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Abstract—The worst-case position error provides valu- are useful in the statistical sense, i.e., on average. For
able information for efficiently designing location based example, if only a single estimate of the location is

services in wireless networks. In this study, a technique gyqiaple, it is not clear how existing approaches can
based on a geometric approach is investigated for deriving . . .
provide useful information [6].

a reasonable upper bound on the position error in bearing- ) N ] )
only target localization. Assuming bounded measurement Besides the lower bounds on the position estimation
errors, it is first observed that the target node location error, in some situations we may need to characterize
belongs to a polytope. When a single estimate of the the worst-case position error. The worst-case position

target location is available, the maximum distance from the Lo . .
estimate to extreme points of the polytope gives an upper error can be useful for designing and offering services

bound on the position error. In addition, a technique based N €.9., position based recommender systems. In this
on outer approximation is proposed to confine the location Study, we investigate the lowest tractable upper bound
of the target node to an ellipsoid. Simulation results show (in terms of complexity) on the position error based on

that the proposed upper bound is tight in many situations. 5 geometric interpretation. To do that, we consider a

It is also observed that the proposed techniques can be . - . . . -
effectively used to derive sets containing the location of technique, originally investigated in the previous work

target nodes. for di;tar]ce based positioning [6], [7], in which the_target
Index Terms— Angle of arrival (AOA), position error, location is trapped to a closed bounded set (feasible set)
upper-bound, outer-approximation, extreme points. and then an upper bound on a single position error is

defined with respect to the feasible set. We formulate the
problem of obtaining an upper bound on the position error
Position information plays a vital role for manyas finding the maximum distance from the estimate to the
location-aware services in next generation wireless syeasible set, which is a nonconvex problem and in general
tems [1]. In the absence of GPS signals, e.g., due ffight be difficult to solve. A relaxation technique can
lack of access to GPS satellites in indoor-type scenarigg used to solve the nonconvex problem. Alternatively,
the position information can be extracted from a networkssuming the feasible region is bounded, we instead find
consisting of a number of reference nodes at known Ighe extreme points of the feasible set (a polytope) and
cations via some type of measurements between differgaiculate the maximum distance to those points. Using the
nodes such as time-of-flight or angle of arrival (AOA) [2]estimate and an upper bound, we can also find a ball that
In AOA-based localization, the angles estimated betweebntains the location of target node. In addition, when
a target and anchor nodes are used to estimate the locatig extreme points of the polytope are available, we can
of the target node. Different algorithms, e.g., based @fiso obtain a minimum volume ellipsoid containing the
maximum likelihood or least squares, can be develop&station of the target node.
to estimate the location of the target node [3], [4]. In summary, the main contributions of this study are
Various approaches have been suggested to study the
performance of positioning algorithms. For example un- *
der some regularity conditions on the distribution of mea- . .
surement errors, the Cramér-Rao lower bound (CRLB) * an upper bound _based on the maximum distance
provides a lower limit on the variance of any unbiased from a smglg estimate to the extreme points of a
estimator [5]. It is noted that the CRLB and other poly_tqpe derived from _AOA,‘ measu.rements,
performance metrics studied in the literature generally ® a minimurm volume el!lpsmd covering the pon_tope
depends on the true location of the target node; hence, that_ contains the location of the target n_ode (without
they may face some drawbacks for practical applications. having any estimate of the target location).
In addition, available benchmarks such as the CRLB The remainder of the paper is organized as follows.

I. INTRODUCTION

an extension of the idea of upper bound to AOA-
based localization,



Section Il explains the signal model considered in thisbtain a useful feasible sét We first make the following
study. In Section Ill, an upper bound on the positioassumption [10].

error is investigated. Simulation results are presented inAssumption 2. The measurement errors in (1) is as-
Section IV. Finally, Section V makes come concludingumed to be distributed over a bounded set, he.,c

remarks. {L;,U;}.
Assumption 2 implies that the measurement error in the
Il. SYSTEM MODEL AOA estimate in (1) cannot be arbitrarily large. This
Consider a 2D wireless netwdrkonsisting of N an- assumption can, at least approximately, be valid in some
chor nodes located at; = [x; y;]7 € R?,i=1,...,N. practical scenarios, e.g., in cases with high signal-iseno

The angle estimate between the anchor nodes and a targées (SNRs).

node at unknown locatios = [z, y,]7 € R? (in radians) ~ We assume that the lower and upper bouhgandU;

is given by [8] area priori known. If L; andU; are unknown, they can
be estimated from measurements. For example, if there

A Ys — Yi . . ~ .
0; = atan-——=+n;, i=1...,N (1) are multiple measuremenés, k = 1,..., K (K is the
—_— number of AOA estimates in the anchor nadland if K
20, is sufficiently large, we can use the following approach
where the measurement errof is modeled by some to estimatel; andU;:
proper distributions [9]. L; = min e_k U; = max G_k (5)
Assumption 1: For the rest of the paper, we assume ko koo
thaty, > v;; ; . ) A j
ys = yi; hencel < 0; < 7 , . wheref® 24, — (1/K)°K 6.
To avoid ambiguities due to noise, we modify the From Assumption 2 and the relation in (1), we can
estimate in (1) as conclude that
éi = min{ﬂa maX{éiv 0}}; i = ]-a ) N. (2) max{éi — UL', 0} S 91 S min{éi — Li, 7T} (6)
——— —
We also assume that the andle is computed with Lmp, Lmy,
respect to a global coordinate systems, meaning that fh@aning that the trué, belongs to an interval defined
orientation is known in every anchor node. by the estimatd); and bounds.; and U;.

Based on AOA measurements in (1), we can develop awe first define the following halfplanes:
localization algorithm to estimate the location of the tar- LA - ) T
get node. Suppose an estimate of the target location, say Hi ={s | ajs = b if mp; < 9 &
8, is available. We are then interested in characterizing T . T

' . . 8 < by if P> = 7
the position error defined by @8 = O L = 2} (")

) b
H?é{s | afistM— if my; < 5 &

e(s) =5 —s|. ®) 2
It is clear from (3) that the position error depends on the @8 < bui if my; > 5} (8)
true unknown locations; hence, it may be difficult to \ypere
characterize the position error. Instead, we may consider N .
the worst-case position error. As mentioned earlier, the a;; = [—tan(myg;) 1] 9)
worst-case position error provides useful information for ay; 2 [ tan(my;) 1)7 (10)
various location based services. To study the worst-case b &t N 4
. . . .. . li an(mLz)mz +yi (11)
position error, we can consider the following optimization N
problem: bui— = tan(my;)x; + yi. (12)
e We then define the following set (cone):
minimize w
w A
subject to e(s) < w, Si &M anJ (13)
seS, (4) From the expressions above, it is clear that the location

) ) o . of the target node belongs to the following convex set:
where S is a feasible set containing the possible values

‘ N
of the location of the target node. sES = m S;. (14)

Determining a suitable feasible set in (4) can be quite i1

challenging. We now consider a simple approach t .
ging P PP Rs an example, Fig. 1 shows how upper and lower bounds
lin 3D networks both azimuth and elevation angles should 3N the AOA es_tlmate can he_lp define a feasible set —a
considered, but the approach can be similarly extended. polytope— containing the location of the target node.



convex relaxation technique. For details of the approach,
see [6], [13].

We now assume thaf is bounded and use another
approach to find an upper bound on the position error.
Suppose the set of extreme points of the polytope
are denoted by? = {p,,...,p;} (the vertices of the
polytope). It is easy to conclude that the worst-case
position error with respect to the ploytoge is given

by
v, = max ||§ — p;]|. (16)

Note that finding the extreme points of the polytapés
not difficult if N is not large, specially for 2D networks.
Now, if we form a ball with centeg and radiusv,, i.e.,

B={xeR? ||z -3 <w}, (17)

Fig. 1. An example of AOA localization. The feasible set defirby
the red polytope contains the location of the target node.

we can conclude that € .
Remark 1: It may happen that the polyhedra$i is  Another approach to find a set containing the location
unbounded, e.g., if the target is very far from anchaif the target node is to find the minimum volume ellipsoid
nodes. But if the target is close to anchor nodes, th®ntaining the polytopes. To find the (Léwner-John)

polyhedron (polytopeg is closed. ellipsoid, we consider an ellipsoid defined by [15], [16]
Remark 2: Considering the polytope containing the
location of target node, a simple positioning algorithm to &={z|||Bx+d| <1} (18)

obtain a coarse estimate of the location can be designgfere B is a2 x 2 symmetric positive definite matrix and
based on (serial or parallel) projection onto halfplangg - rR2. The minimum volume ellipsoid is then computed

#f and H; . Projection onto a halfspace is simpley, solving the following convex optimization problem
operation [11] and the resulting algorithm would be °f16]:

low complexity [12].

minimize logdet B™!
I1l. AN UPPER BOUND ON A SINGLE POSITION ERROR » @
) ) subject to |Bp,+d|| <1, i=1,....N (19)
We now employ the approach proposed in [6] to find

an upper bound on the position errefs). Namely, we It is noted that the sets in (17) and (19) are derived

consider the following optimization problem: differently. For ball defined in (19), an estimate of the
location is required, while for the second approach, i.e.,
vp: maximize |[s — 3| minimum volume ellipsoid, no prior estimate of the
N location is required. It is clear that the second approach
subject to s € m S; (15) is more complex than the first technique.
=1 The performance of the proposed approaches is eval-
s — zill < dmax, i =1,...,N uated through computer simulations for a moving target

in a 2D network.

where a constraint is added based on the maximum
distance from a target to an anchor node in order to make IV. SIMULATION RESULTS
sure that the feasible region is bounded. Note that suchin this section, we evaluate the performance of the pro-
a constraint makes sense in practice since for detectipgsed techniques for a network consisting of 11 anchor
and estimating the appearance of the target node amsbes at; = [5(i—1) 0], ¢ =1,...,11 and a target node
the AOA, respectively, we need a minimum level ofnoving on a trajectory according to a quadratic curve
SNRs, which in turn depends on the distance betwegn= 0.001z> — 0.0l + 10. We consider a truncated
two nodes. In fact, when the polytope is unbounded, tl@@aussian distribution ovef-77"/180,71"/180] radians
last constraint helps have a bounded solution. The optintitbmatized withT" degress. To find the extreme points,
value v, gives an upper bound on the position error, thate first calculate all the crossing points between every
is, e(s) < . pair of lines and then check which points belong to the

The problem in (16) is nonconvex and can be difficuintersection of halfplanes.
to solve [13], [14]. One way to approximately solve the We set the variance of noise equal to 1. In every
nonconvex problem in (16) is to employ a well-knowrposition of the target, anchor nodes measure AOA and
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Fig. 2. The CDF of relative tightness for different noiseemal. Fig. 3. Moving target and feasible sets containing the lonabf
target nodes via outer approximation and upper bound condée

black dashed line shows the trajectory of the moving target.

then a least squares (LS) technique is used to find an

estimate of the location. For details of the LS algorithihode. Simulation results show that the proposed bound is

see, e.g., [17].

To evaluate the tightness of the proposed technique, we
consider the relative tightness as 2 (v, — e(s))/e(s)

[6]. We study the cumulative distribution function (CDF) [1]
of 7, i.e., Pr{r, < z}. In the following, we generate
e(s) from LS estimation.

Fig. 2 shows the relative tightness for different valued2]
of the lower and upper bound on the measurement noise.
In every position of the target node, we consider 1003
realization of measurement errors. As expected increasing
the interval makes the feasible polytogelarger; hence
the bound will be larger. As stated in [6], for a relatively [4)
fixed estimation error, the relative tightness degradels wit
increasing (the volume of) the intersection.

Fig. 3 shows how the location of the target node can
be confined to feasible sets, a ball and an ellipsoid de-
rived from the upper bound (UppBall) and the minimum(®
volume ellipsoid (MinVolEllip). In this simulation, we set
T = 5. In general, MinVolEllip is smaller than UppBall. [7]
It is also observed that the geometry of the network plays
an important role in the size of the intersection and con-
sequently on the volumes of UppBall and MinVolEllip. 8l

V. CONCLUSIONS o
In this study a technique has been investigated to
find an upper bound on the position error. Assumin@O
that measurement errors in AOA estimates are bounded,
the location of the target node can be confined to the
. . 11]
intersection of a number of halfplanes (a polytope).
Then, the maximum distance from an estimate of the
location to the polytope determines an upper bound on tHél
position error. In addition, a minimum volume ellipsoid

has been derived that contains the location of the target

relatively tight in many situations.
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