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Se sidan 4 för svensk sammanfattning 

EXECUTIVE SUMMARY 
This study analyzes pathways to meet EU, national and regional targets for CO2 emissions, 
energy efficiency and penetration of renewable energy in the Swedish part of the Kattegat-
Skagerrak region (KASK-SE), i.e. more specifically in the counties of Västra Götaland 
(VGR) and Halland. Special focus is placed on four areas: The potential for energy savings in 
the building sector, energy savings and fuel shifting in the energy intensive industry, large-
scale deployment of renewables in the electricity generation sector and greenhouse gas 
emission reductions in the transport sector. The energy savings are through the 
implementation of different energy efficiency measures. 

Based on a description of the existing energy system and the four focus areas of the study, we 
make an overall analysis of the possibilities to transform the energy system of the region and 
from this we provide a pathway which can meet energy and climate targets in the short (Year 
2020), medium (Year 2030) and long term (Year 2050). The aim of the pathway is not to 
predict the future but to identify challenges and possibilities in transforming the energy 
system of the region. As for emissions we focus on CO2 emissions emitted within the 
geographical boundary of the KASK-SE region, i.e. so-called production based emissions. 
Additional details of the analysis in this study can be found in the technical reports listed on 
page 9.  

The following is concluded from the study:   

1. It is possible to meet long term climate targets for the region but not without 
significant challenges. Also, a successful transformation of the energy system will 
require coordinated actions where a concerted planning for the transformation must 
be initiated immediately. 

2. The region is likely to meet its target for energy efficiency improvements, but this is 
primarily due to the fact that this target is relative to the gross regional product (i.e. 
meeting the target does not necessarily require a reduction in energy use in absolute 
numbers). 

3. The transport sector can reach zero CO2 emissions in 2050 but only with immediate 
and concerted local, regional and international action.  

4. Zero CO2-emissions from the region in 2050 is likely to require utilization of all 
mitigation options investigated in this work.  

5. Up to 10 GW onshore wind capacity may be installed in the region at competitive 
cost when excluding areas of conflict and not exceeding the population density of 
present wind power installations. Thus, there are significant possibilities to expand 
wind power without the need to use the more costly offshore wind power. 

6. The final energy use in the buildings (currently 29 TWh) can be reduced by more 
than 15 TWh with a techno-economic (profitable) reduction potential of almost 6 
TWh. 

7. Large scale penetration of variable (“intermittent”) power will have modest impact 
on local CO2-emissions. This, since the power sector in the region already has a 
relatively modest consumption of fossil fuels, mainly natural gas. 

8. Large scale penetration of variable electricity generation combined with phase-out of 
nuclear and fossil based power is likely to lead to increasing import requirements and 
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create significant challenges for the electricity grid in the region. Such expansion will 
also lead to increasing need for balancing the high share of intermittent energy such 
as from load following thermal plants (e.g. biomass based combined heat and power 
plants) or other balancing options such as energy storage technologies and demand 
side management. 

9. All sectors investigated (electricity, transport, industry and heating) can use biomass 
as a measure to reduce CO2 emissions but biomass is a limited resource. In order to 
put less stress on biomass and to obtain a high efficiency in the biomass conversion, 
electricity should play a large role in the transport sector.  

10. Up to 6 TWh additional biomass can be produced in the region up to 2030 assuming 
a strong Nordic forest industry and high climate ambitions. 

11. Assuming that the region should reach zero CO2-emissions in 2050 we see the 
following options for the refineries in the region; 

a. Transformation to bio-refinery at current activity levels, but this will require 
substantial volumes of biomass – some 120 TWh in spite of that significant 
vehicle efficiency gains have been assumed. Total biomass use for energy in 
Sweden is currently around 130 TWh. 

b. Transformation to bio-refinery and significantly reduced activity level.  

c. Continued use of fossil feedstock, but this will require carbon capture and 
storage (CCS) to eliminate process related emissions. If the fossil fuels are 
used within the Swedish transport sector it will also require CCS applied to 
biogenic emissions (BECCS) to neutralize these fossil emissions. Yet, this 
option opposes the Swedish goal to achieve a “transport sector independent 
from fossil fuels” by 2030 (proposition 2008/09:162). However, the fossil 
fuels can also be exported, for instance to take additional market shares on the 
international market with export of low sulphur diesel fuels. 

d. Combinations of options a to c. 

12. It is likely that fuel demand in the transport sector must be covered by a combination 
of biomass and electricity in the long term (not at least with respect to point 11a). 
Also, hydrogen may play a role although this has not been investigated in this work. 

13. A robust and cost efficient “bio-solution” for the chemical cluster in Stenungsund 
would be to keep existing process equipment and purchase bio-based raw material 
from the refineries. Yet, this will obviously require “greening” of the refineries.  

An overall assessment of the challenges associated with meeting the long term (Year 2050) 
climate targets set up by the region shows that a substantial part of the measures required will 
impose very significant challenges. Many of these challenges can only be overcome by 
investments in energy infrastructures for which there are only one or a few investment cycles 
left until Year 2050. Yet, there are also a significant amount of measures to be taken which 
should be of a less a challenge to implement. Taken together, we conclude that if any chance 
to meet the long term targets, there is an immediate need to develop a framework which can 
ensure that short term actions can be linked to long term goals. If not, there is a risk that 
targets required on the long term remain visions. Thus, we conclude that establishment of a 
pathway to meet climate and renewable targets in the region – such as the one shown in this 
report - requires politicians, industries and other key actors to collaborate at an early stage to 
develop an overall energy master plan for the region.  
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The work presented in this report is by no means complete in the sense that it answers what 
actions are to be taken and what is the capacity to act of different organizations and 
stakeholders within the region. Social dimensions and lifestyle issues have also been outside 
the scope of this work. More work is obviously required to develop a concrete strategy with 
action points for the region at the same time as many of the actions required depend on policy 
measures on national and EU levels, as well as development of global markets of export 
products such as transportation fuels, chemicals and vehicle technologies. Hence, if the 
Halland and VGR regions are to have high ambitions in the area of sustainable development 
(e.g., as expressed in “Regionala Miljömål för Västra Götaland”), there is a need to further 
develop and analyze concrete actions with respect to what is needed to link short term actions 
with the long term targets. This so that the region is prepared for the future development of 
national and international policy measures as well as in order to take local initiatives, which 
are sustainable from an environmental, economic and social point of view. 
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Sammanfattning 
Denna studie har analyserad möjliga utvecklingsvägar för att möta nationella och regionala 
mål samt EU mål för CO2-utsläpp, energieffektivitet och förnybar energi i den svenska 
Kattegatt-Skagerrak regionen (KASK-SE), dvs i Västra Götaland och Hallands län. Speciellt 
läggs fokus på fyra områden; potential för energibesparing i byggnadssektorn, 
energibesparing och byte av bränslen i den energiintensiva industrin, storskalig integration av 
förnybar elproduktion och minskning av växthusgasutsläpp i transportsektorn. 
Energibesparingen sker genom att en rad olika åtgärder implementeras för att höja 
energieffektiviteten. 

Baserad på en beskrivning av det existerande energisystemet och de fyra fokusområdena görs 
en övergripande analys av möjligheterna för att ställa om regionens energisystem och utifrån 
detta formulera en utvecklingsväg som kan möta energi- och klimatrelaterade mål på kort 
(2020), medellång (2030) och lång (2050) sikt. Avsikten med den formulerade 
utvecklingsvägen är inte att försöka förutsäga framtiden utan att identifiera utmaningar och 
möjligheter vid en omställning av regionens energisystem. När det gäller utsläpp så är fokus 
på CO2-utsläpp innanför den geografiska regionen som utgörs av Västra Götaland och 
Hallands län, dvs så kallade produktionsbaserade emissioner. 

Sammanfattningsvis visar arbetet följande:   

1. Det är möjligt att nå regionens långsiktiga klimatmål men detta kräver att ett 
kraftfullt och koordinerat omställningsarbete påbörjas snarast.  

2. Regionen kommer troligtvis uppnå målet för energieffektivisering, men detta beror 
till stor del på att energieffektiviseringsmålet är relaterat till bruttoregionalprodukten 
och därför inte nödvändigtvis kräver en minskning av energianvändningen i absoluta 
tal.  

3. Transportsektorn kan nå noll utsläpp till år 2050 men detta kräver kraftfulla åtgärder 
på såväl lokal som regional och internationell nivå.  

4. För att uppnå noll CO2-utsläpp i regionen till år 2050 pekar resultaten på att samtliga 
tekniker och metoder som analyserats i detta arbete måste implementeras. 

5. Uppemot 10 GW landbaserad vindkraft kan installeras inom regionen till 
konkurrenskraftig kostnad, även om man exkluderar konfliktområden och 
upprätthåller liknande nivå för befolkningstäthet som för nuvarande 
vindkraftsanläggningar. Det finns därför betydande möjligheter för ytterligare 
expansion av vindkraft utan att havsbaserad vindkraft behöver tas i anspråk – den 
senare uppvisar betydligt höger kostnader. 

6. För slutanvändning av energi i byggnadssektorn (för närvarande ca 29 TWh) finns en 
teknisk potential för minskad energianvändning på mer än 15 TWh och en teknisk-
ekonomisk (lönsam) potential på nästan 6 TWh. 

7. Expansion av variabel (”intermittent”) elproduktion kommer ge liten påverkan på 
lokala CO2 utsläpp eftersom kraftsektorn i regionen endast använder små mängder 
fossila bränslen, i huvudsak naturgas. 

8. Storskalig expansion av variabel förnybar elproduktion i kombination med utfasning 
av kärnkraften och fossilbaserad elproduktion kommer leda till ökat importbehov av 
el och ge betydande utmaningar båda för elnätet i regionen och för balansering av 
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elproduktionssystemet. Detta kommer troligtvis också leda till ökat behov av 
variationshantering som bio-baserad kraftproduktion (i tex kraftvärmeverk), lagring 
av energi och åtgärder på användarsidan (”Demand Side Management”). 

9. Flera sektorer kommer göra anspråk på att använda biomassa – transportsektorn, 
industrin, uppvärmning – samtidigt som biomassa är en begränsad resurs. För att 
minska trycket på biomassa så bör el få en betydande roll i omställningen av 
transportsektorn så att transportsektorns behov av biomassa begränsas. 

10. Under antagande av en stark Nordisk skogsindustri och höga klimatambitioner bör 
regionen kunna öka sin produktion av biomassa med upp till 6 TWh år 2030. 

11. Om det antas att regionen skall nå noll utsläpp av CO2 till 2050 utan användning av 
de flexibla mekanismerna så ser vi följande möjligheter för raffinaderierna i 
regionen; 

a. Omställning till bio-raffinaderier med nuvarande aktivitetsnivå men detta 
kräver mycket stora mängder biomassa – ca 120 TWh trots att det har antagits 
betydligt mer effektiva bilar än i dag. Totala användningen av biomassa i hela 
Sverige är för närvarande ca 130 TWh.  

b. Omställning till bio-raffinaderier med betydligt lägre aktivitetsnivå.  

c. Fortsatt användning av fossila råvaror men detta måste då kombineras med 
avskiljning och lagring av koldioxid (så kallas CCS teknik) för att eliminera 
processbaserade utsläpp. Om de fossila bränslena används inom Sverige 
kommer skulle dessa behöva kompenseras i andra sektorer t ex genom att 
tillämpa CCS på biogena utsläpp (så kallad BECCS teknik). Det senare är 
dock inte i linje med Sveriges mål (Proposition 2008/09:162) om en 
transportsektor oberoende av fossila bränslen år 2030. Emellertid kan man 
också tänka sig att all fossilbaserad produktion exporteras, tills exempel för 
att höja marknadsandelen för lågsvavlig diesel på internationella marknader, 
där i så fall utsläppen sker utanför Sveriges gränser.  

d. Olika kombinationer av a-c ovan. 

12. En trolig utveckling i transportsektorn är att bränslebehovet på längre sikt kommer 
att täckas av en kombination av biomassa och el (inte minst med tanke på punkten 
11a ovan). Även vätgas kan komma att spela en roll men har inte undersökts i detta 
arbete. 

13. En robust och kostnadseffektiv bio-baserad lösning för kemiklustret i Stenungssund 
är att behålla existerande processutrustning och använda bio-baserade råmaterial från 
raffinaderier (inom eller utanför regionen).  

En samlad bedömning av de utmaningar som är förknippade med att möta de långsiktiga (år 
2050) klimatmål som ställts upp av regionen visar att en betydande del av de åtgärder som 
krävs kommer att innebära mycket stora utmaningar. Flera av dessa utmaningar kan bara 
mötas genom investeringar i energiinfrastruktur för vilka det endast är en eller ett fåtal 
investeringscykler kvar till år 2050. Det finns dock också åtgärder som bör kunna genomföras 
med enklare medel och vilka kommer att vara lönsamma tidigare. 

En övergripande slutsats från detta arbete är att om regionen överhuvudtaget skall ha någon 
chans att nå de långsiktiga klimatmålen så krävs att det omedelbart kommer till stånd ett 
ramverk som kan säkerställa att kortsiktiga åtgärder kan kopplas till de långsiktiga målen. 
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Om inte, finns det en risk att de på lång sikt uppställda målen endast förblir visioner. Vi drar 
därför slutsatsen att politiker, industrier och andra nyckelaktörer bör samarbeta kring 
upprättande av en färdplan för regionen mot år 2050, vilken når klimatmålen och målen för 
förnybar energi i regionen. En sådan färdplan kan vara lik den som presenteras i denna 
rapport, det vill säga baserad på att de över tid nödvändiga förändringarna kvantifieras. 

Arbetet som presenteras i denna rapport är ingalunda fullständigt i den mening att det ger 
exakta svar på vilka åtgärder som ska vidtas och vilken rådighet olika organisationer och 
aktörer har inom regionen. Det är också viktigt att understryka att denna rapport inte tar upp 
sociala dimensioner och livsstilsfrågor relaterad till de åtgärder som föreslås och diskuteras i 
rapporten. Fortsatt arbete kommer självklart krävas för att utveckla en konkret strategi med 
åtgärdspunkter för regionen samtidigt som många av de åtgärder som krävs beror på politiska 
åtgärder på nationell nivå och EU-nivå, samt på utvecklingen av globala marknader för 
exportprodukter såsom drivmedel, kemikalier och fordonsteknik. Om Halland och VGR 
(inklusive Göteborgs stad) önskar upprätthålla höga ambitioner när det gäller hållbar 
utveckling (t.ex., uttryckt i "Regionala miljömål för Västra Götaland"), så finns det ett behov 
av att vidareutveckla och analysera konkreta åtgärder med avseende på vad som behövs för att 
koppla beslut på kort sikt med de långsiktiga målen. Detta så att regionen är förberedd för den 
framtida utvecklingen av nationella och internationella politiska åtgärder så att dessa kan 
länkas samman till regionens initiativ för att uppnå en miljömässigt, ekonomiskt och socialt 
hållbar omställning av regionens energisystem. 
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1 Introduction 
The three main pillars of EU’s energy policy are competitiveness, supply security and 
sustainability. With regard to climate policy the overall aim is to ascertain that the global 
temperature increase is limited to 2 degrees Celsius. Implementation of policies which can 
transform the energy system to fulfill this aim will be a great challenge, not at least politically. 
Such policies and efforts must not only be carried out on an international, EU and national 
level but also on a local level. The local level is of importance since many decisions are taken 
on this level and the results of these have direct implications on aggregated national results. 
The local level is also where the policies will have direct impact on the general public. 

This report discusses and analyses pathways towards meeting targets for CO2-emission 
reductions, renewable energy and energy efficiency in the Västra Götaland (VGR) and 
Halland counties which belong to the Kattegat Skagerrak region – the KASK region as shown 
in Figure 1.1 (the entire KASK region comprising parts of Denmark, Norway and Sweden 
indicated in dark blue).  

  
Figure 1.1: KASK (Kattegat-Skagerrak) region shown in dark blue. 

The work takes into consideration local, regional, national and EU based targets and plans for 
improved energy efficiency, increased deployment of renewables and reduction of 
production-based CO2-emissions (emissions that arise within the geographical boundary of 
Västra Götaland and Halland counties). A special focus is placed on energy efficiency savings 
potential in the building sector and in the energy intensive industry in the region as well as on 
large-scale deployment of renewables in the electricity generation sector which is a fully 
integrated part of the European electricity sector. It should be mentioned that we provide no 
detailed analysis with respect to how the capacity to act is divided between the different 
organizations involved in the local decision making (on the level of municipalities and the 
VGR and Halland counties). As for the transportation system it is obvious that the politicians 
in the two counties have little influence on the development of car technology since this is 
mainly governed by international and global markets.  

The aim of this report is also to discuss the different aspects of the work required to transform 
the regional energy system of the VGR and Halland counties, i.e. the Swedish KASK-region 
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(in the following we use the notation Swedish KASK region – KASK-SE - to represent the 
VGR and Halland counties). The report follows to some extent a framework developed in a 
previous EU project (PATH-TO-RES) which outlines a methodology to define Pathways 
which can link short term actions with long term visions (Lodén et al., 2009a). The 
methodology applied starts with a detailed description of the present system (energy statistics, 
energy infrastructure as well as decision makers and stakeholders) and, based on this, a 
number of steps are defined with the aim to serve as check points to ensure that one or more 
Pathways can be formulated which describe how the local energy system can be transformed 
to comply with goals and targets. The energy system of the region is described by energy and 
emission statistics and by a Reference Energy System (RES), from which the structure (i.e. 
components, flows and connections) and energy balance of the energy system is determined. 

Working processes for municipal/local energy planning are carried out in many European 
countries. If such processes are successful they can be a powerful tool for transforming local 
energy systems in desired directions. Several studies have shown that system boundaries for 
energy planning have widened over recent decades in certain European countries (see Lodén, 
et al. 2009a and references therein). Thus, Local Energy Planning (LEP) processes have 
developed from simply being administrated by the municipality, to being a cross functional 
process including different fields and actors, all of which have a strong dependence on the 
local energy situation. Consequently, the need for alignment between individual projects and 
long-term energy strategies for entire municipally administered areas has been recognised.  

Currently most municipalities within the EU have strategies or are developing strategies that 
aim at fulfilling long term national and international goals such as those contained in the EU 
climate change and energy package, i.e. the 20-20-20 targets in 2020, described above. There 
are also several municipalities, mainly within the EU, that have signed up to the Covenant of 
Mayors and thereby committed their municipalities and cities to go further than the EU 20-20-
20 goals (Covenant of Mayors, 2014). It is worth noting that during the last years there has 
been a strong increase in the number of municipalities who have signed the Covenant of 
Mayors (with currently – January 2015, almost 6,200 signatories). This shows that there is a 
strong regional local interest to develop society towards a more sustainable one. In line with 
this it seems to be rather common for regions and municipalities to establish visions on what 
would be the future, including long term energy and climate goals. Yet, these are often visions 
rather than concrete action plans since the region often has limited capacity to act and besides, 
a long term vision is usually considered to be “politically safe” (new politicians by then). 

In this work we combine the results of the present project of the KASK region with some 
insights gained from previous work (Lodén et al., 2009b).  As indicated above the Swedish 
KASK region is divided into two counties; Västra Götaland county (VGR) and Halland 
county with 49 and 6 municipalities, respectively. The political power (the capacity to act) is 
mainly with the municipalities, i.e. the municipalities have so-called local self-government 
while the counties mostly have an administrative function and provides a link between the 
government and the municipalities. The municipalities are often large property owners and 
also usually own the main energy utility company in the municipality. It is often considered 
that such municipality owned infrastructure could be subject to early adoption of actions to 
transform the energy systems (e.g. energy efficient renovations of buildings and renewable 
fuels and waste fuels in district heating systems). 

As indicated, the point of departure of the work presented in this report is the present energy 
system. The work combines an analysis of the entire energy system with a more detailed 
analysis on: 
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• Energy efficiency in selected key industries 
• Large scale integration of intermittent electricity generation 
• Energy savings potential in the existing building stock 
• Greenhouse-gas (GHG) emission reductions in the transport sector 

The overall analysis was refined during the course of the work by using results from the 
detailed analysis as input. The four chosen areas of the energy system outlined above have 
been selected since they constitute an important part of the energy system in the region 
responsible for large CO2-emissions and/or high energy consumption.  

As mentioned above focus in this work is placed on reduction of production based CO2-
emissions, reduced energy consumption and large-scale deployment of intermittent 
renewables. Thus, non-CO2 GHG emissions arising foremost from the agricultural sector and 
mitigation in the form of increased uptake of CO2 from the biosphere have been outside the 
scope of the work. The work reported in this report does not address the social dimensions 
and lifestyle issues related to the actions that have been proposed since this has been studied 
in other reports, see for instance Andersson, D. et al., (2014) and Larsson et al., (2015). 

According to Elforsk (2013), the production potential of both hydro- and wind based power 
may increase as a consequence of climate change, the former in the north of Sweden while it 
may decline in the southern parts. Also, increased production potential within forestry and 
agriculture may lead to increased production potential of bioenergy depending on prices and 
how we choose to use the increased production potential within the forestry and agriculture 
sectors. A warmer climate will reduce demand for heat while at the same time increase 
demand for cooling during the summer but future use of heat and cooling will also depend on 
many other factors, such as implementation of energy efficiency measures in the building 
stock and population growth. Thus, the combined effects from climate change are difficult to 
project, at least quantitatively, and therefore in this work no considerations have been taken 
with regard to the effect on energy supply and energy use in KASK-SE from climate change. 

The methodology used in this work starts with a detailed description of the present system 
(energy and emission statistics and energy infrastructure as well as decision makers and 
stakeholders) and, based on this, a number of steps are defined with the aim to serve as check 
points to ensure that one or more Pathways can be formulated which describe how the local 
energy system can be transformed to comply with goals and targets. Starting with “trend 
lines” based on the past (up to 2010) CO2 emissions and energy consumption and officially 
announced targets on CO2 emission reductions, energy conservation and renewable energy in 
each of the counties involved, the project proposes CO2 reduction and energy conservation 
technologies as well as inclusion of renewables by sector. 

Most of the work in this project is reported in individual technical reports which are discussed 
and summarised in Chapters 4 to 7. Chapter 8 discusses overall results for the energy system 
in the region with regard to targets for energy efficiency, renewables and CO2 emissions 
while Chapter 9 discusses the challenges that the region is likely to face in meeting zero or 
near-to-zero CO2 emissions towards Year 2050. Main conclusions are highlighted in Chapter 
10 while Chapter 11 suggests further work. 

2 Energy Overview 
This chapter provides a brief description of the energy system in KASK Sweden and in 
Göteborg including large-scale energy- and emission intensive sources, existing and under 
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development, and electricity production plants and statistics on energy consumption and 
emissions. Göteborg is described separately since it is by far the largest municipality in the 
Swedish KASK-region and it is the second largest city in Sweden with a population of around 
533,000 at end 2013. By 2025, the population is expected to increase to 612,000.  

As mentioned above, the Swedish KASK region consists of two counties, VGR and Halland, 
which in turn are divided into 49 and 6 municipalities, respectively. Each county has a County 
Administrative Board (CAB), a government authority basically providing a link between the 
municipalities and the government. With regard to Energy and climate change, the main role 
of the county administrative board is to coordinate regional goals so that they align with the 
national goals. Much of the political power and therefore also the ability to change the energy 
system lies within the municipalities, they have a district council with a rather extensive 
governance independent of the national government although there is a strong connection 
between the district council and the national government. All municipalities in Sweden are 
required by national law to have an energy plan (The law on municipal energy planning - 
1977: 439) which often includes a climate plan. As of February 2015 fifty of the fifty-five 
municipalities in the region also have a wind power plan allocating preferred areas for 
location of wind parks. 

Table 2.1 provides some key characteristics of VGR and Halland with regard to size, energy 
consumption and GHG emissions.  

Table 2.1: Basic characteristics of the counties of Västra Götaland and Halland. 
 VGR Halland Total 

Population (end 2012) 1,612,144 305,986 1,918,130 

Approximate area [km²] 23,942 5,719 29,661 

Population density [/km²] - end 2012 67.3 56.1 65.3 

Number of municipalities 49 6 55 

Primary energy supply [TWh/year - 2008] 69.6 63.1 132.9 

Regional share of national primary energy supply, 
% 

12.7 11.5 24.2 

Final Energy Consumption (FEC) [TWh/year] - 
2010 

66.1 13.9 80.0 

FEC /capita [MWh/year] - 2010 41.0 45.5 41.7 

FEC/capita (national level) [MWh/year] - 2010 43.7  

GHG emissions, Mt CO2e - 2010 12.4 1.9 14.3 

GHG emissions/capita, tCO2e - 2010 7.7 6.2 7.5 

Largest emitting municipality, (Mt CO2e – 2010) Göteborg 
(3.0) 

Halmstad 
(0.6) 

Göteborg 
(3.0) 

 

As can be seen from Table 2.1, VGR is considerably larger than Halland in most respects. The 
population in VGR is expected to increase to 1.74 million by 2025 (VGR 2012a) while the 
population in Halland is projected to increase to around 340,000 by 2030 (Region Halland 
2014).  

The VGR region is characterized by a high degree of industrialization with major clusters of 
large industries in Göteborg and Stenungsund plus Sweden’s largest oil refinery outside 
Lysekil. In fact, three refineries and a chemical plant in VGR combined emit some 3.4 Mt 
CO2e annually, corresponding to almost 24% of all GHG emissions in the Swedish KASK 
region. The Halland region contains the site of a major nuclear power plant generating around 
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24 TWh electricity annually of which the bulk are exported out of Halland. The largest single 
CO2-source in Halland used to be Pilkington (glass production) which emitted around 150 
kton CO2 annually but it was shut down in 2013 (Averfalk et al., 2014). A pulp and paper 
plant located in the Halland region emits around 1 Mt biogenic CO2 per year and the same 
plant is preparing for a substantial expansion possibly raising emissions in the future, 
although biogenic.  

It should be emphasized that data on energy use given in this report has not been temperature 
corrected1. Large and/or sudden differences in energy use between years can be a combined 
effect of differences in year-average temperature and activity level due to variations in the 
state of the economy, where the former mainly influence the heating sector and the latter the 
industry sectors. Both the Years 2009 and 2010 were cold years indicating higher than normal 
use of district heat in these two years. 

Figure 2.1 shows the Reference Energy System (RES) for the KASK-SE region in Year 2010. 
A more detailed RES for each county and for the individual sectors can be found in Johnsson 
J., et al. (2014). The RES shows the flow of energy (in GWh) within the region from primary 
energy going into the system through conversion and transport to final consumption by end-
users.  

Primary energy into the KASK-SE region is dominated by uranium (nuclear power 
production) and crude oil. Most of the oil is being refined within the VGR county and 

 

Figure 2.1. The Reference Energy System for the KASK-SE region in Year 2010, figures are in GWh, 
source: Johnsson J., et al., (2014). 

                                                 

1 There can for instance be many causes to annual variations in production and use of district heat. Besides the 
temperature, the price difference between different fuels and electricity may play a role as well as the availability 
of the production facilities.   
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exported out of Sweden while most of the generated nuclear power is exported from Halland 
county to Göteborg county, i.e. the electricity is being consumed within the region. There is 
also a considerable amount of fossil gases going into the system, mostly natural gas being 
used for power and heat generation in the industry as well as for generation of District Heat 
(DH). In fact, it can be stated that most of the CO2-emissions in the region originate from 1) 
natural gas based heat generation, 2) natural gas based industrial heat generation and 3) fossil 
consumption in the transport sector. Yet, overall CO2 emissions from the heating sector is 
low in Sweden and also for the region since the major part of heating is provided by biomass 
fuelled DH.  

Electricity is generated mainly by hydro, nuclear and biomass, the latter mostly in combined 
heat and power plants. In total the region burnt 4.2 TWh fossil fuels to produce mainly heat 
(0.2 TWh for electricity generation) in 2010 (industry not included) of which 3.2 TWh natural 
gas. Most of the fossil fuels used to generate heat (plus some electricity) was used in the VGR 
region, some 4.0 TWh. As evidenced by the large CO2-emissions mentioned above, the 
industry is a large consumer of fossil energy; 19.2 TWh in 2010 of which almost 16 TWh in 
the form of gas (natural gas, city gas, kerosene, LPG).  

The contribution from non-hydro renewables (wind, bio, waste) in power and heat production 
is increasing rapidly and VGR and Halland showed the highest and sixth highest installed 
wind power capacity in Sweden, respectively, at the end of 2013. In VGR 696 MW wind 
power was installed at end 2013 generating almost 1.6 TWh power while corresponding 
figures in Halland were 327 MW and 0.65 TWh respectively (Swedish Energy Agency 
2014a).  

The main reason for the rapid increase in non-hydro renewables is the joint “green certificate” 
system agreed between Norway and Sweden targeting 26.4 TWh additional renewable power 
generation in the two countries between 2012 and 20202. The certificate system has so far 
resulted in a boom in wind power in Sweden and in hydro power in Norway. 

Figure 2.2 shows total Final Energy Consumption (FEC) and FEC per sector in KASK-SE 
between 1990 and 2012. Note that the year 2005 is not shown and that only three sectors and 
total consumption (dashed black line) are shown after 2009 due to incomplete statistics for 
these years. The data have been taken from Statistics Sweden (2014a). 

                                                 
2 In March 2015, Sweden suggested that the target should be raised to 28.4 TWh. The new proposed target will 
be discussed in the Norwegian Government during the spring of 2015 (Norwegian Government 2015).   
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Figure 2.2: Final Energy Consumption (FEC) by Sector in KASK-SE between 1990 and 2012, TWh. The 
year 2005 is not shown and only three sectors and total FEC are shown after 2009. Source: Statistics 
Sweden (2014a). 

Three sectors account for around 85% of FEC throughout the period; industry, transport and 
households. As can be seen from Figure 2.2, while energy consumption in the households has 
gone down by almost 30% between 1990 and 2009, consumption has increased in the 
transport and industry sectors. Between 1990 and 2012, the industry’s energy consumption 
has increased by 55% while energy consumption in the transport sector has increased by 29%. 
Total consumption has increased by 26% between 1990 and 2009 reaching a peak of 80.0 
TWh in 2010. It should also be noted that there is a large increase in total consumption 
between 2000 and 2001 and that consumption has been relatively constant since 2002 at 
around 80 TWh apart from a dip to 72 TWh in 2009. This is, as can be seen from Figure 2.2 
almost entirely caused by increased consumption in the industry and the dip down in 2009 
was of course caused by the decline in the global economy in that year. The industry 
increased its annual energy consumption from around 21 TWh in 2000 to between 35 and 36 
TWh between 2003 and 2008 and its share in total consumption increased from 33% in 2000 
to 45% in 2004 and 2006. The data in Figure 2.2 emphasizes the strong role of energy 
intensive industry in the region. VGR accounts for more than 80% of FEC in the region and 
for almost 85% of the industry’s energy consumption.  

Figures 2.3 and 2.4 show total GHG emissions (in CO2 equivalents), total GHG emissions 
excluding agriculture and GHG emissions from agriculture, total CO2 emissions and CO2 
emissions by sector in 1990, 2000 and between 2005 and 2012 for VGR and Halland, 
respectively.  
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Figure 2.3: Total GHG emissions (in CO2e), total GHG emissions ex agriculture, GHG emissions 
agriculture, total CO2 emissions and CO2 emissions by sector for VGR 1990, 2000 and between 2005 and 
2012. Source: Länsstyrelserna 2014.  

In VGR county GHG emissions have declined by 10% since 1990, from 12.5 Mt to 11.2 Mt, 
mostly due to an 11% decline in CO2 emissions from energy supply and a 25% decline in 
emissions from industry processes. Transport related emissions have remained almost 
constant over the period accounting for 27% of total GHG emissions in the VGR county in 
2012 and for 33% of total CO2 emissions. Combined, energy supply and transport account for 
74% of the GHG emissions in the county and for almost 90% of CO2 emissions (2012). 
Agriculture is the third largest sector with respect to GHG emissions accounting for more than 
11% of total GHG emissions (2012) but, as mentioned above, emissions from the agriculture 
sector has not been analyzed in this report.    
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Figure 2.4: Total GHG emissions (in CO2e), total GHG emissions ex agriculture, GHG emissions 
agriculture, total CO2 emissions and CO2 emissions by sector for Halland 1990, 2000 and between 2005 
and 2012. Source: Länsstyrelserna 2014. 

In Halland county GHG emissions have declined by some 27% since 1990, from 2.3 to 1.7 
Mt. CO2 emissions have declined even more, by 32% and as can be seen from Figure 2.4 this 
is primarily due to reduced emissions from energy supply which have gone down by more 
than 60%, from 900 ktons in 1990 to 333 ktons in 2012. A closer examination reveals that it is 
foremost energy supply within the industry and on-site generation of heat that has reduced 
emissions, the latter due to a switch to DH. CO2 accounts for nearly 70% of total GHG 
emissions. Combined, the two sectors energy supply and transport account for roughly 60% of 
total GHG emissions and for 87% of total CO2 emissions in the region.  

In 2012, the two regions emitted 12.9 Mt GHG (CO2e) together, corresponding to 23% of 
total GHG emissions in Sweden of which 20 percentage points in VGR alone. Some 81% of 
total GHG emissions in the region are CO2-emissions. Emissions from energy supply and 
transport account for 44 and 29% of total GHG emissions respectively (and 54 and 36% of 
CO2 emissions). While CO2 emissions from energy supply have gone down by 18% since 
1990, emissions have gone down by only 2% in the transport sector. Since 1990 there has 
been a 13% reduction in GHG emissions in KASK SE excluding net changes in LULUCF 
(Land Use, Land Use Change and Forestry) while corresponding reduction in CO2 emissions 
is 12%.   

Göteborg has the largest Total Final Energy Consumption (TFEC) among the municipalities 
in the Swedish KASK-region, around 20 TWh in 2010 corresponding to around 40 MWh per 
capita which is fairly close to the national average of ca 43 MWh but far below FEC/capita in 
the two KASK municipalities of Lysekil and Stenungsund at 505 and 251 MWh/capita 
respectively (2009) (Swedish Energy Agency 2013, Statistics Sweden 2014a). The large per 
capita consumption in Lysekil and Stenungsund is due to the oil refinery in Lysekil and the 
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chemical cluster located in Stenungsund and these two industry plants are analysed in 
Section 4. 

TFEC in Göteborg has grown by 69% since 1990 and by 27% since 2000. Energy 
consumption in the industry sector has grown by almost 200% since 1990 and by 84% since 
2000 accounting for almost a third of TFEC in Göteborg. Energy consumption in the transport 
sector has grown by 42% since 1990 but has actually gone down by slightly more than 10% 
since 2000. Energy consumption in the transport sector accounts for 27% of TFEC in 
Göteborg. The third largest energy consuming sector, households, have reduced energy 
consumption by 26% relative 1990 and by 22% relative 2000. Finally, the fourth largest 
sector accounting for 17% of TFEC, other services, has increased its consumption by 94% 
since 1990 and by 87% since 2000.  

In 2012 Göteborg accounted for 23% of GHG emissions and 26% of CO2 emissions in VGR, 
CO2 alone contributed to 94% of total GHG emissions. Figure 2.5 shows total and agriculture 
GHG emissions and CO2 emissions in total and by sector in Göteborg from 1990 to 2012. 

As can be seen from Figure 2.5 GHG emissions in the City of Göteborg have remained more 
or less constant since 1990, with the only significant changes due to the above mentioned 
effects from the cold years 2009 and 2010 (mainly in energy supply). In total there has been a 
marginal increase since 1990 by ca 50 kton of which two thirds are CO2 emissions. CO2 
emissions from transport have only decreased by ca 28 kton in spite of that the average car 
should be significantly more fuel efficient today than 25 years ago. Thus, increased 
transportation work has offset most of improved fuel efficiency. CO2 emissions from 
transport and energy supply account for 88% of total GHG emissions and for 94% of total 
CO2 emissions in 2012 while CO2 emissions from industry processes and working machines 
combined accounted for 5% of both GHG and CO2 emissions that year. 

 

Figure 2.5: GHG and CO2 emissions by sector in the City of Göteborg 1990, 2000 and 2005-12, source: 
Länstyrelserna 2014. 
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Obviously, as stated above climate change will have an effect both on energy supply and 
demand for energy in the region but, as mentioned in Section 1, this has not been analyzed in 
this report.  

It can be concluded that the energy intensive industry plays a large role in the region 
accounting for a substantial share of the regions final energy consumption, particularly in the 
county of VGR. The bulk of CO2 emissions, 90%, originate from two sectors; transport and 
energy supply, the latter mostly as a consequence of the energy intensive industry located in 
VGR. The CO2 emissions in the KASK-SE region have declined by 12% between 1990 and 
2012, mostly due to increasing consumption of renewable energy for generation of DH and 
heat/steam to the industry.   

3 Energy and Climate goals 
This chapter outlines EU, national and regional (i.e. by county) goals with respect to 
emissions of GHG’s, deployment of renewables and energy efficiency. In addition to goals on 
national and county levels, each municipality also have individual goals. Therefore this 
section also includes some of the corresponding goals for City of Göteborg, which, as 
mentioned, is by far the largest municipality in the region in most respects.  

EUs climate targets are defined to comply with emission reductions required to limit global 
warming to 2 degrees Celsius. To meet this, the EU has defined the so called 20-20-20 targets 
to Year 2020, i.e. to achieve by 2020 a 20% reduction in GHG emissions relative to 1990, 
20% share of renewables in energy consumption and 20% energy savings in consumption 
relative to a baseline projection for 2020. In the longer term, by 2050, the goal is to achieve 
80 to 95% GHG emission reductions relative to 1990. In October 2014, the EU also agreed on 
intermediate targets to be reached by Year 2030; a 40% reduction in GHG emissions (again 
relative to 1990 emissions), an increase in the share of renewables to 27% of energy 
consumption and an indicative target of 27% savings in energy consumption, relative to 
projected energy consumption for 2020.  Typically, national and regional targets relate to the 
EU targets, i.e. are similar or, in the case of Sweden, typically more ambitious than the EU 
targets. 

3.1 Greenhouse Gas Emission goals 

In 2011 the Swedish Environmental Protection Agency (EPA, NVV in Swedish) was 
commissioned by the Swedish Government to suggest a roadmap for how Sweden could 
achieve its goal of zero net GHG emissions in 2050 (NVV 2012). The Swedish EPA 
suggested two indicative scenarios of which the most ambitious with respect to absolute 
reduction is shown in Figure 3.1, the so-called “Target scenario 1”. 
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Figure 3.1: Indicative GHG emission reduction scenario (the so-called “Target scenario 1”) provided by 
the Swedish Environmental Protection Agency in its “Basis for a Roadmap 2050” commissioned by the 
Swedish Government. The negative emissions are provided through biogenic CCS (Carbon Capture and 
Storage). Source: NVV (2012).  

In the scenario depicted in Figure 3.1, emissions are reduced to ca 10 Mt CO2e in 2050. More 
than 20 Mt CO2 is captured and stored in the industry in 2050 using Carbon Capture and 
Storage (CCS) which is assumed to be applied at a large scale from 2040. Around 10 Mt CO2 
is assumed to be captured from bio-based combustion (NVV 2012). In a second scenario 
(“Target scenario 2”), emissions are reduced to approximately 20 Mt in 2050 without the use 
of CCS. To reach zero net emissions the Swedish EPA suggests use of two more flexible 
mechanisms; increased uptake of CO2 from the forestry and land use sector and/or utilization 
of international carbon credits (NVV, 2012). 

In January 2015, the new national Government (elected in late 2014) commissioned 
“Miljömålsberedningen” (i.e. a parliamentary committee) to develop a political framework for 
a long-term climate policy. The aim of the framework is to specify the rate at which Sweden 
will reduce its emissions, create clear incentives for the transformation to a climate friendly 
society and create a stable and predictable investment climate for business. Both Halland and 
VGR county follow the current national plan with regard to targets for GHG emission 
reductions, i.e.; 

• 40% reduction of GHG emissions in 2020 relative to 1990 from sectors not included in the European 
Emission Trading Scheme (ETS)3. Additionally, the County Administrative Board in VGR (VGR 2014) 
has proposed 80% reduction by 2030, again relative to 1990 emissions.  

                                                 
3 According to Averfalk et al. (2014), the national plan envisions that one third of the targeted national emission 
reduction to 2020 could be taken through purchase of external emission credits suggesting that Halland only 
needs to reduce emissions by a further seven percentage points (140 kton) between 2012 and 2020 in order to 
reach the 2020 target. This is also proposed by the Swedish Environmental Protection Agency in its “Roadmap 
2050” (NVV 2012) although not explicitly given as an option already in 2020.     
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• Sectors that are included in the ETS shall reduce their emissions by 21% in 2020 and by 43% in 2030, 
in both cases relative to year 2005 emissions (EC 2014)  

• Net GHG emissions should be zero by the middle of this century. In order to reach this target, the 
Swedish Government has released proposition 2008/09:162 which states that Sweden will prioritize to 
achieve a “transport sector independent from fossil fuels” by 2030 (see Footnote 38). 

More specifically and additionally, the CAB in VGR has proposed the following with respect 
to GHG emissions (VGR 2014); 

• An economy not dependent on fossil fuels by 2030. This target has not been quantified.  
• Road traffic: 40% reduction by 2020 and 80% by 2030 
• Agriculture (excluding machines): 15% reduction by 2015 and by 2030. 
• Energy supply and Industry processes should reduce their emissions by 25% by 2020 and by 80% in 

2030. 
• Machines: 25% reduction by 2020 and 80% by 2030.   

The CAB in VGR (2014) has also proposed reduction targets related to consumption based 
emissions4 suggesting that these emissions should be reduced from roughly 10 ton CO2e per 
capita and year (Swedish average 2003, NVV 2008) to less than 6 ton in 2020 and further to 2 
ton and to between 0.5 - 1.0 ton in 2030 and 2050, respectively.      

With respect to Halland county, Averfalk et al., (2014) claim that emission reductions beyond 
2020 will be very hard to implement since these emission reductions will have to occur 
foremost within the transport and agriculture sectors and that the county therefore should 
build up a regional competence centre for these sectors. It is fair to assume that the challenge 
is similar also in other regions such as VGR. 

Also in Göteborg, the main target up to 2020 is in line with the national target, i.e. emissions 
from sectors not included in the EU Emission Trading Scheme (ETS) should be reduced by 
40% in 2020 relative to emissions in 1990. The required emission reductions include 
emissions from combustion of waste since these facilities were not included in the ETS when 
the target was decided. In 2012, emissions from sectors not included in the ETS had declined 
by 20% relative to 1990, from around 1.7 Mt to 1.3 Mt (City of Göteborg 2014a, b). However, 
as stated by City of Göteborg (2014a, b), such emissions are dependent both on weather and 
economic cycles and may therefore change significantly from year to year. Further emission 
targets announced by the City of Göteborg is for instance that in Year 2035, production and 
consumption based (see Footnote 4) emissions per capita should be reduced to a maximum of 
2 and 3.5 ton CO2e per capita, respectively. This may be compared to today’s corresponding 
emissions of ca 5 and 8 ton CO2e per capita. Finally, Göteborg has announced that they aim 
to reduce CO2 emissions from road and sea transport by at least 80% and 20% respectively in 
2030 relative to 2010 (City of Göteborg 2014a, b). A few additional measures have been 
announced but these will have a relatively modest impact on total emissions. 

3.2 Goals for renewable energy 

The Swedish Government is aiming for that at least half the energy consumption in 2020 
should be from renewables and at least a 10% share of renewable fuels in the transport sector. 
In 2012 renewable energy accounted for 51% of total energy consumption in Sweden while 

                                                 
4 Consumption based emissions refer to emissions in VGR plus emissions outside VGR but caused by 
consumption in the region (VGR 2014).   
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the share of renewable fuels in the transport sector reached 12.6%5. Thus, Sweden has 
already reached the 2020 targets for renewable energy (The Swedish Government 2013). The 
Swedish target is part of the EU’s common target of 20% renewables by 2020. In October 
2014 the EU Council endorsed a binding target (on EU level) of 27% renewable energy by 
2030. However, the Swedish Government has not, at the time of writing this report, 
announced a specific target for renewable energy beyond 2020. Both VGR and Halland have 
endorsed the national target for renewable energy in 2020 (County Administrative Board 
Halland 2012, VGR 2014). However, VGR is also proposing more ambitious targets aiming 
for a share of renewable energy in total energy consumption of at least 60% in 2020 and 80% 
in 2030, the latter as a consequence of the county’s target of an economy independent from 
fossil fuels in 2030. Reaching a 60% share for renewables in 2020 is likely to be a great 
challenge since the share was only 41% in 2012 (VGR 2014). It should be emphasized 
however, that the more ambitious targets have not yet been decided as of early December 
2014. VGR has also set several more specific RES targets such as the target of 5 TWh wind 
based power generation in 2020, up from 1.4 TWh in 2012.  

Göteborg city is aiming for that all district heat (DH) should be produced from renewables, 
waste and industrial waste heat by 2030 and that Göteborg will produce at least 500 GWh 
renewable electricity and 1,200 GWh biogas, also in 2030 (City of Göteborg 2014a, b). 
According to City of Göteborg (2014b) this implies that DH produced by natural gas should 
be phased out and partly replaced by the above mentioned fuels and partly through energy 
efficiency measures leading to lower demand for heat. In 2012, the share of natural gas based 
DH generation in Göteborg was 29%, down from 47% in 2010. DH production in the City of 
Göteborg was 3.8 TWh in 2010, 3.1 TWh in 2011 and 2.9 TWh in 2012 but as mentioned in 
Section 2, the Year 2010 was a cold year (as was also 2009).   

3.3. Energy efficiency goals 

Both Halland and VGR county follow the national plan with regard to targets for energy 
consumption (County Administrative Board Halland 2012, VGR 2012b, 2014), i.e. 20% more 
efficient energy consumption in 2020 than in 2008 (measured as energy intensity, i.e. gross 
energy consumption divided by Gross Regional Product in 2008 prices). 

Göteborg has an ambition that total annual primary energy consumption for generation of 
electricity and heat should be below 31 MWh/capita in 2030 representing a reduction of ca 
10% relative to 2011. More specifically, primary fuel supply for heat production should be 
reduced by 17% from 6.3 TWh in 2011 while primary fuel supply for generation of electricity 
should be reduced by 6.4% from 4.4 TWh in 2011 (in both cases primary consumption 
corrected to normal year consumption).  

4 Energy efficiency in energy-intensive industries 
As mentioned above, the Swedish KASK region hosts a number of energy intensive 
industries. A mechanical pulp mill (for newspaper production), a Kraft pulp mill (producing 
market pulp, but not paper) and a large sawmill are located in Halland. In Göteborg there are 
two refineries, each with a capacity of slightly below 5 Mton/yr of crude oil.  On the VGR 
coast, in Lysekil, there is a large refinery with a capacity of around 10 Mton/yr of crude oil.  
                                                 
5 In fact, preliminary figures indicate that the share of renewable fuels in the transport sector in 2013 increased 
by another 3 percentage points from 2012 to 15.6% (The Swedish Government 2014).  
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Figure 4.1: Total GHG emissions in Sweden in 2012 to the left (ex biogenic emissions) and to the right the 
share of fossil and biogenic GHG emissions in total Swedish industry emissions in 2012, source: 
Swedish Environmental Protection Agency.  

There is also a cluster of chemical industries in Stenungsund where chemicals and polymers 
are produced. 

The energy intensive industries have a key role to play regarding reduction of GHG 
emissions. In the Swedish KASK region, 4 industrial plants accounted for 30% of the fossil 
based CO2 emissions in 2010. The forest industry sector uses large amounts of energy mainly 
supplied from biomass and, thus, yielding biogenic CO2 emissions. In Figure 4.1 the right-
hand graph shows that the forest-based sector (saw mills, pulp & paper mills) is a large part of 
the Swedish industry sector with biogenic CO2 emissions amounting to almost twice the 
amount of the fossil CO2 emissions from this sector. 

Final energy usage in the Swedish industry in 2010 corresponded to approximately 36% of 
the Swedish total while energy usage in KASK-SE amounted to 20 % of the total energy used 
in Swedish industry of which 80% in VGR and the remaining 20% in Halland. 

Industry can contribute in many ways to increasing energy efficiency and decreasing GHG 
emissions. Some of the most important measures that can be implemented include: 

• Energy Management Systems. 
• Best Available Technologies (BAT). 
• Enhancement of internal process heat recovery. 
• Combined Heat and Power (CHP). 
• Exporting excess process heat to nearby district heating networks. 
• Using excess process heat on-site for e.g. biomass drying, electricity generation, CCS or other energy-

intensive processes. 
• Switching to low carbon fuels/energy carriers/feedstocks. 
• On-site integrated polygeneration concepts (e.g. biorefinery processes) CO2 separation for storage or 

reuse. 

It is beyond the scope of this study to discuss possible options for key industries in the KASK 
region with respect to all of the above. The work has focused on energy efficiency options 
based on enhanced internal process heat recovery that could be achieved in the short to 
medium term. In the long term a mix of the measures listed above will be necessary in order 
to meet regional and national energy efficiency and GHG emission reduction targets. 
However, there is currently a lack of knowledge about which mixes of measures are most cost  
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Figure 4.2: Fossil GHG emissions (2010) from the industry sector of the KASK Sweden region, source: 
Länsstyrelserna 2014. 

efficient and likely to be implemented under given energy and climate policy conditions. It is 
beyond the scope of the current project to generate such complex roadmap visions. Hence, 
this part of the report focuses only on possible developments for the short term (2020) and the 
medium term (2030). However, it is likely that in order to reach emission reductions required 
in the longer term, i.e. to 2050, CCS or a complete or partial transformation to bio-refinery (or 
a combination of CCS and bio-refinery) will be required and this is discussed in Sections 8 
and 9. 

Figure 4.2 shows the contribution from industry to fossil GHG emissions in the KASK region 
from the industries in Halland, from the Preem refinery in Lysekil (Preem LYR), from the 
chemical cluster in Stenungsund and from the rest of the industries in the VGR county.  

As can be seen from Figure 4.2 a large part of the emissions from the industry sector in the 
region are primarily from the industries in Stenungsund and from Preem’s refinery in Lysekil. 
Thus these two sites were chosen for deeper analysis of possible energy efficiency measures. 
The two plants were studied using Pinch Analysis (PA) and Total Site Analysis (TSA). TSA 
represents an extension of the PA method and is applied to industrial sites to analyze 
increased energy efficiency via a common utility system (for a more detailed description of 
the study, see Harvey et al. 2014).  By using these tools it is possible to analyze both the 
potential for saving energy and reducing emissions.    

4.1. The Preem refinery in Lysekil 

The Lysekil Refinery (LYR) is owned and operated by Preem and is the largest and most 
modern of the three refineries in VGR. It was built in 1975 but has since then been subject to 
a number of modernizations. Preem has started to initiate partial shift from fossil to biomass 
feedstock, primarily tall oil. However, this shift has so far been implemented in Preem’s 
refinery in Göteborg and not in the Lysekil operations. Figure 4.3 shows that the processed oil 
at Preem LYR accounts for more than 50 % of the total processed oil in the three refineries in 
VGR in 2011. The fraction of the raw materials used for energy purposes in the refinery 
processes is only 5 %. However, due to the high throughput, this is still a large fuel  
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Figure 4.3: Annual energy flows at the three refineries in VGR including the energy embedded in the raw 
material and products. (Data from 2011). 

consumption in absolute numbers for the three refineries in the region, 10.8 TWh in 2011 (see 
Figure 4.3) yielding corresponding CO2 emissions of 2.7 Mt which account for 4% of total 
emissions in Sweden. CO2 emissions for the Preem LYR refinery were 1.7 Mton in 2011.   

At the refinery, the crude oil is separated into different fractions and transformed into desired 
products. A significant fraction of the internal energy usage is related to separation processes. 
Separation is carried out in distillation column units where heat is supplied to the column re-
boilers and removed in the column condensers. A number of process streams are heated in 
furnaces and fired heaters. Excess process heat is mainly removed by air coolers.  In addition 
there are a large number of heat exchangers to transfer heat between process streams. 

Andersson et al., (2013) conducted an energy inventory and pinch analysis of the Preem 
refinery in Lysekil. The pinch analysis was used to calculate the theoretical energy savings 
potential for the refinery and to identify possible modifications required in order to decrease 
utility usage. Energy related data as well as process stream data were collected for all streams 
included in the process flow diagrams for all 18 refinery process units. The time point for 
process data collection corresponded to representative process conditions. 

The results of the energy saving analysis reported in Andersson et al., (2013) depend on the 
constraints considered when conducting the analysis. To reduce the energy demand and 
approach the minimum heat demand, new heat exchangers must be installed to recover heat 
between process streams. However, there are often process or cost-related issues that hinder 
availability of streams for heat exchanging. Examples of such constraints include i) long 
distances between process streams that can result in prohibitively expensive piping and 
pumping costs; ii) operability issues if streams from different refinery process units exchange 
heat, particularly during start-up, shut-down and other types of transient operation and iii) 
risks associated with direct contact between process streams if leakage occurs in heat 
exchangers. Three different levels of constraints were considered when conducting the pinch 
analysis and the energy targets were established for the following cases: 

A. No restriction for heat exchanging between streams within or between different process units. It is 
important to note that the necessary rearrangements in the heat exchanger networks will be substantial, 
and achieving this target is not feasible in practice. 
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B. No restriction for heat exchanging between streams within a process unit, but exchange of heat between 
process units is not allowed. The necessary rearrangements in the heat exchanger networks may be 
considerable. 

C. Heat exchange is only allowed between streams heated or cooled by utility. However, this type of heat 
exchanging may occur between process units (heat must however be transferred indirectly using a 
heating media or utility) or within process units directly. All existing process to process heat exchangers 
are assumed to remain unchanged. The rearrangements in the heat exchanger networks should therefore 
be limited. 

One way to find possible modifications to reduce energy demand is to identify heat 
exchangers that are not used in the most efficient way. Hot streams that need to be cooled 
should deliver their heat to a stream with a heat demand at as high temperature as possible. 
Pinch analysis can identify heat exchangers that are not delivering heat as efficiently as 
possible (hereafter referred to as pinch violations) and pinch analysis can also be used as a 
guiding tool to identify improved heat exchanger configurations. 

4.1.1 Energy savings potential for Preem Lysekil 

The total energy use in the refinery process units is 409 MW heat (3,580 GWh/yr assuming 
8,500 h/yr of operation), supplied to process streams in heaters fired with fuel gas. Steam 
generated while cooling the process is used in part to heat streams elsewhere at the process 
site and in part for other purposes including co-generation of shaft power to run compressors 
and pumps. 

Case A (unrestricted heat exchange between all process streams) results in a theoretical 
savings potential of 210 MW (1,785 GWh/yr). However, as discussed above, this is a highly 
theoretical energy saving target which cannot be achieved in practice.  

For Case B heat exchanging is only allowed between process streams within the same process 
unit. This requires that the minimum heat demand must be calculated separately for each 
process unit. Since the heat exchange is restricted, the total minimum heat demand for the 
refinery process units is higher and the energy savings target is lower, 146 MW (1,240 
GWh/yr).  

For Case B, the refinery process units were also analyzed separately and it was thus possible 
to identify the process units with the largest energy savings potentials. Two units (Isocracker 
unit and Mild Hydrocracker unit) were selected for further analysis. The total combined 
external heat demand for the two units is 71 MW (604 GWh/yr). The results of the detailed 
analysis are described by Åsblad et al., (2014). The specific measures investigated could save 
at least 20 MW (170 GWh/yr) and, with extensive modifications of the heat exchanger 
network, up to 50 MW (425 GWh/yr). Revamp of existing units is associated with large 
investment costs, thus further investigation is required to identify the energy savings measures 
that are profitable. The proposed modifications include new heat exchanger units to recover 
usable excess process heat that is currently discharged in air coolers.  

For Case C, heat exchange between process units is allowed for those streams which are 
currently heat exchanged with utility, based on the principles of Total Site Analysis (TSA, see 
Dhole et al., 1993 and Raissi 1994).  Further amounts of excess heat can be recovered from 
streams currently cooled by utility and used to heat process streams presently heated with 
utility. In this analysis, only the five largest process units were considered. The combined 
current utility demand of these five process units is 363 MW (approx. 90 % of the total heat 
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demand). This demand could be reduced to 306 MW, corresponding to an energy savings 
target for Case C of 57 MW (485 GWh/yr). 

The savings potential stated above are all heat savings. Most of the heat demand in these 
process units is supplied by fired heaters and furnaces, and a reduced utility heat demand 
could thus reduce fuel gas usage in these units. Assuming a boiler efficiency of 80 % for fired 
heaters and furnaces, the corresponding fuel gas savings are between 212 and 531 GWh/yr. 

Possible energy savings opportunities for Preem Lysekil that could be implemented in the 
short term include the suggested heat recovery measures in the isocracker and mild 
hydrocracker units or to increase heat integration between the different process units by 
implementing heat exchange through the site utility system (Case C). It is unlikely that the 
full savings potential for these units can be achieved in the short term. We therefore suggest 
that utility heat energy savings of 200 GWh/yr (5.6 % of the total heat supply to the process 
units) could be achieved by 2020, corresponding to 62 kton CO2eq/yr of reduced emissions, 
assuming natural gas as marginal fuel. Costs for implementing these measures were not 
available. 

For the medium term (2030) it is reasonable to assume implementation of further measures to 
eliminate other pinch violations. Further study is necessary to identify specific additional heat 
integration opportunities between process units. We therefore suggest that 50 % of the 
theoretical heat savings potential for Case B could be achieved by 2030, i.e. 620 GWh/yr (17 
% of the total utility heat energy supply to process units), corresponding to 192 kton 
CO2eq/yr of reduced emissions, again assuming natural gas as marginal fuel. Costs for 
implementing these measures were not available.  

Long term opportunities to reduce CO2 emissions could include a bio-refinery plant unit for 
production of biofuels integrated with the present refinery or a CCS (carbon capture and 
storage) plant using excess heat from the refinery as heat source (see Sections 8.2 and 8.3). A 
previous investigation of CCS opportunities for the Preem LYR refinery indicated that there is 
a potential to capture 1,480 kton/yr of CO2 with an emissions avoidance cost in the range 50-
53 €/ton of CO2 (Chalmers-Tel-Tek 2012).  

The oil refinery in Lysekil has a large amount of excess process heat. Currently, only a small 
fraction of this heat (47 GWh/yr in 2008) are collected and delivered to the local district 
heating network in the nearby community in Lysekil. The community is small, and there are 
therefore no further opportunities to increase such deliveries. However, the potential for 
additional recovery of excess heat for district heating is substantial. Recent studies have 
estimated that up to 800 GWh/yr of excess heat are available at the refinery site at levels that 
are suitable for district heating purposes. This amount of heat is sufficient to satisfy the 
combined space heating demands of the cities of Uddevalla, Trollhättan and Vänersborg. The 
costs for collecting this heat within the refinery have been estimated at around 300 MSEK, 
and the costs for constructing a pipeline to the city of Uddevalla have been estimated at 
around 700 MSEK (Preem 2014). For a variety of reasons, there are no current plans to 
proceed with implementation of this opportunity. 

4.2 Stenungsund Chemical cluster 

The Stenungsund chemical cluster was established in the 1960’s. The companies involved and 
their main products are AGA Gas AB producing industrial gases, Akzo Nobel Sverige AB 
producing amines and surfactants, Borealis AB producing ethylene and polyethylene (PE),  
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Figure 4.4: Overview of the chemical cluster in Stenungsund. For each company major inputs and outputs 
are shown (arrows), as are the material exchanges within the cluster. The nitrogen and oxygen produced 
by AGA Gas AB are used by the other plants in the cluster as well as exported. 

INEOS Sverige AB producing polyvinyl chloride (PVC) and Perstorp Oxo AB producing 
specialty chemicals.  

The process plants included in the cluster are profiled towards different business segments, 
thereby avoiding direct competition with each other, which facilitates cooperation and 
knowledge transfer. However, the plants are all owned by larger international groups which 
compete in some market segments. The cluster in Stenungsund is rather small by international 
standards. However, the cluster is strategically located within reach of the port of Göteborg 
(Sweden’s largest freight port), the natural gas grid (to which increasing amounts of biogas 
are fed), the oil refineries in Lysekil and Göteborg (producing the majority of Sweden’s 
transport fuels) and local district heating grids (to which excess process heat is currently 
delivered in small amounts). Furthermore, both pulp and paper industries and heat and power 
producers with ongoing ambitious projects regarding possible implementation of biomass 
gasification for production of energy carriers (heat, electric power and gas) and materials are 
located within the cluster’s reach. An overview of the cluster is provided in Figure 4.4.  

The largest plant and the heart of the cluster is a steam cracker plant. It delivers both 
feedstock (mostly ethylene and propylene) and fuel gas to the surrounding plants.  23 % of the 
oil and gas fed to the cluster are used to satisfy the cluster’s internal energy demand. This 
generates 950 kton CO2e, 1.5 % of the Swedish national fossil CO2e emissions (2011). 
Figure 4.5 provides an overview of the main flows entering and leaving the cluster. 



30 

Stenungsund

Oil: 300

Gas: 1025

Biomaterial: 140

Chemicals: 480

Plastics: 740
Chemicals: 1060

Fossil by-products: 160
Biofuel: 110

Internal energy use

Gas: 310
Oil: 1,9

Gas: 18
Oil: 7,8

CO2eq: 900

Raw material input

Products
[kton]

 
Figure 4.5: Annual mass flows (kton)within the chemical cluster in Stenungsund including raw material, 
product output, internal use, import of fuel and CO2 emissions. (Data from 2011). 

The cluster consumes large amounts of electricity, 1.7 TWh/yr corresponding to 1.2 % of the 
electricity used in Sweden in 2011, compared to the three refineries in VGR that consume 0.8 
TWh/yr. The fuel requirements for heat and power production within the cluster exceeds the 
amounts of process off-gases generated by the cluster processes, and some external fuels (oil 
and gas) must be purchased to satisfy the cluster requirements. District heat is delivered to the 
local community’s district heating system. 

An extensive amount of process data was extracted from the different plants in order to 
analyze energy flows within the cluster and to establish targets for energy savings (Harvey et 
al., 2014). The cluster’s current consumption of external utility for process heating is 
approximately 129 MW (1,096 GWh/yr assuming 8,500 hours of operation). Total Site 
Analysis (TSA) was used to establish targets for the minimum heating and cooling demand of 
the overall cluster if it is assumed that excess heating and cooling capacity can be transferred 
from one plant to another via a common utility system. As no common utility systems exist at 
the chemical cluster in Stenungsund, TSA was also used to determine suitable common utility 
levels that could enable recovery of the maximum amount of process heat. TSA also provides 
insights necessary to make specific changes to the site’s utility systems in order to reach the 
targets identified for the minimum heating and cooling demands. 

4.2.1 Energy savings potential for the chemical cluster in Stenungsund 

Pinch Analysis was first used to determine the energy savings potential for each individual 
process plant within the cluster. The sum of the individual process plant energy savings 
potential was estimated at 57 MW (484 GWh/yr). 

TSA was then used to determine the energy savings potential for site-wide energy efficiency 
measures involving unrestricted heat exchange between the cluster plants. The results indicate 
energy savings potential of up to 140 MW (1,190 GWh/yr), i.e. more than twice the savings 
which could be achieved without energy collaboration between the companies (57 MW, as 
discussed previously).  This result indicates that it is theoretically possible to eliminate the 
cluster’s demand for hot utility produced in site boilers fired with purchased fuel. In order to 
achieve the energy savings for site-wide energy efficiency measures, the following measures 
are required: 

• Implementation of a site-wide hot water circuit to distribute excess heat across the cluster 
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• Increased recovery of low pressure (LP) steam 
• Changes in several coolers to enable steam generation at higher pressure 
• Changes in several process heaters in order to operate with steam at lower pressure 

In order to realize the 140 MW savings potential, extensive retrofitting of process heaters and 
coolers is required throughout the cluster site, as well as implementation of a complex utility 
network allowing exchange of hot water, steam and off-gas fuel streams between the different 
process plants and the harmonization of existing steam utility pressure levels throughout the 
cluster. In the short and medium term this was deemed infeasible.  

 A roadmap for heat recovery investments was formulated in order to identify a chain of 
investments that can achieve a significant fraction of the site-wide heat recovery potential in 
the long term. Five different promising systems were identified that can save between 20.7 
MW (176 GWh/yr) and 54 MW (459 GWh/yr) of hot utility. The estimated payback period 
(PBP) of these systems lies between 3.2 and 4.2 years.  

One of the five systems investigated, “System 20” enables utility savings of 20.7 MW (176 
GWh/yr) and can be seen as a short term measure (i.e. by 2020) that also can be pre-fitted for 
future expansion resulting in a medium term solution (i.e. by 2030), e.g. System 50 (50 
MW/425 GWh/yr of utility savings). Further energy savings beyond those achieved with 
System 50 are still possible in the long term, but were not investigated further in this work. 
CO2 emission savings were calculated assuming that increased heat recovery leads to 
decreased firing of natural gas in utility boilers.  The estimated CO2 emissions reduction is 56 
kton/yr  for System 20 and 138 kton/yr for System 50 (see Harvey et al., 2014). 

System 20 involves only two of the five companies, namely Borealis and Perstorp. In this 
system the Perstorp plant serves as a sink for excess Low Pressure (LP) steam from Borealis, 
while recovered excess process heat is delivered from Borealis PE to Borealis Cracker. 
System 20 only achieves a minor share of the total energy savings potential and it is thus 
considered as a first step towards more significant changes to the Stenungsund site.  

Three companies, Borealis, Perstorp and INEOS are involved in the System 50 retrofit. 
Borealis PE and Perstorp mainly deliver excess process heat to Borealis Cracker, while 
INEOS serves as a sink for excess steam from Borealis Cracker. As mentioned above it is 
possible to extend System 20 towards System 50 if minor preparatory investments are taken.  

A recent research project was conducted by Chalmers, SP and IVL in collaboration with the 
West Sweden chemical cluster (Berntsson 2015). The major focus of the study was 
investigation of the technical, economical and environmental consequences of building a heat 
collection system to collect excess process heat from the process plants in Stenungsund, and 
building a hot water pipeline to deliver this heat to Kungälv and Göteborg. More specifically, 
the overall main objectives of the project were: 

• to analyze a possible future pipeline connecting the chemical cluster in Stenungsund to the district 
heating system in Göteborg and Kungälv, in terms of economic performance, climate consequences,  
general sustainability aspects and market design model consequences.  

• to make an assessment of a corresponding pipeline from Värö to the Göteborg area.  
• to assess different opportunities for using excess heat available at Preem’s refinery in Lysekil (this part 

is still ongoing, thus no results are currently available). 
• to investigate the importance of different types of policy instruments on excess heat usage. 

Costs were estimated for collecting up to 170 MW of excess process heat within the chemical 
cluster in Stenungsund. This information was used as input in a model of the complete energy 
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system of West Sweden. The system cost reduction achieved by implementation of a hot 
water pipeline from Stenungsund was shown to vary considerably with different scenarios and 
assumptions. In some cases, there is no cost reduction. However, with very favourable 
assumptions of main parameters, especially regarding biomass prices, pipeline cost and 
investment interest rate levels, this cost reduction was shown as potentially being up to 130 
million Euros over the studied time period, 2020-2050. 

4.3 Summary of key results 

Major measures are necessary if industry is to reach the GHG emission reduction targets set 
out by the EU for year 2030. In this report, we have investigated energy efficiency opportuni-
ties, as well as corresponding reduction of GHG emissions, for two key industrial plants lo-
cated in the KASK region in Sweden. Key results from the study are summarized in Tables 
4.1 and 4.2. 

Table 4.1: Summary of Energy Savings Opportunities for the Industrial Plants in KASK-SE. 

 
Energy Use Savings Potential Savings Potential 

  2012, GWh 2020, GWh 2030, GWh 
Preem Lysekil 3,580 200 620 
Stenungsund 1,096 176 425 
Total 4,676 376 1,045 
Fuel savings 80% 
boiler efficiency  470 1306 

    Table 4.2: GHG emission reduction  potential  (kton) key Industries KASK-SE. 

 
GHG emissions Estimated Reduction Estimated Reduction 

  2009 Potential 2020 Potential 2030 
Preem Lysekil 1,700 62 192 
Stenungsund 950 56 138 
Total 2,650 118 330 

In the short term (i.e. by 2020), the EU target is to reduce GHG emissions by 20%, compared 
to 1990 levels.  

The emission reduction potentials for Preems refinery in Lysekil and the chemical cluster in 
Stenungsund are in the range of 4% to 6% (emissions for Year 2020 compared to emission 
levels in 2009).  

In the medium term, EU targets call for emission reductions of 40% by 2030 (compared to 
1990 levels). As shown in Tables 4.1 and 4.2, the potential energy efficiency savings 
described in this report are clearly insufficient to enable the selected industrial plants to 
comply with this target. Furthermore, it is important to note that the measures required to 
reach the levels of enhanced energy efficiency discussed in this report are complex and 
require substantial investments. We conclude that enhanced heat recovery within the selected 
process plants is not sufficient to reach the EU emission reduction targets, and that reaching 
these targets will require combinations of energy efficiency measures and other measures 
such as: 

• Complex heat recovery projects including several process plants and delivery of excess heat to 
integrated regional district heating networks 
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• New and more efficient process technology 
• Fuel switching in utility boilers and process furnaces 
• Increased use of  bioenergy and biocarbon feedstock 
• Application of CCS 

In the long-term, industry must aim for radical change, including switching to biomass 
feedstock (within the limits of availability), adopting new process technology and 
implmenting ambitious programmes for maximizing process energy efficiency. Where 
possible, CCS should be implemented.   

Finally, it should be noted that a number of projects in line with the proposed measures listed 
above are ongoing in energy-intensive process plants in the KASK-SE region. For example, 
Preem Lysekil has recently switched to LNG as feedstock for the refinery's main hydrogen 
unit. This measure is expected to decrease emissions by 130 ktons/yr. The ST1 refinery in 
Göteborg is in the process of constructing a new plant for production of ethanol from organic 
residuals streams. The plant (capacity 5 millions litres/yr) is expected to be operational by 
2015. Assuming that the bio-ethanol produced in this plant has similar well-to-wheel 
emissions as conventionally produced bio-ethanol, the estimated GHG emissions reduction 
will be 5.2 ktons/yr, assuming that the ethanol replaces oil-based gasoline and that the 
biomass feedstock can be assumed to be climate neutral. The chemical cluster in Stenungsund 
has adopted an ambitious vision for 2030, which implies complete switch from fossil 
feedstock to biogenic feedstock. However, at this point there are no specific large-scale 
projects ongoing which will contribute to achieving this vision.  

4.4 Discussion 

Johansson et al., (2012) assessed strategies for CO2 abatement in the European petroleum 
refining industry and Rootzén et al., (2013, 2015) have explored long-term (up to year 2050) 
opportunities for CO2 emissions abatement in three Nordic and European industry sectors; the 
petroleum refining, iron and steel as well as cement production sectors. Rootzén et al. (2013) 
assessed the prospects for achieving regional and EU level targets for CO2 emissions, with a 
focus on short term (2020), medium term (2030) and long term (2050) perspectives. 

Johansson et al. (2012) and Rootzén et al. (2013) highlight three trends with implications for 
the refineries in the KASK-SE region: (1) For the refinery industry policies aimed at 
transforming the transport sector will, obviously, be crucial for defining the scope for action. 
While the actual policy measures are yet to emerge, policymakers in both Sweden and 
Norway have repeatedly proclaimed their commitment to promoting a transport sector that is 
independent of fossil-fuel consumption, which in the case of KASK-SE is planned for as early 
as Year 2030.; (2) Within the transportation fuel segment, the market for middle distillates 
(i.e., diesel and aviation fuel) is assumed to continue to expand at the expense of lighter 
distillates (i.e., gasoline); (3) Simultaneously, the regulations governing product quality and 
environmental specifications (e.g., sulfur content and aromatics) are assumed to be 
progressively tightened . Both the two latter trends would involve increased processing 
intensity and consequently, increased energy use.  

In the KASK-SE region there is one cement plant. The plant is located in Skövde and emits 
around 360 kt CO2 per year. However, the Skövde plant may be forced to close down after 
March 2017 since the environmental district court in Vänersborg in May 2014 rejected 
continued operation at the limestone quarry associated with the cement plant at the site. 
Assuming that the cement plant in Skövde will continue to operate beyond 2017, there are 
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currently three main options for reducing CO2 emissions associated with cement 
manufacturing; continued improvements of thermal and electric efficiencies, increased use of 
biomass based fuels to replace coal and pet-coke and continued reduction of the share of 
cement clinker in the finished cement. Rootzén et al., (2015) estimates that an ambitious 
implementation of these measures could potentially half the specific emissions (t CO2/t 
cement) from the Nordic cement industry. However, the study also emphasizes that to achieve 
more far reaching CO2 emission reductions CCS will need to be introduced. 

Johansson et al. (2012) and Rootzén et al. (2013) conclude that presently available 
technologies are sufficient for refineries and cement plants to achieve short term emission 
reduction targets, but that novel low-carbon technologies (including Carbon Capture and 
Storage) and production processes will be necessary to meet more stringent medium and long 
term reduction targets. Rootzén et al. (2015) assess the prospects for Nordic carbon-intensive 
industries to achieve significant reductions in direct CO2 emissions in the period 2010 to 
2050. Their results indicate that an ambitious deployment of CCS could result in emissions 
reductions that are in line with stringent emission reduction targets required to the year 2050. 
However, large-scale introduction of CCS would come at a significant price in terms of 
energy use and the suggested flows of captured CO2 would place high requirements on timely 
planning of infrastructure for the transportation and storage of CO2. More specifically, for the 
petroleum refining sector, Rootzén et al (2015) assume the following: (1) a steady decline in 
output from the Nordic refinery industry; (2) the most complex refineries, which are more 
capable of adapting to changing markets, endure the longest; and (3) the internal fuel mix 
remains largely unchanged throughout the studied period. They also assume that the Nordic 
refineries with the least flexibility will be phased out and that increased processing intensity 
will offset the effects from energy conservation measures and result in an increase in specific 
energy usage (GJ/t throughput) in all cases. Figure 4.6 shows the results obtained for the 
Nordic refinery industry with respect to emission reductions (a) and energy usage (b). 
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Figure 4.6. Estimated levels of CO2 emissions and energy usage from the Nordic petroleum refining 
industry in the period 2010–2050, as obtained in Rootzén et al., (2015). The base case (NR0) assumes a 
steady decline in output from the Nordic refinery industry without any deployment of CCS. Cases NR2 
(post-combustion) and NR3 (oxyfuel combustion), in addition to the abatement measures in the base 
case, assume the deployment of CO2 capture from Year 2030. (a) Estimated CO2 emissions from Nordic 
refineries in the period 2010–2050, with (dashed line) or without (solid line) the introduction of CCS. The 
emission cap for the period 2010–2050 (crossed solid line) corresponds to the total number of emission 
allowances allocated to Nordic refineries for the period 2010–2020 and the proposed reduction targets for 
Year 2030 and Year 2050. (b) Estimated development of thermal (solid/dashed lines) and electrical (bars) 
energy usage with (light brown) or without (brown) the introduction of CCS. From Rootzèn et al. (2015). 
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Thus, there is a high complexity in the numerous factors that drive energy usage and CO2 
emissions in industry and hence it is difficult to perform long-term extrapolation from results 
obtained from bottom-up studies conducted for individual industrial process plants. 

5 Energy savings potential in buildings 
In this section a bottom-up modelling approach has been applied to assess energy savings 
potential in the building stock in KASK-SE. This has been done by calculating the energy 
consumption of a representative number of individual building types and extrapolating the 
results to represent the region. Section 5.1 explains the applied methodology in brief. A more 
extensive description is found in the technical paper associated with this work (Mata et al., 
2014). Section 5.2 describes the results which are then being discussed in Section 5.3 while 
main conclusions are highlighted in Section 5.4.     

5.1. Methodology 

The building stock of KASK-SE has been divided into 414 different representative buildings 
based on a national dataset representing the entire building stock in Sweden (Mata et al., 
2013a; Grundsell, 2013); 183 single-family dwellings (SFDs), 119 multifamily dwellings 
(MFDs) and 112 non-residential (NR) buildings. The number of representative buildings is 
determined by a combination of building types, construction periods and climate zones. The 
national dataset is downscaled by updating the weighting coefficients with respect to the 
number of buildings (given in Statistics Sweden 2014b) and heated floor areas in the KASK-
SE region (the latter is not available at regional level and has been obtained from the national 
dataset by assuming direct proportion to the population of the region given in RegionFakta, 
2011). To characterize the buildings the physical properties of the buildings and their energy 
use (for hot water, lighting and appliances) are assumed to be the same as in the national 
dataset due to lack of information of data representative for the region. As mentioned above a 
more comprehensive description of the applied methodology is provided in Mata et al., 
(2014). 

In KASK-SE electricity is generated mainly by hydro, nuclear and biomass, the latter mostly 
in combined heat and power plants producing both electricity and district heat (DH). In 
addition DH is mostly produced from biomass and waste combustion (59%), heat pumps 
(12%), and waste heat (11%). Single-family dwellings are mostly heated by electricity or 
biomass, while over 90% of multifamily dwellings use DH. DH is also the dominating heating 
carrier (over 70%) for non-residential buildings. The Final Energy Consumption (FEC) by 
type of buildings and type of energy carrier is simulated with a building-stock model 
(ECCABS – Energy, Carbon and Cost Assessment of Building Stocks; Mata et al., 2013b). 
The FEC has been validated by comparison to available statistics for residential and non-
residential buildings. While the modelled FEC for non-residential buildings agrees rather well 
with the literature (-6% deviation from the data in Swedish Energy Agency 2012a), for SFDs 
and MFDs the modelled FEC is 20% higher and 22% lower than statistics (Swedish Energy 
Agency 2012b, c). These deviations within the subtypes could be caused by deviations in the 
above-mentioned estimated distribution of heated floor areas within the representative 
buildings in the KASK region or by the fact that the buildings chosen within the Swedish 
KASK region are not representative of all buildings in the region (in spite of being 
representative of a particular segment of all Swedish buildings). Regarding the distribution of 
FEC per end-use and fuel type, a direct comparison to statistics is not possible; thus, the 
modelled values have been compared to corresponding values for the building sector 
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estimated in the Reference Energy System (Johnsson J., et al., 2014). Such a comparison 
results in relatively large differences, which can be explained by uncertainties both in the RES 
source data and in the source data for the bottom-up analysis used in this section (see for 
instance Footnote 7). All uncertainties are listed and discussed in the technical report by Mata 
et al., 2014). 

The FEC obtained from the modeling should be seen as an estimate. Yet, these data have been 
used as basis for an estimation of the CO2 emissions and quantification of potential reduction 
in energy use from application of energy conservation measures (ECMs). For the latter, the 
ECCABS model (Mata et al., 2013b) is used to assess a portfolio of ECMs (Energy 
Conservation Measures) yielding the technical potential for savings in energy demand from 
the building sector in the region. 

Table 5.1 shows the estimated current FEC in the building sector of the two counties as 
obtained from the ECCABS simulations. 

From the analysis presented in this section, Table 5.1 gives that FEC in the building stocks in 
VGR and Halland amounts to 23.6 and 4.5 TWh, respectively. The residential buildings take 
up most of the demand, with SFDs using in total around twice the amount of final energy 

Table 5.1. Final energy consumption (TWh/yr) in year 2010 by building type and in total as estimated from 
the ECCABS model. It should be noted that the values are subject to the uncertainties in the input data 
used. Observe that sums may not add up due to rounding.  

Final Energy Consumption Västra Götaland Halland 
TWh/yr SFD MFD NR All SFD MFD NR All 
FEC     

 
   

Space Heating 8.7 2.6 4.7 16.0 1.7 0.5 0.9 3.1 
Hot Water 0.8 0.5 0.7 2.0 0.2 0.1 0.1 0.4 
Electricity 1.4 0.9 3.2 5.5 0.3 0.2 0.6 1.0 
Total 10.9 4.0 8.7 23.6 2.1 0.8 1.6 4.5 
FEC by fuels 
El (heating) 3.5 0.2 0.4 4.0 0.3 0.2 0.5 1.0 
El (non-heating) 1.4 0.9 3.2 5.5 0.7 0.0 0.1 0.9 
El (all purposes) 4.8 1.1 3.6 9.5 1.0 0.2 0.7 1.9 
Oil 0.1 0.1 0.2 0.3 0.0 0.0 0.0 0.0 
Gas 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.1 
Biomass 4.3 0.0 0.1 4.4 0.8 0.0 0.0 0.9 
Coal - - - - - - - - 
District Heating 0.8 2.5 4.1 7.5 0.1 0.4 0.8 1.3 
Other 0.8 0.3 0.7 1.9 0.2 0.1 0.1 0.4 
Total 10.9 4.0 8.7 23.6 2.1 0.8 1.6 4.5 
Energy need 
Space Heating 8.7 2.4 4.3 15.5 1.7 0.5 0.8 2.9 
Hot Water 0.7 0.5 0.7 1.9 0.1 0.1 0.1 0.4 
Electricity 1.4 0.9 3.3 5.6 0.3 0.2 0.6 1.1 
Total 10.8 3.9 8.3 23.0 2.1 0.7 1.5 4.4 
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compared to MFDs. Together, the residential buildings account for 63% of FEC compared to 
37% for non-residential.  

The majority of energy is used for space heating. For SFDs, electricity is the dominant heating 
source in most of the dwellings followed by biomass. For MFDs, DH is by far the most 
common heating source in most of the dwellings followed by electricity, i.e. similar to the 
general pattern in Sweden with DH covering a large part of heating in the cities and in densely 
populated areas (where MFDs are in majority). For non-residential buildings the main heating 
sources is DH followed by electricity. For all building types, other fuels represent around 10% 
of demand.  

In Sweden both electricity and heat is generally associated with low CO2 emissions. 
Electricity is mainly generated from hydropower and nuclear and with increasing amount 
from renewables, mostly wind and biomass and waste fired combined heat and power plants. 
The two latter still only generates somewhat more than 10% of the national electricity supply 
(160 TWh). For heat, most is generated by renewables in district heating (a bit more than 40 
TWh nationally) and with additional heat generation from biomass and peat (15 TWh) and 
from oil products (15 TWh). In addition, significant amount of electricity (around 20 TWh) is 
also used for heating (heat pumps and direct heaters/electric boilers). It is obviously not 
straight forward to determine which CO2 emissions should be associated with the different 
energy carriers. Electricity is for example traded on a common Nordic market whereas heat is 
typically produced in local markets such as in district heating systems or in domestic boilers. 
A reduction in electricity use will therefore have implications outside the region, possibly 
leading to that electricity generated from fossil fuels in continental Europe can be reduced 
whereas a reduction in demand for district heating reduce the use of fuel in the district heating 
system. These “fuels” can, as is the case in the City of Göteborg, to a large extent be in the 
form of waste heat and a reduction in the use of such heat will typically not be straightforward 
to use elsewhere. If on the other hand there is less renewable fuel burnt for heating, these can 
be used elsewhere and, thus, possibly replacing fossil fuels somewhere else. In summary, it is 
not obvious what will the effect be on CO2 emissions from a reduction in the use of district 
heating due to reduced energy needs in buildings. Yet, in this work, CO2 emissions were 
calculated based on the emission factors given by the Swedish Environmental Protection 
Agency (NVV, 2014). For electricity and district heating these factors are based on the 
average production mix for electricity and DH respectively in Sweden. The choice of 
applying these emission factors is based on that, as indicated previously, this work only looks 
at the direct emissions from the region. For electricity and district heating the national 
production mix yields slightly different emission factors than the regional ones and this is 
discussed in Section 5.3. Table 5.2 shows the emissions by consumption, when applying the 
emission factors to the simulation results of the fuel use in the buildings of the KASK-SE 
region. 
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Table 5.2. Annual CO2 emissions (ktCO2e) per building type in year 2010, obtained from the 
simulations in this work.  It should be noted that the values are subject to the uncertainties in the 
input data used and that the sums may not add up due to rounding. 

Annual emissions  VGR Halland 
(kton CO2e) SFD MFD NR All SFD MFD NR All 
El (heating) 51.9 3.6 3.6 59.0 11.0 0.7 0.6 12.3 
El (non-heating) 20.0 13.4 49.2 82.6 3.8 2.5 9.1 15.3 
El (all purposes) 71.9 17.0 52.7 141.6 14.7 3.2 9.7 27.7 
Oil 27.4 21.8 47.9 97.2 5.0 0.0 8.7 13.7 
Gas 5.0 0.0 6.8 11.8 0.8 13.8 1.2 15.9 
Biomass 42.5 0.1 1.1 43.7 8.4 0.0 0.2 8.6 
District Heating 57.8 175.8 288.5 522.1 7.6 28.4 52.9 88.9 
Other 98.1 34.3 84.9 217.3 18.3 9.4 15.6 43.3 
Total 302.7 249.1 482.0 1033.7 54.9 54.9 88.3 198.1 

Average CO2-emissions for a SFD is 1.0 tCO2e/yr in VGR and 0.8 tCO2e/yr in Halland. For 
MFDs average emissions amount to 0.7 and 1.2 tCO2e per year and dwelling for VGR and 
Halland respectively. DH accounts for 50% of total building related emissions in VGR and for 
45% of corresponding emissions in Halland. Corresponding shares for electricity is 14% in 
both counties. 

A portfolio of ECMs (Energy Conservation Measures) is analyzed to assess the technical 
potential for savings in energy demand from the building sector in the region. The assessment 
is done with the above mentioned building-stock model ECCABS (Mata et al., 2013b). The 
ECMs have been investigated at national level within the so-called BETSI program (Swedish 
national board of housing, building and planning, 2009). Table 5.3 lists each separate ECM 
that has been applied in this work (for a more detailed description see Mata et al., 2014). 

Table 5.3. ECMs that have been applied to the building stock in this work. 
ECM Description 

1 Change in U-value of cellar/basement 
2 Change in U-value of facades/external walls 
3 Change in U-value of attics/roofs 
4 Replacement of windows 
5 Upgrade of ventilation systems with heat recovery 
6 Reduction of power for lighting 
7 Reduction of power for appliances 
8 Replacement of hydro pumps with more efficient ones 
9 Reduction in power used for the production of hot water 

10 Lowering of indoor air temperature 

ECMs 1 to 4 assume an improvement of the building envelope, i.e. a lower mean U-value of 
the building by adding insulation to, respectively, the cellar, wall, roof and/or windows. For 
residential buildings, the assessments of the optimal level of insulation have been done for 
each building by the Swedish National Board of housing (2009). The additional layers of 
insulation material are therefore different for the various buildings. For non-residential 
buildings, an additional insulation layer of 300mm is assumed. When replacing the windows 
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(ECM 4) it is assumed that the new window will have a U-value of 1.1 W/m2K, both for 
residential and non-residential buildings.   

ECM 5 – For residential buildings, ventilation systems with heat recovery are installed with 
an efficiency of 75% and specific fan power (SFP) values of 1.5 kW/m3s. For non-residential 
buildings, the new system is expected to have an efficiency of 85%. The SFP is set to 1.5 
kW/m3s, and heat losses from the fan of 20% are expected.  

ECMs 6 and 7 – For residential buildings, a decrease by 50% in the electricity consumption 
for lighting and appliances is assumed. For non-residential buildings, the lighting load is 
expected to decrease by 25%.  

ECM 8 – It is expected that new circulation pumps are 25% more efficient than the current 
ones. 

ECM 9 – By installing aerator taps, the power demand for hot water production is expected to 
decrease to 0.80 W/m2 for SFDs and 1.10 W/m2 for MFDs. For non-residential buildings, it is 
assumed that the how water demand can be reduced by 30%. 

ECM 10 – Lowering of indoor air temperature to 20 °C from the current indoor temperature 
of 21.1°C in SFDs and 22.3°C in MFDs. This is normally not considered an energy efficiency 
measure but an energy saving measure. 

All ten ECMs listed in Table 5.3 may be applied to all non-residential buildings. For 
residential buildings, the Swedish National Board of Housing (2009) has assessed to what 
extent each of the ECMs can be applied and this is listed in Table 5.46. The listed share is 
based on heated floor area. 

Table 5.4 Share of heated floor area in the residential building stock where each of the ECMs is assumed 
to be implemented. 

ECM 
Building Envelope Ventilation Electricity Hot Water Indoor temp. 

1 2 3 4 5 6 7 8 9 10 

Share of building 
stock affected 59% 52% 49% 60% 88% 100% 100% 43% 100% 100% 

Several measures may be applied at the same time in order to achieve larger energy savings 
while also saving time and costs. Three different “packages” of measures have therefore been 
investigated in this work:  

• ECM package 1 - insulation of the full building envelope (ECM 1-4)  
• ECM package 2 - reduce power demand for lighting, appliances and pumps (ECM 6-8) 
• ECM package 3 - all ten measures, i.e. the maximum potential for the 10 ECMs listed in Table 5.3. 

                                                 
6 The Swedish National Board of Housing (2009) does not provide an explanation to how they have derived the 
shares of the residential buildings given in Table 5.4. 
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5.2. Results 

Figure 5.1 shows the technical potential in reductions in FEC for each county for the 
residential and non-residential sector divided between ECMs (Nos. 1 to 10) and packages of 
ECMs (Packages 1 to 3).   

From Figure 5.1 it is clear that the largest potential for reductions in FEC can be realized by 
upgrading the ventilation systems (ECM 5), followed by reducing the indoor temperature 
(ECM 10) and improving the U-value of the building envelope (ECM 2-4). For the NR 
buildings, Figure 5.1 indicates that an upgrade of the ventilation systems (ECM 5) will lead to 
large energy savings. However, heat recovery has not been included in the baseline 
assumptions which may lead to higher energy demand for the ventilation than what has been 
calculated here. In case heat recovery is underestimated, the potential savings would be lower 
than the ones shown here.  

The measures targeting electricity consumption show lower savings potentials. ECMs 6 and 7 
(lighting and appliances respectively) yield savings of around 10% and 30% respectively in 
electricity demand for residential buildings and 9% to 12% for non-residential buildings. 
However, due to the increased heating demand that will come with the saved electricity (see 
Tables 5.5 and 5.6), the savings in total demand are only in the order of 0% to 2%. The 
expected savings from upgrading the hydronic pumps (ECM 8) are small (less than 3% of 
electricity demand).   

The maximum technical savings potential corresponding to ECM package number 3 (some 15 
TWh as can be seen in Figure 5.1) distributed by county and by fuel/source is shown in Figure 
5.2. 

Tables 5.5 and 5.6 show calculated savings in net and final energy demand for the three 
packages of measures, i.e. package number 1 to 3 for residential and non-residential buildings 
respectively.  

 

Figure 5.1. Technical potential for reductions in Final Energy Consumption (TWh/yr) for VGR (VG) and 
Halland (Ha) for residential (R) and non-residential (NR) buildings for each ECM (numbered 1 to 10) 
applied individually as well for application of the three packages of ECMs (numbered 1 to 3). 

 



41 

 

Figure 5.2. Maximum technical potential for reductions in Final Energy Consumption (TWh/yr, ECM 
package number 3) by county and by fuel/source. 

Table 5.5. Annual potential energy savings for the packages of measures when applied to residential 
buildings. It should be noted that sums may not add up due to rounding and that the values are subject to 
the uncertainties in the input data used. 
Annual Energy 
Savings Västra Götaland Halland 

(TWh/yr and 
%) Package 1 Package 2 Package 3 Package 1 Package 2 Package 3 

Net Energy TWh/yr % TWh/y
r % TWh/y

r % TWh/y
r % TWh/y

r % TWh/y
r % 

SpaceHeating 3.5 26 -0.9 -7 7.3 55 0.6 26 -0.1 -7 1.2 54 

HotWater 0.0 0 0.0 0 0.8 52 0 0 0.0 0 0.1 52 

Electricity 0.0 0 1.2 43 1.1 40 0 0 0.2 43 0.2 38 

Total 3.5 20 0.3 2 9.2 52 0.6 20 0.0 2 1.5 51 

Final Energy                         

El (all purposes) 0.6 10 0.8 13 2.7 46 0.1 11 0.2 13 0.5 44 

Oil 0.0 14 0.0 -8 0.1 44 0.0 6 0.0 -11 0.0 28 

Gas 0.0 0 0.0 -8 0.0 38 0.0 23 0.0 -7 0.0 62 

Biomass 1.7 39 -0.1 -3 2.5 58 0.3 37 0.0 -3 0.5 57 

District Heating 0.7 20 -0.3 -9 2.0 61 0.1 21 0.0 -9 0.3 59 

Other 0.0 1 -0.1 -9 0.6 49 0.0 5 0.0 -9 0.1 52 

Total 3.0 20 0.2 2 7.9 53 0.6 20 0.0 2 1.5 51 
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Table 5.6. Annual potential energy savings for the packages of measures when applied to non-residential 
buildings. It should be noted that sums may not add up due to rounding and that the values are subject 
to the uncertainties in the input data used. 
Annual Energy 
Savings Västra Götaland Halland 

(TWh/yr and 
%) Package 1 Package 2 Package 3 Package 1 Package 2 Package 3 

Net Energy TWh/yr % TWh/yr % TWh/yr % TWh/y
r % TWh/y

r % TWh/y
r % 

Space Heating 0.8 15 -0.6 -11 3.5 64 0.1 14 -0.1 -11 0.5 63 

Hot Water 0.0 0 0.0 0 0.2 28 0.0 0 0.0 0 0.0 27 

Electricity 0.0 0 0.9 23 1.3 33 0.0 0 0.1 23 0.2 33 

Total 0.8 8 0.3 3 5.0 49 0.1 8 0.0 3 0.8 49 

Final Energy                         

El (all purposes) 0.0 1 0.8 20 1.4 34 0.0 1 0.1 20 0.2 34 

Oil 0.0 13 0.0 -9 0.1 63 0.0 6 0.0 -6 0.0 58 

Gas 0.0 6 0.0 -5 0.0 61 0.0 0 0.0 0 0.0 33 

Biomass 0.0 12 0.0 -8 0.1 66 0.0 10 0.0 -5 0.0 57 

District Heating 0.7 14 -0.5 -10 3.1 64 0.1 13 -0.1 -10 0.5 64 

Other 0.1 14 -0.1 10 0.6 64 0.0 13 0.0 -10 0.1 64 

Total 0.9 9 0.2 2 5.3 52 0.1 8 0.0 2 0.8 52 

 

ECM package 3, implying that all ten ECMs are implemented, indicates FEC savings 
potential of 13.2 TWh in VGR and 2.3 TWh in Halland combined for residential and non-
residential buildings. Corresponding annual savings potential for ECM 11 is 0.9 and 0.1 TWh 
in VGR and Halland respectively while for ECM package 2 it is 218 and 34 GWh 
respectively. Thus, it can be concluded that while the potential savings are modest with regard 
to package 1 and 2, the potential is significant for package 3.   

As can also be seen from Tables 5.5 and 5.6 potential savings in total net energy demand from 
the measures related to upgrading the building envelope (ECM package 1) are 20% for 
residential buildings but only 8% for non-residential buildings. When it comes to ECM 
package 2, i.e. the measures targeting electricity demand, the potential savings are also larger 
for the residential buildings compared to the non-residential buildings. One reason for this is 
that the assumed decrease in electricity demand for appliances has been set to 50% in 
residential buildings but to only 25% in non-residential buildings assuming that equipment for 
lighting and appliances is already more efficient and better managed and controlled in NR 
buildings than in residential buildings.  

Table 5.7 shows calculated CO2 emission reduction potentials per ECM and ECM package 
and by county for residential and non-residential buildings and corresponding to the energy 
savings potentials defined above. As mentioned above, the emission reduction potential is 
based on application of national average emission factors for coal, gas and oil and for 
production of electricity and heat given by NVV (2014). The emission factors are given by 
Mata et al., (2014). As mentioned above, this work only concerns direct emissions from the 
region and therefore we do not consider the overall system effect of CO2 emissions from a 
change in fuel, i.e. as obtained from a reduction in fuel use due to application of the energy 
conservation measures. 
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Table 5.7: Calculated emission reductions in absolute values (kton CO2e/yr) and relative to the baseline. 
It should be noted that the values are subject to the uncertainties in the input data used. 

    VGR Halland 

  
Residential Non-residential Residential Non-residential 

ECM ECM # kton 
CO2e % kton 

CO2e % kton 
CO2e % kton 

CO2e % 

Building 1 32.7 5.1 - - 5.4 4.9 - - 
envelope 2 36.0 5.6 32.4 5.7 5.7 5.2 4.2 3.9 
  3 13.2 2.1 20.9 3.7 2.2 2.0 2.3 2.1 
  4 2.7 0.4 16.3 2.9 7.2 6.5 1.7 1.6 

Ventilation 5 123.9 19.4 289.6 50.6 29.4 26.9 41.3 37.7 

Electricity 
6 -21.4 -3.4 -14.4 -2.5 2.2 2.0 -1.4 -1.3 
7 -13.8 -2.2 -19.9 -3.5 -3.0 -2.7 -2.2 -2.0 

8 3.7 0.6 0.5 0.1 0.5 0.5 0.1 0.1 

Hot water 9 41.4 6.5 18.6 3.3 7.1 6.5 2.2 2.0 

Indoor temp 10 92.5 14.5 - - 15.6 14.2 - - 

Packages 
1 17.0 15.5 69.7 12.2 17.0 15.5 8.7 7.9 
2 -28.0 -4.4 -36.1 -6.3 -4.2 -3.9 -4.0 -3.7 
3 343.7 53.7 343.3 59.9 57.8 52.7 48.6 44.4 

As can be seen from Table 5.7, applying all ten measures (ECM package 3) may reduce 
emissions by almost 690 ktons in VGR (i.e. 344 + 343 kt) and by more than 100 ktons in 
Halland (i.e. 58 + 49 ktons) which combined correspond to 7.5% of total CO2 emissions in 
the region. Installation of ventilation with heat recovery (i.e. ECM 5) is the single most 
efficient measure with regard to reduction potential, emissions may be reduced by almost 485 
kt if applied to both residential and non-residential buildings in VGR and Halland (124 + 290 
+ 29 + 41 kt), thus alone representing more than 60% of the entire emission reduction 
potential if all measures are being implemented.      

Some of the measures actually lead to an increase in emissions (ECM 6 and 7 and ECM 
package 2) since the reduction in demand for electricity lead to an increase in demand for 
space heating which in turn yields the higher emissions, when applying the emission factors 
used in this work. 

5.3 Discussion 

As explained above, both VGR and Halland are targeting a 20% reduction in primary energy 
demand by 2020.The results of this work show that it is technically possible to reach this 
target in the building sector. 

Figure 5.3 illustrates the estimated range in technical, techno-economical and market potential 
for energy savings in the building sector in KASK-SE. The technical potential refers to 
Package 3 derived in Section 5.2 while the techno-economical potential refers to ECMs where 
the cost of implementing the ECMs is lower than the cost of the corresponding energy 
consumption that is saved. Market potentials are taken to represent the potentials that are 
expected to be implemented if the consumers react as historically observed when making 
decisions on home energy retrofitting, and are estimated by using higher interest rates, i.e. so-
called implicit discount rates as obtained from the literature [18%–308% in Newlon et al.  
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Figure 5.3 Total technical, techno-economical and market potential (TWh/yr) for reductions in final energy 
consumption as obtained in this work for the building sector of the Swedish KASK region. The ranges 
given in percentages refer to energy savings potential relative to estimated FEC in the Year 2010 (28.1 
TWh). The market potential is an indirect estimate using different implicit interest rates derived in 
literature. 

(1991); 50%–80% in Bailie et al. (1996); 20%–65% in ERG (1998); and 35% in Jaccard 
(2009)]. Therefore, the market potentials have been approximated with a sensitivity analysis 
using discount rates up to 80% (disregarding the large value of 308% which refers to 
installation of thermostats only).  

For the 15.2 TWh/yr identified as technical potential in Section 5.2 (ECM package 3), only 
5.5 – 7.4 TWh/yr is identified as a techno-economical energy saving potential. The market 
potentials are significantly lower and the indirect estimate made in this work yields a range of 
0.4 to 5.8 TWh/yr. This indicates that other policy actions than what has previously been in 
place are necessary to accelerate the implementation of energy saving measures, if the 
technical and techno-economical potentials identified in this work should be reached. The 
corresponding CO2 emission reduction potential is of course also reduced drastically, from 
the 790 kt CO2e derived in Section 5.2 to between some 330 and 440 kt in the techno-
economic case and to between only a few tens of kilotons to almost 300 kt in the market case.     

The actual implementation of the measures will of course depend on the technical and 
physical characteristics of each single building. For instance considering retrofitting of the 
facades and other parts of the building envelope, Boverket has described how 39% of the non-
residential buildings at national level have cultural/historical features which, to some degree, 
will hinder the possibilities for upgrades of the facade (Swedish National Board of Housing, 
2010).  

CO2 emission reduction potential for electricity production has, in this study, been based on 
the national average production mix. Applying instead the regional production mix, emissions 
should be slightly higher in VGR (higher share of natural gas and oil than the national 
average) and slightly lower in Halland (higher share of nuclear and biomass generation than 
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the national average) compared to the national mix. Yet, electricity is generated and traded on 
the Nordic market (Nordpool) which is also connected to the European electricity system with 
the main policy governing the emissions being the Swedish-Norwegian Green certificate 
market and the EU emission trading scheme (EU-ETS). Thus, the resulting emissions and 
how these should be accounted for depend on the development of the Nordic and European 
electricity markets.  

Regarding the goal for the region to become independent of fossil fuels by 2030, the results 
also give some insights. Electricity and DH represent 71% of the final energy demand for all 
buildings and there is a substantial production of natural gas based generation of electricity 
and DH in VGR. The remaining part is covered by biomass and oil. Reducing demand for 
electricity and DH will of course lead to that less fossil fuels will need to be burnt within the 
region but more important will be to replace the fossil fuels burnt to generate electricity and 
DH as well as replacement of the oil burners in SFDs. This is analyzed in Section 8.   

5.4 Conclusions 

A description of the building stock in the KASK region of Sweden has been established 
together with a first validation of this description. The validation has been done by comparing 
final energy consumption obtained from the modelling in this work (using ECCABS building-
stock model) with available statistics, as described in Section 5.1. A validation of the number 
of buildings and heated floor areas at the regional level has only been possible by assuming, 
in the statistical data, the same share in the number of buildings and floor areas as for Sweden, 
i.e. scaling these numbers proportional to population (i.e. KASK-SE is 17% of Swedish 
population). Although it has been possible to apply the existing methodology for modelling of 
the building sector in the KASK-SE region, the lack of regional statistics disaggregated per 
building type and energy carrier, results in an uncertainty in the input values for the modelling 
work.  Therefore, there is a need for improved and detailed statistics on the building sector of 
the region, in particular with respect to the number of buildings, their heated floor areas, 
technical characteristics and fuel use. Such statistics would facilitate an increased 
understanding of the existing building stock and its link to the energy system which in turn 
would constitute a better base for an analysis of how the building sector in the region can be 
transformed. Nevertheless, using the modeling of this work, the final energy consumption in 
the building stock in KASK-SE has been estimated to 28 TWh7, 68% of which is used for 
heating, 9% for hot water and 23% as household electricity. SFDs account for 44% of total 
final energy demand while MFDs account for 20% and non-residential buildings for 36%. 

10 different ECMs were investigated, individually and as applied in packages. The modeling 
identified that the largest potential for energy savings is related to installation of new 
ventilation systems with heat recovery, followed by improvements in the building envelope 
and lowering of the indoor temperature. With regard to building type, the largest potentials for 
energy savings are of course found in the building categories representing the larger shares of 
the building stock, which are the SFDs. 

The three packages of measures investigated; overall improvement of the building envelope 
(ECM package 1), decrease in power for lighting and appliances (ECM package 2) and 

                                                 
7 This can be compared to “actual” energy demand in the building stock in 2010 as given by the Reference 
Energy System, i.e. 29 TWh (Johnsson J., 2014). 
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implementation of all ten ECMs (ECM package 3) yield a final energy savings potential 
ranging from 0.25 TWh (Package 2) to 15.5 TWh (Package 3). 

Assessing the economic feasibility of the potential energy savings identified in ECM package 
3, the technical potential of 15.5 TWh was reduced to between 5.5 and 7.4 TWh when 
considering the techno-economic case while an indirect estimate gives a market potential 
between 0.4 and 5.8 TWh.  

6 Large-scale integration of renewable electricity 
generation 
In this section we analyze the potential for large-scale integration of renewables in the power 
sector. Sections 6.1 to 6.4 analyze and discuss the potential for hydro, wind, bio/waste and 
solar from a “bottom-up” perspective and in a local context while Section 6.5 applies 
Chalmers Electricity Investment Model (ELIN) from a European “top-down” perspective to 
analyze the prospects and possibilities for renewables in the power generation sector in 
KASK-SE in a European context. Analyzing integration of renewables in a European context 
follows from the fact that the North European power sector is more or less fully integrated 
meaning for instance that raising renewable capacity in KASK-SE may reduce coal based 
generation in northern Germany. In addition, there is a common Nordic market for electricity 
(Nordpool) and Sweden and Norway have a common market for Green certificates, further 
enhancing the integration of the electricity market. 

6.1 Hydro 

As of end 2013, there is some 16.5 GW hydropower installed in Sweden. A small part of this 
is installed in the KASK region, some 512 MW in VGR and 211 MW in Halland (Kjärstad et 
al., 2007, Swedish Energy Agency 2014b). In 2010, 1,972 GWh hydro based electricity was 
generated in VGR and 818 GWh in Halland while some 67 TWh hydro based electricity was 
generated in Sweden as a whole. These values will vary significantly depending on yearly 
precipitation (wet, normal or dry year) and normal year production in Sweden is estimated to 
around 65 TWh. Yet, there is a significant technical potential for expansion of hydro power in 
Sweden, at least some 10 TWh on an annual basis according to the Royal Swedish Academy 
of Sciences (2009) while according to Vattenkraftmiljö (2003) there is a techno-economic 
potential of up to 90 TWh total hydro power generation in Sweden, i.e. some 25 TWh 
additional production capacity. However at least for the moment, the bulk of the sites that can 
be expanded are protected by the Swedish Environmental Code (Royal Swedish Academy of 
Sciences 2009). Finally, there is a potential through upgrading of existing hydro plants, 
estimated to between 3 and 5% of normal years production by for instance Länsstyrelsen 
Dalarna (2013). Most of the expandable potential is located in Northern Sweden and a few 
smaller projects are under development but not in the Swedish KASK region as of late 2014, 
at least to the knowledge of the authors of this report. Thus, expansion of hydropower is not 
considered in the analysis for the Swedish part of the KASK region. 

6.2 Wind 

Wind power has been booming in the KASK-SE region over the last few years with for 
instance VGR being the county in Sweden having the largest installed wind power capacity 
among all counties at the end of 2013 at almost 700 MW. However, existing wind turbines are 
all installed onshore in spite of that the KASK-SE region has good conditions for offshore 
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wind power. Apart from more wind, offshore sites will usually also provide more evenly 
distributed wind conditions over time than onshore sites, i.e. resulting in lower variations in 
the aggregated generation.    

At the end of 2013, there was a total of 6.6 GW offshore wind capacity installed in the EU, of 
which 92% or 6 GW in four countries; Belgium, Denmark, Germany and UK. However, 
offshore wind capacity constituted only 6% of total wind capacity in the EU at end 2013. At 
the time of writing this report there are no offshore wind farms in the KASK-SE region while 
at the same time plans to build two large-scale offshore wind farms have recently been 
rejected by the region’s Land and Environmental court, namely Kattegat and Vindplats 
Göteborg offshore wind farms. In the former case, the court rejected the wind farm due to 
environmental concerns and poor project economics (Sveriges Radio 2014). In the latter case 
the risk of spread of contaminated dredged material, impact on outdoor activities and possible 
future widening of the marine fairway to Göteborg was quoted as reasons for rejecting the 
project. Both decisions have been appealed. According to the Swedish Energy Agency’s latest 
update of areas recognized as being of national interest for wind farms, two offshore areas in 
the region have been identified as interesting; namely Skottarev and Stora Middelgrund, both 
located off the coast of Halland. Strangely enough, the Kattegat offshore wind farm which 
was recently rejected by the region’s Land and Environmental court is located at Skottarev.  

Due to that the costs for offshore wind power is significantly higher than onshore (see for 
instance Elforsk 2014 and Swedish Energy Agency 2014c) and the siting is governed by 
different parameters in a rather complex way (e.g. influence of the marine environment, sea 
depth and acceptance by the public and other organizations) offshore wind is not included in 
the analysis. Nevertheless, it should be recognized that the Government in December 2014 
commissioned the Swedish Energy Agency to set up proposals on how support for offshore 
wind should be designed to create conditions for the expansion of offshore wind power 
(Ministry of the Environment and Energy, 2014).  

The prospects for onshore wind power in the KASK-SE region has been analyzed in two 
ways; a “top-down” approach as part of the modelling of the European power sector (see 
Section 6.5) and a “bottom-up” approach through mapping and analyzing of available land 
surface and local wind-power resources as reported in this section. The first approach 
estimates the efficient expansion of wind power in KASK-SE depending on different 
European energy and climate policy setups, while the second approach aims at estimating the 
potential for wind power in the region by taking a detailed look at geographical conditions of 
the region. The outcome of the second approach, thus, determines the limits of the outcome of 
the first approach, i.e. the calculated and cost-efficient expansion of wind power within the 
region may not exceed the estimated potential. 

To estimate the available land surface and, thereby, the potential for onshore wind power in 
the region, a number of conflict areas were identified. The lion share of this assessment is 
based on a GIS-methodology using the ArcInfo software. The conflict areas are defined as 
areas where wind-power installations are considered as not being possible or feasible for 
different reasons. In total, more than 30 different conflict areas were analyzed in the present 
analysis. These areas include lakes and seas, densely populated areas, roads, environmental 
and cultural protection areas, airports, and recreational areas. Buffer zones or safety distances, 
i.e., minimum distances to, for example, roads or densely populated areas, have been added to 
several conflict areas, thereby further reducing the available land surface (Unger et al., 
2014a). 
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It is important to point out that we have defined, a priori, the conflict areas as “no-go” areas 
for onshore wind-power installations. In some cases, this is obvious, while in other cases it 
may not be as obvious. For example, in the case of areas that are linked to tourism, one might 
argue that there could be room for wind power, at least to a limited extent. In particular, the 
conflict area termed “densely populated area” is highly uncertain. For what population density 
is it reasonable to assume that wind-power installations are unlikely? We know that we have 
to establish some limit, since conflicts with near-by inhabitants are common in cases of wind-
power installations. In our analysis, we have investigated population densities of 10 
persons/km2 and 50 persons/km2. This means that for population densities of more than 10 or 
more than 50 persons per km2, respectively, wind power installations are assumed to be 
unfeasible. Following this definition, “10 persons/km2” represents a larger conflict area than 
“50 persons/km2”. 

To check the validity of the defined conflict areas, we took a closer look at existing wind-
power turbines and at planned wind-power turbines in the Swedish part of the KASK region. 
The aim was to identify the number of single turbines that were placed in our conflict areas. 
For a high number, one might suspect that our choice of conflict area is less appropriate or, in 
fact, that certain “conflicts” are inevitable when expanding the number of wind turbines in a 
given region. In VGR there are currently (Autumn 2013) 471 operating turbines and 1,567 
turbines under development. Thus, the numbers seem sufficiently high to produce a fair 
quality check. In Figure 6.1, we present the share of all existing wind power turbines that are 
placed in a conflict area according to the defined conflict areas. Each conflict area is denoted 
on the x-axis.  

Executing the same exercise with planned wind turbines it can be stated that, in general, 
<10% of existing and planned turbines are placed, or are planned for placement, in a conflict 

 

Figure 6.1: The shares of number of total existing wind turbines in VGR that are in conflict with the 
conflict areas indicated on the x-axis. 
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area that accords with our definition. This gives us reason to believe that our choice of 
conflict areas is appropriate. However, the dataset may also be interpreted as exhibiting some 
“true conflicts”, since our conflict areas are not entirely free of wind turbines. Furthermore, 
the numbers of the wind turbines placed in some conflict areas exceed the “threshold” of 10% 
of the total installed number. This applies especially when the population density of 10 
persons/km2 is chosen as a conflict area; in such a case, around 20% of the existing turbines 
are in conflict with other interests (in this case urban areas). In contrast, choosing areas with a 
population density higher than 50 persons/km2 as conflict areas yields very few “conflicts” 
(approximately 1%).Therefore, in the final analysis, we chose the intermediate density of 30 
persons/km2 as the limit for a densely populated area that is not suitable for wind-power 
installations. 

Based on these findings, it may be concluded that there are fewer conflicts for planned wind 
turbines than for existing turbines. This indicates that the process of choosing a site for wind 
power has improved or attained greater importance, at least if we consider our definition of 
conflict areas. Another part explanation could be that alternative land use has emerged some 
time after the installation of a wind turbine or a wind farm. Thus, existing turbines are ”in 
conflict areas” even though they originally were not. The quality check described above was 
also performed for the Swedish county of Halland. Although there are fewer wind turbines in 
Halland than in VGR, the results for Halland follow a similar pattern albeit with even fewer 
conflicts being identified (Unger et al., 2014a). Nevertheless, in reality some of our defined 
conflict areas, e.g. areas linked to tourism and cultural protection, are associated with wind 
power installations, both existing and planned. Other conflict areas are entirely free of wind 
power installations such as national parks. To what extent a certain area may be considered as 
a conflict area or not, varies significantly between areas and, thus, adds to the uncertainty of 
the analysis. However, our analysis clearly shows the impact of ruling out certain areas and 
including other areas as potential sites for wind power installations. Thereby, we may estimate 
available land surface and, thus, the potential for onshore wind power given the, in some 
cases, large uncertainty concerning alternative land use. 

The GIS modelling shows that approximately 43% of the original geographical area of the 
Swedish part of the KASK region remains as potentially available after the surface reductions 
mentioned above. These results take into account the buffer zones surrounding the conflict 
areas, so as to reflect safety and publicly acceptable distances from wind-power installations, 
as discussed above. The results are reported in Table 6.1 (here we assume that our “final 
estimate” of >30 persons/km2 as the conflict area defines conflicts with densely populated 
areas). 
 
The GIS modelling of available land area has then been correlated with mapping of wind 
resource availability compiled at Chalmers. This latter data set allocates wind availability to a 
very large number of grid cells (single spatial cells of 200-700 km2) covering the entire EU, 
 
Table 6.1. Estimated potentially available land surface for installation of wind turbines in KASK-SE 
applying the conflict areas defined in this work (30 persons/km2 and omitting conflict areas such as 
roads, rivers, cities etc). 
  Total land area land area available land area available 

  km2 for wind, km2 for wind, % of total 
County of Halland 6 044 3 143 52% 

County of Västra Götaland 28 269 11 483 41% 

KASK SE 34 313 14 626 43% 
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Norway and Switzerland. The data originates from the wind-speed database managed by 
ECMWF (European Centre for Medium-Range Weather Forecasts). Data is valid for hub 
height of around 100 meters.  

Combining wind availability and available land surface area for wind-power installations in 
each grid cell reveals the extent of possible and profitable wind-power investments in the 
region. In Figure 6.2, the full-load hours for each grid cell are arranged in decreasing order. 
Full-load hours are defined as the number of hours that a typical wind farm would have to 
generate at rated capacity in order to reach total actual annual production8. The corresponding 
available land surface (after subtraction of the assumed conflict areas) is indicated on the x-
axis of the figure. If the numbers of full-load hours are known, it is possible to do a simple 
profitability check. Total costs of wind power are determined by full-load hours and 
assumptions regarding investment costs and operation and maintenance (O&M) costs. Based 
on default assumptions, a wind-power installation with 2,500 full-load hours per annum 
typically costs around 55 €/MWh. We assume only moderate grid-integration costs. If the 
number of full-load hours is decreased to 1,500 hours, i.e., by choosing a significantly less 
appropriate site, the total generation costs increase to around 100 €/MWh. Three such 
estimated production costs are included in Figure 6.2 and placed adjacent to the 
corresponding full-load hours. Modelling the development of the Nordic electricity market 
gives projected wholesale electricity prices of typically 40–45 €/MWh for the coming years. 
The prices of electricity certificates in the common Swedish-Norwegian electricity certificate 
market have in recent years been around 20 €/MWh. If that price level prevails the total 
income for new wind-power investments may reach 60–70 €/MWh i.e. well exceeding the 
wholesale electricity prices estimated from the modeling.  

Based on the information shown in Figure 6.3, around 1,000 km2 in the Swedish part of the 
KASK region would in that case be profitable. This is less than 10% of the entire land surface 
estimated as being available for onshore wind power. However, if we assume that this surface 
is available for entire wind farms with a power density of typically 10 MW/km2, then the 
installed capacity could reach an impressive 10 GW (1000 km2 × 10 MW/km2). This figure 
may be compared to the total installed capacity including all power-generating plants and 
units in the whole of Sweden, which is around 35 GW. In conclusion, it is clear that land 
availability should not be a limitation for fulfilling large ambitions on wind power expansion. 
Since typical cost for offshore wind power exceeds € 100/MWh (Swedish Energy Agency, 
2014c) it can be concluded that unless the cost of offshore wind power is significantly 
reduced, there is no need for such in the KASK-SE region. 

                                                 
8 Full-load hours is a typical indicator for assessing the annual average electricity cost of a wind turbine or a 
wind farm. Depending on choice of wind-availability data, typical hub height, geographical resolution, wind 
turbine design and power function (which converts wind speed to wind-power production), full-load hours can 
differ significantly when estimating the expected power output from a potential installation in a specific 
investigated site. Furthermore, the annual production from a given wind turbine is known to slowly degrade over 
time due to wear and tear. This argues for a more conservative approach in the choice of e.g. power function. 
Thus, the concept of full-load hours should be used somewhat carefully. In our study, we use wind-speed data 
from ECMWF, which are averaged over 5 minutes every third hour and valid for hub heights of 100 meters. The 
power function is taken from the Tradewind project (Van Hulle 2009) for a, at that time, “future” wind turbine 
design. 
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Figure 6.3: Full-load hours for on-land wind power in the KASK-SE region, arranged in decreasing order. 
The figure includes estimates of levelised costs of electricity for wind power for three different full-load 
hours (assuming investment cost of 1330 €/kW, O&M cost of 25 €/kW, and a real discount rate of 7%). 

As mentioned in Section 2, Swedish municipalities are obliged, by law, to present energy 
plans that cover the geographical boundaries of their communities. However, as there are no 
major requirements as to the actual contents of such plans, they may be regarded as relatively 
flexible in terms of scope and detail. Nevertheless, a broad assessment and environmental 
aspects should be included. In parallel with these energy plans, many Swedish municipalities 
have prepared specific wind-power plans. These give valuable insights into the ways that 
different communities value the role of wind power and to which extent they estimate 
available land surfaces for such installations. When looking into these plans for the six 
communities of Halland County, we conclude that they, generally, have a more limited view 
of the availability of land surface than the availability which we have applied in our analysis. 
The factors that the municipalities include, besides the ones analyzed in this study, are more 
politically or strategically motivated, perhaps reflecting the different ambitions of the 
municipalities.  One such example is how the municipalities in some cases include 
significantly larger buffer zones around densely populated areas, with the justification that 
they expect (or hope) that their cities will grow and they want to reduce the possibility of 
future conflicts over wind-power installations. Furthermore, municipalities tend to be more 
restrictive in terms of wind-power installations if they consider that these could be in conflict 
with tourism objectives. Thus, in some cases competing land use tends to be assigned a higher 
value in these plans than what we have estimated here. However, one might argue that areas 
that are currently considered as unlikely sites for wind power installations may be considered 
more likely as potential sites in the future, assuming that the threat from climate change will 
become all the more evident. This further underlines the difficulties associated with 
estimating available land use and potentials for onshore wind power. In reality, each wind-
power installation is treated as a unique project with unique conditions. Nevertheless, 
estimations of the potentials of wind power are necessary when assessing strategies and 
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options to increase the penetration of renewables in line with what is required in the longer 
term in a society complying with a 2°C warming target. When doing so, we must be aware of 
the fact that wind power siting can be controversial and that onshore wind-power installations 
in many cases have to compete with alternative forms of land use. 

To summarize; the analysis on available land area has shown a large potential for onshore 
wind power in the KASK-SE region, up to some 1,000 km2 land could be utilized at 
reasonable cost yielding an estimated wind power capacity of 10 GW with an estimated 
production potential of between 20 to 25 TWh. Thus, since offshore wind power is 
considerably more costly than onshore wind power, focus should, at least for the time being, 
be placed on utilization of onshore sites. New support schemes dedicated to support of 
offshore wind power could however reverse this situation.    

6.3 Biomass and waste 

It is obvious that biomass applied for energy purposes will become increasingly important in 
the future, not only in Sweden but also throughout Europe and also globally. Hence, both the 
potential for future production of biomass within the region as well as import possibilities are 
analyzed and discussed in this work. The analysis of biomass and waste resources has been 
carried out in two parts. The first part makes an analysis of the prospects for future production 
of biomass within Swedish and Norwegian KASK region (Bisaillon et al., 2014a) while the 
second part provides an analysis of the prospects for enhanced bio- and waste based power 
production within the same region (Bisaillon et al., 2014b). In this report, only the part of the 
analysis covering the Swedish KASK-region is reported.   

6.3.1 Prospects for future production of biomass in the Swedish KASK region 

The analysis in this part of the study includes fuel wood (whole trees and large tree parts from 
clearing and thinning), byproducts such as wood chips, wood dust and bark, tops and branches 
(so-called GROT), stumps, straw and energy forest (salix). Furthermore, the analysis in the 
first part starts by the identification of production and use of the selected solid biomass types 
in the year 2010. Next, it was studied how this solid biomass production can be developed to 
2020 and to 2030.  

In 2010, total solid biomass production in the Swedish part of the KASK region amounted to 
5.7 TWh of which 95% was fuel wood, byproducts and GROT. The region used 7.5 TWh in 
2010 with the deficit, 1.8 TWh, being imported from other regions in Sweden. The imbalance 
between production and use is fairly typical for a region with a relatively large number of 
residents and well-developed district heating networks but with relatively limited forest area 
such as in Västra Götaland County. Table 6.2 shows consumption by sector in 20109. 

 

 

                                                 
9 Wood burnt in domestic boilers in SFDs is not covered well by official statistics and that is the main reason to 
the discrepancy between the use of solid biomass in SFDs given in Table 6.2 and the estimated value given in 
Table 5.1. Also, Table 6.2 shows only unprocessed solid biomass, i.e. pellets are not included.   
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Table 6.2 Selected use of unprocessed solid biomass (i.e. not including pellets) for energy 
purposes in KASK-SE in 2010. 

Sector Use 2010 (TWh) 
   Single-family houses 1.9 
   Industry 1.2 
   District heating (including CHP) 3.6 
   Biopellets production 0.8 
   TOTAL 7.5 
   

The assessment of future potential production of the selected solid biomass types have been 
performed in a two-step process. 

1. Literature survey for identifying solid biomass potential studies  
2. Establishment of two scenarios for the solid biomass potential in 2020 and 2030 

Many factors will affect the development of solid biomass production potentials. Therefore it 
was chosen to evaluate the 2020 and 2030 situation in the form of two possible scenarios, 
which have been termed "LOW" and “HIGH” respectively. Their purpose is to find a 
reasonable sample space of potentials for 2020 and 2030. To facilitate this, a number of 
factors were put together that contributes to a low and a high potential respectively. It should 
be noted that the scenario descriptions are qualitative. The scenario descriptions are used for 
selecting solid biomass potentials from the literature studies in point 1 above which fits into 
the given descriptions. 

Scenario LOW suggests a limited supply of solid biomass due to an anticipated slow growth 
in the economy. The competitiveness of Nordic forestry industry (sawmill industry and pulp 
and paper industry) is weakened on the global market and demand for forestry products is 
relatively low. Furthermore, new policy instruments are introduced that limit the area of 
productive forest. A low climate ambition leads to a limited harvesting of bioenergy from 
forests and agriculture.  

Scenario HIGH suggests large supply of solid biomass. The competitiveness of Nordic 
forestry industry (sawmill industry and pulp and paper industry) is strengthened on the global 
market. A general global pressure for reducing greenhouse gas emissions improves the 
competitiveness as the Nordic production uses comparatively low amounts of fossil energy. 
Also increased labour costs in developing economies in e.g. South America and Asia 
contributes to improve the competitiveness of the Nordic forestry industry.  

The total area of KASK-SE is ca 30,000 km2 (see Table 2.1) of which ca 17% is forest land 
and 19% agricultural land. Figure 6.4 shows that the solid biomass production potential for 
energy purposes in the Swedish KASK region can amount to 10 TWh in 2020 and just over 
12 TWh in 2030 in Scenario HIGH. The potential in 2030 is relatively evenly divided 
between fuel wood, tops and branches (GROT), byproducts and agricultural fuels (straw and 
energy forest). In the LOW scenario, the driving forces for using fuels like straw, energy 
forest and stumps are limited and the potential for energy purposes is assumed to decline, 
albeit marginally from 5.7 TWh in 2010 to 5.5 TWh in 2020 after which the potential is 
assumed to remain constant. The potential in the LOW scenario mainly consists of fuel wood, 
tops and branches (GROT) and by-products. 
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Figure 6.4: Estimated solid biomass production (TWH) for energy purposes within the Swedish KASK 
region in 2010 compared to estimated potentials for 2020 and 2030 in the LOW and HIGH scenario. 

The forest industry, including both the sawmill industry and the pulp and paper industry, 
plays a crucial role in realizing increased solid biomass production in the KASK region, since 
the major part of the potential originates from the forest. In the scenario analysis, the HIGH 
potential is reached under the assumption that the competitiveness of the Nordic forestry 
industry is strengthened on the global market and consequently production increases. The 
HIGH potentials implicitly also demand higher solid biomass prices than today to be realized. 
In the Swedish KASK region, the current price level is in the range 18-23 euro/MWh 
delivered at district heating plants and ready to use (Profu 2013a).  

Import of biomass to the KASK region could come from other regions in Sweden or from 
other countries. In Sweden, there is a current flow of solid biomass by railway and boat from 
the forest-rich northern part of the country (i.e. counties north of Dalarna and Gävleborg) to 
the southern part where the Swedish KASK region is located. These flows can be increased if 
the demand and the paying ability increase in e.g. the KASK region. For Sweden as a whole 
(including the Swedish KASK region), Profu (2013a) estimated the production and use in 
Year 2012 of the different studied solid biomass types included in this study to 50 TWh and 
53 TWh respectively. The difference between production and use was met by a net import of 
around 3 TWh. Börjesson et al (2013) present a long list of studies estimating additional 
potentials for Sweden as whole. Depending on time perspective and limitations 
(technological, economical, ecological etc), these studies indicate an additional potential of 53 
– 93 TWh of the solid biomass types. 

Looking outside the Swedish borders, there is a current international trade of wood chips for 
energy purposes (originating either from fuel wood, tops and branches or by-products from 
the sawmill industry) for energy purposes. According to IEA (2012a), the global trade of 
wood chips can be estimated at around 5 TWh and the main trade is to and within Europe. 
Today, pellets are the dominating solid biomass fuel being traded over long distances. The 
import to Europe from other world regions (mainly North America and Russia) has increased 
steadily and was estimated to some 20 TWh in 2012 (Teir 2013).  Up to 2020 the European 
import from other world regions might increase up to 70-140 TWh according to Faaij (2013). 
After 2020, IEA (2012b) has indicated that global trade in refined biomass (pyrolysis oil, 
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torrefied wood and pellets) probably will “grow rapidly to supply large bioenergy power 
and/or heat plants in regions with limited feedstock availability”.  

Thus, as shown above the first part of this study indicates that production of solid biomass 
within KASK-SE may be raised to twice the current capacity, i.e. to 12 TWh per year and that 
there is a large additional production potential in the rest of Sweden of which parts may be 
imported to the KASK region. Additionally, there is of course the possibility of imports of for 
instance pellets from as far away as North and South America. 

6.3.2 Prospects for enhanced bio- and waste based power production in the 
Swedish KASK region  

As mentioned above the second part of this study assessed the prospects for development of 
renewable power generation from solid biomass and waste fuels in the Swedish and 
Norwegian part of the KASK region (see Bisaillon et al 2014b). The renewable electricity 
production can for example occur in the form of CHP in district heating systems or in the 
form of back-pressure production in industries. Throughout the study it has been assumed that 
50 % of the power production from waste fuels could be considered as of renewable origin.  

First, the amount of renewable power production from solid biomass and waste fuels in the 
region in the year 2010 was identified. Next, it was assessed how this renewable electricity 
generation can be developed to 2020 and to 2030. The assessment for 2020 was mainly based 
on expansion and phase out plans and other changes (e.g., closure of industries) that have an 
impact on the renewable power production from solid biomass and waste fuels. For the 2030 
assesment, the expected situation in 2020 was used as a starting point. A scenario analysis 
was then used to evaluate a HIGH and a LOW scenario for 2030. 

Data for 2010 was collected and compiled using several different data sources and the same 
sources were also used to evaluate the development up to 2020: 

• The Profu biomass database on existing CHP plants and heat plants using solid biomass and waste fuels 
(Profu 2014). 

• Literature survey  
• Coordination with the Chalmers Power Plant Database – 2014 edition (Kjärstad et al., 2007) 

In the Swedish district heating sector, the first decade of the 2000s was characterized by a 
large expansion of solid biomass CHP and waste fuel CHP. Two important drivers were (and 
still are) the electricity certificate system and landfilling taxes/landfilling bans (Profu 2013a, 
b). As of 2010, 208 MWe capacity burning solid biomass and 39 MWe capacity burning 
waste fuels was installed in KASK-SE. Corresponding electricity generation in 2010 
amounted to 1,031 and 211 GWh respectively. The two Swedish counties differ in their type 
of production. Västra Götaland is characterized by mainly power production through CHP in 
district heating systems, and 27 % of this type of power production comes from waste fuel 
CHP. Halland, on the contrary, gets most of its production from industrial back-pressure using 
solid biomass at two large pulp and paper industries. 

However, there appears to be much less plans for new production units in the district heating 
sector in the period 2011-2020 than in the preceeding decade. For the Swedish KASK region, 
39 MW additional electricity production capacity has been identified (of which some already 
has been installed) yielding an estimated additional production of 178 GWh per year.  
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Back-pressure production at pulp and paper industries is dependent on the expansion and 
phase out of plants. The pulp and paper industry competes on a global market, e.g. in 2013 
some 90 % of the Swedish paper production was exported (Skogsindustrierna 2014). During 
the last 5-10 years, this sector has also been under growing competition from electronic 
media. Thus, the project identified 37 MWe additional power production capacity up to 2020 
of which some already has been installed. Estimated production capacity of the expected new 
installations is roughly 260 GWh per year.  

Therefore, adding the identified capacity additions up to 2020 for both the district heating 
sector and for back-pressure production from the industry, it is expected that total electricity 
generation capacity from solid biomass and waste increases from around 245 MWe in 2010 to 
320 MWe in 2020 yielding an estimated annual production increase of 440 GWh (from 1242 
GWh in 2010 to 1680 GWh in 2020). 

Up to 2030 many factors, which are further described below, will affect the development. 
These factors can work in the direction of increasing or decreasing this type of renewable 
power production in the region. Therefore it has been chosen to evaluate the 2030 situation in 
in line with the above mentioned LOW and HIGH scenarios (which both use the expected 
situation in 2020 described above as a starting point). Scenario HIGH means a development 
where factors influencing the renewable power production from solid biomass and waste fuels 
are supporting a strong but possible development. The opposite goes for scenario LOW. The 
following factors have been considered: 

• The supply and price of solid biomass 
• Waste policy    
• Electricity and TEP (Tradable Emission Permits) prices 
• Electricity certificate prices 
• The competitiveness of the Nordic pulp and paper industry 

In scenario HIGH all the factors stated above support an overall development where solid 
biomass CHP is economically favoured over waste fuel CHP. Furthermore, back-pressure 
production in the region’s pulp and paper industry can be increased. The opposite goes for 
scenario LOW. In the assessment, a technical evaluation was performed of how the overall 
development in each scenario could affect the renewable power production from solid 
biomass and waste fuels in the KASK region by 2030. Based on the overall development in 
scenario HIGH, the following assumptions are made for 2030 compared to the estimated 
situation in 2020: 

• 50 % of the district heat production from waste incineration is closed down and replaced by solid 
biomass CHP delivering the same district heat amount. In KASK-SE this means that only waste fuel 
CHP plants close down, since all waste incineration plants are CHP plants.  

• Following the assumed waste policy (Bisaillon et al., 2014b), material recycling of plastics is strongly 
increased, leading to a renewable share in waste fuels of 75 %. 

• Pulp and paper production increases by 25 % over 2020 levels, leading to a corresponding increase in 
back-pressure production.  

Based on the overall development in scenario LOW, the following assumptions are made for 
2030 compared to the expected situation in 2020: 

• Waste incineration capacity and district heat production through waste fuel CHP increases slightly and 
replaces solid biomass CHP.  

• Following the waste policy (Bisaillon et al., 2014b), the renewable share of waste fuels are 50 %. 
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• Pulp and paper production decrease by 25 % compared to 2020 levels, leading to a corresponding 
decrease in back-pressure production. 

 

Figure 6.5: Assessment of future electricity production potential for solid biomass and waste in KASK-SE 
in scenario LOW (to the left) and scenario HIGH (to the right).  

In Figure 6.5, the development of renewable power production from solid biomass and waste 
fuels in KASK-SE are illustrated for the HIGH and LOW scenarios.  

As can be seen from Figure 6.5, estimated generation increases from some 1240 GWh per 
year in 2010 to 1,680 GWh in 2020 after which it declines to 1,415 GWh in 2030 in the LOW 
scenario and increases to almost 2,380 GWh in the HIGH scenario. In the HIGH scenario 
there is a relatively high increase both in biomass backpressure and biomass CHP electricity 
generation while wastefuel CHP declines. In the LOW scenario production capacity increases 
for all three categories up to 2020 after which however both biomass backpressure and 
biomass CHP declines while waste CHP increases relatively modestly.    

The estimated additional potential for biomass based electricity generation in the HIGH 
scenario should easily be covered through the additional biomass production potential within 
the region as estimated in the Part 1 analysis above. More specifically, the Part 1 analysis 
revealed an additional biomass production potential of 6 TWh in the region which, assuming 
this biomass is used in CHP plants with a conversion efficiency of 80%, should yield some 
4.8 TWh additional electricty and heat production (with the electricty share depending on the 
power to heat ratio). 

6.4 Solar 

At the end of 2013 there was 43.1 MWp of solar photovoltaic (PV) cells installed in Sweden, 
which constitutes an insignificant part of the total capacity installed in the electricity system 
and accounts for only 0.03% of generated electricity (Lindhal 2013). However, the installation 
rate has continuously been increasing since 2009 with 19 MWp being installed during 2013, 
up from 8.3 MWp in 2012. Virtually all recent as well as cumulatively installed capacity has 
been installed on the demand side of the power system, i.e. as distributed generation by 
private households, commercial, public and governmental buildings, with the primary aim to 
generate electricity for self-consumption. Yet, 91 % of demand side installations are grid tied 
meaning that any excess electricity they produce can be fed into the grid. There are no data to 
show how much of the capacity is installed in the regions of VGR and Halland, although 16 
% of the national investment support subsidies for solar PV installations have gone to VGR 
with the corresponding figure for Halland being 4.5 % (Swedish Energy Agency 2014d).  
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Figure 6.6. The different components constituting the retail price of electricity, these being value added 
tax (VAT), energy tax and grid transfer fees and the whole sale price. 

Using this as indicators of installed capacity 6.9 MWp and 1.9 MWp could be installed in 
VGR and Halland respectively at the end of 2013.  

The reason that almost all investments occur on the demand side is that the economic benefits 
from generating electricity for self-consumption are higher compared to generating with only 
the intention to sell. This as energy tax, VAT (Value Added Tax), company overhead, fees 
and the wholesale price are included in the retail price of bought electricity, and as long as the 
generated PV electricity is used for self-consumption it only needs to compete with this retail 
price. This makes a considerable difference as the whole sale price only makes up roughly 
30% of the retail price, see figure 6.6.  

In Sweden the following support schemes are currently available for PV-systems (They are 
available to both private persons and companies unless stated otherwise): 

• Investment support, maximum 35% of total investment cost up to a cost of 1.2 million SEK and/or 
37,000 SEK/kWp. The support is available until the 31st of December 2018 or until the allocated 680 
million SEK runs out. What happens beyond that point is unclear although the support has previously 
been extended. 

• Renewable energy certificates (RECs) are issued for each produced MWh which can subsequently be 
sold on the certificate market. Currently the PV owner needs to apply to get certificates and the PV 
installation can only receive certificates for the first 15 years of operation. Certificates are only received 
for electricity fed to the grid, since in order to receive certificates for the total production additional 
measuring equipment is needed which is not currently economically justifiable.  The average value of 
certificates since their introduction in 2003 has been 230 SEK/MWh. 

• Guarantee of origin certificate, works in the same way as renewable energy certificates although the 
value of these are considerably lower.  

• ROT-deduction, half of the labor cost but maximum 50,000 SEK per year. It cannot be combined with 
the investment support. What this would constitute in reduction per Wp depends on the labor cost, but 
around 2,300 SEK/kWp is plausible. 

• Tax deduction, a tax deduction of 60 öre/kWh of electricity fed to the grid, i.e. the electricity that the 
household do not self-consume, up to a maximum of 30MWh per year. This will be implemented the 
1st of January 2015. 

• The two regions in the KASK area also have local support schemes:  
o “Handlingsprogram för hållbar energy” and “Klimatmiljonen Halland”, economic support for 

investments in PV aimed at various organizations (not specified what kind of organizations but 
individual companies are excluded explicitly) and the public sector. 

o “Sol i Väst”, gives support for planning and investing in solar PV for its members (primarily 
municipalities), no economic support is given. 
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Excess production can be sold to an electricity retailer slightly below the market wholesale 
price. There are also retailers who offer prices above wholesale price, however, these should 
be seen as marketing schemes as it would not be feasible to implement on a larger scale.  

The VGR and Halland regions receive roughly 925-1000 kWh/m2 of solar irradiation per year 
with some minor variations. Currently this would translate to 800-1000 kWh/kWp depending 
on orientation and inclination of the panel. These values are for CSi-panels which together 
with thin-film (CdTe, CIS) are the most prevailing type of panel available. As solar-PV 
research is highly material driven there are room for major advances in efficiency and cost 
through using new materials.  

Current Swedish prices for a PV system including installation is 20,000 SEK/kWp (inc. VAT) 
for household, giving a LCOE (Levelized Cost of Electricity) of around 1.6 SEK/KWh, and 
the cost for commercial PV systems being 15,000 SEK/kWp (exc. VAT) (Lindhal 2013). 
Prices have dropped significantly during the last few years primarily due to PV module price 
reductions and will likely continue to do so although probably not at the same pace. At the 
current cost levels investments are not profitable without subsidies for consumer side 
investments and not at all for utility investments, i.e. assuming the support schemes listed 
above.   

Countries with similar resource potentials as Sweden such as Germany and the UK have 
shown a considerable larger growth in solar PV capacity than Sweden (with current level of 
5.2 % and 0.6% of produced electricity in 2013 respectively). The fairly quick expansion seen 
for these countries is almost exclusively due to the use of Feed-in-tariffs coupled with PV 
system prices falling quicker than expected. The size of installations have also been governed 
by the feed-in tariffs (the maximum size covered by the tariff being 5MWp for UK and 
unlimited for Germany). Given the support system in Sweden a similar development is not 
likely as the investors are not guaranteed a fixed price for produced electricity and also there 
is limited funding within the investment support scheme to support a growth of a similar 
scale. Utility scale installations are practically only supported through RECs, thus installations 
at this level in Sweden will only be seen when LCOE drop to a level which together with 
RECs can compete with prevailing spot market prices (2013 average). To reach this level 
would require an investment cost of around 6,000 SEK/kWp (exc. VAT) unless further 
support systems are implemented. A more likely scenario is that investment will occur on the 
consumer side, as they are already profitable with today’s subsidies as indicated above.  
Although as previously mentioned a rapid expansion is limited by the level of investment 
subsidies. However, assuming implementation of the tax deduction scheme, a simplification 
of the RECs system and a continued drop in system prices, could together lead to a more rapid 
expansion as it would lower the dependence on investment support.  

What is the potential for PV installations in the KASK region if consumer installations 
become profitable? Table 6.3 shows an estimated potential for KASK-SE assuming solar PV 
being installed on between 10 and 100% of potentially “suitable” roof surface area. “Suitable” 
roof surface area has been derived applying the estimate given in (Kamp 2013) after having 
reduced the area for tilted roofs by 50% since output is reduced considerably at angles of 45° 
or more away from due south. An installation size of 150Wp/m2 is used and a generation of 
900Wh/Wp where the lower value is used to account for that not all roofs face south.         

Different shares of net roof area potential have been used to indicate the market penetration 
and the size of the installation where 100% constitutes full market penetration and maximum 
installations, i.e. using all the presented net area while 50% can represent either a full market 
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penetration with 50% use of the potential installation for each roof or 50% market penetration 
and 100% use of the potential installation for each roof. Values are shown for single family 
dwellings (SFD), MFD (Multi Family Dwellings) and non-residential buildings, e.g. 
hospitals, offices and sport centers in VGR and Halland. Roofs belonging to industry and 
large storage buildings, holiday homes and supplementary buildings have not been included. 

Table 6.3. Estimated potential electricity production (TWh) from rooftop PV in VGR & Halland. 

Share of potentially net 
installable area 

VGR Halland 

SFDs MFDs Non-res Total SFDs MFDs Non-res Total 
100% 1.42 0.29 0.26 1.97 0.38 0.05 0.05 0.48 

75% 1.07 0.22 0.19 1.48 0.28 0.03 0.04 0.36 

50% 0.71 0.15 0.13 0.99 0.19 0.02 0.03 0.24 
25% 0.36 0.07 0.06 0.49 0.09 0.01 0.013 0.12 

10% 0.14 0.03 0.03 0.2 0.04 0.005 0.005 0.048 

As can be seen from Table 6.3, given the assumptions specified above, solar PV in KASK-SE 
is estimated to generate between 0.25 and 2.5 TWh electricity annually combined (adding the 
total for VGR and Halland) pending on available area and market penetration. The potential in 
VGR is around four times the potential in Halland. As can also be seen in Table 6.3 SFDs are 
believed to constitute the major share of production potential for solar PV in the KASK-SE 
region. This follows, as mentioned above, from the fact that under existing subsidy schemes, 
SFD owners have the most to gain from an installation of solar PV on their rooftops. The size 
of the PV installation on SFDs will depend on the available pricing structure for excess 
produced electricity, with the coming tax deduction scheme (see above) probably leading to 
larger panels as it will increase the value of excess produced electricity.  

If roofs of industrial buildings and other excluded buildings are included the potential is 
obviously larger. Also, if ground mounted utility scale PV plants become profitable the 
potential could grow substantially.  

To provide a time perspective of the expansion in PV will be highly speculative. However, 
annual expansion rates of solar PV generation in Germany, Italy and China have been strong, 
e.g. on a yearly base there was an increase in solar PV generation in Germany from 11.7 TWh 
in 2010 to 19.6 TWh in 2011, i.e. a yearly increase by almost 8 TWh. Between 2009 and 
2013, German solar PV electricity generation increased from 6.6 TWh to 31.0 TWh (BMWi 
2014). Which degree of penetration we will see in the KASK-SE region by 2030 and by 2050 
will be highly dependent on the price development of PV-panels and how policies will be 
designed, and it may increase substantially from today’s level. 

6.5 Assessment of electricity generation towards 2050 

In this section, we present an analysis of the development of the electricity generation in the 
KASK-SE region towards 2050. Depending on a large number of different factors such a 
development can, of course, take on different routes. We have limited our analysis to focus 
mainly on two main scenarios. The analysis is based on a European electricity-system 
modelling combined with region-specific (the KASK region) considerations for e.g. biomass 
and wind power. For a more detailed description of the work, see Unger et al., 2014b. The 
reason for this is that the electricity system is linked to both the Nordic and European systems 
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both physically through interconnectors and through the Nordic common electricity market 
(Nordpool). Thus, the future of the Swedish and thereby the KASK-SE electricity systems 
will depend strongly on the development of the European electricity system, especially with 
respect to Northern Europe and the planned investments in interconnectors in this region 
(between the Nordic countries as well as the planned transmission corridor in Germany). 
These issues are included in the modeling of this work. 

6.5.1 The main scenarios 

The assessment is mainly based on a model analysis limited to two main scenarios that we 
believe best reflect the purpose of this project. Both these scenarios are defined on a European 
level and around two dimensions: 1) Energy and climate policy, and 2) Technology 
development and availability.  

The prime assumption behind the first scenario, the “Green Policy” scenario, is a very 
ambitious European renewable policy target towards 2050, implying that around 90% of total 
electricity generation is renewable in 2050. This is, of course, a very high ambition and will 
require strong policy intervention. Our question is, however, not whether this is likely or how 
such a scenario may be achieved in terms of policy instrument setup across Europe, but rather 
to analyze what this would mean for the development of electricity generation within the 
KASK region. One of the core questions of this project is to assess the possibilities for 
expanding renewable electricity in the KASK region. A very high European renewable 
ambition in Europe, as stipulated by the “Green Policy” scenario, will naturally impact on the 
development of renewable electricity also in the KASK region. In the scenario, the renewable 
target is defined commonly across all EU Member States post 2020, i.e. the targets are not set 
at a national level. Furthermore, we rule out both the option of new investments in nuclear 
power and the commercialization of Carbon Capture and Storage (CCS). The reasons for 
ruling out CCS and new nuclear power plants may be political, technological, or related to 
public acceptance. Furthermore, the expected operational lifetimes of existing nuclear power 
plants are relatively short in this scenario at 45 years.  

In addition, we also investigate a scenario that takes its starting point in the energy and 
climate policy package stipulated by the EU towards 2030 (and further on towards 2050). We 
define this as our “Regional Policy” scenario. Also in this scenario, renewable policy is 
ambitious – yet not as ambitious as in the first scenario - but accompanied by policies and 
policy instruments also for increasing energy efficiency especially at the demand side. In 
2050, around 65 percent of total electricity generation in Europe is assumed to be renewable 
in this scenario. This is accomplished through nation-specific targets. The scenario is 
characterized by detailed policy steering, with emphasis on efficiency measures, and it has a 
national policy view rather than a common European policy-instrument design. New nuclear 
power plants are optional if considered profitable by the modelling. In general, we assume 
that existing nuclear power plants have an expected lifetime of 60 years in this scenario. 
However, we also assume that three of the oldest existing nuclear power plants in Sweden 
have an expected lifetime of 50 years based on preliminary estimates made by the utilities.  

In the “Regional Policy” scenario we assume that the common Swedish-Norwegian 
electricity-certificate scheme develops according to present decisions (October 2014). This 
means that renewable electricity generation shall increase by around 26 TWh, jointly in 
Sweden and Norway, between the beginning of 2012 (when the common scheme was 
introduced) and the end of 2020. The system remains in operation until 2035 but without any 
additional increases in production. Currently, political discussions in Sweden indicate that this 
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target may be subject to revisions and increase in ambitions. This may also be an outcome, 
once the burden-sharing among the EU Member States of the renewable target corresponding 
to 27% (of consumption) in the 2030 policy framework, has been established.  

In both the “Green Policy” and “Regional Policy” scenarios, we assume that CO2 emissions 
from electricity generation in Europe are reduced by approximately 95% by 2050. Thus, even 
though we to various extent assume renewable targets in both scenarios, we must not forget 
that also the stringent CO2-reduction policies, especially when approaching 2050, increase the 
profitability of renewables.  

Two additional scenarios were analyzed; the Regional Policy 2 scenario analyzing the effects 
from an expansion of the common Swedish-Norwegian electricity certificate and the Climate 
Market scenario which focuses exclusively on climate mitigation post 2020. These are here 
included in a sensitivity analysis. In addition, these scenarios are presented and discussed in 
more detail in the Appendix (A1).      

6.5.2 Analyzing the future development of European electricity generation – 
ELIN modelling 

The model that has been used in this assessment to generate results for the development of 
European electricity-supply system is the ELIN (ELectricity INvestment) model.  ELIN is a 
long-term dynamic optimization model that describes the present generation system, as 
derived from the Chalmers Power Plant database, and includes an extensive array of new 
technologies that are to be used to meet the changes in future demand as existing capacity 
comes of age or becomes unprofitable (Odenberger et al., 2009a, b, Johnsson F., et al., 2014). 
The time horizon of the ELIN model is between 2010 and 2050. Typical model outputs from 
the ELIN model include capacity and production levels of electricity by fuel and region (or 
country) until 2050, aggregated investment costs, electricity trade between regions (or 
countries), and marginal costs of electricity. In general, in the model runs, a CO2-emission 
cap, which is gradually reduced as one nears the year 2050, is imposed on emissions from 
electricity production. Thus, the marginal cost of CO2-emission reductions is also part of the 
model output.  

The European modelling in the ELIN model includes EU-27, Norway and Switzerland 
divided into 53 separate regions, or “electricity price areas”, defined by major electricity-
transmission bottlenecks (see Figure 6.7, left). This means that Sweden is divided into four 
regions, which basically coincide with the actual price areas in the Nordpool electricity 
market (we use a different notation of our price areas compared to Nordpool). Norway, on the 
other hand, is divided into three regions while, in reality, the Nordpool market divides 
Norway into five separate price areas. 

In our analysis, we use the model results for regions “NOR1” and “SWE2” as prime sources 
for our assessment of the future electricity generation in the Norwegian and Swedish parts, 
respectively, of the KASK region (KASK-NOR and KASK-SE). This means, for instance, 
that if wind power increases by a certain percentage in “SWE2” between 2030 and 2012, we 
assume that wind power in KASK-SE increases with the same share based on installed 
capacity in 2012 in KASK-SE. However, we also make certain specific and regional 
adjustments to that “rule” based on our knowledge of e.g. conditions for renewables and 
existing single power plants in the KASK region. We do this since it, of course, is a 
simplification to assume that the development in the KASK region perfectly follows the 
development in the surrounding regions (here “SWE2” and “NOR1”). We have also used  
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Figure 6.7: Regionalization of EU-27, Norway and Switzerland in the ELIN Regional model (left) and the 
two model regions, “NOR1” and “SWE2”, used for assessing the electricity generation in the KASK 
region (right; the KASK region is marked in dark green). Please note that we use a different notation for 
our price regions compared to Nordpool. 

other inputs, and not only the model results for the model regions “SWE2” and “NOR1”, in 
order to assess the development of electricity generation in KASK region. The regional 
mapping of investment plans and prospects for new electricity generation in combined heat 
and power schemes (CHP) based on biomass and waste incineration applied specifically to the 
KASK region is, for instance, also used as input to our assessment of the electricity generation 
in parallel with the model results (see Section 6.3). 

6.5.3 Results for Europe (EU-27, Norway and Switzerland)  

In Figure 6.8, we present the ELIN model results for EU-27, Norway and Switzerland of the 
“Green Policy” scenario (left) and the “Regional Policy” scenario (right). As mentioned, 
overall electricity demand stagnates and slowly decreases in our “Regional Policy” scenario. 
The massive expansion of renewable electricity generation is obvious, especially in the 
“Green Policy” scenario. This is, of course, primarily a result of the scenario definition itself. 
In particular wind power increases, but also biomass-based electricity generation and solar 
PV. Depending on the relatively rapid nuclear phase-out (assuming 45 years lifetime for 
existing plants) and stringent CO2-reduction policies, the need for gas power is apparent 
together with the constantly increasing share of renewable electricity generation in the “Green 
Policy” scenario. In the “Regional Policy” scenario, the increase in renewables over time is 
accompanied by, to a limited extent, CCS and new nuclear power capacity. Generally, 
however, the rather generous support to renewables and the decline in electricity demand 
entails low wholesale electricity prices. Thus, the profitability for new CO2-lean but non-
renewable electricity generation is limited. It is not until after 2040, where investments in 
these technologies take place in the “Regional Policy” scenario, yet in a relatively limited 
extension. 
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Figure 6.8: Model results for electricity generation in EU-27, Norway and Switzerland in the “Green 
Policy” scenario (left) and the “Regional Policy” scenario (right). 

Table 6.4. Marginal cost of CO2 abatement by scenario as given by the model results, €/ton. 

 
2015 2020 2030 2035 2040 2045 2050 

Green Policy 2 3 45 59 45 38 22 
Regional Policy 4 4 2 26 57 79 653 

The model also yields marginal cost of CO2 abatement over time reflecting a CO2 emission 
price which is shown in Table 6.4 for the two main scenarios. 

As can be seen from Table 6.4 the indicated CO2 emission price reaches a very high level in 
the Regional Policy scenario in 2050. It is important to realize however that the CO2-price 
shown in Table 6.4 does not reflect any flexibility on the demand side or emission reductions 
in other sectors than the power sector, factors which both may lead to lower CO2 prices than 
those shown in Table 6.4. In addition, in the end of the period the total carbon being traded is 
small and, thus, the total cost is low for the system, although the marginal cost to emit CO2 is 
high. 

6.5.4 Results for Sweden 

If we take a closer look at the model results for electricity generation in Sweden (Figure 6.9), 
we may conclude that the share of fossil-fuelled electricity generation already today is at a 
very low level. This also means that an expansion of renewable electricity or other non-CO2 
emitting sources of electricity have very limited impact on CO2 emissions from electricity 
supply in absolute numbers within Sweden and KASK-SE. However, if we widen our scope 
to include also neighboring countries, where the share of fossil electricity generation today 
and in a foreseeable future is of considerable size, the impact on CO2 emissions of investing 
in renewable electricity generation in Sweden (and Norway) may be of significant size. In 
such a case, wind power investments in e.g. Sweden may replace coal-fired power plants with 
significantly higher running costs in e.g. Germany through increased cross-border electricity 
trade. Thereby, CO2-emissions are reduced from electricity generation in the common North 
European electricity market. However, even though our electricity-system modeling includes 
a detailed assessment of the entire European system, the scope of this project is limited to 
CO2 emissions within the KASK region. Given such a limitation in scope, we may conclude 
that expanding renewables in Sweden (and Norway) has limited value in terms of reducing 
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Figure 6.9: Model results for electricity generation in Sweden in the “Green Policy” scenario (left) and the 
“Regional Policy” scenario (right). 

CO2 emissions. If we exclude possible benefits in terms of for instance CO2 reductions 
outside the KASK region (or outside Sweden), an increase in the share of renewable 
electricity within the KASK region (or Sweden) may still be justified due to other regional (or 
national) policy goals such as security of supply, technological development and employment 
policies.  

The nuclear phase-out has significant impact in the Swedish electricity system. Assuming a 
rapid phase-out as in the “Green Policy” scenario means that Sweden leaves its current state 
of excess supply and net electricity export (compare the size of the production bars with the 
demand line in Figure 6.9). It is not until around 2040 that the expansion in renewable 
electricity is sufficient to balance supply and demand. In the “Regional Policy” scenario, the 
existing nuclear capacity is available for a longer time period into the future while, at the 
same time, electricity demand is lower compared to the “Green Policy” scenario. Thus, 
Sweden is a net exporter up to 2040 according to our model results even though investments 
in renewable electricity are limited to the existing setup of the common Swedish-Norwegian 
electricity-certificate scheme.  

6.5.5 Results for the KASK-SE region  

As mentioned, the results of the European modelling can be further disintegrated into four 
regions in Sweden (and, of course, several other European regions; cf. Figure 6.7). Thereby, 
the model region that geographically cover the KASK-SE region (and adjacent regions), i.e. 
model region “SWE2”, is used as “governing” or “decision” region for the KASK-SE region. 
Thus, changes that occur in the “governing” region are assumed to occur also in KASK-SE. 
This is our main method to assess the future development of electricity generation in the 
KASK-SE region up to 2050. However, since this is a simplification we also use region-
specific considerations in order to complete the picture. Such considerations include using a 
recently updated version of the Chalmers Power Plant database that includes power plants 
currently under construction and in planning in the KASK region as well as the latest 
projections for decommissioning of certain power plants. Such plans do, however, generally 
not go beyond 2020. Furthermore, we use the specific mapping of future CHP schemes based 
on biomass and waste incineration in the KASK region up to 2030 which is described 
elsewhere in this report (see Section 6.3).  
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Figure 6.10: Model results for electricity generation in KASK-SE in the “Green Policy” scenario (left) and 
the “Regional Policy” scenario (right). 

The results of the assessment are reported in Figure 6.10. From the results we see that KASK-
SE currently is an export region of electricity, mainly due to the Ringhals nuclear power plant, 
which is one of the largest power plants in the Nordic countries. However, electricity demand 
in KASK-SE is relatively large since the region includes both Göteborg, the second largest 
city in Sweden, and several large industries.  

In the “Green Policy” scenario we assume a life-length of all European nuclear power plants 
of 45 years meaning that all four nuclear reactors at Ringhals are decommissioned before 
2030. At the same time the contribution from wind power is significantly increased reaching 
more than 10 TWh by 2030 which is almost five times as much as today. Also the 
contribution from biomass power is increased but on a considerably lower level. Even though 
the share of renewables is increased dramatically in the Green Policy scenario it does not fully 
replace the contribution in production previously from the Ringhals nuclear power plant. 
Thus, the KASK-SE region needs an annual net electricity import (the solid line in Figure 
6.10 shows estimated gross electricity demand in KASK-SE).  

In the “Regional Policy” scenario, wind power expands at a slower pace mainly due to the 
current (limited) target level within the Swedish-Norwegian electricity-certificate scheme. At 
the same time, the remaining lifetime of the Ringhals power plant is longer than in the “Green 
Policy” scenario implying that the supply-demand balance issue discussed below is not 
crucial prior to 2040.  

It is important to realize that the need for electricity-transmission capacity across the border of 
the KASK-SE region may be much larger than indicated in Figure 6.10. Since supply within 
the region is dominated by wind power post 2030 in the “Green Policy” scenario there will be 
time periods where wind availability is low, implying a high demand for imported electricity, 
and periods with high wind availability, implying a high need for exporting excess electricity. 
Or alternatively, periods with low wind availability may require sufficient back-up capacity 
within the KASK-SE region. Some of that back-up capacity is supplied by biomass power in 
condensing mode. Biomass condensing power is an expensive option but becomes feasible, to 
a certain extent, in our “Green Policy” scenario. In this project we have not further elaborated 
on the requirements for transmission capacity or back-up capacity in relation to this specific 
region. Flexible demand such as utilizing electric vehicles for storage of electricity, 
production of fuels through electrolysis, production of heat by heat pumps or by electric 
boilers followed by heat storage in grids and buildings or increasing the flexibility in power-
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to-heat ratio in combined heat and power plants are all alternative methods that may be 
applied in the future to mitigate the effects of large variations in intermittent power 
generation.  

We may also conclude that the estimated contribution from wind power in the “Green Policy” 
scenario in 2050, approximately 15 TWh annually, is below the roughly identified “profitable 
potential” of 10 GW (corresponding to approximately 20-25 TWh; see Section 6.2) given that 
the total income for wind power installations amounts to 65 EUR/MWh. Model results for the 
“Regional Policy” scenario indicate that the wholesale electricity price in the Nordic market 
levels out at around 70 EUR/MWh towards 2050. 

When it comes to wind power, we only consider onshore wind power (both in KASK-SE and 
KASK-NOR). Currently, the costs for offshore wind power are much higher than for onshore 
wind power at the same time as the potential for onshore wind power is estimated to be very 
large in the region. Thus, focus should be placed on utilization of onshore sites, at least for the 
time being.  

In Chapter 6.4 it was suggested that the potential for consumer installations of solar PV in 
KASK-SE could reach up to 2.5 TWh. This may be directly compared to the low PV 
production volumes reported in Figure 6.10. When it comes to PV installations, the European 
modelling lacks somewhat in level of detail. The major market for PV installations is likely to 
be small-scale investments made by electricity end-users such as households, which is not 
reflected in the model tool. Hence, incentives for PV may be somewhat underestimated in the 
model calculations of this study.  

6.5.6 Sensitivity analysis – Wind power 

In this section we finalize the assessment by presenting a sensitivity analysis focusing on 
wind power in the KASK region. We do this by supplementing the model results from the two 
main scenarios, “Green Policy” and “Regional Policy”, with two additional ELIN model 
results, namely based on the “Climate Market” scenario and an alternative version of the 
“Regional Policy” scenario (for a closer description of these scenarios see Appendix A1). The 
results for the assessment across all four model runs and for the production of wind power in 
KASK-SE, are reported in Figure 6.11. It is clear that our two main scenarios span the interval 
of the outcome. Both “Climate Market” and the second version of “Regional Policy increased 
ambition” (with a higher target level of the Swedish-Norwegian electricity certificate scheme) 
place themselves in-between the two main scenarios described above when it comes to wind 
power.  
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Figure 6.11: Electricity production from onshore wind power in KASK-SE across all four ELIN model runs 
performed in the sensitivity analysis. 

It must be repeated that the “Green Policy” scenario indeed is a challenging scenario in terms 
of renewables. This is, however, the core definition of the scenario. And under such 
circumstances investments in wind power are very high in KASK-SE and across other 
European regions. This, in turn, entails a number of challenges presented to the electricity 
system associated with balancing power and transmission-grid capacities as we discussed 
above, in order to maintain balance between demand and supply in each time period. Such 
challenges are not equally pronounced in our “Regional Policy” main scenario and “Climate 
Policy” scenario where the total production of wind power is typically around 5 TWh in 
KASK-SE, in a 2050 perspective. However, also in the “Regional Policy” main scenario there 
exists a supply deficit post 2040 in KASK-SE due to the phase-out of nuclear power. Hence, 
due to the relatively smaller contribution from wind power the question of safeguarding 
security of supply within KASK-SE is still an issue that needs to be resolved, but in a longer 
time perspective than in “Green Policy”. In the “Climate Policy” scenario (see A1), existing 
nuclear power at the Ringhals power plant is partly replaced by new capacity. Thereby, some 
of these issues are dealt with even though new nuclear power schemes within the region may 
challenge other political considerations. In all scenarios the bottom-up analysis of available 
land for on-shore wind power siting with high enough wind conditions give that there is 
enough space, considering the definition of areas of conflict applied in this work.  

6.6 Conclusions 

In summary, the power sector in the region has a relatively modest consumption of fossil 
fuels, mainly natural gas, (see for instance Johnsson J., et al., 2014) with corresponding 
modest CO2 emissions. Therefore, a large scale deployment of renewables in KASK-SE will 
have relatively little effect on local CO2 emissions. On the other hand, an increase in 
renewable generation in the KASK-SE region would probably replace fossil based generation 
in other parts of Europe and thus lead to overall lower emissions. According to the model 
results for Europe’s power sector shown above, the power generation system in KASK-SE 
may evolve in several directions and still comply with zero CO2 emissions by 2050. Large-
scale deployment of renewables in combination with phase-out of nuclear power may turn the 
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region into an import region with regard to electricity unless adequate methods for storage of 
the generated electricity can be developed (see above). Large scale penetration of intermittent 
power is likely to create significant challenges for the electricity grid in the region as well as 
with regard to balancing of the system. Finally, the work reveals that there is a substantial 
potential for onshore wind power in the KASK-SE region. Bottom-up studies on available 
land area have indicated that some 10 GW onshore wind power may be installed at 
competitive conditions having a generation potential of between 20 and 25 TWh.      

7 Transport 
This chapter reports the main results from the work on the transport sector, for more details on 
this work see Sköldberg et al., (2014).  

Section 7.1 applies the findings from an assessment of three reports of the national transport 
system to derive a reasonable scenario to achieve CO2 emission targets for the transport 
sector in the Swedish KASK region. This part of the study refers to domestic transport 
including working machines used in the transport sector. The three reports that have been 
assessed are; 

• SOU (2013:84). Fossilfrihet på väg. Betänkande av Utredningen om fossilfri fordonstrafik. Statens 
offentliga utredningar, Stockholm 2013.  

• Trafikverket (2012). The Swedish Transport Administration. Delrapport transporter: Underlag till 
färdplan 2050. Trafikverket, publikation 2012:224, november 2012.  

• Elforsk (2012). Roadmap för ett fossilbränsleoberoende transportsystem år 2030. Rapport för Svensk 
Energi och Elforsk, Elforsk rapport 12:68, 2012-12-07 

Section 7.2 applies a transport model on the transport sector in Göteborg in order to analyze in 
more detail how the Swedish target of zero GHG emissions in 2050 can be met locally within 
the transport sector. Section 7.2 deals mainly with road transport.  

It is emphasized that the objective of the scenarios developed in Sections 7.1 and 7.2 has been 
to analyze a possible pathway to 2030 assuming that society makes a concerted effort to 
achieve significant emission reductions. Thus the objective has not been to show the most 
likely development. Also, to achieve the considerable changes in the transport system that will 
be required to meet zero GHG emissions in 2050 (and significant reductions of up to 80% to 
2030), will require great will and determination and, thus, require significant political efforts.  

A conclusion from the assessment of the three key reports on the national development of the 
transport sector is that it is possible to reduce fossil fuel consumption in the national road 
transport system by 80% up to 2030 (relative to 2010) as well as to reach zero overall GHG 
emissions in 2050, which basically implies a complete phase-out of fossil fuels within the 
transport sector.    

7.1 Transport sector in KASK Sweden 

Based on the results from the Elforsk (2012) report, we developed relevant pathways to reach 
the same targets also for the regional transport system in KASK Sweden. This is done by 
simply scaling down the results for Sweden in Elforsk (2012) to the KASK-SE region based 
on population statistics which is considered as a feasible methodology for several reasons: 

o The Swedish KASK region may broadly be representative for Sweden in miniature with regard to 
terrain, road characteristics and in terms of population density. This assumption is supported by 
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statistics on for instance transport work, distribution of different types of roads as well as the length of 
roads. 

o There are also similarities between the national average and KASK Sweden with regard to car 
ownership per capita and fuel consumption. 

o There is a relatively large dependence on cars in Göteborg (which is a large part of KASK-SE) in terms 
of commuting to/from the Göteborg area. In this respect, Göteborg is distinctly different from other 
metropolitan regions in Sweden.  

What separates the KASK region from the national average and at the same time is typically 
for the metropolitan regions of Sweden, is the larger part of cars running on alternative fuels 
and cars that use other than conventional fuels like petrol and diesel. Nevertheless and based 
on the above, the conclusion that the transport sector in the Swedish KASK region can be 
considered as representing a national average is considered as reasonable for the analysis 
performed in this work. Thus the results from the Roadmap given in Elforsk (2012), see 
Sköldberg et al., 2014, have been applied together with population statistics to derive a 
scenario for KASK-SE reaching 80% reduction in fossil fuel consumption in the transport 
sector in 2030. Application of population statistics simply means that all national quantities 
have been scaled down by the factor 0.199 (i.e. the population in KASK-SE divided by 
Sweden’s population; 1 921 924/9 644 864). For the period 2030 to 2050 which is not 
covered by Elforsk (2012), we have a qualitative discussion on how to phase out the last 20% 
of fossil fuels in the transport sector, see Sköldberg et al., (2014). 

The Roadmap (Elforsk 2012) applied in the work reported below starts in the Year 2007. 
Since energy consumption in the transport sector and corresponding emissions have been 
relatively constant in the region since 200510, this has nevertheless been considered as a 
relevant start year. 

7.1.1 Results for KASK Sweden 

Through application of the scaling described above we have derived a scenario for how the 
KASK-SE region can reach zero CO2 emissions by 2050.    

With regard to biofuels we conclude that it will be difficult to raise the contribution further 
beyond what has been applied in 2030 and therefore the proportion of biofuels have been kept 
constant after 2030. We also assume that transport work in the base scenario (see Sköldberg et 
al., 2014) will continue to increase after 2030 but that this increase will be neutralized by 
reduced transport demand and shift in mode of transportation (moving from for instance 
private to public transport). Due to further increases in vehicle efficiency we assume that 
demand will decline a further 20% relative to 2030 with the remaining part of fossil fuels 
being phased out through increased use of electrical cars. Between 2030 and 2050 this implies 
roughly a doubling of electricity consumption in the transport sector. Figure 7.1 shows the 
result with regard to energy consumption for the transport sector in KASK-SE applying the 
roadmap up to 2030 (Elforsk 2012, Sköldberg et al., 2014), the downscaling based on 
population statistics and the discussions above for the period 2030 to 2050. Figure 7.1 should 
be interpreted in the following way; demand in the base scenario is given by the height of 
each bar while actual demand is given by fossil fuels plus renewables plus electricity meaning 
that all other actions listed in the figure lead to reduced demand.  

                                                 
10 Between 2005 and 2012 energy consumption has fluctuated between 17.8 TWh in 2012 to 20.0 TWh in 2008 
(Statistics Sweden) while corresponding CO2 emissions have fluctuated between 4.3 Mt in 2012 to 4.8 Mt in 
2007 (Länsstyrelserna 2014).  
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Figure 7.1: Estimated energy consumption up to 2050 in the base scenario in the transport sector in 
KASK-SE. Demand in the base scenario is given by the height of each bar while actual demand is given 
by the colored part of each bar (fossil fuels plus renewables plus electricity). Thus the grey parts in each 
bar refer to actions to reduce demand and CO2 emissions. 

As can also be seen from Figure 7.1 demand in the base scenario in KASK-SE would have 
increased from approximately 20 TWh in 2007 to 29 TWh in 2050 if no measures were 
taken11. Yet, a combination of increased vehicle efficiency, fuel switch (also leading to 
increased efficiency), modal shift and concerted actions to reduce demand lead to an 
estimated energy demand for transportation in 2050 of just above 10 TWh. It can also be seen 
that by 2050 fossil fuels are completely phased out.  

Figure 7.2 shows corresponding CO2 emissions, here shown as the part of the bar that has 
been colored blue. Also shown is the share of emission reductions by the different measures 
that have been applied to reduce emissions. Thus, it is only the part of the bar corresponding 
to fossil fuels (strong blue) that refer to CO2 emissions since electricity and renewables do not 
lead to emissions from end users (cars). 

                                                 
11 According to Figure 7.1 demand is estimated to 20.3 TWh in 2007 declining to 18.0 TWh in 2015 (including 
the measures to reduce demand). This may be compared to actual demand of 19.2 TWh in 2007 and 17.8 TWh in 
2012 as given by Statistics Sweden (2014a). Since 2009, actual demand in the region has fluctuated between 18 
and 19 TWh. Thus, there appears to be a relatively good fit between the real values given by Statistics Sweden 
and the values estimated in this report.  
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Figure 7.2: CO2 emissions from the transport sector in KASK-SE corresponding to actual demand and 
fuel mix shown in Figure 7.1. Estimated CO2 emissions are derived from use of fossil fuels only (strong 
blue) while the rest of the bar (grey parts) refers to CO2 emission reductions by measure. The electricity 
is assumed to be 100% de-carbonized.   

As can be seen from Figure 7.2, CO2 emissions are reduced from ca 5 Mt in 2007 to 4.3 Mt in 
201512 and to less than 1 Mt in 2030. Fuel switch and increased efficiency account for nearly 
three quarters of the total emission reductions shown in Figure 7.2.  

It can also be noted that estimated emissions in KASK-SE in 2007 as obtained in this work is 
5.0 Mt which is similar to the estimated emissions of 4.8 Mt given by Länsstyrelserna (2014). 
Furthermore, estimated emissions in 2015 are 4.3 Mt according to Figure 7.2 which equals 
2012 emissions as given by Länsstyrelserna (2014). Thus, it can be concluded that the 
roadmap (Elforsk 2012) which forms the basis for the work presented in this report appears to 
fit well with the development between 2007 and up to at least 2012.  

From the above analysis it can be concluded that it is possible to significantly reduce fossil 
fuel consumption in the transport sector in KASK-SE by 2030 and to eliminate its use 
completely by 2050. As a consequence, CO2 emissions are reduced to less than 1 Mt in 2030 
and to zero in 2050. Nearly three quarters of the emission reductions are derived from fuel 
shifting and increased vehicle efficiency and in 2050 biomass covers 62% of the transport 
sector’s fuel demand with the remaining 38% being covered by electricity. The significant 
volumes of biomass that this will require is analyzed and discussed in Sections 8 and 9. 

                                                 
12 As a comparison; actual emissions from the transport sector including working machines amounted to 4.3 Mt 
in 2012 (Länsstyrelserna 2014).  
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7.2 Modeling of the transport sector in Göteborg  

This section applies a transport model to determine possible pathways towards zero GHG 
emissions in the transport sector in Göteborg. The analysis covers the time period from 
2012/2013 to 2030. As opposed to the results for KASK-SE obtained in Section 7.1, the 
results for Göteborg are not based on a down scaling of national results proportionally against 
population. Instead, a bottom-up approach has been applied starting with the traffic work by 
transport type which has then been converted to energy consumption based on specific levels 
of energy consumption for each mode of transport. Base data have been discussed with 
representatives from the traffic office of the city of Göteborg, but still some ambiguity with 
regard to the accuracy of these data remains which are being discussed below. 

Section 7.2.1 describes the methodology applied in this work based on the model presented in 
Sköldberg et al., 2014. Section 7.2.2 gives the model results which then are discussed in 
Section 7.2.3 along with relevant economic incentives and potential barriers and problems 
linked to these. 

7.2.1 Transport model and Methodology 

The close-up modeling of the City of Göteborg comprises all road transport with private cars, 
light and heavy duty trucks and busses within the geographical boundary of the municipality 
of Göteborg. Although modeling of railway transport is not included, railway transport (and 
related energy use and emissions) is included as a measure to reduce road transport in the 
“modal shift package” described below. Modeling of transport by mopeds, motorcycles and 
working machines as well as by ship and air has not been covered in this work.    

Due to insufficient regional statistics for road transport the work starts with determining the 
traffic work (vehicle kilometers) on all roads within the geographical boundary of Göteborg 
based on measured transport flows and driving distances. 

According to the measurements that have been done in connection with the so-called “West 
Sweden Traffic package” (spring 2013), the total traffic work per average weekday within the 
municipality amounts to around 7.3 million vehicle kilometer (WSP, 2013) which has been 
assumed to represent a relevant value for the traffic work in Göteborg. To convert the 
estimate for vehicle kilometer per average weekday to an annual average we have used a 
conversion factor (0.88) estimated by the traffic office of the city of Göteborg. Applying the 
conversion factor on vehicle kilometer per average weekday yields the estimated total traffic 
work per day, namely 6.4 Mvkm (Million vehicle kilometer) which in turn gives an estimate 
of the corresponding annual traffic work in the city of 2,300 Mvkm.  

To distribute the traffic work between vehicle types we have used both sources that indicate 
how the traffic work is distributed among vehicle types within the city (City of Göteborg, 
2002) and corresponding information on a national level (Trafikanalys 2013). Comparing the 
distribution in Göteborg with the corresponding national distribution indicates a similar 
distribution between vehicle types, at least with regard to the ratio between light and heavy 
duty vehicles. The estimated distribution of traffic work between vehicle types is given in 
Table 7.1. The distribution in Table 7.1 has been discussed with Björklind and Tjernkvist 
(2014) which stated that the estimate appears reasonable. 
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Table 7.1: Estimated annual traffic work per vehicle type in Göteborg and Sweden, Mvkm. 

  Göteborg Göteborg Sweden Göteborg share 

  Mvkm Share, % Mvkm in national, % 
Private vehicles 2 000 88% 62 900 3.3 % 

Light duty trucks 140 6% 8 100 1.7 % 

Busses 35 1% 950 3.6 % 

Heavy duty trucks 120 5% 4 600 2.6 % 

Total 2 300   76 000 3.1 % 

As can be seen in Table 7.1, total estimated traffic work within the municipality of Göteborg 
accounts for some 3% of the national total. Population wise, Göteborg accounts for ca 5% of 
Sweden’s national population. It is however, reasonable to assume that traffic work per capita 
is smaller in densely populated municipalities.  

The estimated traffic work in Table 7.1 has thereafter been applied to derive the 
corresponding fuel consumption in Göteborg by relating Göteborgs share of the total transport 
work in Sweden to total fuel consumption by road traffic in Sweden (distributed by vehicle 
type and fuel type). Fuel consumption by Swedish road transport is given by the above 
mentioned model (Sköldberg et al., 2014) for the year 2007 which has been adjusted to 
current levels based on national statistics for the years 2007 to 2012 (both for the development 
as a whole and for the changes in fuel mix) given by the Swedish Energy Agency (2014d). As 
regards the use of biogas in private vehicles we have assumed twice the national growth in 
Göteborg leading to a slightly lower consumption of petrol. The reason for this assumption is 
a higher share of biogas cars in Göteborg than nationally, mainly due to availability of a 
distribution system (natural gas) which is not available in most parts of Sweden. This also 
facilitates higher future growth. 

Thus, fuel consumption for the four vehicle types considered in this study, which will be fed 
as input to the model, have been adjusted to include the gains in energy efficiency between 
2007 and 201213. The derived distribution of fuel consumption by fuel is given in Figure 7.3.  

                                                 
13 In total the transport sector in Sweden has reduced its energy consumption by almost 13% between 2007 and 
2012, mainly due to increased energy efficiency in private cars (Trafikverket 2014). 



75 

 

Figure 7.3: Estimated current (2012) annual fuel consumption in GWh by fuel and by vehicle type in the 
City of Göteborg. 

As mentioned above, the estimated fuel consumption shown in Figure 7.3 is used as input for 
the transport scenario model as a starting point for the potential GHG emission reduction 
options that can be derived for the future transport sector. GHG emission reduction options in 
the transport sector have been categorized into four groups; 

1. Reduced demand for transport 
2. Modal shift (e.g. shift from car to bus or bicycle) 
3. Increased vehicle efficiency 
4. Fuel shift and corresponding efficiency increase in final use (e.g. shift from gasoline to electricity, 

resulting in a reduction of more than 50 % of the final energy use) 

For each group of emission reduction options outlined above several assumptions have been 
made with regard to energy consumption up to 2030. For group 1, reduced demand for 
transport, the following assumptions have been made; 

• City planning for less car dependency: -5% for private cars 
• Car pool: -3% for private cars 
• Travel-free meetings, distance work, e-trade and more: -2% for private cars 
• Congestion tax, parking policy, parking fees: -5% for private cars 
• Route planning for private cars: -1% 
• Logistics for trucks (route planning, less idle running, longer vehicles and more: -15%   

The next group of emission reduction options refer to group 2, modal shift, where the 
following assumptions were made; 

• More attractive public transport: -6% for private cars and an increase in bus and rail traffic responsible 
for this kind of travel. 

• From truck to train: -10% for trucks and an increase in rail traffic responsible for this kind of travel. 
• Private cars to cycling and walking: -1% for private cars 
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The third group for emission reduction options is increased vehicle efficiency where the 
following assumptions have been made;   

• Technical vehicle efficiency: -20% to 31% depending on transport type, e.g. -31% for private cars. 
• Eco-driving: -5% to -10% depending on transport type, e.g. -10% for private cars 
• Intelligent transport systems (ITS): -5% for road vehicles  

Finally, for group 4, efficiency increase related to fuel switch, we have made the following 
assumptions:  

• Use of electricity in road transport is assumed to increase to a total of 110 GWh of which 60 GWh in 
private cars corresponding to 20% of driven kilometers and ca 25,000 electric cars (assuming normal 
driving distances). For heavy duty trucks it has been assumed that use of electricity increases to 50 
GWh in 2030 (both plug-in hybrids – PHEV, electric vehicles – EV and electrified roads). At the end of 
2013, there were a total of 347 EVs and PHEVs registered in Göteborg. 

The use of electricity in vehicles is assumed to yield no emissions from the vehicle. Instead 
emissions relate to the properties of the electricity generation. Here we use a long term 
marginal approach where we, through model calculations, identify the effects on the 
electricity generation mix due to additional use of electricity. GHG emissions linked to the 
increased electricity consumption have been calculated by applying an emission factor of 0.8 
ton CO2e/MWh electricity in 2012 declining to 0.4 ton CO2e/MWh in 2030 (this is based on 
model calculations by Profu and that the emission price for CO2 is assumed to increase from 
less than 10 € today to more than 30 € in 2030). The reason for the relatively high emission 
factor is the fact that the north European power sector is fully integrated and that fossil fuel 
power plants will be dispatched on the margin, i.e. that any additional power requirement will 
be covered through increased fossil based production. Over time it has been assumed that it 
will be less coal based generation and more gas, biomass and wind based generation (or coal-
bio) on the long-term margin leading to a lower emission factor in 2030.  

Also consumption of biofuels is assumed to increase significantly to 670 GWh bio-based fuels 
in 2030 of which ca 280 GWh biogas, the latter based on both forest residues and crops. The 
rest, 390 GWh, refers to liquid biofuels such as ethanol, FAME, HVO (synthetic diesel) and 
second generation biofuel from forestry (DME, FT-diesel, and methanol). Current 
consumption of biofuels in Göteborg is estimated to around 135 GWh.    

For each of the four vehicle types included in the study we have used a national base scenario 
(here denominated “extrapolation scenario”) for the total increase in energy consumption for 
the period 2007 to 2030 assuming constant vehicle efficiency and no fuel changes (in the 
same way as in Section 7.1. for the KASK region). Since the start year in this study is 2012 
implying a shorter time period (2012 to 2030 instead of 2007 to 2030) and thus also a less 
increase in energy consumption over the time period studied, the increase in energy 
consumption from the start year 2012 to 2030 has been scaled down linearly. We have then 
assumed that the energy use in the transport sector in Göteborg evolves proportional to the 
national transport sector. In this way an extrapolation scenario has been established for energy 
consumption for transport work in Göteborg in 2030 to which the four CO2 emission 
reduction groups outlined above have been applied. 

For the first three groups it has been assumed that energy consumption in Göteborg follows 
the national development on a percentage basis, adjusted of course for the later start year 
(2012 instead of 2007, see above). The fourth group refers to fuel switch, i.e. switch from 
fossil fuels to electricity or biomass based fuels. The share of the national potential for 
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biofuels based on domestic biomass which can be assigned to Göteborg has been assumed to 
be proportionally the same as the share of the national energy consumption (within the 
transport sector). This has been done after having applied the first three emission reduction 
tools. In the same way, it has been assumed the same proportionally use of electricity in 
Göteborg. 

GHG emission factors expressed as CO2 equivalents (CO2e) and with a well-to-wheel 
perspective have then been linked to the derived energy consumption. A well-to-wheel 
perspective is not only based on the emissions from the fuel but also on emissions from 
production of the raw material from which the fuel originates. The model results yield the 
contribution from the various emission reduction tools with regard to reduced consumption of 
fossil fuels and the volume of remaining emissions.   

7.2.2 Results for Göteborg 

Through application of the methodology described in Section 7.2.1, a scenario has been 
developed describing how the road transport’s energy consumption in Göteborg could evolve 
up to 2030. The resulting scenario, here denominated “Roadmap 2030”, describes a very 
ambitious transition towards a significant reduction of fossil fuels and is shown in Figure 7.4. 
As in Figure 7.1 (Section 7.1) the total height of the bar denominated “Roadmap 2030“ shows 
total energy consumption corresponding to the base scenario (the bar denominated 
“Extrapolation scenario”) but where real demand corresponds to fossil fuels plus renewables 
plus electricity, i.e. all the other “actions” listed in the figure refers to measures that reduces 
demand. 

As can be seen from Figure 7.4 total energy consumption has been significantly reduced, from 
above 2 TWh in 2012 to ca 1.1 TWh in 2030 representing a 45% decline. Use of fossil fuels 
decline from 1.9 TWh in 2012 to 0.35 TWh in 2030, i.e. down by more than 80%. In 2030, 
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Figure 7.4: Total fuel consumption for road transport in Göteborg in 2012 including the extrapolation 
(base) scenario and the scenario in which fossil fuel consumption has been reduced (Roadmap 2030). 
Thus, real demand in the bar Roadmap 2030 corresponds to fossil fuels plus renewables plus electricity 
while all other measures refer to measures that reduce demand. 
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Figure 7.5 GHG emissions in CO2e in 2012, in the extrapolation scenario and in the Roadmap 2030 
scenario – well-to-wheel perspective. Note that the white part of the bar refers to reduced emissions 
through application of the emission reduction groups outlined in Section 7.2.1 and applied to the 
extrapolation scenario (the bar in the middle). 

fossil fuels only account for 30% of the total fuel consumption. Figure 7.5 shows how GHG 
emissions evolve in the Roadmap 2030 scenario, i.e. emissions correspond to the fuel 
consumption given in Figure 7.4. Hence the bar denominated “Roadmap 2030” shows real 
emissions given by the use of fossil fuels, renewables (in a well-to-wheel perspective) and 
electricity as well as reduced emissions due to the four emission reduction groups described 
above.  

According to Figure 7.5 GHG emissions are reduced by some 65% between 2012 and 2030 
(in a well-to-wheel perspective). If instead only direct CO2 emissions from use of fossil fuels 
by the end-user are considered, i.e. a wheel perspective instead of a well-to-wheel perspective, 
emissions are reduced from 500 kton in 2012 to 90 kton in 2030 corresponding to a reduction 
of more than 80%. 

7.2.3 Discussion of results for the transport sector in Göteborg 

In this section we discuss the results obtained in Section 7.2.2 and compare these results to 
results reported in other publications. We also compare the results to the official emission 
targets for the transport sector announced by Göteborg (see Section 3.1).        

How does the Roadmap scenario fit with current emission statistics and the officially 
announced target for Göteborg?  

Emissions on municipality level are released by the counties administrative boards (RUS 
2014). According to Länsstyrelserna (2014), direct CO2 emissions (not well-to-wheel) for 
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vehicle types relevant for Göteborg’s road transport amounted to ca 566 ktons in 2012 which 
may be compared to 560 ktons estimated in this study. Although the estimate in this study 
refers to well-to-wheel GHG emissions (typically around 10% higher), the difference between 
the two estimates is considered acceptable as basis for the reference year of this study (Year 
2012). On the other hand, comparing the 2012 emissions obtained within this study with the 
emissions for the transport sector given in the annexes to the City of Göteborg climate 
strategic program (City of Göteborg 2014b), the difference is considerable. According to City 
of Göteborg (2014b), Göteborg’s CO2 emissions from the transport sector amounted to just 
above 700 ktons in 2012, i.e. some 140 ktons above the estimate in this study. The large 
difference has been discussed with representatives from the traffic office’s but no explanation 
was provided to the large difference form this work such as what kind of emissions are 
included in the estimate in City of Göteborg (2014b). At the same time it can be concluded 
that the results obtained in this study fit well with the climate target announced by the 
strategic program, namely an 80% reduction in CO2 emissions in 2030 relative to emissions 
in 2010 (see Section 3.1). It can also be concluded that some uncertainty remains related to 
the quantification of the emissions from the transportation system in Göteborg. But foremost, 
this study confirms the importance of local support and participation in order to gain access to 
accurate data and to provide informed judgments of different action potentials. Nevertheless, 
the roadmap scenario outlined above should provide an approximate illustration to how 
various actions may contribute to reach the climate targets in Göteborg since it proportionally 
has the same decline as the climate strategy, i.e. 80% (although relative 2010 instead of 2012 
used in this study).       

As already commented above, different actors have limited capacity to act regarding 
development of the transport sector and there are many actors that will be required to move in 
the same direction to succeed with a complete transformation of the transport sector. 
Decisions will have to be taken on EU, national and local levels with their joint function to 
structure and decide incentives and to provide a reasonable framework. The transformation 
itself will mainly have to be accomplished through real actions taken by the public and 
companies. Below, it is being discussed what will be required to achieve the transformation. 

7.3 Discussion of overall results for the transport sector 

It seems obvious that Sweden cannot transform its transport sector completely independent 
from what happens in other places of the world. A clear example of this is the technical 
development of vehicles. It is unlikely that car manufacturers would develop vehicle 
technologies for Swedish markets only since the Swedish market is too small. Rather it should 
be assumed that vehicles will be developed at least for a European market which means that 
the vehicles delivered to Swedish markets will be developed according to requirements and 
rules on EU-level. The EU energy roadmap 2050 gives an idea of the ambitions within the EU 
with regard to emission levels from the transport sector. Figures 7.6a and 7.6b shows the 
development of CO2 emissions (7.6a) and final energy demand (7.6b) in the transport sector 
respectively for a number of scenarios developed in EU’s energy roadmap 2050 (EC 2011).  
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a. b. 

Figure 7.6. CO2 emissions (a) and final energy demand (b) in EU’s transport sector according to a number 
of scenarios in EU’s energy roadmap 2050 (EC 2011).   

In the most ambitious scenario from EU’s energy roadmap 2050, energy consumption in the 
transport sector declines by ca 10% between 2010 and 2030 while CO2 emissions decline by 
20% implying a considerably less ambitious target than the emission reduction targets 
announced in Sweden, both the national targets as well as other regional and local targets (see 
Section 3.1). Implementation of very far-reaching Swedish ambitions can be greatly hampered 
if the rest of Europe has far less ambitious goals. Vehicle development is carried out, as 
mentioned earlier, for a global or at least a European market and if large international markets 
cannot push for significantly more efficient vehicles it seems unlikely that such vehicles will 
become available on the Swedish market. Thus, high ambitions at least on an EU level with 
regard to CO2 emissions from the transport sector seems a prerequisite for achieving similar 
ambitions in Göteborg and Sweden to meet their targets. 

According to the Fossil Free Vehicle Fleet (FFF) inquiry (SOU 2014), economic incentives 
are likely to become one of the most important factors affecting to what extent different 
actions (CO2 emission reduction options) may be realized. Other factors that are difficult to 
judge but may have a large impact on the extent (rate) of a transition is people’s need and 
interest in owning a car, urban and residential planning and development and people’s choice 
of mode for transport. The pace of the transition will also depend on the lead times not only 
for renewal of the vehicle park, expansion of production facilities, distribution and market 
penetration of renewable fuels but also on the time it takes before new innovative thinking 
and/or shift in preferences have an impact on city planning. 

Both Elforsk (2012) and the FFF inquiry (SOU 2013, 2014) have proposed a number of 
economic incentives that potentially may drive the transformation of the Swedish vehicle park 
towards less dependence on fossil fuels. A selection of the most important incentives that 
were proposed in Elforsk (2012) are listed and discussed in Appendix A2 (see also Sköldberg 
et al., 2014). It should however be emphasized that in addition to the barriers and problems 
listed in Appendix (A2), the single largest barrier will probably be the citizens willingness to 
accept the drastic changes that are likely to be required in their lifestyle. Yet, the 
transportation preferences may change between generations. For example, in urban regions it 
has become more common not to take a driver license for young people which may be due to 
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several reasons, such as the high cost of taking a driver license, in combination with high 
unemployment and/or that having a driver license is not to the same extent associated with 
social status, that young people study longer than previous generations and hence also are 
older when they have firm employment and stable economy, or that public transportation has 
improved, see for instance (SR 2014, GP 2014, Trafikanalys 2012). 

8 Transforming the energy system in Västra Götaland and 
Halland – linking short term actions to long term goals 
This section discusses relevant pathways to reach national, regional and local goals for 
reduced energy consumption, increased penetration of renewable energy and reduction of 
production based CO2 emissions within the KASK-SE region. For a detailed description of 
the goals see Section 3. Since achievement of the reduced energy consumption and increased 
use of renewable energy will contribute to reduction in CO2 emissions, i.e. to reach zero 
GHG emissions in 2050, it seems natural to start with pathways for lower energy consumption 
and large-scale penetration of renewables followed by pathways for emission reductions. This 
section builds upon the work described in Sections 4 to 7 and the ambition of this section is to 
link current status with the political visions as visualized in Figure 8.1.  

Pathways for reduced energy consumption are described up to 2030 since there are no goals 
for reduced energy consumption beyond 2030, either on EU, national or regional level. 
Pathways for renewable energy and CO2 emissions are described up to 2050. 
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Figure 8.1: Basic description of a pathway and how it interacts with plans and strategies for different time 
horizons, i.e. in the short-term (2020), medium term (2030) and long term (2050). 
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8.1. Energy efficiency 

As mentioned in Section 3.3 both VGR and Halland follow the national target of reducing 
energy intensity by 20% between 2008 and 2020 which in turn is the Swedish interpretation 
of the EU indicative target of 20% less consumption relative to a baseline projection. 
Additionally, in October 2014, the EU endorsed an indicative target of 27% savings in energy 
consumption up to 2030 (again relative to a baseline projection) and it is therefore assumed 
here that the two counties in KASK-SE will follow a national target up to 2030. We assume 
furthermore that the national target will follow the corresponding EU target but, as for the 
2020 target, relate it to energy intensity, i.e. gross consumption divided by Gross Regional 
Product (GRP) expressed in 2008 prices. 

Between 2008 and 2011 apparent14 energy intensity in KASK-SE declined by 13.5%, from 
128 to 111 MWh/kr. However, while it has gone down by 16.5% over the period in VGR it 
has increased by 5.4% in Halland. Apparent energy intensity has been calculated by dividing 
Final Energy Consumption (FEC) as described by Statistics Sweden15 with the GRP in 
running prices but where running prices have been adjusted based on the development of the 
Consumer Price Index (CPI) relative to CPI in 2008, i.e. the CPI has been indexed with 2008 
as a base year.  

The Swedish Institute for Growth Analysis (2009) has analysed development pathways for the 
GRP between 2005 and 2030 in the largest cities in KASK-SE in a base and an alternative 
scenario. The suggested development for five large cities in the KASK-SE region is shown in 
Table 8.1.  

Table 8.1: Projected average annual growth (% per year) in GRP between 2005-2030. 

  Base scenario Alternative scenario 
   Göteborg 2.7% 2.9% 
   Halmstad 1.9% 2.1% 
   Borås 2.0% 2.1% 
   Trollhättan 1.9% 2.1% 
   Skövde 1.7% 1.8% 
   Source: The Swedish Institute for Growth Analysis 2009  

Assuming that the GRP in KASK-SE will grow by between 2 and 3% annually between 2012 
and 2030 will allow the absolute value of FEC to increase by between 21% and 45% over the 
same period and still achieve the target of a 27% decline in 2030 relative to energy intensity 
in 2008. If we instead assume that GRP will increase by only 1% in average between 2012 
and 2030, FEC will have to be reduced by 2% between 2008 and 2030 in order to reach the 
27% reduction target in energy intensity. Figure 8.2 shows this development of FEC assuming 
an annual growth in GRP between 1 to 3% between 2012 and 2030. 

                                                 
14 The term “apparent energy intensity” has been used since FEC has not been divided by GRP in 2008 prices 
but instead by GRP in running prices adjusted by the CPI which has been indexed to the year 2008.  

15 According to Statistics Sweden Final Energy Consumption (FEC) is gross supply minus fuel input for 
production of electricity and heat plus produced electricity and heat (i.e. after conversion) minus energy that has 
been used by the energy sector itself minus transmission losses.     
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Figure 8.2. Possible growth in Final Energy Consumption between 2008 and 2030 assuming 1% to 3% 
annual growth in GRP between 2012 and 2030 and still reaching the energy intensity target in KASK-SE of 
20% reduction by 2020 and 27% reduction by 2030 (versus 2008). 

However, in order to relate to the potential energy savings for buildings, transport and 
industry derived in the previous sections in this report we also analysed the combined effect 
of these energy savings on the absolute value of FEC. Between 2008 and 2012, FEC in 
KASK-SE has remained approximately the same (78.5 TWh in 2008 and 77.0 TWh in 2012) 
but the variation is considerable with FEC ranging from a low of 72 TWh in 2009 to a high of 
80 TWh in 2010 over the 5-year period. The variations should be due to both the economic 
conditions and average yearly climate (e.g. cold winters during 2009 and 2010) influencing 
industrial activity and heat demand. 

Figure 8.3 shows the potential energy savings for the transport sector up to 2020 and 2030 as 
derived in Section 7.1 and the calculated techno-economic potential in energy savings in 
buildings if all ten ECMs are being carried out by 2030 (i.e. ECM Package 3, see Section 5.2). 
Also shown is the estimated energy savings (fuel input assuming 80% boiler efficiency) 
derived in Section 4 for the two key industry plants. The latter two plants are included only 
for comparison. 

Finally, Figure 8.3 shows 1) 2008 consumption held constant (black dashed line) and 2) total 
FEC 2008-12 and a line illustrating a linear decline to reach 20% reduction by 2020 and 27% 
by 2030 (red dashed line), in both cases relative to 2008. It should be noted that the y-axis 
starts on 40 TWh. FEC transport has been assumed to decline already from 2008, FEC 
buildings from 2010 and FEC key industry plants in 2020 and 2030, the latter as given in 
Table 4.1. The reason for this is that statistics do not provide FEC between 2008 and 2012 for 
each individual sector in the form that they have been defined in this report.      
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Figure 8.3. Energy savings potential in FEC derived in previous sections for the transport and building 
sectors and as estimated for the tow key industry in the region. Also shown is 2008 FEC held constant 
(dashed black line) and real FEC 2008-12 as well as an illustration of a 20% decline in FEC by 2020 and a 
27% decline by 2030 (dashed red line), in both cases relative to Year 2008.    

As can be seen from Figure 8.3, all the measures derived in previous sections for transport 
and the building stock as well as for the two investigated industry plants will reduce FEC by 
9% in 2020 and by 20% in 2030. However, that is everything else being constant, i.e. no other 
factors have been considered, such as for instance population growth and structural changes in 
industry and infrastructure. For instance, as mentioned in Section 2, applying 2010 FEC per 
capita on the projected population increase in VGR and Halland will raise the absolute value 
of FEC by 5.3 TWh in VGR by 2025 and by almost 1.6 TWh in Halland by 2030, i.e. a 
combined increase of almost 9% relative to Year 2010. Also according to Statistics Sweden 
industry’s final energy consumption has increased by almost 50% between 2000 and 2011, 
from 21.2 TWh to 31.7 TWh while at the same time it has decreased by 9% between 2008 and 
2011 due to changes in economic conditions on the world market. As for the continued 
development there are both plans at several individual facilities for expansion of production 
capacity as well as there has been recent shut downs, both factors that will affect energy 
consumption. For instance, Södra Cell’s paper mill in Värö (Halland county) will raise current 
pulp production capacity by 65%, from 425 ktons to 700 ktons between 2014 and 2016. On-
site construction has already started and Södra Cell has, among others, already ordered a 64 
MWe turbine from Doosan Skoda. At the same time, Stora Enso shut down half its capacity 
(420 kt) at its paper mill in Hylte in Halland in 2013. Pilkington Glass, the largest fossil based 
CO2 emission source in Halland (emitted 146 ktons CO2 in 2011), shut down their 
production plant in Halmstad in 2013 while Cementa Skövde may close down after March 
2017 since the environmental district court in Vänersborg in May 2014 rejected continued 
operation at the limestone quarry associated with the cement plant at the site. Thus, with 
regard to industries energy consumption in the region, it appears difficult to foresee an 
aggregated projection on future energy consumption.        
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In the transport sector baseline demand scenarios indicate that apparent demand in the KASK-
SE region will increase from 20.5 TWh in 2007 to 26.2 TWh in 2030 but that efficiency 
increases, reduced demand and modal shift will reduce apparent demand by more than half to 
11.8 TWh (see Section 7.1). As stated above however, vehicles delivered to Swedish markets 
are likely to be developed according to requirements and rules on EU-level and as shown in 
Section 7.3 even in the most ambitious scenario from EU’s energy roadmap 2050, energy 
consumption in the transport sector is expected to only decline by ca 10% between 2010 and 
2030 (Figure 7.6). Also, as mentioned in Section 7, economic incentives will probably be very 
important for the development in the transport sector while the single largest barrier is likely 
to be the willingness by the general public to accept the significant life-style changes which 
probably will be required to fulfill the long-term EU targets on transportation sector. 

As shown in Section 5.2 the techno-economic and technical energy savings potential in the 
buildings in the KASK-SE region was calculated to 5.5 TWh and 15.5 TWh, respectively. 
These potentials are under the assumption that the energy conservation measures included in 
the analysis in Section 5.2 are carried out on all the buildings included in the analysis (see 
Table 5.4, page 41) which may prove to be difficult with buildings having for instance a 
cultural and/or historical value.     

There are significant activities in the region with regard to improving energy efficiency in the 
building stock, both on the regional and local level. Region Västra Götaland (RVG) supports 
several programs aiming to increase energy efficiency in buildings and is also owner of one of 
the largest property managers in the region, Västfastigheter, with 1.7 million m2 of own 
premises and 625,000 m2 of rented premises which they only manage, mostly non-residential 
buildings such as hospitals, schools and museums. Västfastigheter is aiming to reduce energy 
consumption in its properties by 50% by 2030 compared to 1995, i.e. from 274 kWh/m2 to 
137 kWh/m2 and in 2013, consumption had been reduced to 191 kWh/m2, i.e. by 30% 
(Västfastigheter 2014). Västra Götaland County is also the county with the second largest 
stock of so-called low-energy buildings16 in Sweden, comprising some 434,000 m2 at end of 
Year 2014 (LÅGAN 2014).   

Eleven17 out of the fifty-five municipalities in the region have their housing company 
participating in the so-called “Skåneinitiativet” aiming to reduce energy consumption in their 
premises (mostly residential) with 20% by 2016 compared to Year 2007 (SABO - the 
Swedish Association of Public Housing Companies – 2014). As mentioned above, Göteborg 
is by far the largest municipality in the region having a population of ca 550,000. The City of 
Göteborg is a large property owner in the municipality, owning around 30% of all residential 
buildings18 or 5.9 million m2 as well as 3.2 million m2 of non-residential buildings. In 
addition, the city rents some 500,000 m2 of premises. According to Göteborg’s strategic 
climate program (City of Göteborg 2014a, b) the city has several goals regarding energy 

                                                 
16 For new buildings to qualify it is required that energy consumption is 50% lower than required by the building 
regulations (BBR 16) or, in the case of refurbishment of older buildings, the requirement is either that energy 
consumption should be reduced by 50% and be at least 40% lower than the BBR 16 regulations or that energy 
consumption should be reduced by 75% (LÅGAN 2014). 

17 The eleven municipalities are Alingsås, Borås, Trollhättan, Falkenberg, Halmstad, Laholm, Lysekil, Mölndal, 
Skövde, Uddevalla and Vänersborg.  

18 There are approximately 260,000 dwellings in Göteborg of which ca 50,000 single family houses and 140,000 
dwellings owned by private companies (City of Göteborg 2014a, b). 
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consumption in its building stock. An intermediary goal is to reduce specific energy 
consumption in both its residential and non-residential stock by 15% between 2009 and 2020. 
The City of Göteborg is furthermore targeting that energy consumption in residential 
buildings (both privately and publicly owned) shall be reduced by at least 30% and 
consumption of electricity (excluding industry and transport) by at least 20%, in both cases by 
2020 relative to consumption in 1995. In 2013, specific energy consumption per square meter 
in the residential buildings had declined by 12% since 1995 to 335 kWh/m2 while 
consumption of electricity however had increased by 16% under the same period to 20.5 
MWh per capita (City of Göteborg 2014b). For new-built dwellings the aim for the city’s 
property company (Framtiden AS) is to reach an annual energy consumption of less than 75 
kWh/m2 for multi-family houses and 60 kWh/m2 for single-family houses. For new-built non-
residential buildings the corresponding requirement is less than 45 kWh/m2 and year (City of 
Göteborg 2014b).             

Finally, the City of Göteborg has also set up a target to reduce primary consumption of fuel 
for heat and electricity production19 to less than 31 MWh per capita by 2030 which implies a 
reduction of ca 10% relative to corresponding consumption in 2011. Furthermore, the 
intention is that by 2030 all district heat should be produced by renewable energy and 
industrial waste heat and energy efficiency measures should also reduce demand. Currently 
some 20% of the district heat is produced by natural gas and oil, foremost in Ryaverket CHP. 

An important part of reducing energy consumption in the residential sector is refurbishment of 
the buildings in the so-called “Miljonprogrammet” (the Million programme). 
Miljonprogrammet refers to the around 100,000 apartments being built annually between 
1965 and 1974 (hence the name the Million programme) and of which a large part now is in 
need of refurbishment20. A large fraction of these buildings are owned by the housing 
companies of the municipalities (“allmännyttan” in Swedish). Yet, a large number of single 
family houses were also built during this period, houses which are privately owned. In 
addition, during the last decade there has been a substantial sell-out of the municipality owned 
multi-family houses. In all, this means that there are presently different owners for these types 
of buildings, which make efficient renovation a more complex task, although the private 
sector may very well have more capital for renovation than the municipality owned housing 
companies. The energy savings potential in these buildings is large, up to 50% according to 
for instance the Swedish Energy Agency, but at the same time the cost will be large and there 
are ongoing discussions about who should carry the cost, i.e. mainly how the cost should be 
distributed among the government and the municipalities in case of the municipality owned 
buildings. At the same time there are also broader discussions surrounding the refurbishment 
of these buildings with regard to for instance integration policy and unemployment, both 
important aspects that need to be considered in an overall system perspective (Tällberg 
Foundation 2010). According to RenEffekt (2013) there should be a broad national 
governance of the refurbishment of the residential building stock and interviews with housing 
companies indicate that economy and profitability play a large role, i.e. the housing 
companies cannot see that the refurbishment of the residential stock will pay itself and 
become profitable unless the rents are increased significantly, i.e. to levels which are not in 

                                                 
19 The target refers to use of electricity and heat in the industry, in the public service sector including electricity 
to the city’s trams as well as use in residential and non-residential buildings. 

20 Around 80% according to Svenska Dagbladet 2010. 
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line with the purpose of the municipality owned housing companies (to provide affordable 
housing).    

Concluding the discussions above, it appears likely that the KASK-SE region will reach its 
goal of reducing energy intensity by 20% in 2020 as well as reaching a reduction of 27% in 
energy intensity by 2030 although the latter has not yet become an officially announced target 
other than by the EU. At the same time it appears difficult to get an extensive overview of 
absolute energy consumption and relevant individual plans and targets, both within each 
sector (transport, industry, buildings) as well as within each municipality. Finally, it appears 
obvious that refurbishment of the buildings that are included in the so-called 
Miljonprogrammet, although challenging, offers a great opportunity for large energy savings 
since such renovations are required in any case. It is therefore important not to lose this 
opportunity. 

8.2. Renewable energy 

The Swedish Government is aiming for that at least half the energy consumption in 2020 
should be from renewables and at least a 10% share of renewable fuels in the transport sector. 
In 2012 renewable energy accounted for 51% of total energy consumption in Sweden while 
the share of renewable fuels in the transport sector reached 12.6%21. Thus, as mentioned in 
Section 3, Sweden has already reached the 2020 targets for renewable energy (The Swedish 
Government 2013). The Swedish target is part of the EU’s common target of 20% renewables 
by 2020 and in October 2014 the EU Council endorsed a binding target (on EU level) of 27% 
renewable energy by 2030. However, the Swedish Government has not, at the time of writing 
this report, announced a specific target for renewable energy beyond 2020. 

As mentioned in section 3.2, both VGR and Halland have endorsed the national target for 
renewable energy in 2020. However, VGR (2014) is also proposing more ambitious targets 
aiming for a share of renewable energy in total energy consumption of at least 60% in 2020 
and 80% in 2030 stating that the latter is a consequence of the county targeting an economy 
independent from fossil fuels in 2030. Reaching a 60% share for renewables in 2020 is likely 
to be difficult since the share was only 41% in 2012 (VGR 2014). It should, however, be 
emphasized that the more ambitious targets given in VGR (2014) have not yet been decided 
as of early December 2014.    

VGR is also aiming for 5 TWh wind based electricity generation by 2020. Finally, and as 
mentioned above, Göteborg city is aiming for, among others, that all district heat should be 
produced by renewables, waste and industrial waste heat by 2030 (City of Göteborg 2014a, 
b).  

Accurate and reliable statistics for use of renewable energy in the region over time is sparse 
and, with regard to final consumption, statistical data cannot be used after 2004 since too 
much data is missing. However, some data are released with a relatively reasonable accuracy 
such as electricity consumption and production, production of DH and use of fuels in the 
transport sector. According to the Reference Energy System (Johnsson J., et al., 2014) for the 
KASK-SE region for the Year 2010, the following can be stated:   

                                                 
21 In fact, preliminary figures indicate that the share of renewable fuels in the transport sector in 2013 increased 
by another 3 percentage points from 2012 to 15.6% (The Swedish Government 2014).  
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• Industry’s total energy consumption amounted to 32.7 TWh in 2010 of which 4.0 TWh was renewable 
energy, 8.4 TWh was electricity while 1.1 TWh was DH. The remaining part, 19.1 TWh was fossil 
based, mostly natural gas and mainly in VGR. 

• Total electricity production amounted to 29.0 TWh in 2010 of which 3.3 TWh was produced by hydro 
and wind while 1.6 TWh was produced in CHPs (combined heat and power plants). Nuclear generation 
in Halland accounted for the largest part, 24.0 TWh or 83%. 

• CHPs generated 1.6 TWh electricity and 4.3 TWh DH burning 3.2 TWh biomass/waste plus 2.2 TWh 
fossil, primarily natural gas.  

• Total DH production amounted to 11.1 TWh (including 4.3 TWh in CHPs) of which 6.8 TWh was 
generated in heating plants utilizing 4.0 TWh biomass/waste, 1.8 TWh fossil, 1.6 TWh waste heat and 
0.3 TWh electricity. Almost all the fossil fuel used to generate heat in heating plants was used in VGR.  

 

Thus, most of the fossil based energy consumption outside the transport sector refers to 
natural gas used to generate process heat, DH and electricity in VGR. In Halland relatively 
small amounts of fossil fuel is consumed outside the transport sector, in particular after 
Pilkington Glas shut down its plant in 2013 (see Sections 2 and 6.1). Nevertheless, in 2010, 
Halland used 390 GWh fossil fuels to generate heat of which some 106 GWh oil and natural 
gas in district heating plants while the rest, some 285 GWh, was burnt directly in buildings 
(Johnsson J., et al., 2014, Svensk Fjärrvärme 2014, Averfalk et al., 2014). However, 2010 
appears to have been a cold year22 implying higher than normal demand and in early 2013 
Varberg Energi installed a new 2x10 MW biomass based heating plant that will replace 
natural gas based heat generation.  

The KASK-SE region consumes some 24 to 25 TWh electricity annually, of which 80% in 
VGR and the remaining 20% in Halland. The opposite applies to production, i.e. some 80% is 
produced in Halland, almost entirely by the reactors at Ringhals nuclear plant. Most of the 
remaining electricity is produced by hydro, wind and bio based thermal generation and from 
2010 to 2012 renewable electricity generation increased from 4.8 to 6.7 TWh (Statistics 
Sweden 2014a). Wind based generation has continued to grow reaching almost 1.6 TWh in 
VGR in 201323, eight times generation in 2006 (Power Väst 2014). Reaching 5 TWh wind 
generation in 2020 as targeted by VGR will require a Compounded Annual Growth Rate 
(CAGR) of around 15% which may be compared to a CAGR of more than 41% between 2006 
and 2012. It should also be recalled that in Section 6.2, a rough profitable onshore wind power 
potential of 10 GW was identified in the region, corresponding to between 20 and 25 TWh 
generation assuming a total income for wind power installations of 60-70 EUR/MWh. It is 
expected that the two oldest nuclear reactors at Ringhals will shut down by 2025 leaving a 
local production gap of between 10 to 12 TWh. This local production gap may increase 
further assuming increasing demand for electricity from for instance the transport sector. The 
transport sector may also interact with the power generation system contributing to balancing 
the system with high penetration of intermittent renewables. Apart from a large-scale 
penetration of wind, solar PV may play a small but yet important role in transforming the 
electricity generation system in the region. Under the existing support schemes for solar PV it 
was estimated in Section 6.4 that up to 2.5 TWh could be generated from consumer 
installations on rooftops. Furthermore, as has been demonstrated in both Germany and more 
recently also in Denmark and UK, utility scale solar PV could play an important role. For 
                                                 
22 Fossil based DH generated in DH plants in Halland in the five years period 2008-2012 was 54, 69, 106, 40 and 
45 GWh respectively (Svensk Fjärrvärme 2014).  

23 The annual wind statistics from the Swedish Energy Agency (2014a) refers only to wind farms connected to 
the grid which in 2013 generated 1,023 GWh in VGR and 347 GWh in Halland. 
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instance in the UK, solar PV capacity has increased from practically zero at the beginning of 
2010 to 5 GW by mid-2014 (Solar Power Portal 2014). Also, as mentioned in Section 6.5 
increased renewable power generation in KASK-SE may replace marginal fossil based 
generation in other parts of Europe thus leading to less overall European emissions.  

In Section 6.3 the additional production potential for biomass in KASK-SE was estimated to 
4.3 and 6.3 TWh in 2020 and 2030 respectively assuming a competitive European and 
Swedish forest industry which in turn is expected to yield an expansion of existing production 
capacity. However, as reported in previous sections most sectors explore different 
applications of biomass; 

1) The power and heating sector for production of electricity and DH – see Section 6.5 
2) The transport sector – see Section 7.1 
3) Industry 

a. To generate process steam – see Section 4  
b. To replace fossil fuels used as a raw material – see Bisaillon et al 2014a 

Figure 8.4 shows estimated demand for biomass up to 2050 in two cases, case A and B 
assuming a gradual replacement of biomass in the four applications listed above (application 
1, 2 and 3 a and b).  

In case A, demand in the power sector follows the Green Policy scenario discussed in Section 
6.5 assuming conversion efficiency for biomass CHPs increasing from current 30% to 35% 
from 2025 onwards. Demand in the transport sector follows demand given in Section 7.1 
assuming an overall biomass-to-fuel conversion efficiency of 60% over the entire period 
(Bisaillon et al., 2014a). Demand in the industry assumes 25% of the current fossil based 
production of heat and process steam being replaced by biomass in 2020 increasing to 50% by 
2030 and to 100% replacement in 204024. Also 0.8 TWh of bio-pellets currently (2010) being 
used in industrial processes has been included as raw material to the industry (termed 
“Industry Feed”). Biomass use for generation of DH and for on-site generation of heat in the 
building stock (in single family dwellings) has been kept constant at 2010 consumption levels 
throughout the period, i.e. each at 2.5 TWh biomass. This has been done due to the techno-
economic savings potential of between 5.5 and 7.4 TWh identified in the building sector in 
Section 5.225.   

Case B is as in case A plus biomass assumed to be supplied as feedstock instead of crude oil 
to the four refineries in the region and that the refineries in turn also provide bio-based 
feedstock to the chemical cluster in Stenungsund (in the form of process residues). Chemical 
plants usually buy their fossil feedstock as residues from refineries and this solution will 
enable the chemical cluster to keep the existing process units (the chemical plants could of 
course buy bio-based feedstock from other refineries outside the KASK SE region which 
would reduce biomass demand in KASK SE correspondingly). Besides, it does not appear 
likely that the petrochemical industry will produce its own bio-based feedstock since the price 
of this feedstock will be decided by the global biofuel market (See Appendix C for a 
discussion on this issue). The demand for biomass from the refineries is assumed to 
                                                 
24 No regards have been taken to energy savings potential in the industry. For instance as mentioned in Section 
4.1 harsher environmental regulations for refineries, which is a large energy consumer in the region, are likely to 
increase process intensity and energy use.  

25 Combined it was burnt ca 3 TWh fossil fuels in 2010 to generate DH and heat on-site in buildings of which 
parts (oil) are supplied by the refineries. 
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correspond to the evolvement of demand for biomass from the transport sector in KASK-SE 
as derived in Section 7.1 (see Figure 7.1), i.e. that fuel to cover overall “real” demand for 
transport work is reduced by 20% in 2020 relative to 2010 and that the share of biomass in 
total fuel consumption in 2020 is 15%. By 2050 overall fuel demand has declined to 51% of 
overall demand in 2010 while the share of biofuels is 62% (see Figure 7.1)26. Hence, it has 
been assumed that the four refineries in the region are fully converted to bio-refineries 
supplying a global market evolving in the same way as depicted in Figure 7.1 for the KASK-
SE region. To convert from demand of crude oil to demand of biomass a conversion factor of 
0.6 has been applied yielding that 227 TWh crude oil supplied to the refineries in 2010 
requires 378 TWh biomass (Johnsson J., et al., 2014, Bisaillon et al., 2014a). Feed to the 
chemical cluster in Stenungsund is assumed to start in 2020 where a quarter of the feedstock 
is assumed to be replaced by biomass increasing to 50% in 2030 and further to 100% in 2040. 
It has been assumed that 33 TWh biomass is required to replace 16.5 TWh fossil based 
feedstock to Borealis in 2010 of which almost all was supplied by suppliers outside the 
KASK-SE region (Bisaillon et al., 2014a, Spetz, 2015). However since the chemical cluster in 
case B is assumed to receive feed directly from the refineries, efficiency gains have been 
estimated to reduce overall biomass demand to the industry by 13 TWh. No biomass is 
supplied to the transport sector in case B since biofuels are assumed to be supplied from any 
of the four refineries in the region.  

 

Figure 8.4. Projected biomass consumption up to 2050 in KASK-SE in the two cases A and B. Industry 
Feed refers to biomass gradually replacing fossil fuels as raw material to the chemical cluster in 
Stenungsund and to the four refineries in the region (case B). In case B, demand for biomass in the 
transport sector has been set to zero since demand is assumed to be covered by the four refineries. 

                                                 
26 Thus feedstock demand to the transport sector has been reduced by 20% in 2020, by 42% in 2030, by 45% in 
2040 and by 49% in 2050 due to anticipated lower demand relative to Year 2007 (see Figure 7.1). Additionally, 
to calculate demand for biomass in the transport sector it has been assumed that biomass accounts for 15% of 
total fuel consumption in 2020, for 54% in 2030, for 57% in 2040 and finally for 62% in 2050, also as given in 
Figure 7.1.  
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In case A, total annual biomass demand increases from ca 14 TWh today to 24 TWh in 2020, 
to 36 TWh in 2030 before it reaches a plateau of around 48 TWh in 2040 onwards. In case B 
where biomass in addition to the demand in case A also gradually replaces natural gas as a 
feedstock to the refineries in the region which in turn supplies bio-based feedstock to the 
chemical cluster in Stenungsund, biomass demand increases to ca 72 TWh in 2020 and further 
to 153 TWh in 2030 before reaching a plateau at around 174-177 TWh during the last decade. 
To put this in context, total supply of biomass, waste and peat27 to Sweden amounted to 132 
TWh in 2011. It may also be compared to the total additional technical28 supply potential for 
biomass produced in Sweden estimated to between 50 and 70 TWh by the Swedish 
Knowledge Centre for Renewable Transportation Fuels (F3 2013) or the total additional 
production potential of biomass within KASK-SE of 6 TWh as estimated in Section 6.3. The 
results in Case B implies that the refineries in the region probably will face severe difficulties 
in maintaining current activity levels and the results also strongly suggest that electricity 
probably should have a larger market share in the transport sector and this is further discussed 
below.  

Case A appears more realistic than case B, not at least due to the smaller amount of biomass 
that will be required. However, with regard to generation of electricity in the selected Green 
Policy scenario the amount of intermittent power is substantial while at the same time base 
load power is decreasing rapidly. According to the modelling results discussed in Section 6.5, 
the contribution from base load power (hydro, conventional thermal, nuclear, bio and waste) 
in the Green Policy scenario, which was applied in case A, declines from 94% in 2012 to 36% 
in 2030 and further to 26% in 2050. A high penetration of intermittent renewables (wind, 
solar PV) along with nuclear decommissioning may lead to significant balancing problems 
and actually increase the need for renewable base load power, such as biomass. Also, the 
Green Policy scenario leads to increasing import requirements with export of 7.3 TWh in 
2012 being turned into 8.7 TWh import in 2030 (after which import requirements declines 
however to 0.7 TWh in 2050 due to the high contribution from wind power), see Figure 6.10 
(left). This will probably not be an acceptable solution for the energy intensive industry in the 
region, all the more so since it can be assumed that the penetration of intermittent energy is 
high also in surrounding regions.    

There are few possibilities to reduce biomass demand further in case A. It has been assumed 
same contribution as today in heating plants while on-site heating has actually been reduced 
as a consequence of the energy savings made in the buildings (cf Section 5.2). The biomass 
assumed being required for energy purposes in the industry is used to generate heat and 
although solar heat generation and further energy savings offer some prospects, the amount of 
heat used by the industry is significant and there is a problem with intermittency if relying too 
much on wind and solar. Thus, the only real savings potential that remains is in the transport 
sector but also there the contribution is modest, ca. 22% of total biomass consumption in case 
A assuming a significant reduction in demand for transport work (see Footnote 26). Finally, it 
should be emphasized that case A does not include any considerations with regard to biomass 
being used as a raw material by the industry in the region.  

                                                 
27 In 2012 Sweden used some 2.7 TWh peat for heat and power production, down from almost 4 TWh in 2008 
(Hjalmarsson 2013). The emission factor for peat is higher than coal at 107 gram CO2e per MJ fuel as opposed 
to steam coal with 100 gram CO2e per MJ fuel (Martinsson et al., 2012).  

28 According to the report (F3 2013) the estimated supply potential includes to some extent also ecological and 
economical restrictions. 
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The supply and logistical challenges in case B will of course be tremendous. For instance, 
Preems refinery in Lysekil will alone require almost 60 TWh biomass if completely 
converting to biomass feedstock which will have to be transported to one or several individual 
dispatch centrals. Assuming that one truck can carry 146 MWh biomass implies that 411,000 
such truck loads will be required annually, or one truck load each 77 second.  

Already in 2030, Case B consumes more than the entire Swedish supply of biomass including 
peat. Also, demand for biomass is in such a scenario of course on the rise in most regions 
throughout Sweden, Europe as well as globally, both within the power and heat sector as well 
as in the industry and transport sectors. As mentioned above, Börjesson et al (2013) and F3 
(2013) indicate a possible additional biomass supply potential in Sweden of between 50 and 
93 TWh while Faaji (2013) suggests that European import of pellets from other world regions 
might increase up to 70-140 TWh by 2020. IEA (2013) suggests in its most climate ambitious 
scenario, the so-called 450 scenario29 that European consumption of biomass may increase 
from 1,500 TWh in 2011 to 1,965 TWh in 2020 and further to 2,965 TWh in 2035, i.e. nearly 
a doubling of consumption between 2011 and 203530. However, as shown above, Case B 
implies more than ten times higher consumption levels in 2030 compared to 2010.  

IEA (2013) assumes in its 450 scenario that global demand for biomass will increase by some 
10,500 TWh by 2035 and in that context, the volumes required in KASK-SE in case B is 
modest. Thus, in theory, the energy intensive industry could transform to 100% use of 
biomass as a feedstock but this will require a concerted and rapid transformation as demand 
for biomass is rising rapidly in all sectors and in all regions in the world. At the same time, 
IEA (2013) assumes a completely different fuel distribution in the transport sector in EU than 
what has been envisioned in Section 7.1. In its 450 scenario IEA (2013) assumes that EU’s 
transports sector in 2035 will be covered by 63% fossil fuels (almost 1,600 TWh), 7% 
electricity, 27% biofuels (675 TWh) and 2% other, not specified fuels.                      

Overall demand for biomass could be reduced through higher share of electric cars, both 
locally as well as in Europe and globally. With the large amounts of biomass that otherwise 
will be required, this seems almost as a prerequisite for a well-functioning transport sector in 
the future. Also, there will be large amounts of heat available from the refineries and the 
chemical cluster and at least a small part of this heat could possibly be utilized for DH (see 
Section 4). Demand for biomass in case B could also be reduced through for instance 
recycling and energy recovery of plastics leading to overall lower demand for biomass in the 
chemical industry. However, as shown above, estimated biomass demand in the chemical 
cluster constitutes a relatively modest share of total biomass demand in case B (approximately 
8%) and recycling and recovery of plastics has actually reached quite far in Europe, and in 
Sweden approximately 95% of all plastics was recycled or recovered in 2011 (around 34% is 
recycled while the rest, 61%, is burnt for heat and electricity generation), see for instance 
PlasticsEurope (2012). However, in countries like Finland, Poland, UK and the Baltic States, 
recycling and recovery rates are considerably lower ranging from less than 30% in Latvia, 
Lithuania and UK to somewhat below 50% in Finland. Stricter rules for disposal of plastics in 
landfills is expected to improve these ratios considerably. Moreover, the chemical cluster in 
                                                 
29 The 450 scenario refers to the concentration of GHG in the atmosphere (450 parts per million) which should 
yield a 50% chance of limiting the average global temperature increase to 2°C (IEA 2013).  

30 In the New Policy’s scenario where consumption of biomass is considerably lower than in the 450 scenario 
(84% or 2,500 TWh versus 2,965 TWh in the 450 scenario), IEA (2013) indicates that EU is the largest importer 
of biomass for power generation as well as of biofuels.    
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Stenungsund has proposed to establish a waste refinery in Stenungsund treating both plastic 
and construction waste as well as municipal and industrial waste. Finally, Borealis has 
recently upgraded its cracker in Stenungsund so that more ethane can be used as raw material 
instead of naphtha, propane and butane while at the same time they have also signed a 10-year 
supply agreement with Antero Resources for supply of ethane from the US. In addition, 
Borealis has also recently extended its supply contract for ethane with Statoil for another 
seven years. Thus, and although the exact quantities are not known, it seems that a substantial 
part of future supplies of fossil based raw materials to Borealis will be from suppliers outside 
the KASK-SE region.     

To summarize the discussions made above, there are substantial possibilities for expanding 
renewable energy in the KASK-SE region, both in terms of renewable electricity from wind 
and using biomass as fuel. There is significant potential for onshore wind power. 
Additionally, the region may also have a substantial potential for offshore wind power, but as 
concluded in Section 6.2, offshore wind power is still significantly more costly than onshore 
wind and availability of suitable onshore sites appears not to be the limiting factor if applying 
the areas of conflict and population density assumed in this work. Contribution from solar 
power is not believed to be significant, up to 2.5 TWh could possibly be generated from 
consumer installations on rooftops under the existing support schemes. Continued expansion 
of use of biomass for production of heat and electricity appears likely but as indicated above 
there are limited supply abilities within the region implying that biomass will have to be 
imported to make a substantial contribution to the energy system in the region. Potential 
future demand for biomass has been calculated in two cases (Cases A and B), both indicating 
a substantial increase in consumption levels. Under the assumptions made above, 
consumption may increase almost threefold to more than tenfold compared to current levels 
by 2030 and continue to expand up to 2040 and 2050. A transformation of this magnitude will 
obviously be extremely challenging both from a supply and a logistical perspective and 
demand for biomass is increasing rapidly in all sectors and in all regions of the world. Hence, 
if these levels of biomass are to be reached the transformation should start immediately with 
concerted support both from the industry and from the politicians in the region.         

8.3. CO2-emissions 

As mentioned in Section 3.1, the new Government has commissioned a parliamentary 
committee (Miljömålsberedningen) to develop a political framework for a long-term climate 
policy. The Government states that the framework shall specify the rate at which Sweden 
should reduce its emissions, establish clear incentives for the transformation to a climate 
friendly society and create a stable and predictable investment climate for business.  

As discussed in Section 3.1 the target for GHG emission reductions in VGR and Halland 
follows the current national target, i.e.; 

• 40% reduction of GHG emissions in 2020 relative to 1990 from sectors that are not included in the 
European Emission Trading Scheme (ETS). 

• Sectors that are included in the ETS shall reduce their emissions by 21% in 2020 and by 43% in 2030, 
in both cases relative to year 2005 emissions (EC 2014).  

• Net GHG emissions should be zero by the middle of this century. In order to reach this target, the 
Swedish Government has released proposition 2008/09:162 which states that Sweden will prioritize to 
achieve a “transport sector independent from fossil fuels” by 2030.  

As much as one third of the targeted emission reductions can be taken through purchase of 
external emission credits (NVV 2012, Averfalk et al., 2014). Although tougher intermediate 
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emission reduction targets up to 2030 have been proposed and are under review in VGR and 
Göteborg, focus in this report has been based on officially announced targets by the end of 
November 2014. Moreover, as also stated in Section 3.1, the focus has been placed on 
production based CO2-emissions, i.e. the agriculture sector and non-CO2 greenhouse gases 
have not been analysed and only CO2 emitted within the geographical boundary of the KASK 
region has been considered.  

Combined, the two counties in KASK-SE emitted 12.9 Mt GHG (CO2e) in 2012, down by 
13% since 1990 excluding net changes in LULUCF (Land Use, Land Use Change and 
Forestry). CO2-emissions amounted to 10.5 Mt, down by 12% since 1990. Energy supply and 
transport account for ca 90% of total CO2-emissions. Figure 8.5 shows CO2-emissions by 
sector in 199031 (blue) and 2012 (red). Emissions have been taken from Länsstyrelserna 
(2014) with some minor alterations with regard to distribution by sub-sectors. This has been 
done in order to facilitate the work below with regard to definition of pathways for CO2 
emission reductions. The following changes in sectors have been done: 

• The sector “Heat (DH+on-site)” includes the subsectors “Heating plants”, “Residential heat” and 
“Stationary combustion in agriculture, fisheries and forestry”. 

• The sector "Energy industry” includes "Fugitive Emissions from use of fossil fuels32", "Energy supply 
refineries" and "Combustion in the industry for energy production”.  

• The sector “Transport” includes working machines. 

 

Figure 8.5. CO2-emissions by sector in 1990 and 2012 in KASK-SE, source: Länsstyrelserna (2014). 
                                                 
31 As pointed out above, emission reduction requirements in industries covered by the ETS refer to year 2005 
emissions.  

32 Länsstyrelserna (2014) lists “Fugitive emissions from use of fossil fuels” within the group “Energy Supply”. 
The emissions from this group refer to vented/flared emissions from combustion of pet-coke in a catalytic 
cracker.   
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As can be seen significant reduction in emissions have only taken place in the heat generation 
sector due to the fuel shift in thermal plants in the District Heating systems whereas the other 
sectors have remained more or less constant or increased their emissions. The fuel shift in 
Swedish DH systems is due to the tax on fossil fuels for heat generation. 

A large part of the emissions in the first group in Figure 8.5, “Power/heat production” comes 
from Göteborg, some 470 ktons in 2012 and emissions from this group are actually up 4% 
since 1990.  

Emissions from the group “Industry energy supply” are up more than 9% since 1990 as can be 
seen from Figure 8.5. The three refineries in Göteborg and Lysekil account for a large part of 
the emissions from this group, some 64% in 2012 and having increased by almost 50% since 
1990 from 1,970 to 2,911 ktons. More than half of this increase (508 ktons) refers to increased 
emissions from “Fugitive emissions from use of fossil fuels” from the refinery in Lysekil. 
Other large sources that are included in this group are the chemical cluster in Stenungsund 
(almost 800 ktons in 2012) and the cement plant in Skövde (170 ktons in 2012). 

The group “Industry process” have declined by some 20% since 1990. Almost half of the 
emissions from this group in 2012 came from the cement plant in Skövde (250 ktons) while 
another 100 ktons originates from Vargön Alloys in Vänersborg. 

Emissions from the transport sector include 550 ktons from working machines, up from 488 
ktons in 1990 while emissions from the transport sector as a whole practically have remained 
constant since 1990. Transport related emissions together with emissions from energy supply 
industry account for the largest share of overall CO2 emissions at 41 and 43% in 2012 
respectively.  

It is obvious from Figure 8.5 that the biggest challenges to reduce CO2 emissions in KASK-
SE lie in the transportation and industry sectors. They are by far the biggest emission 
contributors at the same time as emissions have shown no evidence of decline during the two 
past decades. These challenges are further amplified by the fact that the one sector which has 
delivered substantial cuts in CO2 emissions, i.e. the heating sector, will only contribute 
marginally to further emission reductions since emissions in this sector are now very low.     

8.3.1 Illustrative pathway for reduction of CO2-emissions 

This section exemplifies one pathway for how the region can reach zero CO2 emissions in 
2050. It is important to underline that this is only one out of several possible pathways which 
will be discussed in the following sections. The scenario starts with a description of how each 
separate sector can achieve zero emissions by 2050 building to a large extent upon the work 
presented in previous sections. The results are then shown in Figure 8.7.   

The sector “Public electricity and heat production” was modelled and analysed in Section 6.5. 
Table 8.2 shows CO2 emissions in the two main scenarios outlined in Section 6.5, namely the 
Green Policy and the main Regional Policy scenarios (corresponding generation by 
fuel/technology is given in Figure 6.10). In the scenarios electricity generated by biomass and 
waste includes combustion from fossil based waste33. 

                                                 
33According to Renova’s “Hållbarhetsredovisning” (Environmental Report) for the years 2012-13, combined 
GHG emissions from combustion of waste (CO2+N2O) reached 142 kt (kton) in 2010, 199 kt in 2011, 202 kt in 
2012 and 203 kt in 2013. 
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Table 8.2. CO2 emissions from CHP plants in KASK-SE 2012-2050 as yielded from 
modelling of the power sector in Section 6.5, kt CO2. 
  2012 2020 2025 2030 2035 2040 2045 2050 
Main Regional Policy 778 845 845 741 746 1714 1819 0 
Green Policy 778 859 1102 589 270 52 0 0 

 
As can be seen from Table 8.2, both scenarios reach zero emissions by 2050. The reduction is 
more rapid and distinct for the Green Policy scenario. Emissions increase significantly up to 
2045 in the Main Regional Policy scenario and then fall abruptly to zero in 2050. The sharp 
increase in emissions is due to a relatively large expansion of gas based power and heat 
generation. Gas-based power is profitable in the long run and in a European context in our 
Regional Policy scenario which is due to increasing prices on both CO2 and electricity at the 
wholesale level, at the same time as the renewable target is set at a considerably lower level 
than in the Green Policy scenario. However, the regional distribution of such long-term gas-
power schemes is primarily a model result and does not fully reflect possible regional and 
local policies for natural gas. We may also conclude from the figures reported in Table 8.2 
that this increased contribution from gas power is present only for a limited amount of time, 
roughly a decade. Even if this is cost-efficient from an integrated European electricity-market 
point of view, it is questionable whether any investor would be prepared to take such risks to 
invest in gas-based power even if changes in market design would increase incentives for 
building power plants with relatively low utilization.  

Both scenarios lead to a complete phase-out of nuclear power (Ringhals nuclear plant), in the 
Green Policy scenario already by 2030 and in the main Regional Policy scenario shortly after 
2040. Both scenarios also lead to diminishing export of electricity which eventually is 
replaced by import (as can be seen in Figure 6.10). In the pathway for zero CO2 emissions 
shown below (Figure 8.7) emissions have been taken from the Green Policy scenario. As 
mentioned above, it is important to underline however that it will be a challenging task to 
handle and balance the power generation system outlined in the Green Policy scenario due to 
the fossil and nuclear phase-out in combination with the high penetration of intermittent 
renewables.  

Heating has historically been a large emission source but as can be seen from Figure 8.5 
above and Figure 8.6 below emissions have declined dramatically since 1990 with increasing 
contribution from biomass based CHPs and heating plants. Figure 8.6 shows combined CO2 
emissions 1990, 2000 and 2005-2012 for the three subgroups heating plants, residential heat 
generation and stationary combustion in agriculture, fisheries and forestry as given by 
Länsstyrelserna (2014). 
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Figure 8.6. CO2 emissions from heating plants, residential heat generation and stationary combustion in 
agriculture, fisheries and forestry in KASK-SE in 1990, 2000 and 2005-2012 as given by Länsstyrelserna 
(2014). 

As can be seen from Figure 8.6 emissions have declined significantly since 1990, from almost 
2.0 Mt combined to 315 kt in 2012. In particular emissions from residential heat have 
declined dramatically, by more than 90% to 109 kt in 2012. According to the reference energy 
system for the year 2010 for KASK-SE (Johnsson J., et al., 2014), fossil based generation of 
heat on-site in buildings and in heating plants only consumed almost 3.5 TWh fossil fuels and 
1.5 TWh waste in 2010. At the same time however, Section 5.2 identified a techno-economic 
energy savings potential of between 5.5 and 7.4 TWh in the building sector. In this section we 
have assumed that CO2 emissions in the building sector can be completely eliminated by 
2040 either through energy savings and/or through fuel switch as old boilers are being 
replaced.  

Emission reductions in the transport sector start from 2010 emissions of 4,627 kton as 
reported by Länsstyrelserna (2014) following the proportional distribution of emission 
reduction actions depicted in Figure 7.2. The action called “fuel switch/efficiency increase” 
has been included in the action called “efficiency increase”. 

Emission reductions in the industry are assumed to be achieved partly through fuel shift and 
partly through Carbon Capture and Storage (CCS). In total, the industry emitted 5.2 Mt in 
2010 including process related emissions. It has been assumed that 1.1 Mt CO2 is eliminated 
through fuel shift, of which 0.5 Mt by 2020 and the remaining 0.6 Mt by 2030. The remaining 
4.1 Mt CO2 from the industry is assumed to be eliminated through installation of CCS on the 
eight largest emitters in the region (based on 2010 emissions) apart from the natural gas 
combined cycle power plant in Göteborg (Ryaverket CCGT). The reasons that CCS has not 
been considered for the Ryaverket CCGT are 1) cost of capture is very high due to the limited 
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operating hours and the low content of CO2 in the flue gases (Chalmers-Tel-Tek 2012) and 2) 
By 2030, Ryaverket CCGT is close to the end of its operating lifetime.  

In order to neutralise remaining emissions from the capture plants34, significant volumes of 
biogenic CO2 also need to be captured35. Thus, raising the volumes of captured fossil based 
CO2 will also raise the need for captured biogenic CO2. It has been assumed a capture ratio 
of 75% on all plants leading to that 3.0 Mt fossil based and 1.3 Mton bio-based CO2 is 
captured while remaining fossil based emissions after the capture process are calculated to 1.3 
Mt. The remaining fossil based emissions are however being neutralised by the 1.3 Mt 
biogenic CO2 that has been captured. It should be underlined that applying a capture ratio of 
75% probably is too optimistic for some of the industries like for instance the refineries where 
the CO2 emissions are divided over several separate emission sources with varying CO2 
concentration and content. Thus, the biogenic part of the captured CO2 will have to be raised 
correspondingly if the capture ratio is lower than anticipated here. With regard to timing, it 
has been assumed that CCS starts up at Preems refinery in Lysekil and at Borealis cracker in 
Stenungsund in 2030 capturing some 1.8 Mt CO2 combined with the remaining six plants 
(see Table 8.3) installing capture in 2040. Assuming that all capture plants will utilise storage 
sites in the Skagerrak-region or in the North Sea, it would probably initially be most cost 
efficient to transport the CO2 by ship from Preems refinery and Borealis cracker but from 
2040 when all eight plants have installed capture, it is more likely that pipeline transport from 
a central hub at Lysekil will be a more cost efficient transport solution than ship transport 
(Kjärstad et al., 2014). The eight plants where it has been assumed that capture is installed are 
shown in Table 8.3. 

The specific cost of capture will increase as the capture volume goes down and so will indeed 
also the cost of transport and storage, see for instance Chalmers-Tel-Tek (2012) and Kjärstad 

Table 8.3. Capture plants with initial total and fossil/biogenic emissions 2010, calculated capture 
volumes and remaining emissions after capture, kton CO2. 

Facility Initial 
Total CO2 

Initial 
Fossil CO2 

Initial 
Bio CO2 

Captured volume         
(of which biogenic) 

Remaining emissions 
(of which biogenic) 

Preemraff, Lysekil 1 670 1 670   1 253 516 
Södra Cell Värö 1 070 20 1 050 803  330  
Borealis Cracker 690 690   518 213 
Preemraff Göteborg 560 560   420 173 
Sävenäs CHP 550 140 410 413 170 
St1 Raff, Göteborg 540 540   405 167 
Ryaverket, Borås1 400 80 320 300 124 
Cementa, Skövde 360 350 10 270 111 
Total 5 840 4 050 1 790 4 380 (1 343) 1 804 (553) 

1: There are plans to replace the existing Ryaverket CHP in Borås with a 100% bio-fuelled CHP.  

                                                 
34 The remaining emissions from the capture plants arise partly because you cannot achieve 100% capture ratio 
in a cost efficient manner, particularly not from industries like refineries, and partly because the capture process 
itself requires energy which will raise emissions. 

35 Capture of biogenic CO2 can however not yet be counted as negative emissions within the EU’s Emission 
Trading Scheme (ETS) or under the reporting of GHG emissions to the UNFCCC although there are increasing 
awareness that this will probably be required to meet the 2 degrees Celsius target. Thus, biogenic CCS will need 
to be properly incentivized.       



99 

et al., (2014). Thus, both the capture cost as well as the cost of for instance a 150 km pipeline 
carrying 270 kt CO2 from Cementa in Skövde to a presumed shipping point at Preem’s 
refinery in Lysekil, will be high. In Chalmers-Tel-Tek (2012) the cost for the entire CCS 
chain (capture, compression36, transport and storage) for Preem’s two refineries in Lysekil 
and Göteborg and Borealis cracker in Stenungsund was calculated to range between ca € 70 
and 80 per ton CO2 which may be compared to the current CO2 emission price of around € 7 
per ton (January 2015). On the other hand, as indicated in Table 6.4, the CO2 emission price 
can raise to very high levels as the cost of CO2 abatement rises.  

Installation of CCS will require planning and development over several years as well as 
significant up-front investments and will therefore also require stable long-term policies and a 
sufficiently high price on CO2 emissions. Also, utilization of BECCS will require that bio-
CCS is accepted as a mitigation option by the UNFCCC and of course eligible for emission 
credits according to the European ETS. 

As mentioned above, two of the plants in Table 8.3 are assumed to install capture in 2030 
implying that planning will have to start already in the early 2020’s. For instance a storage 
site will have to be certified and approved before construction of the capture plant which itself 
may take 5 years. One question that arises immediately is the CO2-volume that needs to be 
certified for storage as no-one can assume that another six plants may be connected to the 
system some fifteen years later indicating that multiple storage sites and injection systems 
may be required. Also, since cost for CO2 transport by pipeline to a large extent depends on 
volume and distance and since routing, permitting and approval processes may take many 
years, it will be important to analyse various transport solutions at an early stage. 
Additionally, it is currently not allowed to export CO2 for storage according to the London 
Convention and ship transport of CO2 for storage and bio-based CO2 is not eligible for 
emission credits according to the European ETS. There should be a great need for the 
politicians in the region to initiate discussions together with the industry on how CCS can be 
developed in the region.         

The emission reductions by sector described above are depicted in Figure 8.7 assuming 
constant rate of decline between each decade for each sector (see also Table 9.2) apart from 
CCS at the industry plants where CCS, as mentioned above, is installed on specific plants in 
Year 2030 and 2040, each with large emissions resulting in sudden reduction in emissions in 
these years. 

                                                 
36 In the case of pipeline transport the CO2 will usually be compressed up to above the supercritical point (73.8 
bar, 31°C) while in the case of ship transport the CO2 will be transported as a liquid having a pressure of around 
8 bar and a temperature around minus 50°C. However, the most cost efficient way of reducing the temperature of 
the CO2 to minus 50 degrees will be to raise the pressure to the critical point and then reducing the temperature 
by expanding the gas.     
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Figure 8.7. Illustration of a possible pathway designed to meet zero CO2-emissions in 2050. The colored 
fields show reduction wedges corresponding to different technologies and measures between 2010 and 
2050. 

As mentioned above, the pathway shown in Figure 8.7 is illustrative only presenting one out 
of several possible pathways to reduce CO2 emissions to zero by 2050. At the same time it 
should also be stressed however, that if we want to keep existing industries and maintain 
current activity level there are only the following principal solutions for the refineries in the 
region assuming that international emission credits will not be utilized; 

1) Transformation to bio-refineries and maintain current activity level but as indicated in Section 8.2 this 
will require extensive amounts of biomass and even more so since this implies a similar development in 
rest of Europe, i.e. a large scale transformation to bio-fuels. The four refineries in Göteborg will in this 
case require some 120 TWh biomass annually assuming significant vehicle efficiency gains and a 62% 
share of biofuels in Europe’s transport sector as derived in Section 7.1 for the KASK-SE region. Total 
biomass use for energy in Sweden is currently around 130 TWh per year. 

2) Transformation to bio-refinery and reduced activity level. 
3) Continue to operate with fossil based raw material which will require CCS to eliminate process related 

emissions. If the fossil based fuel is used by the transport sector in Sweden37, Bio CCS (BECCS) will 
be required to neutralise these emissions (i.e. to achieve zero emissions from the entire energy system 
of the region by the end of the period). Yet, this option opposes proposition 2008/09:162 released by the 
Swedish Government which states that Sweden will prioritize to achieve a “transport sector independent 
from fossil fuels” by 2030.  This option will also require that BECCS is accepted as a mitigation option 
by the UNFCCC - United Nations Framework Convention on Climate Change - and that BECCS is 
eligible for credits according to the European Emission Trading Scheme (ETS).  

4) Combination of options 1) to 3) 

                                                 
37 Fossil based fuels can be exported to regions having less strict restrictions on use of fossil based fuels in the 
transport sector, e.g. through supply of low sulphur diesel fuels to markets outside Europe.  
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8.4 Conclusions 

It seems clear from the discussions above that in order to meet zero CO2 emissions by 2050 
while at the same time maintaining current activity levels for the industry, the region will 
have to utilize all available options, i.e. energy efficiency measures to reduce energy 
consumption, significant expansion of renewable energy, in particular biomass, and 
CCS/BECCS. A complete transformation to a fossil free transport sector will require 
immediate and concerted policy action probably at least on an EU-level and the results above 
indicate that electricity will have to play a key role in such a transformation thus also 
implying reduced activity levels for the refineries in the region.  

On one hand, continued nuclear power generation will reduce the requirement for base-load 
power and for thermal back-up to stabilize the grid in a case with large penetration of 
intermittent renewables. On the other hand, increased imports of power and/or expansion of 
transmission grids could reduce the need for nuclear power as well as the need for alternative 
electricity generation by e.g. biomass in order to supply the region with sufficient electricity. 
However, in a situation where most of northern Europe relies on large amounts of intermittent 
power, the question arises who should provide local energy security and the increasing 
requirements for regulating and balancing power.  

As a complement to renewable and dispatchable supply, demand-side flexibility including the 
use of electric vehicles as back-up or battery capacity will probably play a key role in this 
transformation. Furthermore, a large share of electric vehicles would reduce the need for 
biofuels within transportation also in a case where biomass is used to generate the electricity 
needed for the vehicles due to the higher efficiency for electric engines compared to 
combustion engines (see for instance Swedish Energy Agency 2015). It seems inevitable that 
biomass would have to replace fossil based generation of heat to the industry as well as 
generation of DH and on-site generation of heat in buildings. As evidenced above, energy 
efficiency measures could reduce biomass consumption for this purpose. 

The main efforts will of course be related to reducing emissions from the transport sector and 
from the industry while at the same time maintaining current activity level at the industry. The 
region may to some extent utilise the so-called flexible mechanisms to purchase emission 
rights outside the region at least in a transition period to neutralise emissions from sectors 
where it will take time to achieve significant reductions, such as the transport sector. BECCS 
can also be utilized to neutralize such emissions provided of course that remaining regulatory 
barriers are eliminated and that it is properly incentivized. 

9 Challenges and Pathways 
This chapter discusses challenges the region will encounter in meeting the CO2 emission 
pathway described in Section 8. Pathways for energy efficiency and renewables are an 
integral part of the emission reduction pathways and are therefore not described explicitly but 
rather as possible actions to reduce CO2-emissions. 

As mentioned above, the main climate targets for Sweden and thus also for the KASK-SE 
region are; 

• By 2030 Sweden’s (KASK-SE) vehicle park should be independent of fossil fuels. 
• By the middle of this century Sweden’s/KASK-SE’s net GHG emissions should be zero. 
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However, in this work we have, also as mentioned above, focused on CO2 emissions emitted 
within the geographical boundary of the KASK-SE region, i.e. so-called production based 
emissions. A vehicle park independent of fossil fuels has been interpreted as a road transport 
system which is mainly run on bio-based fuels and electricity reaching an 80% reduction of 
fossil fuel consumption in 2030 and with a complete elimination of fossil fuels (and 
emissions) by 205038. 

The challenges associated with emission reductions within each sector have been assessed 
applying a concept proposed in the project North European Power Perspectives (NEPP 2013). 
The concept is based on a scorecard principle, ranking the challenges into three different 
categories separated by colour: moderate challenges (Green), significant challenges (Yellow) 
and very significant challenges (Red). Table 9.1 lists possible emission reduction pathways by 
sector and the challenges associated with each action according to the scorecard principle.  

Table 9.1: CO2-emission reduction pathways by sector and with the challenge categorised according 
to the scorecard principle. 

  Possible emission reduction pathways Challenge category 

Public Electricity/Heat Prod fuel switch (bio), technology shift (wind, 
solar) Moderate 

Heating (DH+on-site) fuel switch (bio), demand reduction buildings Moderate to Significant 

Transport incl working mach fuel switch (bio+electricity), efficiency 
increase, reduced demand, modal shift Moderate to Very significant 

Industry Refineries, Energy Efficiency increase, fuel switch (bio), CCS, 
BECCS 

Significant to Very 
significant 

Industry Others, Energy Efficiency increase, fuel switch (bio), CCS, 
BECCS Moderate to Significant 

Industry Process CCS, BECCS Very significant 

Solvent use Phased out alternatively neutralized  through 
BECCS (35 kton in 2010) Moderate 

 
Figure 9.1 shows the pathway for CO2 emission reductions described in Section 8.3 (and 
shown in Figure 8.7) with the various measures categorized by challenge according to the 
scorecard principle given in Table 9.1. This exercise is obviously somewhat approximate and 
the shape of the curves in Figure 9.1 are different from those in Figure 8.7 since several of the 
emission reduction options depicted in Figure 8.7 are grouped together over time in Figure 9.1 
(as is also indicated in Table 9.1). See also Table 9.2 for emissions by sector each decade as 
envisaged in Figures 8.7 and 9.1.  

                                                 
38 As of January 2015 it has not been clarified what the term “a transport sector independent of fossil fuels” 
actually means in terms of future fossil fuel consumption. However, the proposed scenarios in SOU (2013), in 
Trafikverket (2012) and the so-called “Målscenario 1” in NVV (2012) all suggest 80% reduction of fossil fuels 
by 2030 and complete elimination by 2050. 
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Figure 9.1: Emission reduction pathway shown in Figure 6.7 in Section 6.3 categorized by challenge 
according to the scorecard principle.  

As illustrated in Figure 9.1, a large part of the required emission reductions are likely to face 
very significant challenges. Emission reductions that fall in this category is foremost the bulk 
of transport and industry related emissions associated with either use of CCS/BECCS and/or, 
in the refineries case, a massive and gradual transformation of the transport sector to biofuels 
not only in KASK-SE but probably also in the whole of Europe and where it has been 
assumed that the refineries in KASK-SE maintains current market share. It should also be 
recalled from Section 7.1 that the shift to biofuels is associated with a massive reduction in 
demand for transport work and thus also for biomass (see Footnote 26). Thus, a more likely 
way to reduce emissions in the transport sector is foremost a higher share of electrification 
than anticipated in Chapter 7 plus a combination of CCS/BECCS and consequently also a 
more modest shift to biofuels, all the more so since a transformation to biofuels of course will 
have to be gradual. Use of CCS and BECCS implies of course that they both will need to be 
properly incentivized, but this is definitely not the case as of early 2015. In fact, CCS has 
faced many problems over the last few years and most CCS projects in Europe have now been 
shelved while at the same time, there are also several regulatory issues that remain to be 
resolved.    

The emission reduction pathway shown in Figure 8.7 and categorized according to the 
scorecard principle in Figure 9.1 assumes that a large part of the emission reductions are taken 
already by 2030. It would of course be less challenging to delay parts of the reductions to 
later, let’s say to 2040. However, assuming rapidly increasing global demand for biomass it 
would probably make sense to start the transformation as soon as possible. It would probably 
also be useful at an early stage to develop an overall energy master plan for the region. This 
should be done in close collaboration between politicians, industries and other key actors in 
the region.  
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Sections 8.2 and 8.3 identify four main measures for reducing CO2-emissions; 1) fuel shift 
from fossil to biomass for public, private and industrial power and heat production, 2) CCS 
including BECCS in the industry alternatively use of biomass as feedstock to the refineries 
and the chemical industry, 3) energy savings particularly in the transport sector but also in the 
industry and building sectors and 4) switch to bio-fuels and electricity in the transports sector. 
A fifth measure was also identified; namely purchase of emission credits abroad and, as 
mentioned above, up to one third of the emission reductions may be achieved in this way. In 
this work however we have assumed that the region will prioritize to reach the targets without 
utilizing this option. Nevertheless, the fifth option offers the region some transitional 
flexibility on its way towards zero emissions in 2050.    

Section 8.3 also raises an important question; What will be the future activity level for the 
industry in the region and in particular for the refineries as the bulk of their production is 
exported, either to other parts of Sweden or abroad, e.g. Preem exported 55% of its production 
abroad in 2013 (and 65% in 2012, Preem 2013). Section 8.3 concludes that if the activity level 
should be maintained at current levels39 there are in principal only four possible solutions for 
the refineries in the region which can apply in a climate constrained world; use of fossil fuels 
as raw material in combination with CCS and BECCS, limited use of biomass or a full 
transformation to bio-refinery or a combination of the three, possibly also as mentioned above 
with use of international emission credits, at least during a transition period.  

Since a large part of the production in the refineries is exported, a partly fossil based 
feedstock will not oppose to the Swedish or the KASK-SE apparent target of a fossil free 
transport sector by 2030 (see Footnote 38) provided the fossil based part of the production is 
exported. However, in a climate constrained world KASK-SE (and Sweden) will of course not 
be the only region (nation) in Europe (or globally) that will undergo a transition to biofuels. 
As mentioned in Section 7, such a transition will probably take place at least on a European 
level and hence it can be anticipated that most of the production in the refineries in the region 
will have to be bio-based by 2050 (cf Footnote 38).  

However, an elimination of fossil based feedstock to the refineries will of course take time. 
Thus the refineries will have to gradually reduce its fossil based production while at the same 
time build up and increase its biomass based production. Yet, any future biomass-based 
production level which is of the same order as present will result in great logistical challenges 
with respect to biomass supply and handling. The future activity level will of course strongly 
depend on the development in the transportation sector. 

The two biomass cases described in Section 8.2 (Cases A and B) both correspond to a 
significant increase in biomass consumption, between almost three- and more than tenfold the 
current consumption in 2030 and between almost four- and more than twelve-fold in 2050. As 
a comparison, IEA (2013) estimates that between 2011 and 2035 the EU biomass energy 
demand will increase by 52% in their Current Policy scenario (CPS), by 67% in their New 
Policy scenario (NPS) and by 98% in their 450 scenario, corresponding to an increase from 
1,500 TWh in 2011 up to between 2,280 and 2,965 TWh in 2035. For the transport sector IEA 
(2013) assumes that demand declines by between 7 and 32% from 2011 to 2035 and that 
fossil fuels still covers between 63 and 86% of total demand in 2035 depending on scenario 
and with the smallest share of fossil fuels in the 450 scenario. According to IEA (2013), EU 
would be the largest global importer of biomass both for power generation as well as for 
                                                 
39 Maintaining current activity level has in this report been defined as having a constant market share. 
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biofuels in Year 2035 in the NPS. Assuming that the transport sector in the EU and in the 
KASK-SE region develops in the same way with respect to demand and fuel/technology 
distribution (see Figure 7.1) and based on Year 2011 final demand for crude oil in the 
transport sector in the EU as given by IEA (2013), biomass demand in the transport sector in 
the EU will reach around 1,820 TWh in 2050. In 2011, the EU consumed just above 160 TWh 
biofuels in the transport sector (IEA 2013).  

Thus, there are many indications that competition for supply of biomass will increase both 
rapidly over time and substantially by volume and therefore also the price on biomass. Hence, 
it will probably be useful for the main emitters in the region to start preparing for a transition 
to biomass at an early stage including securing supply at reasonable prices. It can therefore 
also be concluded that if the region wants to drastically reduce fossil fuel consumption in the 
transport sector by 2030 and eliminate it altogether by 2050 while at the same time keep 
industry activity at current levels (constant market share on all the markets they are 
represented), the supply and logistical challenges will be very significant and cost will rise 
accordingly. 

However, above all the previous sections imply that electrification of the transport sector will 
probably have to play a larger role than what has been anticipated in this study40. This will of 
course reduce activity levels at the refineries assuming such a development is governed by the 
development on European markets but more importantly it will also reduce the demand for 
biomass. Cutting the share of biomass to 50% from 2030 onwards in case B in Section 8.2 
(see also Footnote 26) would reduce annual demand by 15 TWh at the most. Cutting the 
biomass share to 40% from 2030 onwards would reduce annual biomass demand by 42 TWh 
at the most which still yields a biomass demand around 130-135 TWh annually in 2050, i.e. 
corresponding to the entire Swedish consumption. On the other hand, some 7 TWh electricity 
would be sufficient to cover 100% of demand by 2050 as given in Figure 7.1.    

Applying the results in Figure 7.1 on the transport sector in Sweden, there should be at least 
one million electric passenger cars in Sweden by 2030 (Sköldberg et al., 2014). At end of 
2014, there was only around 7,000 electric passenger cars in Sweden which means that the 
passenger car fleet for electric vehicles will have to grow by more than 36% per year on 
average between 2015 and 2030. This growth is nevertheless modest considering the 146% 
increase in all rechargeable vehicles in Sweden during 2014 (of which by far the most are 
passenger cars). The “significant” growth of electric vehicles during 2014 may in part be due 
to the premium given by the Government for so-called super clean cars, i.e. cars with CO2 
emissions of 50 grams/km or less. Assuming 36% annual growth between 2014 and 2030 also 
means that almost 270,000 electric passenger cars will be added to the fleet in 2030 which 
may be compared to 303,364 new passenger cars registered on average per year between 1997 
and 2014 (Statistics Sweden 2014a).  

Public and on-site production of electricity and heat, i.e. excluding heat produced by the 
industry, emitted 1.2 Mt of CO2 combined in 2012 burning an estimated 4.0 TWh fossil fuels, 
primarily natural gas. A combination of energy savings in the building stock in combination 
with increased wind and solar based power generation and locally produced biomass for 

                                                 
40 We have not considered hydrogen as a transportation fuel in this work but hydrogen may of course also take a 
substantial market share in the future, depending mainly on the development of fuel cell-cell technology 
(whereas the future of electric cars will depend on development of the battery) (see for instance Swedish Energy 
Agency 2015).   
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power and heat generation will relatively easy replace the fossil fuels utilized in this sector. It 
is emphasized however that some 1.6 TWh oil and natural gas is burnt directly on-site in 
buildings (in 2010) to generate heat and it has not been assessed in this report how easily 
these facilities can switch to bio-based heat generation. Yet, a fair assumption is that most oil 
fired boilers are of age and, when phased out, will not be replaced by new oil fired boilers. 
Thus, the oil part will most likely phase out itself due to ageing of the boilers.  

The two main scenarios for the electricity sector outlined in Section 6.5, namely the Green 
Policy and the Regional Policy scenarios, lead to complete phase-out of nuclear power by 
2030 and 2045 respectively. At the same time the share of intermittent power (wind + solar) 
increases from ca 6% in 2010 to 54% and 74% in 2050 in the Regional and Green Policy 
scenarios respectively. In the Green Policy scenario, the share of intermittent power reaches 
64% already in 2030. The region also transforms from being an exporter of electricity to 
mainly an importer of electricity although the volumes become marginal by 2050 in the Green 
policy scenario.  

In addition to the two main scenarios for power generation a third scenario was developed; 
namely the Climate Market scenario which focuses exclusively on climate mitigation post-
2020 and not on renewables or efficiency measures per se. In this scenario, nuclear power is 
reduced by two thirds by 2050 but not completely phased out while the share of intermittent 
electricity is kept relatively low, increasing slowly to 29% in 2050. By 2040, the region turns 
from being a significant exporter of electricity to a significant importer of electricity due to 
anticipated relatively larger demand in this scenario41. More details of the Climate Market 
scenario and an alternative Regional Policy scenario are given in the Appendix (A1).  

In summary, it can be stated that there are very significant challenges associated with 
emission reductions in the transport and industry sectors and that the future for the refineries 
in the region is highly uncertain. Large-scale transformation to bio-fuels in the transport 
sector will depend on the development in the rest of Europe implying that the volumes of 
biomass that will be required appear unrealistically high. One way to reduce the amount of 
biomass used in the transport sector will of course be to raise the share of electricity but again 
this will depend on factors outside the control of the region since it will require car 
manufacturers to scale up the production of electric cars which must be driven by markets of a 
much larger size than the Swedish market. Thus, the most realistic option for the transport 
sector appears to be a gradual transformation away from fossil fuels that follows the rest of 
Europe with electricity playing a substantial role (to reduce the biomass that eventually will 
be required) in combination with CCS and BECCS. 

The power sector in the region may evolve in several directions which all can comply with 
zero emissions by 2050. A complete phase-out of nuclear power will increase the challenges 
of the transformation with respect to handling high contribution from intermittent energy 
since a phase-out ultimately will lead to increased requirement for biomass to be used partly 
for base-load power generation and partly to balance the grid. Biomass should perhaps instead 
be reserved for the transport and industry sectors. As mentioned in Section 6.5, the large 
penetration of intermittent power generation will probably also require substantial 
investments in the power grid but this has not been investigated in this work.  

                                                 
41 Demand is higher in the Climate Market scenario due to increased electrification in industry and transportation 
as well as the absence of specific end-use efficiency policies.  



107 

Table 9.2: Derived emissions by sector 2010-50 in Section 8.3 and envisaged in Figures 
8.7 and 9.1, kton CO2 
  2010 2020 2030 2040 2050 
Publ. Electricity/Heat Production 1 263 859 589 52 0 
Heating (DH+on-site) 461 158 0 0 0 
Transport 4 627 3 300 900 500 0 
Industry 5 224 4 724 2 372 0 0 
Solvent use 35 18 0 0 0 
Total 11 611 9 058 3 860 552 0 

With regard to a reasonable timeline (roadmap) for CO2 emission reductions for the region in 
the short- (2020), medium- (2030) and long term (2050), Table 9.2 shows emissions by sector 
between 2010 and 2050 as derived in Section 8.3 and envisaged in Figures 8.7 and 9.1. 

It should be noted that the Year 2010 was a cold year leading to somewhat higher emissions 
for electricity and heat production (the two first groups in Table 9.2) than for instance the 
eight years average between 2005 and 2012 which was some 20% lower.  

Emission reductions for electricity and heat production have been assumed to be reached 
through a combination of lower demand caused by efficiency improvements in buildings, gas 
and oil boilers being replaced by biomass fuelled boilers and CHPs and large scale 
penetration of wind based power generation (see Table 9.1). The single largest emission 
sources in this group are Ryaverket combined cycle gas plant and the waste power plant at 
Sävenäs, both located in Göteborg, which combined emits between 600 and 700 ktons fossil 
based CO2 per year. Ryaverket is owned by Göteborg Energi which is owned to 100% by the 
City of Göteborg while the Sävenäs waste CHP is owned by Renova which is owned to 85% 
by the City of Göteborg. Both the Sävenäs plant and Ryaverket will be close to the end of 
their operating lifetime by 203042. Also, as mentioned above, the City is a large property 
owner. At the same time the City of Göteborg is aiming for that all DH should be produced by 
renewable sources, waste and industrial waste heat by 2030 (City of Göteborg 2014a, b). 
Also, Region Halland and Region Västra Götaland43 are large property owners in the region. 
Finally, it appears likely that individual boilers currently used for on-site production of heat 
over time will be replaced by DH and new bio-fuelled boilers. Thus, it can be concluded that 
it should be reasonably straightforward to reach large emission reductions from electricity and 
heat production in the region and, even more so, since the capacity to act to a large extent lies 
on local and regional administrations and politicians. 

Emission reductions in the transport sector given in Table 9.2 follows the results described in 
Section 7.1 (see Figures 7.1 and 7.2). As can be seen from Table 9.2 emissions have been 
reduced by more than 80% up to 2030 based on the national and regional targets of having a 
transport sector independent of fossil fuels by 2030 although it has not yet been established 
what the term “independent of fossil fuels” means in terms of fossil fuel quantities. 
Considerably more efficient cars, shifting of fuels and change in transport mode yield the 

                                                 
42 Another large emitter in the region is Ryaverket CHP in Borås (see table 8.3) which is owned by the City of 
Borås. There are detailed plans to replace Ryaverket in Borås with a 100% bio-fuelled CHP by 2030. The City of 
Borås is also aiming for a fossil free city.    

43 Region Halland and Region Västra Götaland are not to be confused with the Counties Administrative Board 
(CAB), see www.regionhalland.se and www.vgregion.se.  

http://www.regionhalland.se/
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scenario envisaged in Figure 7.1 (and Table 9.2) where fuel demand is reduced by 42% 
between 2007 and 2030 and with biomass and electricity together covering nearly 70% of 
total fuel demand in 2030. As mentioned above, this will require immediate and concerted 
action and strong incentives, not only on regional and national levels but probably also on EU 
level. However, since the aim is to reach zero emissions in 2050, the transformation may 
proceed slower than what has been envisaged above pending on potential restrictions on the 
use of fossil fuels and, as discussed above, this is for instance the case for the most climate 
ambitious scenarios given by both EC (2011) and IEA (2013). It appears likely that demand in 
the transport sector in the long term will be covered by biomass and electricity although with 
a considerably higher share of electricity than what has been envisaged in Section 7.1. 
Emissions from the transport sector may, at least in a transition phase, be neutralized through 
use of BECCS and/or purchase of international emission credits. In any case it seems 
imperative that the Swedish Government as soon as possible clarifies what the term “a 
transport sector independent of fossil fuels by 2030” means in terms of quantities of fossil 
fuels (see Footnote 38).  

A large part of the industry emissions in Table 9.2 comes from the refineries44. If fossil fuels 
are eliminated altogether from the European transport sector, emission reductions from the 
refineries are also eliminated although it is difficult to envisage such a transformation. As 
mentioned above, both EU (EC 2011) and IEA (2013) expect a relatively high share of fossil 
fuels in EU’s transport sector in 2035. In fact, the most climate ambitious scenario in EC 
(2011) expects that the transport sector in EU will emit more than 300 Mt CO2 in 2050, down 
from ca 800 Mt in 1990 and from 1,050 Mt in 2010 (see Figure 7.6). It is uncertain whether 
Sweden alone will be able to (and willing to) eliminate fossil fuels from its transport sector 
and if Sweden does so, it is difficult to estimate how fast such a transformation will happen. 
Fossil based emissions from the refineries will require CCS but also BECCS assuming that 
the fuels are delivered also to Swedish markets. The chemical cluster in Stenungsund, the 
cement plant in Skövde and the metallurgic industry Vargön Alloys (producer of 
ferrochrome) are all examples of process industries that cannot reach large emission 
reductions without the use of CCS, at least with current technology. CCS at the Skövde and 
Vargön plants will be costly due to the relatively small volumes of CO2 and long transport 
distance to feasible storage sites. Assuming that CCS and BECCS can be utilized from a 
technical, economical, regulatory and practical perspective, it seems difficult to envision the 
start-up of full-scale CCS systems earlier than 2030. From that perspective the emission 
reduction pathway shown in Figures 8.7 and 9.1 describes an optimistic view. On the other 
hand, assuming large scale CCS becoming feasible from 2030, it could possibly evolve faster 
than envisaged in Figures 8.7 and 9.1 involving more sites and larger CO2-volumes. 

Finally, only two industry plants have been analyzed in detail with regard to the potential for 
energy efficiency improvements and fuel switch (see Section 4). Yet, the analysis performed 
in this work assumes that also the other industries can reduce their emissions through energy 
efficiency improvements and fuel switch as shown in Sections 8.3 and 9 (see also Figure 8.7 
and Table 9.2). 

Thus, to summarize, emissions that today originate from burning of fossil fuels generating 
heat and electricity may be eliminated relatively swiftly within the medium term while 

                                                 
44 In 2010, the refineries emitted 2.1 Mt classified by Länsstyrelserna (2014) as emissions from “Energy supply”. 
In addition, the refineries emitted an unknown part of the 800 kton classified as “Fugitive emissions from use of 
fossil fuels”.   
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substantial emission reductions from sectors such as transport and industry are not likely to 
materialize until 2030 and later. If the transport sector moves away from fossil fuels it appears 
likely that demand will be covered by a combination of biomass and electricity and where 
electricity will have to play a large role. As a consequence, activity levels at the refineries in 
the region is likely to be dramatically reduced as such a development, if it occurs, is likely to 
evolve throughout Europe. 

10 Conclusions 
This report provides an analysis of pathways which can meet climate and renewable targets in 
the Västra Götaland and Halland counties – i.e. the Swedish part of the KASK region. The 
work is part of a larger project involving both the Danish, Norwegian and Swedish part of the 
KASK region (Chalmers-Tel-Tek 2015). Focus is on identification and analysis of relevant 
pathways towards zero CO2-emissions by 2050 including analysis covering the potential for 
both increased energy efficiency and large-scale penetration of renewable energy. The work 
comprises four focus areas; 1) potential for improved energy efficiency in key industries in 
the region, 2) potential for more energy efficient buildings, 3) potential for large-scale 
integration of renewable energy and 4) potential for GHG emission reductions in the transport 
sector. A number of technical reports have been written covering the four focus areas and 
these are listed in the beginning of this report.  

In Section 4 the energy savings potential is analyzed for two key industry sites in the region; 
Preems refinery in Lysekil and the chemical cluster in Stenungsund. Combined, at these two 
sites, it is concluded that almost 500 GWh fuel could be saved annually by 2020 increasing to 
1,300 GWh per year in 2030 yielding a potential CO2 emission reduction of 120 and 330 
ktons respectively. However, it is also concluded in Section 4 that to meet significant CO2 
emission reduction requirements in the long-term, the industries in the region must aim for 
radical change. Such changes could include a switch to biomass feedstock, adoptation of new 
process technology and implementation of ambitious programmes to maximize process 
energy efficiency and CCS. 

Taking basis in the regions specific building structure, the energy savings potential in the 
building stock in the region is modelled (Section 5) Applying a package of Energy 
Conservation Measures (ECMs), up to 16 TWh, mostly heat, could be saved. The single most 
efficient measure would be to install ventilation systems with heat recovery. Considering only 
those measures where the cost of the measure is lower than the cost of the saved energy, i.e. a 
techno-economic potential, up to almost 6 TWh can be saved of the currently around 29 TWh 
used in the building stock of the region (see Footnote 7). Refurbishment of the buildings that 
are included in the so-called Miljonprogrammet offers a great opportunity for large energy 
savings although challenging. As for reductions in (direct) CO2 emissions, this has been 
estimated to range between 330 and 790 kt. It should be kept in mind that the emission 
reduction potential is based on direct emissions from the region, based on application of 
national average emission factors for coal, gas and oil and for production of electricity and 
heat and thereby neglecting overall system effect of CO2 emissions. 

In Section 6 it is shown that there is a large potential for renewable energy in the KASK-SE 
region. Under the assumption that the region maintains a strong forest industry and there is a 
positive economic development globally, up to 6 TWh additional biomass could be produced 
within the region. Likewise, under the existing subsidy regime consumer based solar PV 
installations could reach production levels up to 2.5 TWh electricity, utility scale PV 
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installations could raise this potential substantially but that would require subsidy schemes 
dedicated for this purpose. Foremost however, the bottom-up study on available land area for 
wind power reveals a large potential for cost efficient onshore wind power in the KASK-SE 
region. The analysis in Section 6.2 indicates that up to 10 GW wind power could be installed 
at electricity prices between 65 to 70 € per MWh, generating between 20 and 25 TWh 
annually. This result suggests that continued expansion of wind power within the region 
should focus on onshore sites due to the considerably higher cost of offshore wind power, at 
least under the existing financial support schemes. Results from the modelling of the 
electricity generation system in the region indicate that large-scale deployment of renewables 
in combination with phase-out of nuclear power is likely to turn the region into an import 
region with regard to electricity. Large scale penetration of intermittent power is also likely to 
create significant challenges for the electricity grid in the region as well as with regard to 
balancing of the system. At the same time, the local effect on CO2 emissions would be 
relatively marginal since this sector already has modest CO2 emissions. On the other hand, 
renewable generation in the KASK-SE region would probably replace fossil based generation 
in other parts of Europe and thus lead to overall lower emissions.    

Section 7 analyzes the possibilities for the transport sector in the region to reach zero or near 
zero CO2 emissions by 2050. In section 7.1 it is shown that the region can reach a zero CO2 
emission transport sector by 2050, but this will require substantial policy intervention and 
imply considerable challenges. Likewise, in Section 7.2 it is shown that emissions from road 
transport in Göteborg, could be reduced by more than 80% by 2030 versus emissions in 2012. 
In both cases (in KASK-SE and in Göteborg respectively) emission reductions are achieved 
through an expected significant reduction of base demand in transport work caused by in 
particular more efficient vehicles including efficiency increases as a result of a shift to electric 
vehicles. By 2050, fuel demand in the transport sector in KASK-SE is assumed to be covered 
to two thirds by biomass and to one third by electricity. However, as concluded in Section 7.3, 
there are significant barriers to such a development. For instance, vehicles will not be 
developed for a relatively small Swedish market, it will require at the very least a European 
market and the EU is moving very slowly forward in this regard. Also, as mentioned above, 
development towards a CO2 emission free transport sector will probably require very strong 
economic incentives.  

As concluded in Section 8.1, it appears likely that the KASK-SE region will reach its goal of 
reducing energy intensity by 20% in 2020 and by 27% in 2030 although the latter has not yet 
become an officially announced target other than by the EU. However, it should be 
emphasized that it is difficult to get an extensive overview of absolute energy consumption 
and relevant individual plans and targets, both within each sector (transport, industry, 
buildings) as well as within each municipality.  

Section 8.2 discusses the potential contribution from biomass. It is concluded that biomass has 
an important role to play as base load and balancing power in a power generation system with 
high penetration of intermittent renewables and, even more so, in the case of a nuclear 
decommissioning. Section 8.2 also explores potential contribution from biomass being used as 
raw material by the refineries and the chemical cluster in the region. It is concluded that a full 
transformation to bio-based raw materials will be a highly challenging task if the refineries 
are to maintain its current activity level and market share in a European transport system 
evolving towards a fossil free transport system by 2050. In Section 8.3 we conclude that only 
four options exist for the refineries in the region if they are to reach zero CO2 emissions: 

1) Complete transformation to bio-refineries and maintain current activity level. 
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2) Transformation to bio-refinery and reduced activity level. 
3) Continue to operate with fossil based raw material which will require CCS to eliminate process related 

emissions. If the fossil based fuel is used by the transport sector in Sweden, BECCS will be required to 
neutralise these emissions (i.e. to achieve zero emissions from the entire energy system of the region by 
the end of the period).  

4) Combination of options 1) to 3).      

Sections 8.3 and 9 also conclude that it will be extremely challenging to reach the goal of zero 
CO2 emissions by 2050 unless 1) activity levels at the refineries is severely reduced or 2) 
CCS and BECCS are applied but there are still many regulatory and economic barriers for 
CCS and BECCS. As a consequence it also seems obvious that electrification of the transport 
sector will have to play a large role. 

An overall assessment of the challenges associated with meeting the long term (Year 2050) 
climate targets set up by the region shows that more than half the emission reductions 
required will impose very significant challenges. Many of these challenges can only be 
overcome by investments in energy infrastructures for which there are only one or a few 
investment cycles left until Year 2050. Yet, there are also a significant amount of measures to 
be taken which should be of a less a challenge to implement. Taken together, we conclude 
that if any chance to meet the long term targets there is an immediate need to develop a 
framework which can ensure that short term actions can be linked to long term visions. If not, 
there is a risk that targets required on the long term remain visions. Thus, we conclude that 
establishment of a roadmap to meet climate and renewable targets in the region – such as the 
one shown in this report - requires politicians, industries and other key actors to collaborate at 
an early stage to develop an overall energy master plan for the region. 

11 Suggestions for further work 
This work constitutes a first attempt to put figures on the different measures that need to be 
taken to reach energy and climate targets of the region. The work presented in this report is by 
no means complete in the sense that it answers what actions are to be taken and what is the 
capacity to act of different organizations and stakeholders within the region. More work is 
obviously required in order to develop a concrete strategy with action points for the region at 
the same time as many of the actions required depend on policy measures on national and EU 
levels as well as development of global markets of export products such as transportation 
fuels, chemicals and vehicle technologies. Yet, if the Halland and VGR regions (and City of 
Göteborg) are to have high ambitions in the area of sustainable development (e.g., as 
expressed in “Regionala Miljömål för Västra Götaland”, VGR 2014), there should be a need 
to further develop and analyze concrete actions and derive concrete “figures” with respect to 
what is needed to link short term actions with the long term visions. This so that the region is 
prepared for the future development of national and international policy measures as well as 
in order to take local initiatives which are sustainable from an environmental, economic and 
social point of view. From the work we can identify some important steps for a continued 
analysis. These are, in no particular order, as follows: 

The electricity sector should be analyzed in more detail than what has been done in this work. 
It is important to analyze the role of nuclear and bio based power in relation to large 
penetration of intermittent energy (mainly wind power), grid and balancing requirements and 
the need for increased imports. The overall analysis of the electricity sector should also 
include detailed analysis of the future role of electricity in the transport sector. The future 
development of the electricity supply system will obviously depend on corresponding national 
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and EU development, in particular with respect to the future of nuclear power. Yet, the 
expected penetration of renewable electricity under different scenarios should be further 
assessed in order to plan for rational allocation of renewable electricity generation, not at least 
wind power but also what can expected from distributed generation such as solar PV should 
be analyzed. In connection to this, the prospects of demand side management (especially 
demand response measures) for variation management should also be investigated in more 
detail. 

This work has identified a considerable potential for onshore wind power. Considering the 
higher costs and challenges with offshore wind power with respect to expected life time 
(O&M costs) it would be of interest to make a deepened onshore wind power assessment, 
considering factors not included in this study such as local interests and public acceptance 
issues. For example, the analysis done in Section 6.2 on available land area for onshore wind 
power could be further developed by integrating and comparing the analysis with existing 
wind plans in each municipality. 

As highlighted throughout this report, biomass will obviously play a key role in the region’s 
future energy system as it probably also will in several sectors in Sweden as well as in other 
regions where the right conditions will be present. Yet, biomass is limited with respect to 
supply and in a carbon constrained future there will be competition for the biomass both 
between regions and between sectors. Hence, it should be analyzed how the region can utilize 
the biomass resource as efficiently as possible as well as how the international biomass 
market is likely to develop under different scenarios.  

It seems likely that the region will need CCS and/or BECCS to meet strict CO2 emission 
reduction requirements in the future. Thus, it should be investigated what is required for CCS 
to be utilized in the region including identification of the prerequisites for a relevant local 
CCS chain, including if and how a CCS infrastructure can be integrated with other regions. 
The role of CCS in Sweden is obviously strongly linked to the future development of the 
energy intensive industry and its future role in the region should therefore be analyzed under 
different scenarios of future development of the economy and relevant markets. Of particular 
interest is to analyze to what extent the industry of the region could be a forerunner towards 
sustainable processes. It seems important that such an analysis is carried out in close co-
operation with the industry in the region. 

The application of energy savings measures in buildings should be analyzed in more detail 
with respect to non-technical barriers for application of energy conservation measures (such 
as the role of cultural heritage) as well as the balance between energy conservation measure 
and to what degree waste heat can be used for heating in buildings with district heating. In 
addition, there is a need for improved statistics on the building sector of the Swedish KASK 
region, which would facilitate a better understanding of the existing building stock and its link 
to the energy system, and thereby facilitate a deepened analysis of how the building sector in 
the region can be transformed. 
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A1 – Modelling of Europe’s electricity generation system, 
alternative scenarios. 

Prior to the election in Sweden in Autumn 2014, the political parties now forming the new 
government indicated that they wanted to see an increase in the joint Norwegian-Swedish 
Green Certificate target by an additional 30 TWh between 2020 and 2030 (Svensk Vindenergi 
2014). Such an increase in ambition is in line with the assumptions in a second version of the 
“Regional Policy” scenario (“Regional Policy 2”) applied in this work (see Section 6.5). The 
view of Norwegian decision makers on such target increases is currently, however, highly 
uncertain. It is estimated that renewable electricity generation under the existing electricity-
certificate scheme needs to increase by approximately 3 TWh annually between 2014 and 
2020 in order to meet the joint target of an increase of 26 TWh between 2012 and 2020 
(Swedish Energy Agency, 2014). This annual increase is assumed to remain also between 
2020 and 2030 in our second version of the Regional Policy scenario, implying that the total 
increase between 2012 and 2030 corresponds to around 55 TWh renewable electricity. CO2 
emissions from electricity generation in Europe are reduced by approximately 95% by 2050.   

Besides, the “Green Policy” and “Regional Policy” scenarios, we also briefly analyze 
consequences for electricity generation in the KASK region based on a third European 
scenario, the “Climate Market” scenario. We use this only for a sensitivity analysis of the 
prospects for wind power in the region. Briefly, the “Climate Market” scenario focuses 
exclusively on climate mitigation post-2020. Thus, this is distinctively a ”one-goal” scenario 
and, as in the other scenarios, CO2 emissions are reduced by 95% up to 2050. Due to 
increased electrification in industry and transportation as well as the absence of specific end-
use efficiency policies, electricity demand is relatively larger in this scenario than in the two 
previous scenarios. Both CCS and new nuclear power plants are optional if considered 
profitable in the modelling. Figures A1.1 and A1.2 shows the resulting fuel/technology 
distribution for the power sector in KASK-SE between 2012 and 2050 in the Regional Policy 
2 and Climate Market scenarios respectively. 

                                   
Figure A1.1: Electricity generation by fuel/technology 2012-2050 in KASK-SE in the Regional Policy 2 

scenario. 
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Figure A1.2: Electricity generation by fuel/technology 2012-2050 in KASK-SE in the Climate Market scenario. 
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A2 - Transport Sector Incentives  

A selection of the most important incentives that were proposed in Elforsk (2012) are 
presented and discussed below (see also Sköldberg et al., 2014).  

General incentives that should be introduced immediately: 

• Increased fuel tax, e.g. of the CO2-tax on fossil fuels. According to Trafikverket (The Swedish 
Transport Administration, 2012) it can be necessary to raise the cost of driving by 50% (in addition to 
other measures and incentives) to reach the targets for the transport sector. 

• Investments in railway infrastructure. 
• Research on for instance urban planning, public transport, logistics, electric vehicles, second generation 

biofuels and vehicle efficiency. 
• Fringe benefit tax on parking at the workplace. 

 
Incentives with respect to reduced transport demand and modal shift that should be 
introduced immediately: 
 

• Parking strategies, e.g. limited parking space in the city center and/or higher parking fees. 
• Introduction of car-free zones in city centers 
• Congestion charges. In Stockholm, the introduction of congestion tax has led to a stable, general decline 

of traffic of between 18% and 22% (Transportstyrelsen – The Swedish Transport Agency - 2014) while 
results from a compilation of 16 congestion tax systems in Europe have shown that transport work for 
private cars has been reduced by between 14 and 23% (CURACAO 2009). The much shorter time 
period that the congestion tax has been in effect in Göteborg indicates a slightly lower decline than 
experienced in the European study, i.e. an 11% decline on average (Transportstyrelsen 2014). 

• Restrictions on location of shopping centers 
• State aid to intermodal terminals leading to increased trans-shipment opportunities, increasing the 

benefit of railway investment and enabling the most efficient multi-modal transport solutions. 
• Requirements for joint distribution of goods from and to city-centers and urban areas. 
• Increased efforts to improve public transport systems. Factors like travel time, comfort, safety and 

information appear to affect the choice of transport more than the fee. 
• Speed limitations, lower speed limits 

Potential barriers and problems with regard to reduced transport demand and modal 
shift: 

• Long lead times are required to change urban structures and infrastructure. 
• Difficult to change public attitude to, and change of, transport mode and to opt out of car ownership. 
• A prerequisite for a shift of individual transport from car to public transport is that traffic services that 

are offered are relevant, reliable, and that travelers find it easy and secure to use. This places great 
demands on the public transport authorities and companies, and concerted efforts are needed to really 
make an impact. 

• It has proven difficult to get competing companies to collaborate on delivery vehicles and to share a 
common overall administrative system for co-distribution. 

  
Incentives with respect to higher efficiency that should be introduced immediately or by 
2020:  
 

• Should be introduced immediately: Vehicle tax based on a “bonus-malus” system. The higher specific 
emissions the higher the tax. Low-emission cars could even receive a premium. 

• Should be introduced immediately: Tougher EU requirements for emission reductions from trucks. 
Sweden has a very limited ability to address this issue alone but the EU commission is working on a 
strategy aiming to reduce emissions from heavy duty vehicles. 
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• Should be introduced by 2020: Tougher EU emission requirements for private cars. Also with regard to 
this issue Sweden has a very limited ability to address it alone. The EU commission put forward a 
proposal to set a mandatory ceiling of 95 grams CO2 per km in 2020. The European Parliament agreed 
in February 2014 to an amended proposition where the requirement of 95 g/km will be applied to its full 
extent from 2023. Trafikverket has proposed that Sweden should aim for an EU-wide ceiling of 70 
g/km in 2025 and 50 g/km in 2030 (Trafikverket 2012). 

Potential barriers and problems with regard to higher efficiency: 

• If the EU chooses not to work for further emission reduction requirements after 2015 it will be difficult 
for Sweden alone to accomplish any significant changes in this respect. 

• Higher efficiency yields lower operating cost for the vehicles which in turn may lead to a rebound effect 
followed by higher transport demand, see for instance VTI (2014 – The Swedish National Road and 
Transport Research Institute 2014).  

Incentives with respect to fuel shift:  

• Should be introduced immediately: A tightening of the clean vehicle definition is needed. It is important 
to consider the long-term nature of the definition to provide security for consumers and market 
participants. 

• Should be introduced immediately: Use of quota system to force the use of desired amounts of 
renewable fuels. 

• Should be introduced immediately: Support the production of biofuels by imposing fees on fossil fuels 
that can be used for this purpose. 

• Should be introduced immediately: Government support for the demonstration of new processes for 
biofuel production, particularly second-generation fuels. 

• Should be introduced immediately: Demonstration support for energy efficient vehicles. 
• Should be introduced immediately: Support for the purchase of electric vehicles, for example develop 

the super green car premium. 
• Should be introduced immediately: Government support for demonstration of electrified roads. 
• Should be introduced by 2020: Government support for expansion of the charging infrastructure. 
• Should be introduced by 2020: Prohibition of fossil fuels from a given date.  

Potential barriers and problems with regard to fuel shift: 

• There are risks associated with the economic instruments favoring the use of biomass in one sector over 
another and the difficulty of knowing which are the most resource-efficient. 

• In general there are long lead times when it comes to produce new fuels, i.e. to move from pilot through 
demonstration plants to permitting and construction of full-scale plants. 

• Since there are many different alternative fuels it will be difficult/risky for vehicle manufacturers to 
choose the right “tracks”. 

• Although there is great potential for the introduction of electric transport, the different techniques for 
this type of vehicles are still under development for large-scale commercialization. The most critical 
factors are believed to be the evolution of cost of batteries and fuel cells. 
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A3 – Biomass feed to the chemical cluster in Stenungsund 

The two main chemicals used in the petrochemical industry in Stenungsund are ethylene and 
propylene with the ratio on energy basis of approximately 5:1. The simplest way to produce 
ethylene from biomass is through dehydration of ethanol, which is a well-known and 
established process. Even though other hydrocarbon sources can be used, all hydrocarbons 
produced from biomass that is of interest for the petrochemical industry have in common that 
they can be directly used as a blend in for gasoline or Diesel. Hence, they become part of the 
established global market for drop-in biofuels. It is highly likely that the biomass fuel market 
in the year 2050 and beyond will be much larger than the market for biofuels used in the 
petrochemical industry and, therefore, the fuel market will set the economic value on primary 
biofuel source, i.e. there will be a global market price. Thus, this will be independent if the 
petrochemical industry produces the biofuel by themselves or not, as there will be a 
competing market for the biofuel that will influence the achievable overall income for the 
petrochemical plant. So if not the petrochemical industry has the intention to become a biofuel 
producer acting on the global market; it would for them be much more beneficial to buy the 
biofuel of interest in competition with the refineries than produce it themselves. In summary 
the cost for producing polymers from biomass is today and will in the future be directly 
proportional to the global market price on bioethanol. Hence, if the petrochemical industry 
can identify a sufficient market for biopolymers, all they need to do is to add a dehydration 
unit to the existing process equipment in order to produce ethylene from bioethanol through a 
mature process having a well-defined investment cost, high availability both on process and 
fuel availability, known efficiency and known maintenance and operating costs. Figure A3.1 
illustrates current and likely future use of lignocellulosic biomass and its relevant supply 
chain as discussed above. 

                    
Figure A3.1. Current and likely future use and supply of lignocellulosic biomass in a climate constrained 
future. 
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