
Distributed and Online Advanced Metering Infrastructures
Data Validation using Single-Board Devices

Master of Science Thesis in Computer Systems and Networks

Jonas Sandström

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
Gothenburg, Sweden, June 2015

The Author grants to Chalmers University of Technology and University of Gothen-
burg the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the
Work does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for
example a publisher or a company), acknowledge the third party about this agree-
ment. If the Author has signed a copyright agreement with a third party regarding
the Work, the Author warrants hereby that he/she has obtained any necessary
permission from this third party to let Chalmers University of Technology and Uni-
versity of Gothenburg store the Work electronically and make it accessible on the
Internet.

Distributed and Online Advanced Metering Infrastructures
Data Validation using Single-Board Devices

Jonas Sandström

c© Jonas Sandström, June 2015.

Examiner: Marina Papatriantafilou
Supervisors: Vincenzo Gulisano and Magnus Almgren

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Gothenburg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Gothenburg, Sweden June 2015.

Abstract

Traditional electrical grids are evolving to information-carrying cyber-physical elec-
trical grids, also referred to as Smart Grids. One of the enablers of this shift is Ad-
vanced Metering Infrastructures (AMIs), networks of heterogeneous meter devices
that provide information and remote control to energy suppliers. AMIs produce a
flow of information carrying the health and power consumption of the infrastructure.
This information flow is usually provided at predefined time intervals and concerns
large amounts of data. For instance, if one hundred thousand meters are deployed
in a city and energy consumption readings for each household are reported every
hour, 2.4 million consumption readings per day need to be processed. Electricity
suppliers can use this information stream in novel applications, such as real-time
pricing and demand-based production. Unfortunately, the correctness of the energy
consumption data stream cannot be taken for granted since there are many potential
error sources such as faulty devices, wrongly calibrated devices, lossy communication
protocols, or fraudulent users, among others. Hence, there is a need for validation
before significant decisions are made based on this data. Of importance is that the
validation is performed in a real-time fashion with low latency, to deliver up-to-date
information. Needed validation may change with the specific AMI or with differ-
ent error types. Thus, the validation need to have the possibility to consist of a
set of rules and be reprogrammable e.g., by adding, removing or modifying exist-
ing validation rules. In order to be fast and scalable, with the increasing number
of households and finer time granularity, the solution requires the validation to be
distributed and parallel. Those specifications can be met by using data streaming.
Notice, to accomplish a deployment of such a distributed system in an AMI, Single-
Board Computers (SBCs) could be used with low cost and energy use.

This thesis builds a prototype of such a system. It uses data streaming to validate
the consumption data. Data streaming is necessary for online analysis. Stream
Processing Engines (SPEs) consume the data stream immediately upon arrival by
utilizing continuous queries. These continuous queries can be implemented to for-
mulate validation rules, cleansing the consumption data. The implementations can
be modelled to handle specific errors, which gives the system customizability. SPEs
can process large amounts of data with low processing latency and in distributed
and parallel fashion, and thus achieve high throughput. To make the system dis-
tributed and AMI deployable, a cluster of SBCs running a SPE will be used. Thus,
also keeping the cost and energy usage low.

This thesis show that this is possible with an almost linear increase in processing
capacity with each added SBC, i.e. in a nearly perfect scalable way.

Acknowledgement

I would like to sincerely thank my supervisor Vincenzo Gulisano for all the support
and guidance, he has offered during the whole project. Big thanks to, my supervisor
Magnus Almgren for the constructive feedback, regarding written and oral presen-
tation. I would also like to thank my examiner Marina Papatriantafilou for her
guidance during this thesis project.

Jonas Sandström
Gothenburg, June 2015

Contents

1 Introduction 1
1.1 Background . 1
1.2 Problem . 1
1.3 Solution Overview . 2
1.4 Evaluation . 2
1.5 Organization of the Thesis . 3

2 Preliminaries 4
2.1 System Model: Advanced Metering Infrastructure 4
2.2 Data Streaming . 5
2.3 Stream Processing . 8

2.3.1 Parallelism in Storm . 9

3 Related Work 11
3.1 Advanced Metering Infrastructures 11
3.2 Data Streaming . 12
3.3 Data Validation . 13

4 Design 15
4.1 Validation Rule 1 - Fixed Filter . 15
4.2 Validation Rule 2 - Varying Filter 16
4.3 Validation Rule 3 - Interpolation . 17
4.4 Discussion of Deployment Options 18

5 Implementation 19
5.1 System Architecture . 19
5.2 Implementation of Data Streaming Operators in Storm 20

5.2.1 Measuring Platform . 20

6 Evaluation 22
6.1 Evaluation Setup . 22

6.1.1 Data . 22
6.1.2 Hardware . 22
6.1.3 Software . 23
6.1.4 Storm Parallelism Setup . 24

6.2 Validation Rule 1 - Fixed Filter . 25
6.3 Validation Rule 2 - Varying Filter 26
6.4 Validation Rule 3 - Interpolation . 27
6.5 Summary . 27

7 Future Work 29

8 Conclusions 30

9 List of Abbreviations 31

10 Appendix 35
10.1 Other Stream Operators . 35

List of Figures

1 Advanced Metering Infrastructure - with its components SMs, MCUs,
and the Utility . 4

2 Example of a time-based sliding window with size of 5 hours and
advance of 2 hours . 6

3 Example of a tuple-based sliding window with size 2 and advance 1 . 7
4 Storm topology - with its components spouts and bolts 8
5 Storm cluster - with the necessary daemon processes 9
6 Relationship between tasks, executors and worker processes 10
7 Example of the filtering condition of the validation rule - Fixed Filter 15
8 Example of the evolving filter rule - Varying Filter 16
9 Example of the interpolation rule - Interpolation 17
10 Overview of the deployment options in the AMI 18
11 Software system for the prototype 19
12 Test environment . 23
13 Fixed Filter - Measuerments for one, two, three and four Odroids . . 25
14 Varying Filter - Measuerments for one, two, three and four Odroids . 26
15 Interpolation - Measuerments for one, two, three and four Odroids . 27

List of Tables

1 Smart Meter tuples’ schema . 5
2 Parameters of the electrical consumption simulator 22
3 Thread distribution in the topologies 24
4 Fixed Filter - Maximum throughput for Odroids 25
5 Varying Filter - Maximum throughput for Odroids 26
6 Interpolation - Maximum throughput for Odroids 27
7 Price and power comparison of validation systems 28

1 Introduction

1.1 Background

Traditional electrical grids are evolving to cyber-physical electric grids. This shift
involves the deployment of Advanced Metering Infrastructures (AMIs), networks of
heterogeneous device such as Smart Meters (SMs) and Meter Concentrator Units
(MCUs) that share information with energy distributors and providers. Energy
consumption data produced by the AMIs’ devices is known to be noisy, lossy and
possibly delivered out of order. Incorrect, out of order or lost data occur due to
faulty devices, wrongly calibrated devices, lossy communication protocols, or fraud-
ulent users, among others. In order to cleanse the data before it reaches the utility
management the consumption data is preprocessed through data validation anal-
ysis. This analysis depends on a set of validation rules, which are depending on
the specific functionality of the AMI. If for example it is expected that all values
should be at least zero or positive, negative consumption is not expected. Then the
data can be filtered by a validation rule that removes all negative values. These
validation rules are written by system experts that know the characteristics of the
specific AMI and how the values of the consumption data are suppose to be format-
ted. The amount of consumption data produced by the SMs grows large as the AMI
includes each household in a block, district, or town. Energy consumption readings
are generated with a predetermined periodicity by heterogeneous devices that uses
the same data format. Computing power is required to validate this burst of data, as
the utility management relies on real-time data for applications as real-time pricing
and demand-based production. A scalable system that can easily create and utilise
validation rules is desired.

1.2 Problem

The task is to validate this large quantity of real-time data fast, to be delivered to the
utility management with low latency. In order to be able to validate data from e.g. a
city of 100000 SMs, for correct real-time pricing, the system needs to be distributed
and parallel. Distributed as the network itself is constructed of distributed SMs in
the periphery, to be fast in such a setting the validation as well must be distributed.
The distributed computational resources needs to be connected to validate the data
in parallel, to be as fast as possible. In the context of AMIs the system also need
to placeable in the network and have low energy consumption, this can be achieved
by using an already deployed device as a MCU or a dedicated one. To cover the
need for different validation rules for different AMIs and faults the rules need to be
changeable. The rules also needed to validate the data with regard to data from
single SMs, correlated data from many SMs or external data. For such a system
to be affordable and have decent deployment costs a possible solution would be to
use distributed and parallel streaming, running on Single-Board Devices (SBDs). A
SBD is dimensionally small and has most of the functionality of a regular computer,
built on a single circuit board.

To reach a working prototype the validation must be implemented for streaming,
with the properties of distribution and parallelization in mind. This can be achieved
by using a Stream Processing Engine (SPE) with those features. A SPE continuously
process the input stream of data by running continuous queries, in these queries the
needed validation can be implemented. Then the SPE has to be deployed on the

1

SBD. If high processing capacity is required the devices can be connected into a
cluster, by connecting them through a switch. This then requires that the valida-
tion is written so that the data stream is partitioned, according to SM. Causing
each SBD to only process data from a certain set of SMs. The task is to process the
data stream as close to real-time as possible, consequently the evaluation criteria
will be throughput and latency of the processed data. The overall challenge is to
achieve higher processing with additional SBDs, without distorting the data in this
parallel and distributed system. Minor challenges are to measure the evaluation
metrics, tweak the system for good performance and to install needed software and
hardware, so that they run smoothly together.

1.3 Solution Overview

SMs produces a data stream of consumption measurements. To process the data
stream a SPE will be used, this to avoid storage before processing as in a Database
(DB) system. The SPE process data by continuous queries defined as Directed
Acyclic Graphs (DAGs) of operators. These queries are then executed continuously
by the SPE. Because of the query format validation rules can be compiled of standard
operators provided by the SPEs. Use of SPEs are popular in online data analysis
applications as Twitter, Spotify and Yelp. There are several different SPEs that are
built and specialised in specific areas. The validation in this thesis needs to be as
fast as possible therefore the SPE must have the possibility to process the stream in
a parallel and distributed fashion. For the implementation the thesis use the SPE
Storm, which is open source, has a large community, provides parallelization and
distribution. Standard operators in Storm are spouts and bolts. Spouts are from
where the data are flowing into the DAG, called topology in Storm, and bolts are
the computation component. Bolts are used to compose validation rules. Storm has
the ability to parallelize and distribute its queries among threads, cores, processors
and computers. This results in data processing with high throughput, as well as
the possibility to leverage it by adding more processing entities. This thesis use a
dedicated computation device, Odroid-U3, in order to be able to test how good the
system works. The Odroid is a small Single-Board Computer (SBC), that has low
electrical consumption. To take advantage of Storm’s parallelization properties and
the Odroids collected computation capacity, a cluster of Odroids will be connected.

1.4 Evaluation

The benefits of running data validation on top of the SPE Storm in a cluster of
Odroid-U3 SBCs are going to be evaluated. Metrics used to evaluate the system
will be throughput, based on tuples/second, and processing latency. Through vali-
dation the thesis want to show the scalability property of the system, that through-
put increases and latency is retained with every added SBC. The validation rules
implemented on top of Storm will be analysed to demonstrate the scalability and
added computation power as the SBC cluster enhances. A set of three validation
rules will be implemented to analyse the system properties regarding simple single
tuple computation as well as computations based on a collected set of tuples.

2

1.5 Organization of the Thesis

The organization of the thesis is as follows. Firstly, the background concepts needed
to understand the rest of the thesis are presented in Preliminaries 2. Work already
presented that is related to the subject in this thesis can be seen in Related Work 3.
In Design 4 and Implementation 5 the solutions for the problems of this thesis can be
seen. The evaluation of the prototype system, in form of throughput and latency, is
presented in Evaluation 6. Further improvements and ideas are presented in Future
Work 7. Findings amassed during the project is presented in Conclusions 8. The
abbreviations used in the thesis can be found in List of Abbreviations 9.

3

2 Preliminaries

The following sections will provide an introduction to the general system with focus
on this thesis’ challenges and motivation. The level of abstraction moves from an
overall system model of Advanced Metering Infrastructure to the specific techniques
used to solve the challenges. Data streaming and SPEs are the techniques used
to enable fast validation of electric consumption data. The idea is to create an
understanding to enable the reader to later be able to follow the implementation
process.

2.1 System Model: Advanced Metering Infrastructure

Electrical power grids are evolving, previously they only transported electricity from
plants to end users. Today they also offer applications in for example communica-
tion and data processing, which has coined the term Smart Grid. Products that are
provided and areas that have been researched are real-time pricing [2], demand and
response based consumption [14], costumers’ privacy [27], vulnerabilities granted on
the basis of remote control [9], intrusion detecting sensors [7] and consumption mon-
itoring for costumers [18]. A smart grid is a communication and monitoring network
layer connecting all entities of a power grid from power station to end consumer.

SM

SM

SM

SM

SM

MCU

Utility

SM

SM

SM

SM

SM

MCU

SM

SM

SM

SM

SM

MCU

Figure 1: Advanced Metering Infrastructure - with its components SMs, MCUs, and
the Utility

Advanced Metering Infrastructure (AMI) refers to a full measurement, collection,
and analysing system that can handle different types of products such as water, gas,
electricity, and others. Consumption is measured and reported to the utility man-
agement. AMIs for electrical consumption consist of four parts Smart Meters (SM),
Meter Concentrator Units (MCU), communication network and utility management,
which can be seen in Figure 1. In this thesis only the electrical consumption of the
households are considered, which removes the possibility for the customers to intro-
duce energy into the power grid. However, if the grid owner allowed it the customers
could produce energy by using solar panels, wind power or another energy source
and introduce the excess into the power grid. SMs provide electrical consumption
readings that are forwarded through the communication network by the MCUs to

4

the utility management. In reality these networks can be connected in various net-
work topologies such as direct, tree, mesh or others. In direct connection everything
is directly connected to the end-point, no interconnection between nodes. While
a tree topology has a hierarchy where the number of nodes grows with the layers,
a break in connection between the layers could result in lost connection for many
nodes. In a mesh topology all nodes are connected and a break in one connection
cannot lead to system failure.

A SM’s essential purpose is to measure costumers’ power consumption and report it
to the service provider as close to real-time as possible. In AMIs SMs enable two-way
communication, which provide the options of resetting the meter, the internal clock
or the measurement interval. The monitoring period for electricity consumption can
be fixed or vary over time.

Carrier of the information through the AMI network is the communication network.
The network is often a combination of several networks and techniques depend-
ing on hierarchy, size and landscape. The entities can be Home Area Network,
Neighbourhood Area Network and Wide Area Network. Both wireless and wired
communication are used. The key is that the information is delivered in real-time
in a secure measure, without the possibility for fraudulent interception.

2.2 Data Streaming

A data stream is an unbounded volatile sequence of data produced over time. Data
streams are usually used when an entity produces a huge flow of data that has to be
processed with in real-time. Application areas are financial analysis [25], online ad-
vertisement metrics [3], fraud detection in continuous data flows [11] and a defence
framework against DDoS attacks [8]. These application are all dependant on the
data stream processing paradigm, which is an alternative to the store-then-process
paradigm of databases (DBs). In an AMI the stream is uniform and consists of
tuples, which are an ordered list of fields. Each field in the tuple is named and the
collection name including all fields is called a schema. In this context the schema
is a trinity and consisting of the following fields: time stamp, SM ID and energy
consumption, see Table 1. A SM produces new tuples with a periodic interval, for
example every 12 hours every day all year. Nevertheless, this interval can be altered
if for instance the price plan changes, to be calculated each hour instead. The gran-
ularity is decided based on the need from the running applications and stipulations
by the government. For this thesis the granularity is decided by the data source, a
simulator constructed by Richardson et al. [22], where a new measurement is pro-
vided each minute.

Description time stamp SM ID energy consumption

Abbreviation t.s. id e.cons

Table 1: Smart Meter tuples’ schema

Data streams sequences of tuples are more interesting if they can be related to each
other, rather than to extract information from them one by one. In order to build a
collection of information, the data needs to be related to something. In DB systems

5

tables of tuples are joined together by queries, to obtain information from different
parts of the DB. Queries in DB systems are only applied on stationary data and
used when the operator decides to retrieve the information. In real-time systems
such as SPEs a query is in constant operation in main memory as new data arrives.
Information changes constantly and the result of the query is not definitive, it alters
as time passes.

In DB systems queries are usually defined in a relation based language, such as
SQL, where different operators are applied on the tables in the DB. Stream pro-
cessing usually defines a continuous query as a Directed Acyclic Graph (DAG) of
operators. A DAG is a graph where the edges between the vertices have a direction
and no loops. A continuous query defines between which operators data will flow
and in which direction. In general, an operator takes one or more streams of tu-
ples as input, performs some computation, and outputs either one or more output
streams of tuples. Stream processing operators are separated into two categories:
stateless and stateful. The differentiating factor is that stateless operators do not
maintain a state that evolves accordingly with the tuples being processed. Stateless
operators compute a result for each tuple separately; filter, map and union are such
operators. Filter discards tuples that does not meet a criteria. Map manipulates the
tuples fields. Union merges tuples from from different input streams to one output
stream. Stateful operators perform computations on the set of tuples that are in
their sliding window at the time. A sliding window is either time-based or tuple-
based. The time-based sliding window has a start, end and a slide, which defines
how much it will move between each instance. The tuple-based sliding window is
defined by the number of tuples to collect and the number to discard between each
instance. Parameters used to define a sliding window are WindowType, SizeOfWin-
dow, and SlideAmount. Statful operators are aggregate, join and sort. Aggregate
computes functions on a field such as mean and count on the set of tuples in it’s
sliding window. Join matches tuples in its sliding window based on the value of the
tuple fields. Sort produces the tuple with minimum value, based on a specific field,
as output. Next is an example of a time-based sliding window and a tuple-based
sliding window. In the first example the time-based sliding window collects tuples
from the last 5h and slides 2h for every new instance, see Figure 2. In the second
example the tuple-based sliding window collects two tuples and discards one for each
new instance, see Figure 3.

time

(id,1:00,2.0)

W0(0:00-5:00)
W1(2:00-7:00)

W2(4:00-9:00)
W3(6:00-11:00)

W4(8:00-13:00)
W5(10:00-15:00)

W6(12:00-17:00)

(id,3:00,5.0)
(id,4:00,1.0)

(id,8:00,9.0)
(id,11:00,2.0)

(id,15:00,7.0)

Figure 2: Example of a time-based sliding window with size of 5 hours and advance
of 2 hours

6

time

(id,1:00,2.0)

W0(1-2)
W1(2-3)

W2(3-4)
W3(4-5)

W4(5-6)

(id,3:00,5.0)
(id,4:00,1.0)

(id,8:00,9.0)
(id,11:00,2.0)

(id,15:00,7.0)

Figure 3: Example of a tuple-based sliding window with size 2 and advance 1

In the following section the operators that are later used by the validation rules in
this thesis are presented. While the other common data streaming operators can be
found in the Appendix 10.1. When discussing these operators further an abbrevia-
tion of the tuple will be used: (id, t.s., e.cons). In order to make further explanation
of the validation rules easier to understand and overview, a schematic will be pre-
sented. Each new rule has the following schema: operator name(function)(input
streams)(output streams), with the abbreviation op.n(func)(in.s)(out.s).

Filter
Filter is a stateless operator that passes or drops a tuple based on the value of a
field. The schema for the operator is filter(terms)(I)(O). For instance the operator
can be used to filter consumption readings less than 0kWh, negative consumption.
filter(e.cons ≥ 0)(I)(O)

Map
Map is a stateless operator that manipulates a tuple into one or more outgoing
tuples with a different schema. The schema for the operator is map(out.field ←
func(in.field),...)(I),(O), one or more input fields are manipulated by a function and
thereby gives the output tuple a different schema. For instance the operator can be
used to change the time stamp from seconds to minutes.
map(id← id, t.s.← t.s./60, e.cons← e.cons)(I)(O)

Aggregate
Aggregate is a stateful operator that collects a set of tuples to compute functions
as mean, median, count, min, max, first or last. The accumulation is either time
or tuple based and performed over a sliding window. The schema for the oper-
ator is aggregate(WindowType, SizeOfWindow, SlideAmount, out.fields ← func-
tion(in.fields), Group(in.field))(I)(O), each aggregation is done over a sliding win-
dow of a certain type. That has a size in time or tuples and that slides a de-
cided amount each time the sliding window advances. A function is performed on
the selected input field that spans the size of the sliding window. If the Group
function on a input field is used each instance of that field is assigned its own
sliding window. For instance the mean consumption of each SM can be calcu-
lated with aggregate(time, 1h, 10min,mean ← mean(e.cons), Group(id))(I)(O),
the mean consumption the last hour is calculated every 10 minutes for each SM.

7

The output fields will be (id,t.s.,mean).

2.3 Stream Processing

SPEs are the entities that run applications to process the data stream, presented in
the previous section. Processing is done by running continues quires on the SPEs.
The quires are run in main memory. The SPE could interface with a DB, but in this
thesis that possibility is not considered. Stream processing has evolved from central-
ized systems to distributed parallel real-time systems. One of the most used SPEs
is Storm [26], which is used in this thesis. Following is an explanation of the used
terminology. Storm is a SPE that both provides a cluster setup, to distribute the
work among the data processing nodes, and an API library, for the implementation
of the data manipulation on the incoming stream. Storm claims in the documenta-
tion that it can process as many as a million tuples per second, provide scalability,
fault tolerance and process each tuple at least once.

Figure 4: Storm topology - with its components spouts and bolts

SPEs as presented in Section 2.2 process queries consisting of DAGs of connected
operators, in Storm these objects are called topologies. Data passed through the
topology is of the form of a stream, an unbounded sequence of tuples. These tuples
are named lists of values, that can be of any object or type. The processing logic
entities provided in the topology are spouts and bolts, as can be seen in Figure 4. A
spout is the source of a stream that takes input data and emits a stream of tuples
into the topology. A bolt performs calculation or manipulation on the incoming
stream or streams and might emit outbound stream or streams. To do advanced
stream transformation many bolts are preferred, as the distribution can bring better
throughput. In this project’s implementation it is in the bolts the data validation is
performed. The DAG of spouts and bolts are packaged into a topology that can be
deployed in the Storm cluster. A topology can be executed on a single computer in
local mode, mostly used for testing, where the cluster explained below is not used.
However, to initiate distributed execution of the topology, it has to be injected into
a running cluster.

A cluster consists of the following necessary entities Nimbus, Zookeeper [30], Supervi-
sor and UI run on one or several computers, as can be observed in Figure 5. Nimbus
is the master node daemon which distributes the incoming data among the worker
nodes and regulates failures. At each worker node there is a Supervisor daemon
that assigns the work to the worker processes, which is the actual data processing

8

Nimbus Zookeeper

Supervisor

Supervisor

Supervisor

Supervisor

Figure 5: Storm cluster - with the necessary daemon processes

entities. The amount of work that can be performed at each node is bound by the set
of threads that can be processed in parallel. Zookeeper is the coordination interme-
diary between the Nimbus nodes and the Supervisor nodes, it also keep track of the
state of the system. System state is kept in order to restart Nimbus and Supervisor
nodes without the loss of any data, as Storm claims to process data at least once.
UI is Storm’s graphical interface that is run at the Nimbus node to give an overview
of the system. The cluster can be deployed in local mode, where everything runs
on single machine, or in distributed mode, where some or all entities of the Storm
cluster are run on different machines, the usage of the data processing system does
not change.

2.3.1 Parallelism in Storm

Storm has many parameters that can be adjusted to increase, or if done wrong de-
crease, performance. To get a grip of how to tweak the parameters the reader need
to understand how a topology is processed in a Strom cluster. The entity in Storm
that actually performs execution is tasks, which executes a bolt or a spout. A task
is run by an executor, which is a thread spawned by a worker. Each executor runs
one or more tasks for the same bolt or spout. A worker process runs a subset of one
topology and can only run executors for that topology. A topology can therefore be
processed by many worker processes across the cluster.

Figure 6 shows the hierarchy between the different processes. There are some ob-
servations that can be made for an optimal setup of a cluster. The amount of tasks
that is most favourable to run on each machine is dependent on how many threads
that specific machine can handle at once. The default setup in Storm is to run one
executor for each task, run more and the executor must switch between tasks. This
also has to do with the usage of the number of worker processes on each machine,
the workers only serve one topology. Hence, to deploy more than one worker per
topology per machine will not give better processing capacity. There will only be
extra overhead and not more processing power. To get better throughput there are
two options either to increase the processing power on thread level or to get more
threads. This means that the only solution will be to get more or faster machines

9

Worker Process

Executor

Executor

Executor

Task

Task

Task

Task

Figure 6: Relationship between tasks, executors and worker processes

to increase the throughput, if all other settings are optimal. However, there are
many settings in Storm that can be changed without new hardware, the buffer sizes
between components, how many executors and tasks that are allocated to each part
of the topology.

10

3 Related Work

The following section will present previous work related to the subjects of this thesis
AMIs, data streaming and data validation. This to show that the subject matter of
this thesis is of importance, to cleanse electrical consumption data coming from the
SMs before it reaches the utility management. First an overview of research areas
with connection to AMIs, in Section 3.1. To give the reader knowledge about the
importance and range of the subject area. Thereafter usages of data streaming are
presented in Section 3.2, with the intent to present the broad use of the technique
used in this thesis. Last in Section 3.3 the benefits of using data validation is dis-
cussed.

3.1 Advanced Metering Infrastructures

In AMIs quite a lot of work can be found, as it is an important topic, in the fields
of security, privacy, data volumes and consumer applications. The AMIs’ beneficial
side is the possibility to use the information flow from the SMs to lower electri-
cal consumption. Research has been directed to the area of costumers’ electrical
consumption, with regards to usage and price. To enable energy awareness and
conservation an example real-time energy monitoring application system have been
presented by Mikkola et al. [18], to advice the users on their habits. An evaluation of
a real-time pricing system is presented by Allcott [2]. The conclusion is that house-
holds conserve energy during peak hours and did not increase average consumption
during off-peak time. Another approach to minimize energy cost is presented by
Guo et al. [14]. The paper focuses on the consumption of a whole neighbourhood
including energy storage devices, renewable energy generation and electric utility,
where a central entity is responsible to secure enough energy for the neighbourhood.
Even if these papers are not about data validation, they are about the data in AMIs
and if such data is validated and cleansed it is better for all these systems.

Nevertheless, the AMIs also have some less positive properties that have been re-
searched, which have led to some proposed solutions. Security is an issue related to
AMIs, where the information sent through the network system can be altered. It
cannot be taken for granted that the network layer is safe. Bartoli et al. [5] identify
security problems in the communication and as a solution implements a secure aggre-
gation protocol. Berthier and Sanders [7] have proposed a specification based sensor
that monitors the traffic in the AMI, to identify threats in real-time. To ensure that
devices run securely they have implemented a set of constraints on the transmission
protocol, violations of the specified policy will therefore be detected. Mohammadi
et al. [19] proposes another security solution, an AMI intrusion detection system for
known and future malicious attack techniques. Their solution is specific to neigh-
bourhood area networks and the paper does not include a concrete implementation.
Vulnerabilities are also granted by the remote control capability of SMs, these have
been studied by Costache et al. [9]. The scenarios investigated are the frequency
property of the grid to cause a blackout and the possibility for an adversary to
drive the voltage out of bounds. As the AMI networks grow the data volumes in-
creases, Dieb Martins and Gurjao [10] attack the problem of processing the large
data flow from SMs, by dimensional reduction through random projection. The
presented calculations are based on offline processing and no details are presented

11

for a real-time scenario. Another concern is the costumer privacy, that it should not
be possible to identify a specific customer’s usage in the data flow. Bekara et al. [6]
paper also contains measures to keep the privacy in the AMI. Their proposal is an
ID-based authentication protocol, but they do not implement it. Tudor et al. [27]
investigate the customer datasets to make them more resilient to identification. To
keep the customers data secure and private is most important. These papers are not
directly related to this thesis’ area, but it shows the breath of the subject area AMIs.

3.2 Data Streaming

Closer to this thesis topic, AMIs and stream processing, there is not as much related
work, as the subject is narrower. Work that have been presented uses stream pro-
cessing to implement systems for intrusion detection, real-time pricing, decreasing
consumption and data volumes. The point is that data streaming is used in not just
this thesis, but in quite a few other projects.

Gulisano et al. [12] proposes an intrusion detection system, METIS, with the same
goal of protecting the AMI from attacks into the system from adversaries, as the
systems that do not use stream processing. The system is implemented using Storm
SPE and the analysis is done in a parallel and distributed system. Storm’s parallel
and distributed capabilities can also be used in this thesis, as the needed validation
would benefit from being processed in a parallel and distributed fashion.

Lohrman and Kao [16] present a stream based system aiming to solve the problem
of scalability in smart grid systems, with focus on real-time pricing and monitoring.
They present a set of requirements to be able to handle the data volume from the
SMs concerning scalability, availability, latency and data management. To address
the requirements they propose parallel stream processing in clouds as the solution.
The SPE used for the implementation is Nephele [28]. In order to demonstrated the
system they implement a prototype real-time pricing application in a private cloud,
with a dataset of one million simulated SMs. Each simulated SM communicates via
its own TCP/IP connection with a cluster of 19 virtual machines running Nephele
on top of the Eucalyptus Private Cloud [21]. With the set of one million SMs they
are able to provide price updates every 10 seconds. This thesis will not implement
real-time pricing nor deploy anything in the cloud, but it will try to scale the per-
formance by other means. Hence, the scalability properties used by Lohrman and
Kao can be taken into account.

Simmhan et al. [24] present a project in the area of smart grids, SMs, customer
power consumption and the analysis of such data streams in real-time. To handle
the onslaught of data, a cloud platform is utilized to perform stream processing, with
the properties of scalability and low latency. A mechanism to throttle the rate at
which the SMs produce data is also introduced, to lower bandwidth consumption.
However, the paper does not include validation of the consumption data, as this
thesis will use. Instead the focus is to decrease the data volume with adaptive rate
control, throttling the generation of consumption data.

The stream pipeline used in their paper resembles a continuous query or topology,
used in this thesis, and needs a SPE to make it productive. Simmhan et al. uses IBM

12

InfoSphere Streams [1] as their SPE and deploy it on Eucalyptus Private Cloud [21],
with the possibility to later migrate to the Amazon public cloud. They achieve a
50% reduction in network bandwidth used, with the throttle mechanism operative in
comparison with a static generation. However, the stream generation does not follow
power consumption exactly, it both over and underestimates. This is concluded to
derive from the use of tumbling instead of sliding windows, which discards all data
in the window every time it moves. This thesis focuses on validation of data not on
decreasing generation of measurements, similarities can however be found. In the
use of stream processing and the similarity between alerts and validation.

As can be seen from the previous paragraphs there are a lot of usages of data stream-
ing in connection with AMIs and the benefits of using it could be utilized when
validating electrical consumption data. These advantages are foremost the ability
to handle real-time data and the possibility to scale the system. Data streaming
is a mature technique whose strengths have been utilized in other projects such as
quality of service in IT systems [17], fraud detection [11], prevention of distributed
denial of service [8] and in an advertising system [3]. Application areas for stream
processing are very large as can be seen with this sprawling selection.

3.3 Data Validation

Data validation is used in many scenarios where the correctness of data needs to be
checked such as data streaming from industrial equipment [29], digital particle image
velocimetry [23], stream data management benchmark [4], among others. Valida-
tion is common and used in many systems to check the plausibility of data, to then
correct or discard it. The paper by Gulisano et al. [13] has the same focus area as
this thesis, validation of electrical consumption data produced by SMs in an AMI.
The authors show that their system can validate measurements from millions of SMs
that provide hourly readings, with a throughput of 1000 to 8000 tuples per second.
To cleanse the data a set of validation rules are presented, that filter or interpolates
missing consumption data specific to AMIs.

The three validation rules presented rely on the fact that the incoming stream data
is of tuple type and has the schema <time stamp, SM id, consumption>. Rule
number one is a filter that discards incoming tuples based on a predetermined value.
Rule number two collects three hours of consumption data from a specific SM, cal-
culates the mean and discard the tuples that exceeds two times of the mean. Rule
number three interpolates missing tuples if the time between tuples from the same
SM exceeds one hour. The implementation then utilizes the distribution and paral-
lelization properties of the SPE Storm. Continuously the system can process data
from 5-25 million SMs with an hourly measurement interval. Throughput is shown
to grow as the batch size of data grows. Latency grows also with the batch size
and is affected negatively if the validation rule collects data, but is in the range of
milliseconds.

This thesis will build upon the results from [13], but use another set of validation
rules. The main difference is the use of hardware, their system consist of a common
CPU, while this thesis will use a cluster of Odroid SBCs. The reason is that the

13

Odroids use less energy and physical space, therefore they are used more easily in an
AMI. Another benefit is that the Odroids are cheap in comparison with a common
computer. Through the use of an Odroid cluster the capabilities of distributed and
parallel stream processing can be better utilized, than when it is used on a single
computer.

14

4 Design

This section introduces how the thesis utilize the data streaming paradigm, through
the use of stream operators that consumes the data stream to perform parallel com-
putation. Operators are connected, with a determined direction of the data flow
between them, to compose continuous queries. Each continuous query is built by
using the operators presented in Section 2.2. These continuous queries are com-
posed of a specific set of operators to construct each validation rule, to correct the
data in the stream. The selection of validation rules are based on those presented
by Gulisano, Almgren and Papatriantafilou [13]. Their rules are based on a set of
Validation, Estimation and Editing (VEE) rules used in meter data managing sys-
tems, which collect and store data from AMIs. Validation refers to rules that cleanse
data from corrupt values. Estimation refers to rules that can produce missing data.
Editing refers to rules that can edit historical data. The validation rules presented
in this thesis will cleanse data and interpolate missing data. Validation rule Fixed
Filter discards all tuples with a negative consumption value, for further explanation
see Section 4.1. Validation rule Varying Filter discards all tuples that have a con-
sumption value that is less than two times the median, aggregated during a sliding
window, see Section 4.2. Validation Rule Interpolation interpolates missing tuples
into the stream, based on the time between two consecutive tuples, see Section 4.3.

4.1 Validation Rule 1 - Fixed Filter

(14:01,dev1,0)
(14:02,dev1,100)
(14:03,dev1,-100) Filter

(e.cons≥0) (t.s.,id,e.cons)

(14:02,dev1,100)

(t.s.,id,e.cons)

(14:01,dev1,0)

Figure 7: Example of the filtering condition of the validation rule - Fixed Filter

The validation rule Fixed Filter is a filter operation, that has one input stream
and forwards an output if the filtering condition is met. This filter rule focuses on
the fact that consumption data cannot be negative, a consumer cannot contribute
electricity into the power grid, as stated in Section 2.1. There are two options for
consumption data either the consumer does not consume any power, 0kWh listed,
or the reported consumption is a positive number. To describe each validation rule
in a formal manner the definitions presented in Section 2.2 will be used. The formal
representation of Fixed Filter uses only one operator, filter. Fixed Filter is defined
as filter(e.cons ≥ 0)(I)(O), each tuple’s electrical consumption value is compared
with zero and the condition is met when the consumption is either zero or positive.
The rule takes input from one stream and produces output to another. An example
of the rule can be seen in Figure 7. The input stream of consumption tuples comes
from the left to be validated by the filter rule. That then forwards the tuples that
have met the condition of non-negative consumption.

Fixed Filter cleanse the data stream from incorrect values by discarding them, which
is the basic property of all validation rules of VEE. Thus, also the more complex
validation rules must utilize this property at some point in their continuous queries.

15

If the data stream needs to be cleansed its tuples’ field values have to be compared to
a condition value. This condition value can either be fixed, set before the validation
is started, or varying, recalculating during the run of the validation. A fixed value
is produced by calculation, estimation or observation prior to the start of the vali-
dation. A varying value is produced by collecting tuples based on time or number.
The collected tuples are then used to produce a value based on one or more of their
fields, this value changes as the tuples in the collection is removed and added. In
Section 4.2 an example of an extended filter is shown, that does not only rely on a
single filter operator.

4.2 Validation Rule 2 - Varying Filter

W:10,S:1

Aggregate Filter

(t.s.,id,e.cons) (t.s.,id,median,lcons,lt.s.) (lcons<median*2)

(14:01,dev1,100)

(14:02,dev1,150)

(14:03,dev1,250)

(14:11,dev1,250,2500,14:10)

(14:04,dev1,800)

(14:05,dev1,250)

(14:06,dev1,100)

(14:07,dev1,200)

(14:08,dev1,300)

(14:09,dev1,250)

(14:10,dev1,2500)

(14:02,dev1,100,100,14:01)

(14:03,dev1,125,150,14:02)

(14:04,dev1,150,250,14:03)

(14:05,dev1,200,800,14:04)

(14:06,dev1,250,250,14:05)

(14:07,dev1,200,100,14:06)

(14:08,dev1,200,200,14:07)

(14:09,dev1,450,300,14:08)

(14:10,dev1,250,250,14:09)

(14:02,dev1,100,100,14:01)

(14:03,dev1,125,150,14:02)

(14:04,dev1,150,250,14:03)

(14:06,dev1,250,250,14:05)

(14:07,dev1,200,100,14:06)

(14:08,dev1,200,200,14:07)

(14:09,dev1,450,300,14:08)

(14:10,dev1,250,250,14:09)

Figure 8: Example of the evolving filter rule - Varying Filter

The validation rule Varying Filter is a filter operation as well, but the condition is
not a fixed value. This rule is used to cleanse the data stream from extreme val-
ues, which can be induced by faulty SMs, glitches in the communication network
or other error sources. The filter condition value is calculated based on median
value, as it prevents extreme values to make an impact. If a mean value was used
a single extreme value could suddenly change the filter condition, which then would
not discard other incorrect values. This could be corrected by using a large set of
values to calculate the mean, but that would require the window size to grow and
additional memory to be used. To construct the validation rule a time-based ag-
gregate and a filter from Section 2.2 are used. Aggregate are used with a window
size of 10 minutes, that slides every minute, while taking input from one stream
and producing an output to the filter. The granularity of the electrical consumption
data used in this thesis is one minute, to achieve real-time computation the advance
of the window is also performed each minute. If the granularity and the advance
were not the same an additional stream operator would have been needed. Join
could have synchronised the streams, but it would have taken additional computer
resources. With each advance of the window the aggregate produces the median
value form the tuples’ electrical consumption fields. Each SM has its own window
as the aggregate operator is grouped-by the field SM id. The tuple produced by the
aggregator carries the median value that is used by the filter, as condition value.
Output from the aggregator is input for the filter, that then discard all tuples that
carries a consumption greater than two times the median. Filter then produces its
output to a single stream. An example of the rule can be seen in Figure 8, where
the tuples coming from the left are first aggregated and thereafter filtered. The ag-

16

gregation is shown for a ten minute window, after that the oldest tuple is removed.
A result is produced each minute and the set of values that is considered for the me-
dian calculation grows up to ten, the size of the window. The formal representation
of Varying Filter based on the definitions from Section 2.2 is
aggregate(time, 10min, 1min,median← median(e.cons), lcons← last(e.cons),
lt.s.← last(t.s.), Group(id))(Istream)(Oa1)
filter(lcons < median ∗ 2)(Oa1)(O)

Varying Filter is an example of the usefulness of aggregation, to be able to calculate
new values based on the incoming data. This can be done by either collecting tuples
based on the time, for example to produce a metric every hour for the total electrical
consumption, or based on the number of incoming tuples, for example to produce an
average consumption from one hundred synchronized SMs. This can be expanded
to many other situations where the sum, count or other arithmetic operation of a
real-time varying number needs to be calculated.

4.3 Validation Rule 3 - Interpolation

Aggregate Filter Map

(t.s.,id,e.cons)
W:2 S:1

(id,t.s.1,t.s.2,e.cons1,e.cons2)
(t.s.2-t.s.1>1min)

(t.s.←interp.(t.s.1,t.s.2), id, e.cons←interp.(e.cons1,e.cons2))

(14:03,dev1,300) (dev1,14:01,14:03,100,300)
(14:02,dev1,200)

(14:01,dev1,100)

(14:04,dev1,200)

(dev1,14:03,14:04,300,200)
(dev1,14:01,14:03,100,300)

Figure 9: Example of the interpolation rule - Interpolation

Validation rule Interpolation, focuses on missing tuples in the data stream, this can
occur because of glitches in the SMs or the network. Tuples are expected to arrive
each minute from the SMs, as the granularity of the consumption data is one minute.
If a tuple does not arrive in this timespan a new tuple is interpolated into the output
stream of the query. In this case the validation rule is constructed of a tuple-based
aggregator, a filter and a map operator. The aggregator has a window size of two
tuples and slides with every new tuple after the first two, each SM has its own win-
dow as the aggregator is grouped-by id. Tuples outputted by the aggregator consists
of the two last SM tuples, as can be seen in Figure 9. Filter then compares the two
timestamps in the tuple, to determined if they deviate by more than one minute. If
the difference is more than a minute the tuple is not discarded. Next in line is the
map operator, that calculates the missing tuple’s timestamp and consumption value.
This is done by an interpolation function, that estimates the values based on the two
existing tuples’ values. Timestamp for the new tuple is set by calculating the time
between the incoming tuples and adding that to the timestamp of the oldest tuple,
(t.s.2 − t.s.1)/2 + t.s.1. The interpolated tuple’s consumption value is calculated
as the mean of the two collected tuples’ consumption values, (t.s.1 + t.s.2)/2. Map
also formats the output tuples schema, to correspond with the other tuples in the
system. The formal representation of Interpolation based on the definitions from
Section 2.2 is
aggregate(tuple, 2, 1, t.s.1 ← first(t.s.), t.s.2 ← last(t.s.), e.cons1 ← first(e.cons),
e.cons2 ← last(e.cons), Group(id))(Istream)(Oaggtuple)
filter(t.s.2 − t.s.1 > 1min)(Oaggtuple)(Of)

17

map((id, t.s., e.cons)← interpolate(id, e.cons1, e.cons2, t.s.1, t.s.2))(Of)(O)

Interpolation can be used in many areas when something needs to be estimated,
based on real-time data. To use real-time data the tuples needs to be aggregated,
using a time-based or tuple-based window. The confidence of the estimation grows
with the number of data points. With tuple-based windows the specific number
of data points are known, but not how much time they span. In contrast, with a
time-based window the exact number of tuples are not known, but the time they
span is.

4.4 Discussion of Deployment Options

SM

SM

SM

SM

SM

MCU

Utility

SM

SM

SM

SM

SM

MCU

SM

SM

SM

SM

SM

MCU

Figure 10: Overview of the deployment options in the AMI

These three validation rules Fixed Filter, Varying Filter and Interpolation can be
deployed anywhere in the AMI, Figure 10, at the SMs, MCUs or at the utility head-
end, because the data stream is partitioned according to the SMs. Fixed Filter does
not consider from which SM the data is coming from, it filters each tuple individu-
ally. The two aggregating rules partitions the data according to which SM it comes
from, by the use of the group-by functionality. The rules can therefore be deployed
anywhere in the AMI and still produce the same result, which means that they are
orthogonal to the AMI. The condition of orthogonality is also maintained by the use
of data streaming, that partitions the data from a specific SM to always be processed
by the same processing entity. In the scope of this thesis, it indicates that additional
SBCs will not distort the data processing, but instead increase the capacity. Pro-
cessing of the validation rules can therefore be done at the utility head-end or at a
cluster of distributed SBDs.

18

5 Implementation

In this section the implementation of the validation rules and the platform used to
measure their performance are presented. An overview of the system architecture
can be seen in Section 5.1. The validation rule implementation is presented in Sec-
tion 5.2 with each operator individually, as validation rules are built by connecting
these operators together. Lastly in Section 5.2.1 the measurement platform used to
measure and later evaluate the system is presented.

5.1 System Architecture

cons. data

KafkaInjector.java

[output rate , time]
text filetext file

Single or Batched

Topology.java

Validation

KafkaReceiver.java

Figure 11: Software system for the prototype

The system architecture for the software system developed for the validation con-
tains not only the validation, but also the injection of tuples into the validation rules
and consumption of tuples from them. An overview of the system can be seen in
Figure 11. The dedicated injector has been implemented to forward tuples, with
electrical consumption values packaged in the schema (t.s., id, e.cons) from Section
2.2, read from a csv file to a Kafka [15] broker. Kafka is a queue based message
passing system, that is durable and scalable. The consumption values in the text file
are from the consumption simulator. Tuples can be sent out either individually or
in batches, with batching higher throughput can be achieved. The sending rate of
the tuples is controlled by two parameters: injection rate and duration, that can be
changed during the run of the program from a text file. The rate control is needed
when the saturation of the prototype is sought. The validation rules consumes the
tuples from the same Kafka broker that the injector has produced tuples to. After
the validation is performed the tuples are forwarded to a different Kafka broker, that
the dedicated receiver consumes tuples from. All programs are written in Java, as
both Storm and Kafka provide most information for Java development.

The implementation was done with the intent to be modular. Other queue systems
than Kafka would also work with the implementation, once they interface with the
module for the validation. Consumption data could also be found by listening to
a specific port and forward consumption messages received through TCP/IP. The
validation rules are implemented in Storm topologies, but with the right interface
another SPE would also work.

19

5.2 Implementation of Data Streaming Operators in Storm

To implement the continuous queries, from Section 4, Storm also uses the abstraction
of operators connected by a directed data flow. In this section only the implemen-
tation of the used operators will be presented, as the queries are constructed by
connecting those. Storm calls its continuous queries topologies. This thesis’ three
validation rules are using three different Storm operators: filter, tuple-based aggre-
gation and time-based aggregation. Filter is used by Fixed Filter and Varying Filter,
Interpolation has the filter functionality implemented in its aggregation. Varying
Filter is the only user of time-based aggregation and tuple-based aggregation is solely
used by Interpolation. Map’s functionality of altering the fields can be performed
by all operators in Storm. Both the filter and the tuple-based window operators
comes from Storm Trident API, while the time-based window’s implementation is
based on an operator not provided in the common API.

Filter
Filter is implemented by using the BaseFunction, which operates on individual tu-
ples. It is simple but useful, either it emits the received tuple or not. To implement
a conditional filter set a fixed value or compose it from a field of the received tuple.

Tuple-Based Window
The tuple-based window with SM partitioning is implemented by first using a
groupBy(”id”) on the stream, to give each SM its own aggregation window. Then
the Trident Aggregate operator is used to collect the two consecutive tuples from
each SM. All values are saved in HashMaps, for easy retrieval. The window advances
with each new tuple and outputs an extra tuple if the time between the aggregated
tuples is more than a minute.

Time-Based Window
The time-based window is also first partitioned with groupBy(”id”), to secure a
window for each SM. After that the implementation uses AggregateWindow, to cor-
rectly slide with time. The size of the window is ten minutes and it advances every
minute. It saves the received tuples in HashMaps, that are later discarded when
the window size is reached. When the window advances a new output tuple is pro-
duced, with the median consumption value for that SM. The median is calculated
by sorting the consumption values from the HashMap and thereafter extracting the
number in the middle of the list. If the list have an even amount of numbers, the
median is calculated as the mean of the two middle numbers.

5.2.1 Measuring Platform

Evaluation of this thesis is based on performance measurements as mention in the
Introduction, Section 1.4. In this section the implementation and architecture of the
actual measurement system is introduced. The metrics of interest are the through-
put, how many tuples/second each validation rule can handle, and the latency, how
much time is added in milliseconds by using the validation rule. These metrics will

20

vary also based on the deployed hardware capacity. The justification to build a
measurement system is that it is then possible to get performance measurements
for the whole system, the validation topologies in Storm and its input and output
queues. It should also be noted that it is possible to use this measurement platform
with another SPE to get the throughput rate and latency, as the platform is modular.

Throughput is measured at two points in the system, to compare the actual injection
rate to the rate at which the validation rule manages to process tuples. At both
points the rate is measured as t/s and saved into two text files. The injection rate
is noted just before the Kafka injector sends the tuple. Storm notes its throughput
as the rate at which it can clear its input queue, thus the rate is noted just after the
tuple has passed the spout.

Latency is measured by comparing the system timestamp at the injection of the
tuple to the system time when the validation is done. This is achieved by adding a
field for the system timestamp to all tuples. Before the tuple is sent by the Kafka
injector it adds the system time, the system time in the tuple field is then subtracted
from the system time when the tuple has passed through the validation. The calcu-
lated value is saved by the Kafka receiver in a text file. In order to use this method
to measure the latency all hardware systems must be synchronized.

21

6 Evaluation

This section will present the evaluation of the prototype system, by running the
three validation rules independently of one another on various numbers of SBCs.
Firstly all components that are used to run the tests are presented in Section 6.1.
After the introduction the test results for the three validation rules are presented in
Sections 6.2, 6.3 and 6.4. Lastly the results are discussed in Section 6.5.

6.1 Evaluation Setup

6.1.1 Data

The electrical consumption data used in the experiments comes from the simulator
created by Richardson et al. [22]. Each run of the simulator provides 24 hours of a
household’s electrical consumption, with a granularity of 1 minute. The parameters
for the simulator, as seen in Table 2, are number of residents, weekday or weekend,
month of the year, appliance usage and occupancy level. Appliance usage can be
simulated or manually altered in a spreadsheet, while the occupancy level of the
residents is only possible to simulate.

Parameters residents part of the week month appliances occupancy

Variables 1-5 we or wd 1-12 sim. or man. sim.

Table 2: Parameters of the electrical consumption simulator

The first three parameters were manually chosen and the two last were simulated,
at each run of the simulator. In this thesis each simulated household represents one
SM. In order to build a dataset the simulation was run 1000 times, to simulate as
many separate SMs. However, to accumulate enough data to be able to reach an
input rate of 14000(t/s), which was an early estimate of the saturation level of the
prototype, the manual simulator would have needed to perform 14000∗60 = 840000
simulation runs. This was not feasible, instead the data of the 1000 runs were copied
840 times. The csv file with the consumption data contained 1.2 billion lines, because
24(h) ∗ 60(min) ∗ 840000(simulations) = 1.2 ∗ 109. In order to test the validation
rules from Section 4 adjustments to the data were made, to trigger their specific
properties. For the filter rule Fixed Filter the consumption data of the injected
tuple was switched to a negative value, with a probability of 0.1%. The probability
for the random generator was chosen low, so the system would still have to forward
99.9% of the tuples. Since, the evaluation was performed to stress the throughput
of the system, a higher percentage would have lower the output rates. When the
Varying Filter was tested the data was not manipulated, as the dataset already was
divided according to SM. Interpolation is triggered by consecutive tuples with a
time difference of more than a minute. The injector removed tuples with the same
probability of 0.1%, as was used for manipulation of tuples in the Fixed Filter test.
Exploring different percentages is an interesting aspect but not in the scope of the
thesis.

6.1.2 Hardware

In this section the hardware test environment will be presented. The prototype con-
sists of four Odroid-U3 connected via a switch, Netgear FS108 with a bandwidth of

22

10/100 Mbps. Each Odroid-U3 has an Exynos4412 1.7GHz quad-core Samsung pro-
cessor with a Mali-400 quad-core 400MHz 3d accelerator and 2GB of DDR2 RAM.
In order to allow the Odroids to only run and process the validation rules a laptop
is also connected to the switch, to function as the server. The laptop has a Pentium
Dual-Core T2390 processor and 2GB of DDR2 RAM. How the prototype system is
connected can be seen in Figure 12.

Switch

Laptop

Storm:
Supervisor

Storm:
Supervisor

Storm:
Supervisor

Storm:
Supervisor

Storm: Nimbus, Zookeeper

Kafka: Producer, Consumer,
Zookeeper

Figure 12: Test environment

6.1.3 Software

Software-wise, the prototype runs both Storm 0.9.2 and Kafka 0.8.2.1. The im-
plementation of the validation rules are done in Storm Trident topologies. These
topologies are then processed by the Supervisors run on the Odroids, one on each.
As explained in Section 2.3 Storm uses Nimbus to distribute the work and Super-
visors to allocate the actual work, with Zookeeper as an intermediary to keep the
state of the system. There are two dedicated programs that inject and receive tuples,
from the topology. They are based on Kafka’s producer and consumer. The injector
reads the consumption data from a text file and can then simulate different input
rates, based on what is in the input rate text file. It also keeps track of the injected
rate, as this is needed to study the throughput evolution, by saving the metrics in
a text file. The receiver takes the outputs from the topologies and monitors the
latency, which is saved in a text file to study the latency evolution. Latency and
throughput evolution are used to find the maximum capacity of the prototype sys-
tem. All entities except the Storm Supervisors are run on the laptop. The laptop
runs Kafka’s producer, consumer and separate Zookeeper as well as Storm’s Nimbus
and Zookeeper. Storm topologies, Kafka injector and receiver were implemented
using Java, as both platforms provide most information about that such implemen-
tation. The implementation was performed on an Ubuntu 14.04 LTS system with
Java OpenJDK 7.

To evaluate the prototype system throughput and latency are measured. The

23

throughput is measured at two points in the system, at the injection from Kafka
and at the input queue to the Storm topology. Saturation is reached when the rate
at which tuples are injected does not match the rate at which they are received by
Storm. In order to measure the latency of the system each tuple is timestamped
with the system time, of its creation. Hence, the processing latency measured for
each output tuple, can be calculated as the difference between the current time and
the timestamp of the tuple. All devices’ clocks in the prototype system are synchro-
nized through NTP [20], to assure correct timestamps.

6.1.4 Storm Parallelism Setup

In this section the allocation of the available processing capacity will be discussed.
The available processing capacity is limited by the number of threads provided by
the Odroids, as they perform the execution of the validation rules’ topologies. Each
Odroid provide as many threads as twice the number of cores, which is 8 threads.
Storm assign the number of threads for each part of the topology through the pa-
rameter parallelismHint. The parameter specifically assign the number of executors,
as presented in Section 2.3.1, that then can run one or more tasks. However, during
the experiments one executor per task and thread provided the best results, as each
thread only processed one task and no switching was needed. The three topologies
that were used in this thesis had the same structure. They took in the tuples from
the injector through a OpaqueTridentKafkaSpout, then processed them through the
validation rule. Following that, the tuples were processed by rePosition, to be for-
matted to Kafka messages, and sent out through TridentKafkaStateFactory. During
the tests it proved that the input spout needed to have the same parallelismHint as
the number of Odroids used, to achieve high throughput. Table 3 shows the optimal
distribution of threads among the topology entities, when all four Odroid-U3s were
used. In total the Odroids provided 32 available threads.

Fixed Filter OpaqueTridentKafkaSpout Filter rePosition TridentKafkaStateFactory Total

Nr. Threads 4 1 4 22 31

Varying Filter OpaqueTridentKafkaSpout AggregateWindow Filter rePosition TridentKafkaStateFactory Total

Nr. Threads 4 4 1 4 17 30

Interpolation OpaqueTridentKafkaSpout Aggregate rePosition TridentKafkaStateFactory Total

Nr. Threads 4 4 4 18 30

Table 3: Thread distribution in the topologies

The output was most demanding and needed all capacity that was still available. For
the validation rules the simple rule that only used a filter, Fixed Filter, coped with
one thread. While the more complex rules needed as many threads as the number
of Odroids used. The retrieval and forwarding of tuples added a cost in threads,
which depended on the validation rule. This thread cost is much higher than the
cost for the actual validation. Not all threads could be allocated as this thesis used
Storm Trident. Storm interprets the Trident topologies to basic spouts and bolts.
That adds extra entities that also needs to be processed by the available threads.
Therefore Trident topologies should leave one or two available threads unallocated.
The more complex the topology is the more overhead in spouts and bolts are added.

24

6.2 Validation Rule 1 - Fixed Filter

The first test will run the topology for Fixed Filter from Section 4, that discards
all consumption values less than zero. In Figure 13a the increase in throughput for
each added Odroid can be seen. The latency does not increase substantially before
saturation for the Odroid or Odroids is reached, to then grow exponentially as can
be seen in Figure 13b. Throughput grows linearly in the beginning then flats down,
opposite of the latency. Each point presented in the graphs, for all validation rules,
have been measured at least five times.

InputRate (tuples/s)

0 2000 4000 6000 8000 10000 12000

T
h
ro

u
g
h
p
u
tR

a
te

(t
u
p
le
s/

s)

0

2000

4000

6000

8000

10000

12000

1 Odroid
2 Odroids
3 Odroids
4 Odroids

(a) Throughput in t/s

Rate (tuples/s)

0 2000 4000 6000 8000 10000 12000

L
a
te

n
c
y

(m
il
li
se

c
o
n
d
s)

10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

1 Odroid
2 Odroids
3 Odroids
4 Odroids

(b) Latency in milliseconds

Figure 13: Fixed Filter - Measuerments for one, two, three and four Odroids

The maximum throughput as measured for each number of Odroids is presented
in Table 4, before the latency increases exponentially. The minimum increase in
throughput is 700(t/s), for the fourth Odroid.

Number of Odroids 1 2 3 4

Throughput (t/s) 4443 7007 8942 10672

Table 4: Fixed Filter - Maximum throughput for Odroids

25

6.3 Validation Rule 2 - Varying Filter

The second test will show the performance of Varying Filter from Section 4. This
rule discards all electrical consumption values larger than two times the median
value. A result is presented each minute and the median is calculated from an ag-
gregation of the last ten minutes. Figure 14 present the same pattern of increasing
throughput with added Odroids, as observed in the test of Fixed Filter.

InputRate (tuples/s)
1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

T
h
ro

u
g
h
p
u
tR

a
te

(t
u
p
le
s/

s)

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

1 Odroid
2 Odroids
3 Odroids
4 Odroids

(a) Throughput in t/s

Rate (tuples/s)
1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

L
a
te

n
c
y

(m
il
li
se

c
o
n
d
s)

10
4

2

4

6

8

10

12

14

1 Odroid
2 Odroids
3 Odroids
4 Odroids

(b) Latency in milliseconds

Figure 14: Varying Filter - Measuerments for one, two, three and four Odroids

Maximum throughput is achieved when the latency is in the interval between 3 −
6 ∗ 104 milliseconds. After the interval is breached the measured metrics are not re-
liable, as the time-based window advances every 6 ∗ 104 milliseconds, and thereafter
the latency grows almost exponentially. The throughput numbers after the expo-
nential latency increase can therefore not be included in the reported results. The
rule produces a result for each SM every minute, which makes it bursty. Between
the burst of tuples the records indicates zero latency, the test is badly represented by
a mean value calculation. Mean value smears the peaks over the time axis. This be-
haviour can possibly be avoided by using a Join operator, that continuously updated
the filter’s condition value. However, that would have allocated additional threads
and put further pressure on the hardware’s processing capacity. The numbers for
the maximum throughput of the test is presented in Table 5. Each added Odroid
increases the throughput with at least 500(t/s).

Number of Odroids 1 2 3 4

Throughput (t/s) 1954 3500 4500 5000

Table 5: Varying Filter - Maximum throughput for Odroids

26

6.4 Validation Rule 3 - Interpolation

The third test show the performance of Interpolation from Section 4. The rule in-
terpolates missing tuples in the stream. If two consecutive tuples from the same SM
differentiates by more than one minute, a new tuple is interpolated in the missing
timespan. Electrical consumption for the new tuple is calculated as the mean of the
two compared tuples. Figure 15 as well follows the pattern of increased throughput
with added Odroids, as observed in the tests of Fixed Filter and Varying Filter.

InputRate (tuples/s)

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
h
ro

u
g
h
p
u
tR

a
te

(t
u
p
le
s/

s)

0

1000

2000

3000

4000

5000

6000

7000

8000

1 Odroid
2 Odroids
3 Odroids
4 Odroids

(a) Throughput in t/s

Rate (tuples/s)

1000 2000 3000 4000 5000 6000 7000 8000 900010000

L
a
te

n
c
y

(m
il
li
se

c
o
n
d
s)

10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 Odroid
2 Odroids
3 Odroids
4 Odroids

(b) Latency in milliseconds

Figure 15: Interpolation - Measuerments for one, two, three and four Odroids

Table 6 show the increase in maximum throughput with each added Odroid. The
additional Odroid increases the throughput by at least 873(t/s).

Number of Odroids 1 2 3 4

Throughput (t/s) 3332 5115 5988 7038

Table 6: Interpolation - Maximum throughput for Odroids

6.5 Summary

The goal set in the Introduction 1 is now reached, it is shown that the prototype is
scalable and can run the electrical consumption validation. This while being dimen-
sionally small, keeping the cost and power consumption low, as can be observed in
Table 7. In comparison with the paper discussed in Section 3.3 the hardware used
by Gulisano et al. [13], 8-core Intel Xeon E5-2650, is expensive, as the price does not
include memory and motherboard. To put the maximum throughput reached in the
test 10672(t/s) in perspective an illustrative example can be good. If the SMs in a
town produces consumption data each hour, a system that can process 10000(t/s)
could cover 10000(t/s) ∗ 60(s/min) ∗ 60(min/h) = 36 million validations/hour. The
minimum scaling achieved in the tests with an added Odroid 500(t/s), would cover
500(t/s)∗60(s/min)∗60(min/h) = 1.8 million extra validations per hour. Gulisano
et al. reached similar throughput numbers, 1000-8000(t/s), but their system is not

27

as deployable in the AMI as it is built on dimensionally larger hardware, that con-
sumes more power. The table below gives an indication of the price and energy
consumption differences, which are significant. The SBC cluster can achieve similar
throughput at approx 1/5 of the cost and power consumption.

System Price Power

1 Odroid $69.00/572kr 5W

Cluster (4 Odroids) $276/2288kr 20W

4-core Intel Xeon E3-1246 $410/3399kr 80W

8-core Intel Xeon E5-2650 $1125.99/9334kr 95W

*(1US=8.29kr) from hardkernel.com, amazon.com and newegg.com

Table 7: Price and power comparison of validation systems

28

7 Future Work

In this section the possible future improvements of the prototype developed dur-
ing this thesis will be discussed. The prototype can validate real-time electrical
consumption stream data from SMs, by discarding incorrect values and interpolate
missing ones. Scalability is provided through adding SBCs, with increased through-
put and retained latency. This validation is changeable through reprogrammable
rules. Functionality could be added by further research into other validation needed
in the AMIs, such as editing of historical data. This could be done through inter-
action with an energy provider or supplying company. The occurrence of different
data errors could also be explored, so that the error percentages used in the eval-
uation could be confirmed. Additional flexibility would be given, if the prototypes
need for a wired network connection could be removed. Wireless connectivity can
be achieved by purchasing a WiFi module from the manufacturer of Odroid-U3,
Hardkernel. The connection then needs to be evaluated, as wireless connection gets
worse with added distance. Additional separation could result in worse throughput
rates and added latency for the validation. If the module provided by Hardkernel
does not meet the requirements it is possible to use a WiFi module of industrial
grade, by utilizing the available ports or connectors on the Odroid board. Another
development possibility is to test the validation system on just the Odroids, without
a dedicated server. Since, a server would not be available in a distributed deploy-
ment. This could be evaluated by running every entity of Storm and Kafka on the
Odroids, to see how many are needed to keep the same throughput and latency. Of
interest could also be to test a prototype outdoors, to develop a system that could
withstand temperature changes and other weather-related stresses.

29

8 Conclusions

This thesis show that it is possible to validate electrical consumption data with a
prototype built of four SBCs, with a throughput of 1000 to 10000 tuples per sec-
ond and maintain low latency. If the SMs produce consumption data hourly the
maximum hourly capacity of the system would be 36 million validations/hour as
discussed in Section 6.5, which could serve quite a large city. These numbers are in
the same range as those presented by Gulisano et al. [13], but the prototype pre-
sented in this thesis can achieve even better throughput by adding more SBCs to
the system. Each added SBC has shown to scale the system with at least 500(t/s),
which in an hourly schedule would provide 1.8 million additional validations. If the
price is also taken in consideration the system used by Gulisano et al. is much more
expensive, about $850/7046kr. Their system is pricier even without the inclusion
of a motherboard or memory. It also consumes more power, 75W, and is harder to
place in an AMI due to size. In conclusion this thesis has reached the objectives set
in Section 1. Concerning the aspects of ethics and sustainability, the basic concept
of this thesis is to improve the quality of data delivered to the utility head-end and
thereby improve the whole system. The produced prototype could increase the sus-
tainability of an AMI, by lowering the cost and power usage for validation.

30

9 List of Abbreviations

The abbreviations used in the report

AMI - Advanced Metering Infrastructure
DAG - Directed Acyclic Graph
DB - Database
MCU - Meter Concentrator Unit
SBC - Single-Board Computer
SBD - Single-Board Device
SM - Smart Meter
SPE - Stream Processing Engine
VEE - Validation, Estimation and Editing

31

References

[1] IBM InfoSphere Streams: Programming Model and Language Reference, Ver-
sion 1.2.1. Technical report, IBM Corp., 2010.

[2] Hunt Allcott. Rethinking real-time electricity pricing. Resource and Energy
Economics, 33(4):820–842, November 2011.

[3] Rajagopal Ananthanarayanan, Venkatesh Basker, Sumit Das, Ashish Gupta,
Haifeng Jiang, Tianhao Qiu, Alexey Reznichenko, Deomid Ryabkov, Manpreet
Singh, and Shivakumar Venkataraman. Photon: Fault-tolerant and scalable
joining of continuous data streams. In Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’13, pages 577–
588, New York, NY, USA, 2013. ACM.

[4] Arvind Arasu, Mitch Cherniack, Eduardo Galvez, David Maier, Anurag S.
Maskey, Esther Ryvkina, Michael Stonebraker, and Richard Tibbetts. Linear
Road: A Stream Data Management Benchmark. In Proceedings of the Thirtieth
International Conference on Very Large Data Bases - Volume 30, VLDB ’04,
pages 480–491, Toronto, Canada, 2004. VLDB Endowment.

[5] A. Bartoli, J. Hernández-Serrano, M. Soriano, M. Dohler, A. Kountouris, and
D. Barthel. Secure Lossless Aggregation for Smart Grid M2m Networks. In 2010
First IEEE International Conference on Smart Grid Communications (Smart-
GridComm), pages 333–338, October 2010.

[6] Chakib Bekara, Thomas Luckenbach, and Kheira Bekara. A privacy preserv-
ing and secure authentication protocol for the advanced metering infrastruc-
ture with non-repudiation service. In ENERGY 2012, The Second Interna-
tional Conference on Smart Grids, Green Communications and IT Energy-
aware Technologies, pages 60–68, 2012.

[7] R. Berthier and W.H. Sanders. Specification-based intrusion detection for ad-
vanced metering infrastructures. In 2011 IEEE 17th Pacific Rim International
Symposium on Dependable Computing (PRDC), pages 184–193, December 2011.

[8] Mar Callau-Zori, Ricardo Jiménez-Peris, Vincenzo Gulisano, Marina Papatri-
antafilou, Zhang Fu, and Marta Patiño-Mart́ınez. STONE: A stream-based
DDoS defense framework. In Proceedings of the 28th Annual ACM Symposium
on Applied Computing, SAC ’13, pages 807–812, New York, NY, USA, 2013.
ACM.

[9] M. Costache, V. Tudor, M. Almgren, M. Papatriantafilou, and C. Saunders.
Remote control of smart meters: Friend or foe? In 2011 Seventh European
Conference on Computer Network Defense (EC2ND), pages 49–56, September
2011.

[10] A. Dieb Martins and E.C. Gurjao. Processing of smart meters data based
on random projections. In Innovative Smart Grid Technologies Latin America
(ISGT LA), 2013 IEEE PES Conference On, pages 1–4, April 2013.

[11] V. Gulisano, R. Jimenez-Peris, M. Patiño-Martinez, C. Soriente, and P. Val-
duriez. StreamCloud: An elastic and scalable data streaming system. IEEE
Transactions on Parallel and Distributed Systems, 23(12):2351–2365, December
2012.

32

[12] Vincenzo Gulisano, Magnus Almgren, and Marina Papatriantafilou. METIS:
A two-tier intrusion detection system for advanced metering infrastructures.
In Proceedings of the 5th International Conference on Future Energy Systems,
e-Energy ’14, pages 211–212, New York, NY, USA, 2014. ACM.

[13] Vincenzo Gulisano, Magnus Almgren, and Marina Papatriantafilou. Online and
scalable data validation in advanced metering infrastructures. In The 5th IEEE
PES Innovative Smart Grid Technologies (ISGT) European 2014 Conference,
2014.

[14] Yuanxiong Guo, Miao Pan, Yuguang Fang, and P.P. Khargonekar. Decentral-
ized coordination of energy utilization for residential households in the smart
grid. IEEE Transactions on Smart Grid, 4(3):1341–1350, September 2013.

[15] Apache Kafka. http://kafka.apache.org/.

[16] B. Lohrmann and Odej Kao. Processing smart meter data streams in the cloud.
In 2011 2nd IEEE PES International Conference and Exhibition on Innovative
Smart Grid Technologies (ISGT Europe), pages 1–8, December 2011.

[17] Björn Lohrmann, Daniel Warneke, and Odej Kao. Massively-parallel stream
processing under QoS constraints with nephele. In Proceedings of the 21st Inter-
national Symposium on High-Performance Parallel and Distributed Computing,
HPDC ’12, pages 271–282, New York, NY, USA, 2012. ACM.

[18] T. Mikkola, E. Bunn, P. Hurri, G. Jacucci, M. Lehtonen, M. Fitta, and S. Biza.
Near real time energy monitoring for end users: Requirements and sample
applications. In 2011 IEEE International Conference on Smart Grid Commu-
nications (SmartGridComm), pages 451–456, October 2011.

[19] Nasim Beigi Mohammadi, Jelena Mǐsić, Vojislav B. Mǐsić, and Hamzeh Khazaei.
A framework for intrusion detection system in advanced metering infrastruc-
ture. Security and Communication Networks, 7, 2014.

[20] ntp.org: Home of the Network Time Protocol. http://www.ntp.org/.

[21] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and
D. Zagorodnov. The Eucalyptus Open-Source Cloud-Computing System. In
9th IEEE/ACM International Symposium on Cluster Computing and the Grid,
2009. CCGRID ’09, pages 124–131, May 2009.

[22] Ian Richardson, Murray Thomson, David Infield, and Conor Clifford. Domestic
electricity use: A high-resolution energy demand model. Energy and Buildings,
42(10):1878–1887, October 2010.

[23] F. Scarano and M. L. Riethmuller. Iterative multigrid approach in PIV image
processing with discrete window offset. Experiments in Fluids, 26(6):513–523,
May 1999.

[24] Yogesh Simmhan, Baohua Cao, Michail Giakkoupis, and Viktor K. Prasanna.
Adaptive rate stream processing for smart grid applications on clouds. In Pro-
ceedings of the 2Nd International Workshop on Scientific Cloud Computing,
ScienceCloud ’11, pages 33–38, New York, NY, USA, 2011. ACM.

33

[25] Michael Stonebraker, Uǧur Çetintemel, and Stan Zdonik. The 8 requirements
of real-time stream processing. SIGMOD Rec., 34(4):42–47, December 2005.

[26] Apache Storm. http://storm.apache.org/.

[27] Valentin Tudor, Magnus Almgren, and Marina Papatriantafilou. Analysis of
the impact of data granularity on privacy for the smart grid. In Proceedings
of the 12th ACM Workshop on Workshop on Privacy in the Electronic Society,
WPES ’13, pages 61–70, New York, NY, USA, 2013. ACM.

[28] D. Warneke and Odej Kao. Exploiting dynamic resource allocation for effi-
cient parallel data processing in the cloud. IEEE Transactions on Parallel and
Distributed Systems, 22(6):985–997, June 2011.

[29] Cheng Xu, Daniel Wedlund, Martin Helgoson, and Tore Risch. Model-based
Validation of Streaming Data: (Industry Article). In Proceedings of the 7th
ACM International Conference on Distributed Event-based Systems, DEBS ’13,
pages 107–114, New York, NY, USA, 2013. ACM.

[30] Apache ZooKeeper. http://zookeeper.apache.org.

34

10 Appendix

10.1 Other Stream Operators

Below is the description of the common stream operators that are not used in this
thesis.

Union
Union is a stateless operator that merges several input tuples from different streams
into one output stream. The schema for the operator is union()(I1,I2, ...)(O), tuples
are assumed to have the same tuple field schema. For instance the operator can be
used to produce tuples of consumption data from all SMs in one output stream.
union()(I1, I2, ...)(O)

Join
Join is a stateful operator that matches different input streams based on the value of
tuple fields. Tupels are collected separately for each stream and uses sliding windows
of typle or time type. join(WindowType, SizeOfWindow, Matching)(I1,I2)(O), the
output is a combination of both incoming tuples if they match.
join(time, 1h, 1.id = 2.id∧ 1.e.cons = 2.e.cons ∗ 2)(I1, I2)(O), join tuples if they are
from the same SM and the consumption of the former is two times of the latter.

Sort
Sort is a stateful operator that collects a set of tuples over a sliding window. Ev-
ery time the set is full a the tuple with minimum value is emitted as output.
sort(WindowType,SizeofWindow,SlideAmount,in.field,Group(in.field))(I)(O), the a
set of tuples are collected over a tuple-based or time-based sliding window. With
every sliding the tuple with the minimum field is produced as output. Optional
is to group by a certain field and thereby create a sliding window for each in-
stance. sort(time, 1h, 10min, e.cons,Group(id))(I)(O), produces the minimum con-
sumption collected the last hour every ten minutes for each SM.

35

	Introduction
	Background
	Problem
	Solution Overview
	Evaluation
	Organization of the Thesis

	Preliminaries
	System Model: Advanced Metering Infrastructure
	Data Streaming
	Stream Processing
	Parallelism in Storm

	Related Work
	Advanced Metering Infrastructures
	Data Streaming
	Data Validation

	Design
	Validation Rule 1 - Fixed Filter
	Validation Rule 2 - Varying Filter
	Validation Rule 3 - Interpolation
	Discussion of Deployment Options

	Implementation
	System Architecture
	Implementation of Data Streaming Operators in Storm
	Measuring Platform

	Evaluation
	Evaluation Setup
	Data
	Hardware
	Software
	Storm Parallelism Setup

	Validation Rule 1 - Fixed Filter
	Validation Rule 2 - Varying Filter
	Validation Rule 3 - Interpolation
	Summary

	Future Work
	Conclusions
	List of Abbreviations
	Appendix
	Other Stream Operators

