule, where work is submitted to the ForkJoin library,
together with the main types of the public API.

3.3.3 The Algorithm struct and AlgoOnPool class

A fork-join algorithm is represented in the library by an instance of the Algorithm
structure. The structure’s definition is shown in listing 7, and includes a task
function pointer and an algorithm style enum. As described in section 3.3.1, the
style is one of reduce, search or in-place mutation. In ForkJoin, in-place mutation
is represented by the reduce enum, as these are treated in the same way by the
library. A reduce style algorithm also specifies the type of, and a pointer to, the
join function.
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The AlgoOnPool class is the representation of a specific algorithm on a specific
ForkPool. The class is a thin wrapper around the ForkPool and contains an
Algorithm instance, which is the information needed to convert an argument to
a Task that can be executed on the pool. The class only has one method,
AlgoOnPool::schedule, that takes an argument of the type specified as Arg on the
algorithm, and returns immediately with a Job.

3.3.4 The Job class

A Job is a handle to a computation, through which the result4 can be read. The
class has two methods, shown in listing 7, that allow results to be fetched. The two
methods are similar and the only difference is that recv blocks until a result arrives
and try_recv returns immediately no matter if there is a result available or not.
The destructor of Job blocks and waits for the background computation to complete

before proceeding. Thus, the owner of a Job object will be blocked if it lets the
handle go out of scope before the computation has finished. The Job cannot take the
shortcut of killing the worker threads to achieve its goals, the pool needs to be kept
alive since other jobs might occur simultaneously or be scheduled in the future. The
current design of the Job and its requirement to live until the computation completes
is a step towards a design that was intended, but not completed. Section 3.5.1
discusses how the type system of Rust forces references in task arguments to live
longer than the entire ForkPool. However, the goal is to create a design where the
Job bears the responsibility of the lifetime and the argument’s lifetime only needs
to outlive the Job, not the entire pool. Also, if an abort mechanism is implemented
in the future it will allow the destructor of Job to cancel the computation and can
thus return almost instantly without leaving tasks in the pool that keeps it busy.

3.3.5 Tasks

At a high level the fork-join problem can be viewed as a tree with every node
represented in ForkJoin by a Task. If the system is viewed on a lower level the
problem is instead a directed acyclic graph (DAG) with every Task representing
two nodes. On the DAG level a task first represents the forking node splitting the
problem into multiple subproblems (subtasks). Secondly the task represents the join
node that collects the results of the subtasks and propagates the results toward the
top join node represented by the root task of the computation. A possible execution
path of the problem tree is illustrated in figure 3.1. It is important to note that
figure 3.1 is not cyclic, the task and join functions and just drawn together in pairs
to show that they are related, not connected. The figure illustrates the computation
as both the tree level and the DAG level.
Tasks can either compute to a base case in the algorithm or fork into multiple

subtasks. A task indicates said choice by returning one of two alternates from the
4Possibly multiple in the search style algorithms that can return multiple results anytime during

the execution.
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Figure 3.1: An illustration of a computation tree forking and later joining results
together. This is an illustration of a reduce style or in-place mutation style
algorithm.

enum TaskResult from their task function. The values are Done(Ret) and
Fork(Vec<Arg>, Option<Ret>) respectively.
The design of the task shows the user that the functions are not allowed to block

and how to split up the code. A first function returns either a computed value
or an instruction for forking. Since the task functions provide no way of forking or
propagating values up before returning, users will have to return to continue working
through the DAG computation.

3.3.6 Example usage

A demonstration of how an algorithm can make use of fork-join parallelism with the
help of the ForkJoin library is shown in listing 8, where a recursive implementation
of finding the n:th fibonacci number is implemented.
The base of the algorithm is its task and join functions. They are named fib_task

and fib_join in the code. The join function simply sums up the values of all the
subtasks it was spawned together with. The task function either returns Done(value)
on the base case or Fork(arguments_to_subtasks). In fib, the base case is when
the remaining work is so small that it is more efficient to run a serial implementation
than to fork. Forking is done in all cases that is not the base case, and results in
two more tasks that can be executed in parallel.
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1 pub fn fib(n: usize, threads: usize) -> usize {
2 let forkpool = ForkPool::with_threads(threads);
3 let fibpool = forkpool.init_algorithm(FIB);
4 let job = fibpool.schedule(n);
5 job.recv().unwrap()
6 }
7

8 const FIB: Algorithm<usize, usize> = Algorithm {
9 fun: fib_task,

10 style: AlgoStyle::Reduce(ReduceStyle::NoArg(fib_join)),
11 };
12 const SERIAL_THRESHOLD: usize = 20;
13

14 fn fib_task(n: usize) -> TaskResult<usize, usize> {
15 if n <= SERIAL_THRESHOLD {
16 TaskResult::Done(sequential_fib(n)) // Small task
17 } else {
18 TaskResult::Fork(vec![n-1,n-2], None)
19 }
20 }
21 fn fib_join(values: &[usize]) -> usize {
22 values.iter().fold(0, |acc, &v| acc + v)
23 }

Listing 8: Sample code for creating a work stealing thread pool in the ForkJoin
library, submitting a job to it and waiting for the result. The code shows how a task
is divided into the task function that can return or fork and the join function that
joins together results from a fork.

The function fib in listing 8 shows how the ForkJoin library is used with an
algorithm implementation. In detail, it shows how a thread pool is created via the
ForkPool class, and how a computation of the n:th fibonacci number is submitted
to the pool and the result returned when available. The first line of the function
will create a ForkPool, that will start the thread number of worker threads in
the background. The next line creates the AlgoOnPool instance that allows fib
computations to be carried out on that specific pool. The third row schedules a
computation on the pool, this is where the threads start working in the background
and when fib_task and fib_join will start getting called by the pool. On the last
line of the function, the Job::recv function is called and execution will block until
the computation is done and a result is returned.
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Figure 3.2: An illustration of worker threads, their supervisor and the different
handles they have to the deques. The supervisor has a deque unto which it pushes
newly scheduled tasks. Every worker has a steal handle to every other workers deque
and one steal handle to the supervisors deque. Mostly the workers use their private
worker handle to their own deque to pop tasks to execute and push tasks that are
forked. However, when a deque becomes empty and the worker have no tasks, it
tries to steal from a randomly selected steal handle.

3.4 ForkJoin internals

The top handle to the thread pool is the ForkPool. In the background the ForkPool
creates a PoolSupervisor that, in turn, spawns the given amount of worker threads.
When work is scheduled on the ForkPool it sends the task to the PoolSupervisor.

The supervisor puts the task on its own deque, from here it will automatically be
stolen and executed by an idle worker thread. If the pool is idling, meaning all
worker threads are waiting for a message from the supervisor, then the supervisor
wakes all of them up, so they start stealing and execute tasks.

3.4.1 Work stealing

Load balancing in the thread pool works by letting worker threads without any tasks
to execute steal tasks from busy worker threads. As soon as a worker thread runs
out of tasks to execute in the local deque it goes into stealing mode. An illustration
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of the relationship between workers can be seen in figure 3.2. Stealing will continue
until a task is successfully stolen or until all worker threads are in stealing mode,
thus guaranteeing there are no tasks left in the entire pool.
Stealing starts out at a random victim and then tries all the other victims. Each

worker thread has a steal handle to the deques in all the other worker theads in
the same pool and one to a deque owned by the pool supervisor, as illustrated in
figure 3.2. All steal handles are located in a vector in the worker thread’s structure.
First a random index in the vector is selected, stealing starts at this index. If stealing
fails it continues with the next steal handle in the vector, and iterates like this until
all handles have been tried once or a task was successfully stolen. One iteration
of the steal handles is called one steal round, a term used to describe the backoff
algorithm.
In stealing mode a backoff algorithm is active to prevent the worker thread from

creating heavy load while stealing. Between each consecutive steal round a counter
is incremented, and if the counter is above a hardcoded threshold the worker thread
goes to sleep for a short period of time before starting the next round of stealing.
Sleeping start off at 10 µs and is increased by 10 µs for every steal round. Both
the iteration counter and the sleep time is reset every time the worker thread enters
stealing mode.
The work stealing algorithm is also responsible for detecting when the thread

pool runs out of work, and stop all the worker threads when this happens. Before a
thread goes to sleep in the backoff algorithm it increments an atomic counter shared
by all the worker threads, and when the thread wakes up it checks the value of the
atomic counter. If the value is the same as the number of worker threads in the pool
it means all worker threads are currently sleeping, thus no worker threads have any
tasks. The thread then cancels the stealing and becomes idle, waiting for a message
from the pool supervisor. If the counter is less than the number of worker threads it
decrements the counter, thus removing itself, and then continues with the stealing
process.

3.4.2 Tasks

Tasks consist of an Algorithm instance, an argument and an object describing what
to do with the result of the computation, called the join. Executing a task includes
running the task function, located in the algorithm, with the supplied task argument,
then either propagating the result up the computation tree or forking down. If the
task function returns a TaskResult::Done(Ret) the execution has reached a leaf in
the computation tree and the result is handled according to the task’s join. If the
task function returns a TaskResult::Fork(Vec<Arg>, Option<Ret>) the worker
thread creates one subtask for every argument in the vector and pushes them onto
the local execution deque. Code illustrating forking for fib can be found in listing 8,
where the task forks on the arguments n-1 and n-2.
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3.4.3 Joining

Joining computed results works differently depending on the algorithm style. Search
style algorithms send their results directly to the Job handle through a channel in
the task’s join-field. Reduce style algorithms have a more complex mechanism called
the JoinBarrier.
When tasks in reduce style algorithms fork into n subtasks a JoinBarrier is

created for all the subtasks to deliver their results to. The JoinBarrier have a
preallocated vector of size n to store return values in. The barrier also has an
atomic counter initialized with the value n and indicates the number of missing
values. Each subtask is given a reference to this shared JoinBarrier and a pointer
to a unique position in the barriers result vector. Upon subtask completion the
resulting value is directly inserted into the memory position pointed to by the unique
pointer, and it then decrements the atomic counter in the barrier. When a task
detects that the counter reach zero it knows it is the last to complete and thus it
executes the task joining function given to the barrier from the parent task creating
it. The join function is being executed with the return value vector as argument.
The implementation of the JoinBarrier takes inspiration from how Cilk [7] collects
values from subtask closures.
Optionally one extra value can be passed directly from the task function to the

join function. The extra value is passed via the second argument in
TaskResult::Fork(Vec<Arg>, Option<Ret>). If the value is present and the algorithm
specifies ReduceStyle::Arg it will be stored in the JoinBarrier while the subtasks
are executed and later sent to the join function together with the results of the
subtasks.

3.5 API changes during the project

Just after studying other frameworks and solutions for fork-join parallelism there
was a plan and intended design for the ForkJoin library. Some of the ideas could not
be implemented within the timeframe of this project, for reasons described below.

3.5.1 Lifetimes of task arguments

There is an inherent problem with the planned design of the ForkJoin library
and the way lifetimes work in Rust. In Rust, if an object containing references
is created, the references must outlive the object containing them, so that the
object cannot possibly reference invalid memory. In a larger perspective the lifetime
restriction makes it impossible to submit tasks to a ForkPool when the tasks contain
references living shorter than the entire thread pool, because then the compiler
cannot guarantee that the pool does not try to dereference a dangling pointer.
Originally the plan was that a thread pool was set up when the program started
and lived until the program terminated, so that kernel threads would only have to
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be spawned once. Rust does not allow said design if the library should be allowed
to receive references with lifetimes shorter than the entire program without using
unsafe code that works around the restrictions.
What the lifetime restriction means in practice is that algorithms taking references

in their task arguments rather than ownership of the argument must create a new
ForkPool with a shorter lifetime than the referenced data. The problem occurs
with sorting algorithms, that take a mutable reference to the data rather than the
ownership of the vector.
Most other libraries with similar problems have limited their input to objects

without references living shorter than the the entire programs execution. A decision
was taken to allow ForkJoin to take references with arbitrary lifetimes despite the
problem described above, this because the goal to one day make it work around the
issue and provide the possibility to use references freely in the tasks.
The problem can be viewed as three requirements that are impossible to satisfy

at the same time:

1. Use Rust without unsafe code and stick to what the original type system
allows.

2. Allow data containing references with arbitrary lifetimes to be sent in and out
of parallel computations.

3. Use the same thread pool instance for computing all tasks, from the start of
the program until its termination.

As described above, these three requirements cannot be fulfilled at the same time
by the ForkJoin library. The current version of the library does not satisfy the third
requirement, since the compiler will not allow a thread pool living longer than the
references sent to it. Most other parallel libraries in Rust do not satisfy the second
requirement, forcing only owned data to be sent around. The goal for ForkJoin is
to satisfy the second and third requirement but not the first. The ForkJoin library
already uses unsafe code in many places, for example to allow mutable pointers
directly into the JoinBarrier’s result vector. Using unsafe code is not something
that should be avoided in Rust, but the amount of code that is unsafe should be
kept relatively low for easier debugging.
The lifetime restriction described is an interesting finding in this thesis and it

shows a case where Rust’s memory model stops the developer from doing what could
have turned into a memory error in other languages. Rust forces the developers to
find a safer solution to problematic code or mark it as unsafe and thus highlight the
code as a potential source of problems during future debugging.

3.5.2 Concrete types

As stated above, the initial design goal was to be able to create a ForkPool at the
start of the program and keep that same instance until program termination, letting
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all jobs that can benefit from fork-join use the same thread pool. Apart from the
problem of lifetimes and references in arguments described previously the design
goal was also not possible without unsafe code because of the strict type system.
A Task has generics to specify what type of argument it takes and what type the
return value has. The signature has this form: Task<Arg, Ret>. These types have
to be specified to a concrete type when using the Task. A WorkerThread contains
a deque with all its Tasks to be executed. Thus the WorkerThread needs to specify
input and output types of the tasks in its deque at creation. Part of the declaration
of the WorkerThread struct can be seen in listing 9.
The type restriction described above limits one instance of a WorkerThread to

one input type and one output type, thus making it impossible to use the same
WorkerThread for two algorithms that need different input or output types.

pub struct WorkerThread<Arg, Ret> {
// ...
deque: Worker<Task<Arg, Ret>>,
// ...

}
let x: WorkerThread<&Tree, usize> = /*...*/ ;

Listing 9: Parts of the definition of the WorkerThread struct to show how types
have to be concretely given on instantiation.

3.6 Test and benchmark algorithms

At least one algorithm in each algorithm style was implemented to test the ForkJoin
library’s performance and correctness as well as to demonstrate its expressivness and
ease of use. The algorithms were chosen after how well they represent each style,
how well known their algorithms are and on how much performance comparison
data was available from other fork-join libraries. The code for each algorithm can
be found in appendix A.1 of this thesis.

3.6.1 Switching to serial execution for small tasks

As described in section 2.3 of the theory chapter, it is important that a computation
generates a sufficiently large number of independent tasks, to achieve parallel slackness.
Parallel slackness requires that there are enough tasks to keep all worker threads
busy in order to fully utilize the available processing power. On the other hand, when
every worker thread has enough work, forking new tasks does not further increase
parallelism but rather creates more overhead. Therefore, to maximize performance a
fork-join algorithm should divide into enough tasks to create work for all processors,
but not much more.
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A common technique to balance the parallel slackness, and get good performance,
is to use a granularity threshold [12]. Implementing a granularity threshold means
that the algorithm, at some point, switches over to serial execution rather than
forking to more tasks. The technique only works for algorithms where a task can
determine approximately how much work there is left to do and decide if it is more
efficient to switch over to a serial version of the algorithm or not.

3.6.2 Fibonacci

Calculating the n:th Fibonacci number recursively falls into the reduce style category.
The algorithm includes close to zero work, almost only forking and joining overhead.
Therefore it is a good example to show the amount of overhead the tested library
introduces compared to a normal recursive function call or compared to other
parallelization libraries.
The fibonacci algorithm must have a granularity threshold where it runs serial

code instead of forks. Without the threshold the algorithm would generate a very
large amount of tasks containing almost no work to be performed, thus giving
unnecessarily high parallel slackness at the cost of performance.

3.6.3 Reduction of trees

Deep

Shallow

Hidden nodes

... ...
... ...

... ...
...

Figure 3.3: A tree where
some children are deep
trees and some not. A
good example showing
it is impossible to select a
threshold, without examining
the tree, that guarantee good
execution.

Running a reduce style algorithm on a tree
structure of unknown shape, like the one possible
to create with the data structure in listing 10,
poses a special challenge. The algorithm used
is very simple, iterating over a tree structure
summing up the values in each node. The problem
is with granularity and switching to serial code. In
the fibonacci algorithm a task can decide to run a
serial implementation of fib when the argument
is smaller than some threshold or a certain depth
of the problem tree has been reached. Thus it
avoids creating many small tasks that add more to
overhead than they gain in parallelism. However,
when the algorithm knows nothing about the
shape of the tree it cannot make a good judgement
about whether or not to switch over to a serial
algorithm or to fork into subtasks for an arbitrary
node. See figure 3.3 for an example of an
unbalanced tree. In this algorithm everything that
is known when inside a given node is the number
of direct children that node has and possibly how deep down the tree the node is
positioned, it knows nothing about the remaining depth. Thus switching to serial
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code might turn out to greatly reduce the parallelism if the node where the serial
code is started contained a majority of the entire tree.

pub struct Tree {
value: usize,
children: Vec<Tree>,

}

Listing 10: Definition of tree structure used in tree reduce algorithm.

3.6.4 Nqueens

The problem called nqueens can be implemented both as a reduce style algorithm or
a search style algorithm. In this thesis it is implemented as a search style algorithm
to provide an example of that style. The problem consists of placing n chess queens
on a chessboard of size n x n without any queen able to attack any other queen.
Implementing nqueens in the search style means sending a complete placement of
the n queens to the Job responsible for that computation as soon as it is found.
Implementing it in the reduce style would mean returning a vector of all valid
placements after all possible placements have been evaluated.
Cilk’s [7] performance benchmarks on nqueens is one aspect that makes it an

interesting algorithm to test. In the Cilk paper, a close to 1:1 performance ratio
between the serial code and the parallel code running on one thread is shown.
Reaching a ratio close to 1:1 means introducing little overhead in the parallelization
and thus shows an efficient implementation.
The ForkJoin implementation is not fully comparable with the Cilk implementation.

In Cilk the abort feature is used and the entire computation is canceled when the
first valid placement of queens is found. Since ForkJoin does not support aborting
a scheduled job the algorithm implemented in this project uses search style, but
benchmarks the time it takes to find all possible placements of queens and compare
it with a serial reduce style implementation.
Nqueens is the only algorithm in this thesis, besides sumtree, that demonstrates

forking into a variable amount of subtasks, instead of always forking into two
subtasks. A given task, that does not return a base case, forks into anything between
0 and n subtasks, where n is the size of the problem being computed. The algorithm
also demonstrates a dead end or a leaf of the computation tree not representing a
solution in the search style. A leaf in the computation tree of nqueens is either a
solution with n queens placed, or a task where x queens are placed and there is no
valid placement of queen x + 1. In such a dead end leaf the algorithm return the
fork value, but with zero fork arguments to indicate that no further work should be
done.
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3.6.5 Quicksort and Mergesort

Sorting an array of values and terminating with the sorted values located in the
same array is a perfect example of an in-place mutation style algorithm. Quicksort
and Mergesort are good candidates for illustrating this style of fork-join parallelism
since they both use a divide and conquer style approach dividing the values in two
parts and sorting the parts individually.
Both quicksort and mergesort have inherent problems that prevent them from

scaling linearly as more worker threads are added. Quicksort does a substantial
amount of work serially before the forking can start, and Mergesort needs a long
serial computation at the end of the algorithm.
Quicksort does not scale well because of the serial code in the start of the computation.

The algorithm starts by selecting a pivot element and then partitions all the elements
with respect to this element. After the partitioning is done the algorithm forks into
two tasks and the computation can continue on two threads. Since the first partition
involves reading every value in the input array and even moving some of them, this
step greatly reduces the algorithm’s ability to scale to many worker threads.
A problem similar to the one in quicksort also exists for mergesort, but occurs in

the final step of the computation rather than in the first. Mergesort starts out
by recursively splitting the input array in two and forks, thus creating instant
parallelism, unlike quicksort. On the other hand, in the join operation of mergesort
all the values need to be read and moved around serially, making the last join
operation serially read and move every value in the array.
Similar to how fib works, mergesort also needs a granularity threshold to stop it

from splitting the array recursively until every part is only one element long, creating
many tasks so small that they only add overhead. The implementation used here
switches to sorting with the serial version of quicksort for input arrays smaller than
the selected threshold. The industry standard is to combine mergesort with insertion
sort for small arrays, here quicksort was choosen because it was already implemented
and might provide benchmarks that can be more fairly compared with quicksort.
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4
Benchmarks

During the development of ForkJoin, algorithms suiting the different styles presented
were developed to verify that it was possible to express them in the library. After
the library stabilized and at least one algorithm from each style was implemented,
and worked as intended, focus was shifted to improving performance. This chapter
will describe how the library and the algorithms written in it were benchmarked, as
well as present the results and compare them with other similar libraries.

4.1 Criterion.rs

Criterion.rs [22] is a Rust port of the popular Haskell benchmarking library Criterion
[23]. Criterion.rs provides tools to easily benchmark Rust code and calculate various
statistics about the running time of the code. The data generated include mean
and median execution times as well as graphical plots. The advantage of using
Criterion.rs over manually timing the execution time of code is that it does a lot
of advanced measurements automatically. The library first runs warm up, which is
executing the code to be benchmarked multiple times before timing starts. Warm
up is performed since the first executions are usually slower because of data missing
in the caches as well as clocked down CPUs. After warm up, Criterion.rs collects
multiple samples of the time it takes to run the code. Using all the samples it detects
outliers and performs tests of how stable the measured times are, thus showing how
reliable the numbers are.
The original criterion.rs implementation did not provide all the needed functionality,

so this project uses a local fork of the project with improvements. The original
implementation focused on testing one function with many different inputs, for
example, testing sequential fib with a list of arguments and plotting the different
execution times. When benchmarking sequential vs parallel execution, the benchmarks
are more focused on comparing different functions with identical arguments. Therefore
a new method of benchmarking was added, allowing the user to pass a list of
functions and a single argument instead of the inverse.
In addition to an extra measurement method, extra statistical output was added

to criterion.rs. The library was extended with the functionality to save csv files
with percentile data of the sample distributions for easy import and usage in other
programs.
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4.2 Benchmark suite

To make benchmarking simple and fast, an automated benchmarking suite based
on criterion.rs was developed. The suite contained all the algorithms under test
and ran them based on the supplied command line arguments. Arguments to
the benchmarking suite include criterion.rs sample size, what thread pool sizes to
benchmark, a list of algorithms to benchmark and a list of algorithm arguments for
each algorithm.

4.3 Rust

Rust, being a young and actively developed language, changes rapidly. The language
changes in syntax as well as standard library features and performance of code
generated by the compiler. To make the results fair and stable, a specific version of
the rust project was chosen to be used for all benchmarks. The version of Rust used
here is the prebuilt version from the nightly development channel at 2015-05-14.

rustc 1.1.0-nightly (e5394240a 2015-05-14) (built 2015-05-13)

The compiler was configured to use maximum optimization, with the flag
-C opt-level=3, during the compilation of the ForkJoin library and the benchmarking
suite.

4.4 Hardware for benchmarking

To test how well the library and the algorithms written in it scale with many worker
threads, benchmarks has been executed on an Amazon EC2 instance with 36 cores
running Ubuntu GNU/Linux. All benchmarks are performed on the exact same
configuration to obtain comparable results.
One concern with the cores in the virtual EC2 instance was that they would be

virtual and share underlying physical cores, thus putting load on one core would
lower the performance of others. To test this concern, a single core benchmark
using the same fibonacci algorithm as used for the rest of the tests were performed
during both idle and almost full load. 32 out of the 36 cores were being kept busy
by running 32 instances of the command cat /dev/urandom > /dev/null. The
results of the benchmarks were that on an idle server the median time was 1137
ms, and on the server under load the exact same benchmark took 1200 ms. These
benchmarks show an increase of 5.5%, thus the stated concern was not a problem.
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4.5 Choosing parameters and arguments

Benchmarks were executed with less worker threads than physical cores to minimize
the risk of threads getting swapped out. If the ForkJoin library occupies all processor
cores with calculations it is unavoidable that the operating system will swap out at
least some of the threads some time during the execution to let other programs run.
Having worker threads swapped out increase the wall clock time of the computation
and makes the benchmark results unfair. The results are unfair since benchmarks
using fewer worker threads than physical cores do not get swapped out and comparing
their results would yield a scale up lower than the algorithm actually have.
The sample size was chosen large enough to make the measurement accurate, and

small enough to not take too long time. A sample size of 20 was selected for the
benchmarks in this report. Violin plots of the sample distributions, validating that
the measurements are reasonably stable, can be found in appendix A.2.
Too small computations do not spread to all worker threads before they are

completed, therefore benchmarking on many threads require large problems to yield
enough parallel slackness1 and correct scale up results. The parallel slackness need
to be high enough to put all threads to work. However, algorithms such as fib easily
generate unnecessarily much parallelism if no granularity threshold2 is implemented.
Because of this, empirical measurements have to be performed in order to find
algorithm argument sizes and granularity thresholds that give the best results.
Code for execution statistics was added to the worker threads allowing them to

print how many tasks they had executed during a computation, how many tasks
they had stolen and how much time they had spent sleeping. The statistics allowed
testing of different parameters on the algorithms under test. The problem size
was chosen to be the smallest that still made all threads perform approximately the
same amount of work, and the granularity threshold was selected to be the argument
size for which serially computing the result took approximately the same time as
performing a fork operation in the ForkJoin library.

1See the theory chapter on Cilk (2.3) for the definition.
2See section 3.6.1
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4.6 Benchmark results

Full benchmark results in tables and plots can be found in appendix A.2. This
chapter will present a summary of the results and reason about them.

Algorithm Size TS T1 T8 T32 T1/TS T1/T8 T1/T32 TS/T8
fib 42 1060 1080 142 50.7 1.02 7.61 21.3 7.46
fib no threshold 32 8.64 604 91.6 39.3 69.9 6.59 15.4 0.09
sumtree 23 31.9 825 131 58.2 25.9 6.30 14.2 0.24
nqueens 12 1500 1690 231 153 1.13 7.32 11.0 6.49
quicksort 107 1470 1490 261 167 1.01 5.71 8.92 5.63
mergesort 107 1240 1400 290 297 1.13 4.83 4.71 4.28

Figure 4.1: Table of benchmark results for all algorithms. All times are the
median times of the 20 samples collected. Violin plots of all samples can be found
in appendix A.2. All times are in milliseconds. The work overhead described in
section 2.3 is presented in the column labeled T1/TS and how well the algorithms
scale to multiple worker threads can be seen in the columns T1/T8 and T1/T32. How
well the algorithm perform on 8 threads compared to the serial code can be seen in
the column TS/T8.

4.6.1 Fibonacci

Benchmarks were performed to find what argument to the sequential fibonacci
algorithm resulted in a computation time approximately the same as that of a
single forking operation in the ForkJoin library. Calculating the 20th fibonacci
number gave an almost equal execution time and was chosen as the granularity
threshold. The code, including the threshold, can be seen in appendix A.1.1 and
detailed performance data in A.2.1.
As can be seen in the results in table 4.1, fib with a reasonably selected threshold

have close to zero work overhead. Without the granularity threshold the algorithm
generates a large amount of tasks with almost no work in and the overhead becomes
apparent.
When it comes to how the algorithm scales to multiple worker threads, the table

shows that close to linear scale up is achieved up to 8 worker threads. After 8
threads the scaling flattens out and when the computation is carried out on 32
worker threads the time is 21 times faster than on 1 thread.
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Figure 4.2: Graph showing how the computation time of the fibonacci algorithm
scale as more worker threads are added.

The results of this implementation can be compared with the ones in Cilk 5. The
fibonacci algorithm results presented in the Cilk 5 paper [8] are for an implementation
without granularity threshold that forks until the argument is less than 2. However,
even without a threshold, Cilk manages to have a work overhead of 3.63 and a scale
up factor of 8.0 for T1/T8.

4.6.2 Reduction of trees

Short of fib without a threshold, sumtree is the only algorithm with a work overhead
over 2. The scaling of the algorithm is similar to fib without threshold, after 8 threads
this algorithm also fails to scale much further.
The sumtree algorithm is the only algorithm3 that does not have better performance

in the parallel execution than in the serial execution no matter how many worker
threads are added. This clearly indicates that as long as the implementation does
not improve in some way there is no case where converting the algorithm to the
parallel version would be desired.
As discussed in section 3.6.3, the shape of the tree is important. One reason is that

if the writer of the sumtree algorithm does not know anything about the shape of
the trees, a threshold that will guarantee good performance cannot be set. Another
reason the tree shape is important is because of the load balancing. When iterating
over a balanced tree, almost no load balancing needs to be done since all children
contain the same amount of work and all threads will be busy approximately the
same time. On the other hand, if the tree is heavily unbalanced, some threads that
steal small portions of the tree will run out of work fast and have to go back to

3Not counting fib without threshold since there is a better version of that algorithm.
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stealing. By benchmarking on an unbalanced tree the effectiveness of the stealing
mechanism can be demonstrated.
The code used to generate the trees that the benchmarks were run on can be

viewed in appendix A.1.2. The trees generated from the function will have the
property that for any given node with the children C1, ..., Cn, child Cx will be a
larger tree than Cx−1. Therefore, when all the n forks from the node have been
stolen the thieves will have acquired different amount of work. This algorithm was
chosen as it produces a tree somewhere between a balanced tree and a maximally
unbalanced tree. The most unbalanced a tree can be is essentially the equivalent
of a linked list, where every node has only one child. Such a list-like tree would
create zero parallelism since every task, processing one node, would only create one
subtask.
Different shapes of trees were benchmarked, but the differences were not significant

enough to include here as separate benchmarks. A balanced tree with the same
amount of nodes was slightly faster with a work overhead of 23.6 and a T1/T32 scale
up of 16.6. The list-like tree could not be tested as it made the worker thread
overflow its stack because of the immense depth needed to create a tree of the same
size as the other algorithms.
The unbalanced tree of size parameter 23 generated for benchmarks used 564

MiB of memory. The tree was generated once and the same instance was used for
all benchmarks since is was being used read-only.
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Figure 4.3: The scaling of computation time of the sumtree algorithm as more
worker threads are added. The three lines represent the scale up for the fastest,
median and slowest sample in each benchmark.

The benchmarked samples collected for sumtree are more spread out than for the
other algorithms. For some benchmarks the fastest and slowest samples were more
than 20% away from the median. Because of the spread out results, the scale up
graphs for sumtree in figure 4.3 show not only the median time, but also the min
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and max. All min, max and median sample times are presented in table A.2.2 in
the appendix.

4.6.3 Nqueens

One of the initial reasons for including nqueens in the benchmarking suite was to
compare it with the performance presented in the Cilk paper [8]. In the Cilk 5
paper a work overhead of 0.99 and a scale up of 8.0 for 8 processors is presented. In
the ForkJoin implementation a work overhead of 1.13 and scale up, relative serial
execution, of 6.49 can be observed from table 4.1. Even if the results on ForkJoin are
not as good as the ones in Cilk they are not far behind and they are among the best
presented in this paper, only fib scales better. Also, as described in section 3.6.4,
the implementations are not really comparable since they perform different work.
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Figure 4.4: Graph showing how the computation time of the nqueens algorithm
scales as more worker threads are added.

4.6.4 Quicksort

The input data for the quicksort benchmarks was an array with 10 million elements
of unsorted 64 bit integers. The data was generated by a simple pseudorandom
number generator with a fixed seed. The vector occupied a total of 76 MiB of
memory.
Quicksort was the algorithm, among all the tested ones, that had the lowest

work overhead of 1.01. In these benchmarks the algorithm was implemented with a
granularity threshold of 1000 elements, meaning any input smaller than that would
execute the serial version of the code. Implementing a granularity threshold is just
as important in quicksort as in most other algorithms, without it the work overhead
would be greatly increased.
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How the quicksort algorithm scales with added worker threads can be observed in
figure 4.5. The graphs show that the algorithm scales almost linearly up to 4 worker
threads, after that the curve flattens out, but continues to slowly improve as more
threads are added.
It was possible to see the effect of the quicksort problem described in section 3.6.5

from the sleep statistics in the benchmarks. The statics show that during the
execution of the algorithm almost all threads sleep a considerable amount of time.
When executing on 32 worker threads the threads slept, on average, 50 out of the 170
ms that the algorithm took to run. 20 ms of the time spent sleeping was before the
first task was stolen, indicating that the algorithm is not able to split into subtasks
directly.
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Figure 4.5: Graphs over how the computation time of the quicksort algorithm
scales as more worker threads are added.

The results for quicksort can be compared with the results for cilksort in the Cilk
paper [8]. The cilksort implementation is not completely accurate as the paper states
that their serial version of sorting is a normal in-place quicksort, while the parallel
version is a variation of the mergesort algorithm. Cilksort has a work overhead of
1.21, a T1/T8 scale up of 6.0 and a TS/T8 scale up of 5.0. Cilk’s work overhead is
slightly higher than ForkJoin’s but their scale up relative to T1 is slightly better.
However, Cilk’s scale up relative TS is slightly worse than quicksort in ForkJoin.

4.6.5 Mergesort

Mergesort was tested on the same input data as described for quicksort, a pseudorandomly
generated vector of positive integers. It was also of the same size, 10 million elements.
The mergesort algorithm reaches peak performance when executed on 20 worker

threads, where it has a scale up of approximately 6.3, and then performance goes
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down as more threads are added. This behavior has been observed during many
different runs of the algorithm and with different sizes of input arrays. With smaller
arrays the algorithm peaks on fewer threads, but it seems to always have optimal
performance in the range of 15-20 threads. It is not only that the execution time
levels off and stop improving, table A.10 in the appendix shows that the execution
time increases after 20 threads.
The work overhead of mergesort is 1.13, which is much higher than for quicksort,

and it is also among the highest overheads of all tested algorithms4. One factor that
is known to affect work overhead is the granularity threshold, and that might have
caused this result. Only one threshold was tested for mergesort, 1000 elements,
since that was used for quicksort and using another threshold would have made
comparisons to quicksort unfair.
It was possible to see the effect of the mergesort problem described in section 3.6.5

from the sleep statistics in the benchmarks. The statistics show that all threads were
able to steal a task and start working instantly. Yet, out of the approximately 300
ms it took to run mergesort on 32 threads, all except one thread slept around 100
ms on average. If all threads had work instantly in the beginning but still had to
sleep for one third of the running time, it is an indication that the algorithm have
some serial parts that cannot be parallelized.
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Figure 4.6: Graphs over how the computation time of the mergesort algorithm
scales as more worker threads are added.

4Not counting fib without threshold and sumtree since they are known to have bad overhead
because of not implementing a granularity threshold
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5
Discussion and conclusions

This thesis has presented a fully working work stealing fork-join library in the Rust
language with code examples and benchmark results of six algorithms using the
library. The provided API is not as flexible as it was originally planned, but it is
fully useable for most use cases where a divide and conquer style algorithm is, or
can be, implemented.
Since there is no silver bullet for parallelism in general, specialized tools need to

exist for every parallelization style and ForkJoin meets this need and provides Rust
with one such tool. More importantly than the library itself though, this thesis
explores the possibilities, and discusses the implications of applying a well known
algorithm to Rust’s rather special memory model.
Even though the original plan was to provide one thread pool that could run tasks

of any type signature, the existing implementation is definitely cleaner than the code
required for a pool accepting any type. To make one instance of a ForkPool work for
any type of task, all generics in the WorkerThread need to be removed and replaced
with some fixed type working similar to a void pointer.
Every user have to judge for themselves if the ForkJoin library is easy to use or

not. This report shows example algorithms and that it is possible to implement
them in a way not very much longer or more complex than their serial counterparts.
When it comes to the three layer cake and the goal to fill one of the missing layers

for Rust, the ForkJoin library does a good job. The library can be used under a
layer of message passing, allowing components in a message passing system to spawn
and maintain ForkPools and perform calculations on them. Within the tasks of the
algorithms using ForkJoin it should be possible to use SIMD calculations. However,
this is not something that has been verified during this project since SIMD was out
of the scope.
An example of a full stack usage of the three layer cake that should be possible,

provided a functional SIMD library is found, is image brightness adjustments. The
example system would be a message passing application where one component
waited for messages containing images and a brightness scale value. The component
send the image on to a ForkPool through an AlgoOnPool for brightness adjustments.
The fork-join algorithm can then split up the images into parts and fork. When an
image block is small enough, the desired operation can be applied to that image
block with SIMD instructions, as adjusting brightness can be done by multiplying

41



5. Discussion and conclusions

every pixel value with the scaling value. When the entire operation is done a message
with the new image can be sent to some other component in the application.

5.1 Benchmark results

There are many factors that affect the timing results of executed code. Some of these
factors stem from sources not controlled by the benchmark itself, such as outside
computer load1 and unlucky cache behavior. Both of these problems were minimized
by running the benchmarks on a server with few other processes, and by collecting
multiple samples of the same code execution.
One other factor that can greatly affect performance is the rust compiler and

the implementation of classes and functions in the standard library. Since this
report states exactly which version of Rust that is used, and the same version is
used for all benchmarks, comparing the benchmarks with each other is accurate.
Comparing benchmarks with other implementations in Rust or other languages
might be possible to get an idea of relative performance, but should not be considered
completely accurate.

5.1.1 Fibonacci and reduction of trees

The numbers in table 4.1 clearly shows that implementing a granularity threshold2

is vital for acceptable performance in algorithms that otherwise fork to tasks so
small that their amount of work is just a few instructions.
For algorithms that would fork to minuscule tasks, but where no granularity

threshold can be accurately set without knowing characteristics of the input data,
it seems to be best to leave them as serial implementations. Specialized parallel
implementations can be written for scenarios where the input data always or usually
have some known property.
The reason that the samples for sumtree were more spread out than for the other

algorithms might be because of the large data structure that was involved, and page
faults might be to blame. As stated in section 4.6.2, one tree instance used in the
benchmarks occupied 564 MiB of memory. This can be compared with the sorting
algorithms, which according to section 4.6.4 only used 76 MiB memory for their
arrays of 10 million elements.
The performance of fib in ForkJoin seems low when compared with the results

in Cilk. However, Cilk is a library developed by multiple people over many years.
Also, Cilk is written directly in C and the paper reports a cost of spawning a task
as being as low as 2-6 times the cost of an ordinary C function call. With that in
mind about Cilk, the results in this report can be regarded as fully acceptable.

1Other processes on the same computer that perform tasks and occupy the CPU.
2See section 3.6.1
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5.1.2 Nqueens

It would have been interesting to have a working abort mechanism in the ForkJoin
library to test this algorithm with. It is likely that finding only the first valid
placement of queens have considerably different performance characteristics than
that of finding the complete set of solutions.

5.1.3 Sorting

As described in section 3.6.5, both quicksort and mergesort have some problems with
scaling that does not depend on the fork-join implementation used. Considering this
limitation in the algorithms, the presented performance results are expected and can
be considered good.
The fact that the performance of mergesort decreases as more than 20 worker

threads are added is interesting, but the reason is still unknown. The sleep data
has been studied without finding a clue, all parts of the algorithm just take longer
to execute on 32 threads than on 20 threads. The valgrind [24] tool cachegrind has
been used to simulate cache behavior to examine if the slowdown was because of
cache misses, this does not seem to be the case as no differences in cache misses were
reported by the tool when analyzing mergesort on 20 and 32 threads. One reason
could be that the OS scheduling overhead increase, but since the other algorithms
scale to over 20 threads without a problem this is not likely.
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6
Future work

This project has been very interesting and educational. Given my personal interest
in both Rust and this specific library, I will most definitely continue to develop the
library. I have discussed with my industry advisor, Lars Bergstrom who works at
Mozilla, about the future of the library. We have agreed that a post about the
library should be published on Mozilla’s research blog and that he will introduce
the library to the project manager of Rust, Nicholas Matsakis, for feedback.
A wish and challenge from Bergstrom is that Servo [21] is migrated to use ForkJoin

rather than their built in implementation1. Making such migration work would
provide good proof that the ForkJoin library is useable in real world applications.
There are possible optimizations to implement in the library inspired by how

the worker threads in Cilk operate. Future work could include trying to lower the
work overhead and increase scale up performance of using the ForkJoin library by
implementing the optimizations from other libraries.
As described in section 3.5, the current API design is lacking some of the desired

features. Work can be done to try to implement the API as desired, yielding a library
that can be used easier and without the need to use unsafe for certain algorithm
implementations.
To support all layers in the three layer cake and verify that they work together

is important future work. This thesis builds partly on the ground that the three
layer cake is a good approach for Rust as a language, but no work has been done
to verify this and evaluate how well it fits together. Future work here is to find
an existing, or create a new, SIMD implementation and then verify that the three
layers, message passing, fork-join and SIMD work together as described in the three
layer cake paper.

1See section 3.1.1
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Appendix 1

A.1 Code used for benchmarks

A.1.1 Fibonacci

/// Benchmarking method used in Criterion.rs for parallel fib
pub fn parfib(b: &mut Bencher, threads: usize, &i: &usize) {

let forkpool = ForkPool::with_threads(threads);
let fibpool = forkpool.init_algorithm(FIB);

b.iter_with_large_drop(|| {
let job = fibpool.schedule(test::black_box(i));
job.recv().unwrap()

})
}

/// Constants for defining the two algorithms
const FIB: Algorithm<usize, usize> = Algorithm {

fun: fib_task,
style: AlgoStyle::Reduce(ReduceStyle::NoArg(fib_join)),

};
const FIB_NO_THRESHOLD: Algorithm<usize, usize> = Algorithm {

fun: fib_task_no_threshold,
style: AlgoStyle::Reduce(ReduceStyle::NoArg(fib_join)),

};

/// Task executed for fib with a threshold
fn fib_task(n: usize) -> TaskResult<usize, usize> {

if n <= 20 {
TaskResult::Done(fib(n))

} else {
TaskResult::Fork(vec![n-2,n-1], None)

}
}
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/// Task executed for fib without a threshold
fn fib_task_no_threshold(n: usize) -> TaskResult<usize, usize> {

if n < 2 {
TaskResult::Done(1)

} else {
TaskResult::Fork(vec![n-2,n-1], None)

}
}

/// A common join that simply sums up all the results
fn fib_join(values: &[usize]) -> usize {

values.iter().fold(0, |acc, &v| acc + v)
}

/// The sequential implementation of fib for comparison
/// and use after granularity threshold has been reached
fn fib(n: usize) -> usize {

if n < 2 {
1

} else {
fib(n-1) + fib(n-2)

}
}

A.1.2 Reduction of trees

The algorithm for reducing trees is called sumtree and just summarize one value
from each node in the tree.

/// Definition of the tree structure used.
/// A node can have arbitrarily many children
pub struct Tree {

value: usize,
children: Vec<Tree>,

}

/// Benchmarking method used in Criterion.rs for parallel sumtree
pub fn par_sumtree(b: &mut Bencher, threads: usize, tree: &Tree) {

let forkpool = ForkPool::with_threads(threads);
let sumpool = forkpool.init_algorithm(Algorithm {

fun: sum_tree_task,
style: AlgoStyle::Reduce(ReduceStyle::Arg(sum_tree_join)),

});

b.iter(|| {
let job = sumpool.schedule(test::black_box(tree));
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job.recv().unwrap()
});

}

/// Task executed for sumtree
fn sum_tree_task(t: &Tree) -> TaskResult<&Tree, usize> {

if t.children.is_empty() {
TaskResult::Done(t.value)

} else {
/// Collect a vector of references to all child nodes.
let mut fork_args: Vec<&Tree> = vec![];
for c in t.children.iter() {

fork_args.push(c);
}
TaskResult::Fork(fork_args, Some(t.value))

}
}

/// Join function summing all the values together
fn sum_tree_join(value: &usize, values: &[usize]) -> usize {

*value + values.iter().fold(0, |acc, &v| acc + v)
}

/// Sequential implementation of sumtree
fn sum_tree_seq(t: &Tree) -> usize {

t.value + t.children.iter().fold(0, |acc, t2| acc + sum_tree_seq(t2))
}

/// The algorithm used to generate an unbalanced tree.
fn gen_unbalanced_tree(depth: usize) -> Tree {

let mut children = vec![];
for i in 0..depth {

children.push(gen_unbalanced_tree(i));
}
Tree {

value: depth + 1000,
children: children,

}
}

A.1.3 Nqueens

pub type Queen = usize;
pub type Board = Vec<Queen>;
pub type Solutions = Vec<Board>;
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const NQUEENS_SEARCH: Algorithm<(Board,usize), Board> = Algorithm {
fun: nqueens_task_search,
style: AlgoStyle::Search,

};

/// Task function for parallel nqueens using ‘search style‘
fn nqueens_task_search((q, n): (Board, usize)) ->

TaskResult<(Board,usize), Board>
{

if q.len() == n {
TaskResult::Done(q)

} else {
let mut fork_args: Vec<(Board, usize)> = vec![];
for i in 0..n {

let mut q2 = q.clone();
q2.push(i);

if ok(&q2[..]) {
fork_args.push((q2, n));

}
}
TaskResult::Fork(fork_args, None)

}
}

/// Sequential implementation of nqueens.
/// This is the serial version of the ‘reduce style‘ since
/// everything that was measured anyway was the time it took to
/// collect every possible solution.
fn nqueens_reduce(q: &[Queen], n: usize) -> Solutions {

if q.len() == n {
return vec![q.to_vec()];

}
let mut solutions: Solutions = vec![];
for i in 0..n {

let mut q2 = q.to_vec();
q2.push(i);
let new_q = &q2[..];

if ok(new_q) {
let more_solutions = nqueens_reduce(new_q, n);
solutions.push_all(&more_solutions[..]);

}
}
solutions

}
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/// Helper function checking if a placement of queens is ok or not
fn ok(q: &[usize]) -> bool {

for (x1, &y1) in q.iter().enumerate() {
for (x2, &y2) in q.iter().enumerate() {

if x2 > x1 {
let xd = x2-x1;
if y1 == y2

|| y1 == y2 + xd
|| (y2 >= xd && y1 == y2 - xd)

{
return false;

}
}

}
}
true

}

A.1.4 Quicksort

/// Quicksort task, drops to sequential operation on arrays smaller
/// than or equal to 1000 elements
fn quicksort_task(d: &mut [usize]) -> TaskResult<&mut [usize], ()> {

let len = d.len();
if len <= 1000 {

quicksort_seq(d);
TaskResult::Done(())

} else {
let pivot = partition(d);
let (low, tmp) = d.split_at_mut(pivot);
let (_, high) = tmp.split_at_mut(1);

TaskResult::Fork(vec![low, high], None)
}

}

/// Join function doing nothing.
fn quicksort_join(_: &[()]) -> () {}

/// Sequential quicksort
pub fn quicksort_seq(d: &mut [usize]) {

if d.len() > 1 {
let pivot = partition(d);

let (low, tmp) = d.split_at_mut(pivot);

V



A. Appendix 1

let (_, high) = tmp.split_at_mut(1);

quicksort_seq(low);
quicksort_seq(high);

}
}

/// Partition function
fn partition(d: &mut[usize]) -> usize {

let last = d.len()-1;
let pi = pick_pivot(d);
let pv = d[pi];
d.swap(pi, last); // Put pivot last
let mut store = 0;
for i in 0..last {

if d[i] <= pv {
d.swap(i, store);
store += 1;

}
}
if d[store] > pv {

d.swap(store, last);
store

} else {
last

}
}

/// Function picking pivot element as
/// the median of the first, middle and last element
fn pick_pivot(d: &[usize]) -> usize {

let len = d.len();
if len < 3 {

0
} else {

let is = [0, len/2, len-1];
let mut vs = [d[0], d[len/2], d[len-1]];
vs.sort();
for i in is.iter() {

if d[*i] == vs[1] {
return *i;

}
}
unreachable!();

}
}
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A.1.5 Mergesort

fn parallel_mergesort(threads: usize, data: &mut [usize]) {
let forkpool = ForkPool::with_threads(threads);
let sortpool = forkpool.init_algorithm(Algorithm {

fun: mergesort_task,
style: AlgoStyle::Reduce(ReduceStyle::NoArg(mergesort_join)),

});
let job = sortpool.schedule(data);
job.recv().unwrap();

}

/// Parallel mergesort task.
/// Switches over to sequential quicksort on arrays
/// smaller than or equal to 1000 elements.
fn mergesort_task(d: &mut [usize]) ->

TaskResult<&mut [usize], (Unique<usize>, usize)>
{

let len = d.len();
if len <= 1000 {

quicksort_seq(d);
TaskResult::Done(unsafe{(Unique::new(d.as_mut_ptr()), len)})

} else {
let (low, high) = d.split_at_mut(len / 2);
TaskResult::Fork(vec![low, high], None)

}
}

/// Join operation for the parallel mergesort.
/// Checks that two arrays are given and that they
/// are placed just beside each other.
fn mergesort_join(xs: &[(Unique<usize>, usize)]) -> (Unique<usize>, usize) {

assert_eq!(2, xs.len());
let (ref lowp, lowl) = xs[0];
let (ref highp, highl) = xs[1];

let low = unsafe { mem::transmute::<&[usize], &mut [usize]>(
slice::from_raw_parts(**lowp, lowl)) };

let high = unsafe { mem::transmute::<&[usize], &mut [usize]>(
slice::from_raw_parts(**highp, highl)) };

// Make sure that the given arrays are next to each other
assert_eq!(unsafe { low.as_ptr().offset(low.len() as isize) },

high.as_ptr());

merge(low, high); // Perform the actual merge
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// Take out the length and an unsafe pointer to the result
unsafe {

let mut ret = Unique::new(mem::transmute(ptr::null::<usize>()));
ptr::copy(lowp, &mut ret, 1);
(ret, lowl + highl)

}
}

/// Sequential implementation of mergesort
fn mergesort_seq(d: &mut [usize]) {

let len = d.len();
if len < 1000 {

quicksort_seq(d);
} else {

let mid = len / 2;
let (low, high) = d.split_at_mut(mid);

mergesort_seq(low);
mergesort_seq(high);
merge(low, high);

}
}

/// Allocates a buffer vector and merges the given
/// arrays into that buffer, in the end it copies the data
/// back to the original arrays
fn merge (xs1: &mut [usize], xs2: &mut [usize]) {

let (len1, len2) = (xs1.len(), xs2.len());
let len = len1+len2;
let (mut il, mut ir) = (0, 0);

let mut buf: Vec<usize> = Vec::with_capacity(len);

for _ in 0..len {
if il < len1 && (ir >= len2 || xs1[il] <= xs2[ir]) {

buf.push(xs1[il]);
il = il + 1;

} else {
buf.push(xs2[ir]);
ir = ir + 1;

}
}
unsafe {

ptr::copy(buf.as_ptr(), xs1.as_mut_ptr(), len1);
ptr::copy(buf.as_ptr().offset(len1 as isize),
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xs2.as_mut_ptr(), len2);
}

}

A.2 Verbose benchmark results

In this section a violin plot of every benchmark will be included. The violin plots
shows the distribution of benchmark times for all the samples in one benchmark.
The plots illustrate how stable the benchmarks are and how close to each other the
different samples are. A very wide violin shows that the different samples yielded
quite different timings, and a narrow violin shows that all the samples ended up
with approximately the same execution time. Inside each violin there is a black
crossmark showing the median time for all samples in that benchmark.
The included tables contain both timing results and calculated values on these

timings. The first five columns contain the fastest, slowest and median timing
results, as well as the lower and upper quartile for the 20 samples. Rightmost in the
tables are two columns labeled mindev and maxdev these show how much the min
and max samples deviate from the median.

A.2.1 Fibonacci

# threads min Q1 median Q3 max mindev maxdev
seq 1055 1061 1061 1064 1071 0.006 0.009
1 1072 1077 1079 1080 1084 0.006 0.005
2 548.7 557.0 558.6 560.5 561.8 0.018 0.006
4 282.5 283.1 283.3 283.9 290.6 0.003 0.026
8 141.3 141.8 142.1 142.6 151.2 0.006 0.064
12 103.3 108.5 109.9 111.0 115.0 0.060 0.046
16 76.28 86.92 92.79 94.48 97.30 0.178 0.049
20 60.68 67.44 73.89 77.60 79.82 0.179 0.080
24 56.59 56.85 58.19 60.41 68.25 0.027 0.173
28 52.89 53.04 53.31 55.00 56.06 0.008 0.052
32 49.74 49.99 50.73 52.33 64.43 0.020 0.270

Figure A.1: Timing results for benchmark on fib with argument 42 and a threshold
of 20. All numbers are in milliseconds and rounded to 4 significant digits.
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Figure A.2: Violin plot of fib with argument 42 and granularity threshold of 20.

Figure A.3: Violin plot of fib with argument 32 and no threshold.
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A.2.2 Reduction of trees

# threads min Q1 median Q3 max mindev maxdev
seq 31.78 31.82 31.85 31.93 32.05 0.002 0.006
1 816.6 820.3 825.2 834.3 846.6 0.010 0.026
2 428.8 440.7 454.5 468.3 500.9 0.057 0.102
4 223.1 244.3 249.2 259.8 264.6 0.105 0.062
8 112.8 127.7 130.5 131.6 143.2 0.136 0.097
12 81.92 104.7 105.6 106.9 108.5 0.224 0.027
16 73.86 84.60 95.49 97.47 98.95 0.227 0.036
20 65.27 68.52 73.70 80.85 89.85 0.114 0.219
24 60.28 62.80 64.35 69.15 74.96 0.063 0.165
28 54.97 59.55 60.48 60.96 64.01 0.091 0.058
32 51.39 57.45 58.16 58.88 64.98 0.116 0.117

Figure A.4: Timing results for benchmark on sumtree with argument 23. All
numbers are in milliseconds and rounded to 4 significant digits.

Figure A.5: Violin plot of sumtree with argument 23.
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A.2.3 Nqueens

# threads min Q1 median Q3 max mindev maxdev
seq 148.0 1493 1498 1502 1508 0.012 0.007
1 1654 1686 169.0 1696 1724 0.021 0.020
2 855.1 858.7 868.7 881.6 894.0 0.016 0.029
4 443.0 449.9 451.4 453.4 459.8 0.019 0.019
8 223.4 227.8 230.6 232.0 242.5 0.031 0.052
12 173.8 193.2 194.3 195.5 199.2 0.106 0.025
16 175.6 177.3 182.7 188.0 189.1 0.039 0.035
32 150.1 151.8 152.7 156.2 159.7 0.017 0.046

Figure A.6: Timing results for benchmark on nqueens with argument 12. All
numbers are in milliseconds and rounded to 4 significant digits.

Figure A.7: Violin plot of nqueens with a 12x12 board.
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A.2.4 Quicksort

# threads min Q1 median Q3 max mindev maxdev
seq 1466 1472 1474 1476 1481 0.005 0.005
1 1464 1483 1486 1488 1493 0.015 0.005
2 770.5 778.1 782.7 786.9 790.3 0.016 0.010
4 420.9 422.4 423.6 424.6 427.0 0.006 0.008
8 253.5 259.8 260.6 261.9 265.0 0.027 0.017
12 215.8 225.1 229.0 230.0 232.5 0.058 0.015
16 197.8 208.9 214.7 218.0 223.6 0.079 0.041
20 176.8 185.3 189.0 191.7 202.2 0.065 0.070
24 165.6 170.5 172.1 173.3 186.2 0.038 0.082
28 163.6 167.6 168.4 170.1 175.1 0.029 0.040
32 163.7 166.1 167.0 168.3 173.3 0.020 0.038

Figure A.8: Timing results for benchmark on quicksort with 10 000 000 elements
to sort. All numbers are in milliseconds and rounded to 4 significant digits.

Figure A.9: Violin plot of quicksort with 10 000 000 elements and a granularity
threshold of 1000 elements.
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A.2.5 Mergesort

# threads min Q1 median Q3 max mindev maxdev
seq 1233 1235 1237 1239 1240 0.003 0.002
1 1392 1394 1398 1402 1410 0.004 0.009
2 756.8 763.4 767.6 770.7 778.2 0.014 0.014
4 446.0 450.6 452.5 453.5 458.5 0.014 0.013
8 287.4 289.1 289.8 291.4 295.1 0.008 0.018
12 237.8 246.3 248.2 249.5 254.5 0.042 0.025
16 219.4 224.8 226.8 227.7 233.1 0.033 0.028
20 217.5 222.1 223.4 225.4 229.4 0.026 0.027
24 237.0 246.2 250.9 254.1 280.3 0.055 0.117
28 275.2 280.5 281.8 285.8 291.9 0.023 0.036
32 281.9 289.8 297.3 299.9 327.8 0.052 0.103

Figure A.10: Timing results for benchmark on mergesort with 10 000 000 elements
to sort. All numbers are in milliseconds and rounded to 4 significant digits.

Figure A.11: Violin plot of mergesort with 10 000 000 elements and a granularity
threshold of 1000 elements where it instead executes serial quicksort.
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