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h i g h l i g h t s

• A series solution is obtained for the wave modes inside an anisotropic circle.
• An analytical solution is given for the scattering by an anisotropic circle.
• The anisotropy has strong effects on the scattering except at low frequencies.
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a b s t r a c t

The scattering by a circle is considered when the outside medium is isotropic and the in-
side medium is anisotropic (orthotropic). The problem is a scalar one and is phrased as a
scattering problem for elastic waves with polarization out of the plane of the circle (SH
wave), but the solution is with minor modifications valid also for scattering of electromag-
netic waves. The equation inside the circle is first transformed to polar coordinates and it
then explicitly contains the azimuthal angle through trigonometric functions. Making an
expansion in a trigonometric series in the azimuthal coordinate then gives a coupled sys-
temof ordinary differential equations in the radial coordinate that is solved by power series
expansions. With the solution inside the circle complete the scattering problem is solved
essentially as in the classical case. Some numerical examples are given showing the influ-
ence of anisotropy, and it is noted that the effects of anisotropy are generally strong except
at low frequencies where the dominating scattering only depends on the mean stiffness
and not on the degree of anisotropy.
© 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The 2D scattering of a wave from a circle is an old problem in mathematical physics, see e.g. the classical book by
Morse and Feshbach [1]. It requires that both the medium outside and inside the circle is homogeneous and isotropic (or
cylindrically anisotropic), although a layered circle may also be considered (or a void or rigid inclusion). The scattering by
anisotropic (with fixed directions of anisotropy) objects is, however, also of great interest. In mechanics this may be the
scattering by fibres in a composite, the grains in a metal, or, on a larger scale, an anisotropic formation on the ground.

Waves in anisotropic media have mostly been treated in Cartesian coordinates. It is then straightforward to investigate
the propagation of waves in layered media. For bounded anisotropic media (with fixed directions of anisotropy) little has
been done, and most interest for such problems seems to arise for electromagnetic problems, not mechanical ones. Thus
Ren [2] has derived the cylindrical and spherical wave functions in anisotropic electromagnetic media and these were used
by Wu and Ren [3] to investigate the scattering by an anisotropic circle in an isotropic medium. They have been further
used to treat the scattering by a sphere, see e.g. Wan and Li [4], and to derive the null field approach (T matrix method),
see Doicu [5] and Wang et al. [6]. The basic idea in the derivation of these wave functions is a plane wave expansion that is
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transformed into polar or spherical coordinates, which leads to quite complicated expressions involving integrals that have
to be computed numerically. It seems that the method has not been used for mechanical scattering problems. Very recently
Zharnikov and Syresin [7] developed a very different approach (leading to a Riccati equation for the impedance operator)
which they applied to the determination of the modes in an anisotropic elastic waveguide. For cylindrical orthotropy, on
the other hand, more investigations have been performed; an interesting example is given by Martin and Berger [8], who
investigate the eigenfrequencies in a wooden pole using somewhat similar ideas as in the present paper.

In this paper the scattering by an anisotropic circle is treated in the scalar case. This is phrased in terms of mechanical
waves so it is antiplane shear waves that are assumed, i.e. the displacement is perpendicular to the plane of the circle and
the problem is 2D. In contrast to the methods mentioned above the starting point is to state the anisotropic wave equation
in polar coordinates. The equation then becomes more complicated than in rectangular coordinates in that the azimuthal
angle ϕ appears in some places, but only as factors cos 2ϕ or sin 2ϕ. Expanding the field in a trigonometric series in ϕ leads
to a set of coupled ordinary differential equations. These can be solved by a power series ansatz, which leads to a very
efficient way of calculating the field inside the anisotropic circle. In the isotropic medium outside the circle the classical
expansions of the incident and scattered fields in terms of Bessel and Hankel functions, respectively, are made and invoking
the boundary conditions this solves the problem, although it is noted that the stress boundary condition leads to a coupling
between different azimuthal orders.

2. Problem formulation

Consider the scattering by an anisotropic circle of radius a residing in an isotropic infinitemedium in the simplest possible
setting, i.e. let the incoming field be an antisymmetric plane shear wave. Introduce a rectangular coordinate system xywith
the origin at the centre of the circle and the x and y axes along the principal directions of the anisotropic medium. Also polar
coordinates rϕ in the xy plane are used. The infinite medium has density ρ0 and shear modulusµ0. The anisotropic medium
has density ρ and the shear moduli c1 and c2 with respect to the x and y directions, respectively. Time harmonic conditions
are assumed with the time factor exp(−iωt), where t is time and ω the angular frequency. The wave number in the infinite
medium is then k0 = ω

√
ρ0/µ0.

The displacement field has only an out-of-plane component u that in the medium outside the circle satisfies the 2D
Helmholtz equation

∇
2u + k20u = 0. (1)

The medium inside the circle is assumed to be orthotropic with the plane of the circle as a symmetry plane so that the
constitutive equations are

σxz = 2c1ϵxz, (2)
σyz = 2c2ϵyz . (3)

The shear stresses are σxz and σyz and ϵxz and ϵyz are corresponding shear strains. The equation of motion inside the circle
is then

c1
∂2u
∂x2

+ c2
∂2u
∂y2

+ ρ ω2u = 0. (4)

The boundary conditions at r = a between the isotropic medium outside the circle and the anisotropic one inside the
circle are that the displacement u and the shear stress σrz are continuous. The incoming field uin is taken as a plane wave
with unit amplitude propagating in a direction making the angle ϕ0 with the x axis

uin
= exp(ik0r cos(ϕ − ϕ0)). (5)

To fully specify the scattering problem the scattered field usc
= u − uin must satisfy radiation conditions.

3. Solution inside the circle

Because the anisotropic medium resides within a circle it is convenient to formulate the equation of motion in polar
coordinates. Expressed in terms of stresses this equation is

∂σrz

∂r
+

1
r
∂σϕz

∂ϕ
+
σrz

r
+ ρ ω2u = 0. (6)

Using the transformations for the stresses and strains between the two coordinate systems and the definition of the strains,
the stresses can be given in polar coordinates as

σrz =
∂u
∂r


c1 cos2 ϕ + c2 sin2 ϕ


+

1
r
∂u
∂ϕ

(c2 − c1) sinϕ cosϕ, (7)

σϕz =
∂u
∂r
(c2 − c1) sinϕ cosϕ +

1
r
∂u
∂ϕ


c1 sin2 ϕ + c2 cos2 ϕ


. (8)
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Inserting into the equation of motion and rearranging a little gives

(1 + β cos 2ϕ)
∂2u
∂r2

+ (1 − β cos 2ϕ)


1
r2
∂2u
∂ϕ2

+
1
r
∂u
∂r


+ 2β sin 2ϕ


1
r2
∂u
∂ϕ

−
1
r
∂2u
∂r∂ϕ


+ k2u = 0. (9)

Here k = ω
√
ρ/c is the wave number in the anisotropic medium determined with the mean stiffness c = (c1 + c2)/2, and

β =
c1 − c2
c1 + c2

, (10)

is a measure of the degree of anisotropy, with β = 0 in the special case of isotropy. It is noted that the equation of motion
in polar coordinates has terms that depend explicitly on the angular coordinate ϕ.

Due to symmetry the solution inside the circle can be divided into four parts that are even or odd with respect to the x
and y axes. For the part that is even–even the solution can be assumed in the form

u(r, ϕ) =


m=0, 2,...

fm(r) cosmϕ. (11)

Inserting this into the equation of motion, using trigonometric relations for products, and using the orthogonality of the
trigonometric system gives

f ′′

m +
1
r
f ′

m +


k2 −

m2

r2


fm +

β

2


f ′′

m+2 +
2m + 3

r
f ′

m+2 +
m2

+ 2m
r2

fm+2


+
β

2


f ′′

m−2 −
2m − 3

r
f ′

m−2 +
m2

− 2m
r2

fm−2


= 0, (12)

where a prime denotes differentiation with respect to r . This equation is valid also for m = 0 with the condition f−2 = 0.
The result is thus a system of coupled ordinary differential equations for the functions fm(r), m = 0, 2, 4, . . . . To solve this
system the functions are expanded into power series in r . To obtain solutions that are analytical at the origin the function
fm(r) must behave as rm as r approaches r = 0 and furthermore only even m can be included. Thus the following power
series expansion can be made

fm(r) =


j=m,m+2,...

αm
j (r/a)

j. (13)

Inserting this into Eq. (12) and identifying equal powers of r gives
j2 − m2αm

j + (ka)2αm
j−2 +

1
2
β(j + m)(j + m + 2)αm+2

j +
1
2
β(j − m)(j − m + 2)αm−2

j = 0. (14)

Here j = m + 2,m + 4, . . . and m = 0, 2, . . . and αm−2
j = 0 for m = 0. This system of equations can be used to determine

all αm
j for j = m + 2,m + 4, . . . in terms of the αm

m . Thus the equation for m = 0 and j = 2 determines α0
2 in terms of α0

0

and α2
2 . Then the two equations form = 0, j = 4 andm = 2, j = 4 determine α0

4 and α2
4 , and so on. The even–even solution

inside the circle is then complete and contains the unknown coefficients αm
m ,m = 0, 2, . . . .

At this stage wave functions can be introduced in the following way. Set all αm′

m′ = 0 except for αm
m , which could be set to

any convenient normalization. Then it is easily seen that αm′

j = 0 whenm′ < m and j < m+ 2. The wave function then has
the following form

ψm(β, r) =

m−2
m′=0, 2,...


j=m+2,m+4,...

αm′

j (r/a)
j
+


j=m,m+2,...

αm
j (r/a)

j cosmϕ

+


m′=m+2,m+4,...


j=m′+2,m′+4,...

αm′

j (r/a)
j. (15)

It is seen that these wave functions behave as rm when r is small. For β = 0 they reduce to Bessel functions (if the
normalization is chosen correctly; note that for β = 0 Eq. (13) reduces to the usual recursion relation for the coefficients
in the power series expansion of Bessel functions). It seems that these wave functions are not the same as those of Wu and
Ren [3]. At least for the present purpose, however, there seems to be no point in using these functions, but instead work
directly with the expansions Eq. (13) and the system of equation (14).

For the part of the solution that is even in x and odd in y the same expansion Eq. (11) is made except that now m is
summed over the odd integers m = 1, 3, . . . . The differential equation (12) remains the same, but now the interpretation
f−1 = f1 must be made. The expansion into power series Eq. (13) also remains valid, as does the resulting equation (14),
now with the requirement that α−1

j = α1
j . The parts that are odd in x can be treated in exactly the same way. Instead of

an expansion in cosmϕ, the expansion is in sinmϕ and m = 0 is of course not included in the even part. Otherwise the
equations remain the same with the same requirement form = 1 and with αm−2

j = 0 form = 2.
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4. The scattering problem

With the solution inside the circle determined, the scattering problem can now be solved. The solution in the isotropic
medium outside the circle is standard and concentrating on the part that is even in both x and y it is

u(r, ϕ) =


m=0, 2,...

[amJm(k0r)+ bmHm(k0r)] cosmϕ. (16)

Here Jm and Hm are the Bessel and Hankel (of the first kind) functions, respectively. The coefficients bm of the scattered field
are to be determined. The expansion coefficients am of the incoming field are known and for the incoming plane wave they
are

am = ϵmim cosmϕ0, (17)

where ϕ0 is the angle of incidence of the incoming wave and the Neumann factor is ϵ0 = 1 and ϵm = 2 otherwise.
The boundary conditions on the circle r = a are the continuity of displacement u and radial shear stress σrz . Continuity

of displacement gives

amJm(k0a)+ bmHm(k0a) = fm(a). (18)

Using Eq. (7) for the stress and some trigonometric identities the continuity of stress gives

γ k0

amJ ′m(k0a)+ bmH ′

m(k0a)


= f ′

m(a)+
1
2
β


f ′

m−2(a)+
m − 2

a
fm−2(a)


+

1
2
β


f ′

m+2(a)+
m + 2

a
fm+2(a)


, (19)

where γ = 2µ0/(c1 + c2) is the quotient between the stiffness outside the circle and the mean stiffness inside the circle.
Inserting the expansion for fm Eq. (13) the two continuity equations become

amJm(k0a)+ bmHm(k0a) =


j=m,m+2,...

αm
j , (20)

γ k0a

amJ ′m(k0a)+ bmH ′

m(k0a)


=


j=m,m+2,...


αm
j +

1
2
β(j − m + 2)αm−2

j +
1
2
β(j + m + 2)αm+2

j


, (21)

form = 0, 2, . . . , and again with α−2
j = 0. Together with Eq. (14) this is enough to solve for all unknowns. The natural way

of truncating the equations seems to first fix the number of azimuthal terms needed, i.e. to include m values up to some
mmax. Then the j index is also restricted to some jmax, which must be larger than mmax, and this means that fewer j values
are used for higherm.

For the other symmetries the solution is essentially the same, with the special cases form = 1 andm = 2 noted above.

5. Numerical examples

The numerical implementation is straightforward from the equations given, although for general incidence four (very
similar) subproblems are to be solved. It is noted, however, that numerical problems are to be expected for higher
frequencies. For an isotropic circle the present approach reduces to the standard isotropic solutionwith the Bessel functions
inside the circle expanded in their series form. This series is well behaved for small and moderate arguments, but for larger
arguments so large cancellations occur as to make the series more or less useless. A corresponding problem occurs with the
present approach when increasing the frequency so that problems start to appear when the radius of the circle is a couple
of wavelengths (as measured with the larger stiffness inside the circle).

To illustrate the effects that appear due to the anisotropy inside the circle the far field amplitude is computed for a few
cases. The far field amplitude is defined from the asymptotic behaviour of the scattered field

usc
= F(ϕ)

eik0r
√
k0r
, (22)

where the far field amplitude is

F(ϕ) =


2
π

e−iπ/4
∞

m=0

ϵmbm cosmϕ. (23)

In general a corresponding sum with sinmϕ instead of cosmϕ must be added. It is the absolute value of F that is plotted in
the following.

First it is appropriate to point out that at low frequencies (approximately max(k0a, ka) < 0.5) there is no dependence
on the anisotropy at all, it is only the mean stiffness inside the circle that determines the scattering, so in this limit the circle
behaves as though it is isotropic. This can easily be seen by keeping only the first one or two terms in the expansions inside
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Fig. 1. The far field amplitude for the frequency k0a = 2 for the stiffness ratios c1/c2 = 1 (full-drawn), 10 (dashed), 0.5 (dotted), 0.2 (dash–dotted), and
0.1 (dash-double-dotted). Density ratio ρ/ρ0 = 2 and stiffness ratio c/µ0 = 4.

Fig. 2. The far field amplitude for the frequency k0a = 5 for the stiffness ratios c1/c2 = 1 (full-drawn), 10 (dashed), 0.5 (dotted), 0.2 (dash–dotted), and
0.1 (dash-double-dotted). Density ratio ρ/ρ0 = 2 and stiffness ratio c/µ0 = 4.

the circle. This is dependent on the fact that m = 0 and m = 1 do not couple, and is therefore not expected to be true for
general anisotropy and for elastic vector problems.

First a case with the material of the circle denser and stiffer than the surrounding is considered; thus ρ/ρ0 = 2 and
c/µ0 = 4 is chosen. Fig. 1 shows the far field amplitude for k0a = 2 and an incident wave in the positive x direction and five
different values of the stiffness quotient inside the circle: c1/c2 = 1 (full-drawn), i.e. isotropy, 10, (dashed) 0.5, (dotted) 0.2,
(dash–dotted) and 0.1 (dash-double-dotted). It is apparent that the anisotropy has a strong effect already at this relatively
low frequency, this being particularly true when c1/c2 < 1, i.e. when the wavelength in the x direction is smaller than in
the y direction. Fig. 2 shows the same situation for the somewhat higher frequency k0a = 5. The effects due to anisotropy
are similar, but generally speaking they are now even stronger.

To stress the importance of anisotropy Figs. 3 and 4 show the same situation as Figs. 1 and 2 with the only change that
the material inside the circle has the same density and mean stiffness as the surrounding material. Thus the scattering is
only due to the anisotropy and not to any change in density or mean stiffness. It is seen that the scattering is about equally
strong as in Figs. 1 and 2, and that the anisotropy thus is a very important variable in the scattering process.

To further illustrate the anisotropy Fig. 5 shows the scattering for k0a = 5 for four different angles of incidence: ϕ = 0°,
(dash–dotted) 30°, (full-drawn) 60°, (dotted) and 90° (dashed). The material inside the circle still has the same density and
mean stiffness as the surrounding material and c1/c2 = 0.2. Due to the anisotropy the scattering is strongly dependent on
the angle of incidence, and it is also noted that for ϕ = 30° and 60° there is no mirror symmetry around the direction of
incidence.

6. Concluding remarks

The scattering by an anisotropic circle in an isotropic surrounding is solved by formulating the equation ofmotion in polar
coordinates and expanding in a trigonometric series in the angular coordinate and a power series in the radial coordinate
inside the circle. The numerical results show that the influence of anisotropy is strong except at very low frequencies.

The method should be straightforward to extend to more complex cases such as the scattering by a circle for P-SV waves
and a sphere, and such work is in progress. A more challenging task is to find the outgoing solutions to the anisotropic wave
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Fig. 3. The far field amplitude for the frequency k0a = 2 for the stiffness ratios c1/c2 = 10 (full-drawn), 0.5 (dashed), 0.2 (dotted), and 0.1 (dash–dotted).
Density ratio ρ/ρ0 = 1 and stiffness ratio c/µ0 = 1.

Fig. 4. The far field amplitude for the frequency k0a = 5 for the stiffness ratios c1/c2 = 10 (full-drawn), 0.5 (dashed), 0.2 (dotted), and 0.1 (dash–dotted).
Density ratio ρ/ρ0 = 1 and stiffness ratio c/µ0 = 1.

Fig. 5. The far field amplitude for the frequency k0a = 5 for the angles of incidence 0° (dash–dotted), 30° (full-drawn), 60° (dotted), and 90° (dashed).
Density ratio ρ/ρ0 = 1 and stiffness ratios c/µ0 = 1 and c1/c2 = 0.2.

equation and thus to solve the scattering with an anisotropic material in the surrounding of a scatterer. It should also be
possible to formulate the null field method using the present approach, cf. Doicu [5] and Wang et al. [6].
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