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Abstract—The worst-case position error provides valu-
able information for efficiently designing location based
services in wireless networks. In this study, a technique
based on a geometric approach is investigated for deriving
a reasonable upper bound on the position error in bearing-
only target localization. Assuming bounded measurement
errors, it is first observed that the target node location
belongs to a polytope. When a single estimate of the
target location is available, the maximum distance from the
estimate to extreme points of the polytope gives an upper
bound on the position error. In addition, a technique based
on outer approximation is proposed to confine the location
of the target node to an ellipsoid. Simulation results show
that the proposed upper bound is tight in many situations.
It is also observed that the proposed techniques can be
effectively used to derive sets containing the location of
target nodes.

Index Terms– Angle of arrival (AOA), position error,
upper-bound, outer-approximation, extreme points.

I. I NTRODUCTION

Position information plays a vital role for many
location-aware services in next generation wireless sys-
tems [1]. In the absence of GPS signals, e.g., due to
lack of access to GPS satellites in indoor-type scenarios,
the position information can be extracted from a network
consisting of a number of reference nodes at known lo-
cations via some type of measurements between different
nodes such as time-of-flight or angle of arrival (AOA) [2].
In AOA-based localization, the angles estimated between
a target and anchor nodes are used to estimate the location
of the target node. Different algorithms, e.g., based on
maximum likelihood or least squares, can be developed
to estimate the location of the target node [3], [4].

Various approaches have been suggested to study the
performance of positioning algorithms. For example un-
der some regularity conditions on the distribution of mea-
surement errors, the Cramér-Rao lower bound (CRLB)
provides a lower limit on the variance of any unbiased
estimator [5]. It is noted that the CRLB and other
performance metrics studied in the literature generally
depends on the true location of the target node; hence,
they may face some drawbacks for practical applications.
In addition, available benchmarks such as the CRLB

are useful in the statistical sense, i.e., on average. For
example, if only a single estimate of the location is
available, it is not clear how existing approaches can
provide useful information [6].

Besides the lower bounds on the position estimation
error, in some situations we may need to characterize
the worst-case position error. The worst-case position
error can be useful for designing and offering services
in, e.g., position based recommender systems. In this
study, we investigate the lowest tractable upper bound
(in terms of complexity) on the position error based on
a geometric interpretation. To do that, we consider a
technique, originally investigated in the previous work
for distance based positioning [6], [7], in which the target
location is trapped to a closed bounded set (feasible set)
and then an upper bound on a single position error is
defined with respect to the feasible set. We formulate the
problem of obtaining an upper bound on the position error
as finding the maximum distance from the estimate to the
feasible set, which is a nonconvex problem and in general
might be difficult to solve. A relaxation technique can
be used to solve the nonconvex problem. Alternatively,
assuming the feasible region is bounded, we instead find
the extreme points of the feasible set (a polytope) and
caculate the maximum distance to those points. Using the
estimate and an upper bound, we can also find a ball that
contains the location of target node. In addition, when
the extreme points of the polytope are available, we can
also obtain a minimum volume ellipsoid containing the
location of the target node.

In summary, the main contributions of this study are

• an extension of the idea of upper bound to AOA-
based localization,

• an upper bound based on the maximum distance
from a single estimate to the extreme points of a
polytope derived from AOA measurements,

• a minimum volume ellipsoid covering the polytope
that contains the location of the target node (without
having any estimate of the target location).

The remainder of the paper is organized as follows.



Section II explains the signal model considered in this
study. In Section III, an upper bound on the position
error is investigated. Simulation results are presented in
Section IV. Finally, Section V makes come concluding
remarks.

II. SYSTEM MODEL

Consider a 2D wireless network1 consisting ofN an-
chor nodes located atzi = [xi yi]

T ∈ R
2, i = 1, . . . , N .

The angle estimate between the anchor nodes and a target
node at unknown locations = [xs ys]

T ∈ R
2 (in radians)

is given by [8]

θ̂i = atan
ys − yi
xs − xi

︸ ︷︷ ︸

,θi

+ni, i = 1, . . . , N (1)

where the measurement errorni is modeled by some
proper distributions [9].

Assumption 1: For the rest of the paper, we assume
that ys ≥ yi; hence0 ≤ θi ≤ π.

To avoid ambiguities due to noise, we modify the
estimate in (1) as

θ̂i = min{π,max{θ̌i, 0}}, i = 1, . . . , N. (2)

We also assume that the anglêθi is computed with
respect to a global coordinate systems, meaning that the
orientation is known in every anchor node.

Based on AOA measurements in (1), we can develop a
localization algorithm to estimate the location of the tar-
get node. Suppose an estimate of the target location, say
ŝ, is available. We are then interested in characterizing
the position error defined by

e(s) , ‖ŝ− s‖. (3)

It is clear from (3) that the position error depends on the
true unknown locations; hence, it may be difficult to
characterize the position error. Instead, we may consider
the worst-case position error. As mentioned earlier, the
worst-case position error provides useful information for
various location based services. To study the worst-case
position error, we can consider the following optimization
problem:

minimize
w

w

subject to e(s) ≤ w,

s ∈ S, (4)

whereS is a feasible set containing the possible values
of the location of the target node.

Determining a suitable feasible set in (4) can be quite
challenging. We now consider a simple approach to

1In 3D networks both azimuth and elevation angles should be
considered, but the approach can be similarly extended.

obtain a useful feasible setS. We first make the following
assumption [10].

Assumption 2: The measurement errors in (1) is as-
sumed to be distributed over a bounded set, i.e.,ni ∈
{Li, Ui}.
Assumption 2 implies that the measurement error in the
AOA estimate in (1) cannot be arbitrarily large. This
assumption can, at least approximately, be valid in some
practical scenarios, e.g., in cases with high signal-to-noise
ratios (SNRs).

We assume that the lower and upper boundsLi andUi

area priori known. If Li andUi are unknown, they can
be estimated from measurements. For example, if there

are multiple measurementŝθ
k

i , k = 1, . . . ,K (K is the
number of AOA estimates in the anchor nodei) and ifK
is sufficiently large, we can use the following approach
to estimateLi andUi:

L̂i = min
k

¯̂
θki , Ûi = max

k

¯̂
θki , (5)

where ¯̂θki , θ̂i − (1/K)
∑K

i=1
θ̂i.

From Assumption 2 and the relation in (1), we can
conclude that

max{θ̂i − Ui, 0}
︸ ︷︷ ︸

,mLi

≤ θi ≤ min{θ̂i − Li, π}
︸ ︷︷ ︸

,mUi

(6)

meaning that the trueθi belongs to an interval defined
by the estimatêθi and boundsLi andUi.

We first define the following halfplanes:

HL
i , {s | aT

lis ≥ bli if mLi ≤
π

2
&

aT
lis ≤ bli if mLi ≥

π

2
} (7)

HU
i , {s | aT

uis ≥ bui if mUi ≤
π

2
&

aT
uis ≤ bui if mUi ≥

π

2
} (8)

where

ali , [− tan(mLi) 1]
T (9)

aui , [− tan(mUi) 1]
T (10)

bli− , tan(mLi)xi + yi (11)

bui− , tan(mUi)xi + yi. (12)

We then define the following set (cone):

Si , HL
i

⋂

HU
i . (13)

From the expressions above, it is clear that the location
of the target node belongs to the following convex set:

s ∈ S =

N⋂

i=1

Si. (14)

As an example, Fig. 1 shows how upper and lower bounds
on the AOA estimate can help define a feasible set –a
polytope– containing the location of the target node.



zi

θi
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s

Fig. 1. An example of AOA localization. The feasible set defined by
the red polytope contains the location of the target node.

Remark 1: It may happen that the polyhedronS is
unbounded, e.g., if the target is very far from anchor
nodes. But if the target is close to anchor nodes, the
polyhedron (polytope)S is closed.

Remark 2: Considering the polytope containing the
location of target node, a simple positioning algorithm to
obtain a coarse estimate of the location can be designed
based on (serial or parallel) projection onto halfplanes
HL

i and HU
i . Projection onto a halfspace is simple

operation [11] and the resulting algorithm would be of
low complexity [12].

III. A N UPPER BOUND ON A SINGLE POSITION ERROR

We now employ the approach proposed in [6] to find
an upper bound on the position errore(s). Namely, we
consider the following optimization problem:

vb : maximize
s

‖s− ŝ‖

subject to s ∈
N⋂

i=1

Si (15)

‖s− zi‖ ≤ dmax, i = 1, . . . , N

where a constraint is added based on the maximum
distance from a target to an anchor node in order to make
sure that the feasible region is bounded. Note that such
a constraint makes sense in practice since for detecting
and estimating the appearance of the target node and
the AOA, respectively, we need a minimum level of
SNRs, which in turn depends on the distance between
two nodes. In fact, when the polytope is unbounded, the
last constraint helps have a bounded solution. The optimal
valuevb gives an upper bound on the position error, that
is, e(s) ≤ vb.

The problem in (16) is nonconvex and can be difficult
to solve [13], [14]. One way to approximately solve the
nonconvex problem in (16) is to employ a well-known

convex relaxation technique. For details of the approach,
see [6], [13].

We now assume thatS is bounded and use another
approach to find an upper bound on the position error.
Suppose the set ofk extreme points of the polytope
are denoted byP = {p

1
, . . . ,pk} (the vertices of the

polytope). It is easy to conclude that the worst-case
position error with respect to the ploytopeS is given
by

vb = max
i

‖ŝ− pi‖. (16)

Note that finding the extreme points of the polytopeS is
not difficult if N is not large, specially for 2D networks.
Now, if we form a ball with center̂s and radiusvb, i.e.,

B = {x ∈ R
2 | ‖x− ŝ‖ ≤ vb}, (17)

we can conclude thats ∈ B.
Another approach to find a set containing the location

of the target node is to find the minimum volume ellipsoid
containing the polytopeS. To find the (Löwner-John)
ellipsoid, we consider an ellipsoid defined by [15], [16]

E = {x | ‖Bx+ d‖ ≤ 1} (18)

whereB is a2×2 symmetric positive definite matrix and
d ∈ R

2. The minimum volume ellipsoid is then computed
by solving the following convex optimization problem
[16]:

minimize
B, d

log detB−1

subject to ‖Bpi + d‖ ≤ 1, i = 1, . . . , N (19)

It is noted that the sets in (17) and (19) are derived
differently. For ball defined in (19), an estimate of the
location is required, while for the second approach, i.e.,
minimum volume ellipsoid, no prior estimate of the
location is required. It is clear that the second approach
is more complex than the first technique.

The performance of the proposed approaches is eval-
uated through computer simulations for a moving target
in a 2D network.

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the pro-
posed techniques for a network consisting of 11 anchor
nodes atzi = [5(i−1) 0], i = 1, . . . , 11 and a target node
moving on a trajectory according to a quadratic curve
y = 0.001x2 − 0.01x + 10. We consider a truncated
Gaussian distribution over[−πT/180, πT/180] radians
dramatized withT degress. To find the extreme points,
we first calculate all the crossing points between every
pair of lines and then check which points belong to the
intersection of halfplanes.

We set the variance of noiseni equal to 1. In every
position of the target, anchor nodes measure AOA and
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Fig. 2. The CDF of relative tightness for different noise interval.

then a least squares (LS) technique is used to find an
estimate of the location. For details of the LS algorithm,
see, e.g., [17].

To evaluate the tightness of the proposed technique, we
consider the relative tightness asτv , (vb − e(s))/e(s)
[6]. We study the cumulative distribution function (CDF)
of τv, i.e., Pr {τv ≤ x}. In the following, we generate
e(s) from LS estimation.

Fig. 2 shows the relative tightness for different values
of the lower and upper bound on the measurement noise.
In every position of the target node, we consider 100
realization of measurement errors. As expected increasing
the interval makes the feasible polytopeS larger; hence
the bound will be larger. As stated in [6], for a relatively
fixed estimation error, the relative tightness degrades with
increasing (the volume of) the intersection.

Fig. 3 shows how the location of the target node can
be confined to feasible sets, a ball and an ellipsoid de-
rived from the upper bound (UppBall) and the minimum
volume ellipsoid (MinVolEllip). In this simulation, we set
T = 5. In general, MinVolEllip is smaller than UppBall.
It is also observed that the geometry of the network plays
an important role in the size of the intersection and con-
sequently on the volumes of UppBall and MinVolEllip.

V. CONCLUSIONS

In this study a technique has been investigated to
find an upper bound on the position error. Assuming
that measurement errors in AOA estimates are bounded,
the location of the target node can be confined to the
intersection of a number of halfplanes (a polytope).
Then, the maximum distance from an estimate of the
location to the polytope determines an upper bound on the
position error. In addition, a minimum volume ellipsoid
has been derived that contains the location of the target
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Fig. 3. Moving target and feasible sets containing the location of
target nodes via outer approximation and upper bound concept. The
black dashed line shows the trajectory of the moving target.

node. Simulation results show that the proposed bound is
relatively tight in many situations.
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