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From pair-wise interactions to triplet dynamics
Björn Vessman
Department of Mathematical Sciences
Chalmers University of Technology

Abstract
The present thesis investigates the properties of a system of ordinary differential
equations, that describes cross-feeding in two- and three-species systems of bacteria.
The system is studied statistically and the probability of permanence — a stable
state where no species is driven extinct — is computed under the assumption that
the energy-uptake parameters of the system are either independent or organised in a
hierarchy where any excreted metabolites carry less energy than previous nutrients.
For a system of two species, we derive the probability of permanence analytically.
For three-species systems, we differentiate between different modes of coexistence
with respect to boundary behaviour of the system. We are able to show that the
affine fitness function described by Lundh & Gerlee (Lundh, T., Gerlee, P., Bull
Math Biol, 75, 2013) is equivalent to the linear fitness function investigated by
Bomze (Bomze, I. M., Biol Cybern, 48, 1983) and hence that the dynamics derived
by Bomze holds for the cross-feeding paradigm of Lundh & Gerlee. For the question
implicit in the title of the thesis, the pair-wise interactions of a three-species system
are not enough to draw any deterministic conclusions on permanence of the triplet.
We find, however, that the probability of permanence is close to 50% for systems
with three coexistent pairs on the boundary and for so-called intransitive systems.
Systems with two and one coexistent pairs on the boundary are more likely to exist
for random interactions parameters, but are not as likely to be permanent.

Keywords: Biomathematics, Population dynamics, Cross-feeding.
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1. Introduction

1
Introduction

Many bacterial species interact by exchanging nutrients in a process called cross-
feeding or syntrophy. Typically, one of the present bacterial strains consumes a
primary nutrient, degrading it partially or fully into a secondary metabolite which is
then processed by one or more of the other species [8]. The degradation process may
be non-sequential, in the sense that the involved species may consume and further
degrade metabolites from any step in the chain starting with the primary nutrient.
The change in the proportion of a given species in a population — denoted the species
frequency — depends on the rate of replication, i.e., the fitness of the species, which
in turn depends on the frequencies of other species that produce nutrients. If the
species of an ecosystem do not go extinct, then we may say that the species are co-
existent, a concept that is made more precise in Section 1.3.1. Important examples
of real-world systems that exhibit cross-feeding are the human gut flora [1], the
interactions between sulfate-reducing bacteria and methane oxidisers in the deep
sea [12, 17], the degradation of pesticides [15], and in soil nitrification [5]. When
considering experimental set-ups or the design of plants for degradation of toxins
that consist of multiple species, one needs to know if the species are coexistent and
at what frequencies. Furthermore, it is important to study how coexistence in a
population is affected when the environment changes.

The dynamics of infinite and well-mixed populations of cross-feeding bacteria can be
described by a system of coupled non-linear autonomous ordinary differential equa-
tions (ODEs) known as replicator equations [16]. The assumption well-mixedness
allows us to disregard any spatial dependencies of the population and in an infi-
nite population, the births and deaths of individuals would need to be considered,
prompting a stochastic model. The replicator system of equations has its origin
in game theory [14] where it describes an evolutionary game of n strategies and d
players [10]. The dynamics of the game consists of the change of the relative amount
of the involved strategies. In species populations, the equations model the rate of
change of species frequencies based on their fitness in an environment [2, 14]. In the
present setting, the fitness of a species is based on the amount of energy that the
species may extract from the available nutrients, so that the dynamics of the system
of equations is determined by the interactions parameters that describe how much
energy a given species can extract from a nutrient excreted by another species. Com-
parison to the game-theoretical framework shows that the n strategies and d players
correspond to n species and d steps in the metabolic process. Cross-feeding systems
for two species have been studied by Lundh & Gerlee [16], where the authors derive
conditions for permanence, a stable co-existence where no involved species will go
extinct.

The dynamics of a cross-feeding ecosystem need not be modelled in the game-
theoretical framework of the replicator system [16]. Other ODE systems have been
based on cross-feeding proportional to the frequency of the reciprocal species [4, 7],
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1. Introduction

on the difference of nutrient uptake and mortality [15], or on adaptive dynamics [6].
Agent-based models have been investigated by Gerlee & Lundh [8], whereas Pfeiffer
& Bonhoeffer [18] have studied the evolution of cross-feeding as a result of optimal
ATP energy production.

1.1 Purpose

The aim of this Master’s thesis is to study qualitative and quantitative features of
replicator systems of two and three species, and in particular to establish properties
of the three-species system based on properties of pair-wise interactions between the
constituent species. The first part of the thesis investigates how different random
models for the interactions parameters affect the qualitative dynamics of two species,
i.e., if one species dominates or if co- existence occurs. When considering three
species, the general properties of permanent systems will be outlined before a few
special cases are discussed. So-called pair-wise intransitive dynamics are of special
interest since a subset of these systems are known to form co-existing triplets [2, 14].
Pair-wise intransitivity for a triplet of species x, y and z means that the species
form pairs similar to those in a game of rock-paper-scissors, i.e., that species x has
a competitive advantage over species y which has an advantage over z, and finally
that species z has an advantage over x [16]. The other special cases is known as
pair-wise coexistence and involves one more coexistent pairs of the species triplet.

The analysis of the three-species systems is based on statistical simulations on the
same random models that are used in the investigation of two-species systems. In
particular, we look at how qualitative features of the two-species system map to
three-species dynamics. If three species co-exist pairwise, how likely are they to
co-exist in unison? Also, is it possible to find interactions parameters for which this
is guaranteed? The answer to these questions are important in bacterial ecology
where it is of interest to be able to predict multi-species dynamics from pair-wise
experiments.

Lundh & Gerlee [16] considers five different scenarios for the behaviour of the two-
species system whereas Bomze [2] investigates similar properties of three-species
systems based on the number of fixed points, their location and stability. The
project at hand will also study how these two classifications correspond.

The thesis will not consider dynamics for populations greater than three and will
not consider more than two levels of metabolisation as described by Lundh & Gerlee
[16]. Furthermore, the strategies that define the species will be considered fixed and
static. The project will not consider evolution of strategies.

1.2 Methods

Theory on the stability of solutions to replicator systems that model species interac-
tions [2, 14, 10, 16] will be followed in order to determine properties of the replicator
systems for different parameter models. Primarily, the interactions parameters will
be modelled in two ways: either as independent or according to a model that is
hierarchical in the sense that energy gains further down in the metabolisation chain
will be lower than energy gains from primary metabolites. For this model, coexis-

2



1. Introduction

tence criteria similar to those for independent and arbitrary parameters [16] will be
derived.
The series expansion [16] for the replicator fitness function is implemented for sim-
ulations of two- and three-species systems, in order to estimate the probability that
the derived criteria for coexistence hold. For a given parameter model, random in-
teractions parameters are drawn according to the independent or hierarchical model
and the probability of permanence is estimated from the coexistence criteria.

1.3 Preliminaries

Before delving into the analysis of coexistent two- and three-species systems, let us
review the model. We largely follow the notation of Lundh & Gerlee [16] while using
methods and notations of Bomze [2] where convenient.

1.3.1 Replicator system of equations

The replicator system of equations for a population x = (x1, x2, . . . , xn) of species
i = 1, 2, . . . , n with individual frequencies, i.e., fractions of the whole population,
xi is defined as 

ẋi = (φi(x)− φ̄(x))xi,
φ̄(x) =

n∑
k=1

xkφk(x), (1.1)

where ẋi denotes the derivative with respect to time of a species frequency, φi(x)
is the species fitness function and φ̄(x) is the average fitness in the population.
Intuitively, this means that a species that is fitter than the population average will
increase in proportion to its current frequency and a species less fit than the average
will decrease correspondingly. In order to discuss coexistence between species, we
need to properly define permanence of a system [16].

Definition 1. A replicator system (1.1) is considered permanent if for all initial
states x0 > 0, we have that xi(t) > 0 for all species i = 1, 2, . . . , n and all t ≥ 0.

The fitness function models, in its simplest state, how populations change in an
environment based on their frequency and fitness in the current population. In the
present thesis, we will consider the fitness of a species to be the amount of energy
that a species can extract from the available nutrients. Bomze [2] describes the
fitness function as

φi =
n∑
j=1

aijxj, (1.2)

where the payoff matrix A = [aij]ni,j=1 describes the outcome of the game when
species i meet species j. An evolutionary game described by a linear fitness function
based on a payoff matrix, as above, is said to be given on normal form [14] and the
replicator system with such a fitness function can be called homogenous [9]. The
elements of a general normal-form payoff matrix are

A =

0, i = j

kij ∈ R, i 6= j
, (1.3)
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1. Introduction

i.e., a game where any strategy played against itself will yield nothing. If a payoff
matrix is not given in this zero-diagonal form, it may be transformed as such since
the dynamics of the replicator system (1.1) does not change under column-wise
addition of constants to the replicator system [2].
A fixed point of a system of ordinary differential equations ẋ = f(x) is a point x∗
in the domain of f such that f(x∗) = 0. For the replicator system, the domain of
definition for f is the simplex

Sn−1 =
{

x ∈ Rn|xi ≥ 0,
n∑
i=1

xi = 1
}
, (1.4)

due to the requirement that the species frequencies are positive and defined as frac-
tions of the whole population. The stability of the fixed points is determined [14]
by the eigenvalues of the Jacobian

J(x∗) =
[
∂fi(x)
∂xj

|x=x∗

]
i,j

. (1.5)

The number of fixed points, their location and stability is the basis for the classi-
fication of solutions to the system (1.1). Whether a fixed point is located on the
boundary of the domain of f or in the interior of the domain of f is of special interest,
since a permanent system is characterised by either a stable interior fixed point or
a non-edge cyclic trajectory around a center fixed point. In the permanent case, we
have xi > 0 for all species i and thus that the interior fixed point x∗ must satisfy
φi(x∗)− φ̄(x∗) = 0, which means

φ1(x∗) = φ2(x∗) = ... = φn(x∗). (1.6)

1.3.2 Replicator system for cross-feeding

For the cross-feeding model at hand, we use the series expansion fitness function
[16], where it is assumed that the fitness of a species depends on its capacity to
metabolise the available nutrients. To derive the fitness function, assume that the
uptake r(sj) of a nutrient sj is the same for all species and proportional to the
available amount of the substance so that

r(sj) = κsj, (1.7)

for all metabolites j and species i = 1, 2, . . . , n. Furthermore, it is assumed that
metabolism is faster than population dynamics and that the nutrient uptake κ is
the same for all species, so that the steady-state nutrient concentrations are

s0 = γ

γ + κ
, (1.8)

for the primary resource s0, and

si = κγ

(γ + κ)2xi, (1.9)
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1. Introduction

for the derived metabolites si, where γ is the inflow of the primary nutrient into
the system. The fitness of a species i in a cross-feeding population is assumed to
be dependent on how much energy Ei, Eij the species can extract from the primary
nutrient s0 and the derived metabolites si. For an illustration of the hierarchy of
metabolites and energy extraction, see Figure 1.1. Any interactions of higher order
than two are assumed small so that the fitness of a species i is considered to be the
total energy uptake,

φi(x) = ηγEi + η2γ
∑
j

Ejixj. (1.10)

where the quantity

η = κ

κ+ γ
, (1.11)

that describes the relation of the nutrient uptake coefficient κ to the nutrient inflow
rate γ, is introduced so that κs0 = ηγ and κsj = η2γxj. Note that (1.10) implies
that a general form of the fitness functions is conveniently written in matrix-vector
form as

φ(x) = ηγE + η2γETx, (1.12)

where φ : Rn → Rn is the vector-valued fitness function dependent on the individual
fractions x, E denotes the vector of first-order energy uptake and E = [Eij]i,j is the
matrix of second-order energy uptake. All elements of E and E are positive, as they
model the energy extracted from a nutrient.

Figure 1.1: First-order energy uptake Ei for species i from the primary nutrient
S0 that flows into the system at a rate γ, second-order metabolism Eij for species j
from nutrient Si.

1.3.3 Two-species system

For two bacterial species α, β with frequencies x = [x, 1 − x]T and x ∈ [0, 1], the
fitness functions are

φα(x) = ηγEα + η2γ(Eααx+ Eβα(1− x)), and (1.13)

φβ(x) = ηγEβ + η2γ(Eαβx+ Eββ(1− x)), (1.14)

with the corresponding average fitness

φ̄(x) = xφα(x) + (1− x)φβ(x). (1.15)

The two-species replicator system with fitness functions (1.13) and (1.14) is scalar
due to the requirement that the frequencies sum to unity and may be written as

dx

dt
= x(1− x)(φα(x)− φβ(x)). (1.16)

5



1. Introduction

The right hand side f(x) = x(1− x)(φα(x)− φβ(x)) of this replicator equation has
a Jacobian

f ′(x∗) = (1− 2x)(φα(x)− φβ(x)) + x(1− x)(φ′α(x)− φ′β(x))|x=x∗ . (1.17)

This derivative is a second-order polynomial, which allows for at most one stable
fixed point in the interior of the domain S1 = [0, 1]. The system will have a stable
interior fixed point when the boundary points x∗1 = 0 and x∗2 = 1 are unstable,
i.e., when f ′(x∗k) > 0, k = 1, 2 [16]. If a replicator system has a stable interior
fixed point it is said to exhibit permanence, since no species present at the initial
state x(0) = x0 will go extinct. Hence, using (1.17) we may put the conditions for
permanence of the two-species system as

f ′(0+) = φα(0)− φβ(0) = ηγ(Eα − Eβ − η(Eββ − Eβα)) > 0, and (1.18)

f ′(1−) = −(φα(1)− φβ(1)) = ηγ(Eβ − Eα − η(Eαα − Eαβ)) > 0. (1.19)

For convenience, the following coordinates are introduced to give a comprehensive
illustration of the two conditions (1.18) and (1.19),

ξα = η(Eαβ − Eαα)− (Eα − Eβ), and (1.20)

ξβ = η(Eβα − Eββ)− (Eβ − Eα), (1.21)

meaning that the conditions (1.18) and (1.19) can be stated as ξα > 0, ξβ > 0.

1.3.4 Three-species system

In a three-species replicator system, the discussion of permanence is somewhat more
involved than in the two-species case since there is the possibility of stable interior
fixed points as well as stable and unstable fixed points anywhere on the boundary
of the system. Bomze [2, 3] characterises no less than 49 different types of phase
portraits for a three-species replicator system, with the main division being the
number of fixed points in the interior [2] of the simplex

S2 =
{
x ∈ R3|xi ≥ 0,

3∑
i=1

xi = 1
}
. (1.22)

A sketch of the state space S2 of the three-species replicator system is shown in
Figure 1.2 a). In the following sections, any example and simulated systems will
be visualised by their trajectories on the state space, which will be shown as the
example in Figure 1.2 b) and called phase portraits.
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1. Introduction

Figure 1.2: a) Sketch of state space (1.22) of the three-species replicator system.
b) state space view as used for example systems.

Out of the phase portraits described by Bomze [2], nine exhibit permanence as of
Definition 1 and five of these have a unique interior fixed point. The trajectories of
the systems with phase portrait numbers 7, 9, 15 and 17 converge to the stable fixed
point regardless of initial state [2]. We will also consider phase portrait number 16
— which describes a set of trajectories cycling a center fixed point, independently of
the initial state — to be permanent. Of the other phase portraits, we have that nine
are conditionally permanent, meaning that there are initial states in the interior of
the simplex such that trajectories converge to fixed points on the simplex boundary
— and one portrait with cyclic trajectories that may be reached from some initial
states [2].

A replicator system of more than two species may exhibit pair-wise intransitivity,
per Definition 2 of Lundh & Gerlee [16]. The definition being that the pair-wise fixed
points (xi, xi+1) = (1, 0) and (xi, xi+1) = (0, 1), for i = 1, 2, . . . , n and i+ 1 modulo
n, and are unstable and stable, respectively. This means that the three-species
system have no non-corner fixed points on the edges of S2 and, as each corner is
semi-stable, that trajectories along the edge between corners tend from one corner to
another only to continue along the next edge at any perturbance. For an illustration,
see Figure 1.3. This is interpreted as species i+ 1 outcompetes species i in isolation
from the third species. Furthermore, it is proven [16] to be equivalent to the criteria

Ei − Ej + η(Eji − Ejj) > 0 (1.23)

Ei − Ej + η(Eii − Eij) > 0 (1.24)

for all pairs (i, i+ 1) where we consider i+ 1 modulo n.

7



1. Introduction

Figure 1.3: Sketch of pair-wise intransitive system. Each corner is semi-stable —
where a filled dot denotes the stable side and an empty denotes the unstable side —
so that trajectories on the boundary are cyclic.

Another form of coexistence is formed from pair-wise coexistence in the population.
In this scenario, each pair of species are coexistent when isolated from the third
species, so that there exists a stable or semi-stable fixed point on one or more of the
non-corner boundaries of the simplex. This case is studied in Section 3.5.

8



2. Two-species coexistence

2
Two-species coexistence

In this chapter, we study the two-species system in detail. The permanence condi-
tions are due to Lundh & Gerlee [16] and the analytical investigation is based on
modeling the unknown energy uptake parameters Ei, Eij as random variables and
computing the probability of permanence. The analytical probability is compared
to numerical simulations of replicator systems in Section 4.1, where the parameters
are sampled randomly from two example distributions, the Uniform and the Expo-
nential distribution. We will consider two models for the relation of Ei, Eij, namely,
that the parameters are either independent or exhibits a tree-like dependence, where
for a given species i we have that any second-order uptake Eij is required to be less
than the corresponding first-order uptake Ei, i.e., Eij < Ei. The analytical results are
then to be compared to simulations, where we classify the systems as either being
permanent with a stable fixed point in the interior x ∈ (0, 1) or non-permanent,
where there are no fixed points but x = 0, x = 1 or a fixed point that is (formally)
located outside [0, 1].

2.1 Independent model

The independent model for the energy uptake parameters Ei and Eij assume that
there is no dependence between the parameters, but does not specify how the pa-
rameters are distributed, when viewed as random variables. The conditions for
permanence of the two-species replicator system are

ξα = η(Eαβ − Eαα)− (Eα − Eβ) > 0 (2.1)

ξβ = η(Eβα − Eββ)− (Eβ − Eα) > 0 (2.2)

from which we may compute analytically the probability P(ξα > 0, ξβ > 0) of having
a permanent two-species replicator system.
The criteria of permanence for the two example distributions are described in Sec-
tions 2.1.1-2.1.2 below. The Uniform distribution models the scenario where the
energy extraction parameters are evenly distributed and normalised onto the inter-
val (0, 1). In order to take non-uniformity into account, the Exponential distribution
is used as an alternative. In the Exponential model, any amount of energy may be
extracted in a given metabolism step, but the probabolity of a level of energy uptake
decreases exponentially with the energy at a rate λ.

2.1.1 Uniformly distributed parameters

Consider the metabolism parameters Ei of (1.13) and Eij of (1.14) as a collection of
six random variables Ei ∼ Uni(0, 1) and Eij ∼ Uni(0, 1) for i = α, β and j = α, β.
Then ξα of (1.20) and ξβ of (1.21) are functions mapping the probability states

9



2. Two-species coexistence

onto the interval [−1− η, 1 + η] according to a certain distribution and we have the
probability of permanence

P(ξα > 0, ξβ > 0) =
∫

Ω
fX(x)I{ξα>0,ξβ>0}dΩ, (2.3)

for the indicator function I defined on the hypercube Ω = {x ∈ [0, 1]6} and the
joint density fX(x) for the vector X of random variables. For simplification, note
that for Eα, Eβ ∼ Uni(0, 1) we have that Z = Eα−Eβ ∼ Tri(−1, 1), where Tri(−1, 1)
denotes the triangle distribution with density function

fTri(z) =


0 if z 6∈ [−1, 1)
1 + z if z ∈ [−1, 0)
1− z if z ∈ [0, 1)

. (2.4)

The derivation of this distribution can be found in Appendix B.1.1 and its distribu-
tion function is shown in Figure 2.1.

X~TriH-1,1L

- 1.5 - 1.0 - 0.5 0.5 1.0 1.5
x

0.2

0.4

0.6

0.8

1.0

fX HxL

Figure 2.1: Triangle probability density function (2.4).

Similarly, we denote X = Eαβ−Eαα and Y = Eβα−Eββ, both of which are distributed
as Tri(-1,1) for the same reason as Z. With these substitutions, we can express ξα
and ξβ as

ξα = ηX − Z, and (2.5)

ξβ = ηY + Z. (2.6)

The probability (2.3) can now be expressed as

P(ξα > 0, ξβ > 0) =
∫
R

∫
R

∫
R
fX,Y,Z(x, y, z)I{ηx−z>0}I{ηy+z>0} dzdydx, (2.7)

where IS is the indicator function of the set S. By assumption, the joint distribution

fX,Y,Z(x, y, z) = fX(x)fY (y)fZ(z) (2.8)

10



2. Two-species coexistence

due to independence, and the individual distribution functions fX(x), fY (y), fZ(z)
are the triangular distribution (2.4). The indicator functions are defined as

I{ηx−z>0}(x, z) =

1 if z < ηx

0 otherwise
, (2.9)

and

I{ηy+z>0}(y, z) =

1 if z > −ηy
0 otherwise

. (2.10)

The probability (2.3) is

P(ξα > 0, ξβ > 0) = η

30(7− 2η), (2.11)

and the calculation is found in Appendix B.2.1. The probability of permanence is a
quadratic function of the parameter η (1.11) with a local maximum that is outside
the domain of definition DP (η) = {η ∈ [0, 1)}, so that the function is increasing as
shown in Figure 2.2.

UniH0,1L by eq. H2.11L
ExpH2L by eq. H2.15L

0.0 0.2 0.4 0.6 0.8 1.0
Η0.00

0.05

0.10

0.15

0.20
P H Ξ > 0L

Figure 2.2: Probability of permanence P(ξα > 0, ξβ > 0) as function of η for Uni(0,
1) and Exp(2)-distributed Ei, Eij by (2.11) and (2.15), respectively.

2.1.2 Exponentially distributed parameters

We now assume that the interactions parameters are random variables Ei, Eij ∼
Exp(λ), where the density function for a random variable X ∼ Exp(λ) is

fX(x) =

λe−λx, x ≥ 0
0, x < 0

. (2.12)

Then the random variables that describe the differencesX = Eαβ−Eαα, Y = Eβα−Eββ
and Z = Eα − Eβ of (2.1)-(2.2) are Laplace(0, λ)-distributed with mean 0 and rate
λ [11]. The distribution function of Z ∼ Laplace(0, λ) is

fZ(z) = λ

2 e
−λ|z|, (2.13)

11



2. Two-species coexistence

and is defined for real z. The density functions of the corresponding X and Y
have the same functional form. The derivation of this distribution is found in Ap-
pendix B.1.2, and the graph of the density function — where we have put the
parameter λ = 2 as used in the simulations — is shown in Figure 2.3.

Z~LaplaceH0,2L

- 4 - 2 0 2 4
z

0.2

0.4

0.6

0.8

1.0
Hf *f L Z HzL

Figure 2.3: Laplace(0, 2) density function (2.13).

With the Laplace-distributed variables X, Y and Z, we may again rewrite the
coordinates ξα and ξβ as (2.5)-(2.6) and define the probability of permanence as

P(ξα > 0, ξβ > 0) =
∫
R

∫
R

∫
R
fX,Y,Z(x, y, z)I{ηx−z>0}I{ηy+z>0} dzdydx, (2.14)

where we will once again use the assumption of independence of X, Y and Z so that
(2.8) holds.
The computation of the probability of permanence is found in Appendix B.2.2 and
found to be

P(ξα > 0, ξβ > 0) = η(3 + η)
2λ(1 + η)(2 + η) . (2.15)

The graph of the probability, viewed as a function of η, is increasing for η ∈ [0, 1)
as shown in Figure 2.2, since the derivative

dP

dη
= (3 + 2η)(2− η)

2λ(1 + η)2(2 + η)2 . (2.16)

is positive for η ∈ [0, 1).

2.2 Coexistence, tree hierarchy model

The derivations of the coexistence criteria (1.18) and (1.19) put no requirements on
the energy extraction parameters Ei and Eij except the implicit Ei > 0 ∀i. Consider
now the constraint that the amount of energy extracted at higher levels of cross-
feeding is necessarily smaller than the amount extracted from the primary resource,
i.e., that for a fixed species i, we have

Ei > Eij > 0 (2.17)

12



2. Two-species coexistence

for all species j. For a more specific hierarchical model, the higher-level interactions
Eij are proportional to Ei as

Eij = rijEi (2.18)

for rij ∼ Uni(0, 1). For this model, we redefine (1.20) and (1.21) to

ξα = Eβ − Eα[1− η(rαβ − rαα)], (2.19)

ξβ = Eα − Eβ[1− η(rβα − rββ)]. (2.20)

Hence, the system is permanent when ξα > 0 and ξβ > 0, i.e., when

Eβ > Eα[1− η(rαβ − rαα)], and (2.21)

Eα > Eβ[1− η(rβα − rββ)]. (2.22)

2.2.1 Uniformly distributed parameters

The probability of permanence (2.3) is defined in the same way as in the indepen-
dent model for the parameters, with the addition that the relation (2.18) will make
the indicator function I{ξα>0, ξβ>0} behave differently. Define new variables for the
differences as

S = Eα ∼ Uni(0, 1), (2.23)

T = Eβ ∼ Uni(0, 1), (2.24)

X = 1− η (rαβ − rαα) ∼ Tri(1− η, 1 + η), (2.25)

Y = 1− η (rβα − rββ) ∼ Tri(1− η, 1 + η). (2.26)

In Section 2.1.1, the random variable that describes the difference of two uniformly
distributed random variables is found to be triangularly distributed. The triangu-
larly distributed random variable X may be scaled and translated by the constants
η and 1, so that its scaled and translated distribution function is

fX(x) = η−2


0 if x 6∈ [1− η, 1 + η]
η + x− 1 if x ∈ [1− η, 1)
η − x+ 1 if x ∈ [1, 1 + η]

. (2.27)

and an example graph of the distribution function for η = 25
28 is shown in Figure 2.4
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2. Two-species coexistence

X~TriH1-Η ,1+ΗL

0.5 1.0 1.5 2.0
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0.6

0.8
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fX HxL

Figure 2.4: Tri(1−η, 1+η) density function (2.27) scaled by η = 25
28 and translated

a unit step.

Combining the permanence conditions (2.21)-(2.22) with the simplified variables
(2.23)-(2.26) we have the indicator function

I{ξα>0, ξβ>0} = I{T>SX}I{S>TY }. (2.28)

The joint distribution of S, T, X, Y can, under an assumption of independence
similar to (2.8), be defined as

fS,T,X,Y (s, t, x, y) = fS(s)fT (t)fX(x)fY (y). (2.29)

Both the distribution and the indicator functions are hence separable, meaning that
we may define the probability of permanence as

P(ξα > 0, ξβ > 0) =
1∫

0

fS(s)
1∫

0

fT (t)Ix(s, t)Iy(s, t) dtds, (2.30)

where we have the inner integrals

Ix(s, t) =
1+η∫

1−η

fX(x)I{T>SX} dx (2.31)

Iy(s, t) =
1+η∫

1−η

fY (y)I{S>TY } dy (2.32)

The probability is

P(ξα > 0, ξβ > 0) = −12 + 6η + 14η2 − 6η3 − η4 + 2η5

12η3(1 + η) + 2− 3η2 + η4

2η4(1 + η) log(1 + η).

(2.33)
and the details are found in Appendix B.2.3.
The graph of the probability as a function of η ∈ (0, 1) is shown in Figure 2.5, where
one sees that the function is increasing on the interval and behaves to a large extent
in a linear fashion.
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UniH0,1L by eq. H2.33L
ExpH2L by eq. H2.42L

0.0 0.2 0.4 0.6 0.8 1.0
Η0.00

0.05

0.10

0.15

0.20
P H Ξ > 0L

Figure 2.5: Probability of permanence P(ξα > 0, ξβ > 0) as function of η for
uniformly (2.33) and exponentially (2.41) distributed Ei, Eij.

2.2.2 Exponentially distributed parameters

The model for the exponentially distributed energy uptake parameters is based on
the conditions (2.21)-(2.22), so that we define the new set of variables as

S = Eα ∼ Exp(λ), (2.34)

T = Eβ ∼ Exp(λ), (2.35)

X = 1− η (rαβ − rαα) ∼ Tri(1− η, 1 + η), (2.36)

Y = 1− η (rβα − rββ) ∼ Tri(1− η, 1 + η), (2.37)

where the Tri(1− η, 1 + η) distribution has the density function (2.27). The model
uses the same form as the tree hierarchy with the uniformly distributed parameters
for the indicator function

I{ξα>0, ξβ>0} = I{T>SX}I{S>TY } (2.38)

and the joint density

fS,T,X,Y (s, t, x, y) = fS(s)fT (t)fX(x)fY (y). (2.39)

With the indicator function (2.38) and the joint distribution (2.39), we may define
the probability of permanence analogously to (2.30) as

P(ξα > 0, ξβ > 0) =
∫
R+
fS(s)

∫
R+
fT (t)Ix(s, t)Iy(s, t) dtds, (2.40)

where Ix(s, t) Iy(s, t) are the same inner integrals as in the Uniform case, (2.31) and
(2.32), respectively.

Evaluating the integrals, we find that the probability of permanence for exponen-
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2. Two-species coexistence

tially distributed parameters in the tree-hierarchy model is

P(ξα > 0, ξβ > 0) =−12 + 6η + 8η2 − 3η3

4η3 + 2(2− η)
η2 coth−1

(
η2 − 2η − 4

η2

)
(2.41)

+ 1
η4

(
(3 + 4η − η2) log(1 + η) + η2(2− η) log(2− η)

− η(2− η)(4 + η) log(2 + η) + 4η(2− η) log(2)
)

The probability, when viewed as a function of η is shown in Figure 2.5. The function
exhibits the interesting property of having an increasing derivative as well as being
increasing, meaning that there is no maximum.
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3. Three-species system

3
Three-species system

The dynamics of a three-species replicator system are complex, with possibilities
of one or more fixed points in the interior of the state space as well as different
combinations of the pair-wise dynamics (described in Section 2) on the boundaries
of the state space. First, a classification of the systems based on the location of
the fixed points in the simplex is outlined. A general criterion for permanence
for three species is presented and we describe some systems of particular interest.
Phase portraits or a few example trajectories, computed numerically with standard
Runge–Kutta methods, will illustrate each case.

3.1 Classification of trajectories

The most interesting feature of a replicator system — from our point of view — is
its permanence properties, as described in Section 1.3.1. Solutions to the replicator
system (1.1) are classified according to the location and stability of any fixed points
x∗, which determines whether the system converges to a permanent state or not.
We define four classes of fixed points:

Class I
Corner fixed points, where only one species has a non-zero frequency.

Class II
Non-corner boundary points, where two species have a non-zero frequency.

Class III
Interior fixed points, where all frequencies are non-zero.

Class IV
Cyclic trajectories described by interior fixed points with imaginary eigenval-
ues.

These may be compared to the phase portraits of Bomze [2]. As described in Sec-
tion 1.3.4, there are five non–trivial phase portraits that are unconditionally perma-
nent, meaning that any initial state in the interior of the state space simplex will
remain in the interior. The present classification I-IV of replicator solutions does
not take the initial state into account and as a result, the scheme may consider a
conditionally permanent system as either permanent or not, depending on the initial
state.

3.2 Comparison of replicator systems

In order to compare the investigation of evolutionary games by Bomze [2] to the
cross-feeding model described by Lundh & Gerlee [16], we need to compare the
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3. Three-species system

fitness functions (1.10) and (1.2). As a first step, we decompose the cross-feeding
fitness (1.12) into first- and second-order metabolism as

φi(x) = φ
(I)
i (x) + φ

(II)
i (x), (3.1)

where

φ
(I)
i (x) = ηγEi, (3.2)

φ
(II)
i (x) = η2γ

3∑
j=1
Ejixj. (3.3)

In the same spirit, we decompose the replicator system

ẋi = Φ(I)
i (x) + Φ(II)

i (x), (3.4)

into its first- and second-order dynamics

Φ(I)
i (x) = xi(φ(I)

i (x)− φ̄(I)(x)), (3.5)

Φ(II)
i (x) = xi(φ(II)

i (x)− φ̄(II)(x)), (3.6)

with first- and second-order fitness functions (3.2) and (3.3).

3.2.1 First-order dynamics

The first-order metabolisation describes the energy uptake from the primary nutrient
of a species, which means that the state x of the system will not change if all species
have equal first-order parameters and are able to extract the same amount of energy
from the primary nutrient. Consider the first-order metabolisation replicator system

ẋi = Φ(I)
i (x) = ηγxi(Ei −

3∑
k=1
Ekxk), (3.7)

which has a fixed point x∗ if

Ei −
3∑

k=1
x∗kEk = 0 ∨ x∗i = 0 (3.8)

for all species i. The first case,

Ei =
3∑

k=1
x∗kEk (3.9)

says that the individual energy uptake Ei must be equal to the weighted population
average, from which it holds that Ei = Ej for all i, j. If the condition (3.9) does
not hold for all species i, then there cannot be any interior fixed points, since the
second case of (3.8), x∗i = 0, does not hold for interior points where we by definition
require non-zero frequencies. We may now define four possibilities for the first-order
replicator system based on the number of species with equal energy uptake.
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1) All species have equal energy uptake.

2) Two species have equal energy uptake.

a) The third species has lower energy uptake than the other two.

b) The third species has higher energy uptake than the other two.

3) The energy uptake parameters are all unequal.

Case 1) All points x ∈ S2 are fixed points, so that the classification I-III of a
solution is determined by the starting point and a solution of Class IV is impossible.
The case for equal energy uptake corresponds to the trivial phase portrait 1 of Bomze
[2] that is shown in Figure 3.1.

Figure 3.1: Bomze phase portrait 1: First-order dynamics of Case 1 with the
species ordered counter-clockwise from the lower left corner.

Case 2a) and 2b) If the energy uptake Ei = Ej is equal for two species, then the
third species will either dominate or perish depending on whether its energy uptake
is greater or smaller than the population average. For motivation, assume without
loss of generality that E1 = E2 6= E3 so that

3∑
k=1

xkEk = E1(x1 + x2) + E3(1− x1 − x2) = (E1 − E3)(x1 + x2) + E3. (3.10)

Then the replicator system (3.7) is
ẋ1 = ηγx1(1− x1 − x2)(E1 − E3),
ẋ2 = ηγx2(1− x1 − x2)(E1 − E3),
ẋ3 = ηγ(x1 + x2)(1− x1 − x2)(E3 − E1),

(3.11)

and thus that the fixed points are either the corner x = [0, 0, 1] or any point on the
boundary S2∩{x3 = 0}. The stability of these fixed points are given by the relation
between E3 and E1 = E2, if E1 > E3, then we have that ẋ3 < 0 and ẋ1, ẋ2 > 0 so that
the trajectories tend to a point on the boundary S2 ∩ {x3 = 0}, a Class II solution.
More specifically, the end state will be the state [x1, x2, 0] with the same ratio of
x1 to x2 as the initial state. If, on the other hand, E1 < E3, then the trajectories
tend to the corner x = [0, 0, 1], which is a system of Class I. The systems in case

19



3. Three-species system

Figure 3.2: Bomze phase portrait 29: First-order dynamics of Case 2a with the
species ordered counter-clockwise from the lower left corner.

Figure 3.3: Reversal of Bomze phase portrait 29: First-order dynamics of Case 2b
with the species ordered counter-clockwise from the lower left corner.

2a) and 2b) are shown in Figures 3.2 and 3.3, respectively, and correspond to the
positive and negative of Bomze phase portrait 29 [2].
Case 3) All species have unequal energy uptake E1 6= E2 6= E3, by which the
system will tend to the corner corresponding to the species with the highest energy
uptake, once again a solution of Class I. The possible trajectories are determined
by the relations between the energy parameters, if for instance two species have
nearly equal parameters, we will have similar initial dynamics as in the cases 2a)
and 2b) before either one species is nearly extinct (by which the relation between
the two remaining species will be more important) or nearly dominant. This system
corresponds to Bomze phase portrait 43 and is shown in Figure 3.4. When simulating
systems, only the case of unequal interactions parameters, E1 6= E2 6= E3, is expected
to be found from random parameters, as the probability of having equality between
continuous random variables is of a zero measure.

3.2.2 Second-order dynamics

The matrix E of second-order metabolism corresponds to the payoff matrix A of the
homogenous evolutionary game described by (1.2), and if we subtract the diagonal
elements from each corresponding column of E we have

Ẽij =

0, i = j

Eij − Ejj, i 6= j
, (3.12)
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Figure 3.4: Bomze phase portrait 43: First-order dynamics of Case 3 with the
species ordered counter-clockwise from the lower left corner.

i.e., that the metabolism matrix is on the form (1.3) with real (and possibly negative)
elements. For the second-order dynamics, we have the homogenous replicator system

ẋi = Φ(II)
i (x) = xi(eTi (γη2ET )x− xT (γη2ET )x), (3.13)

which is equivalent to the homogenous replicator system with fitness (1.2).

3.2.3 Transformation of replicator systems

If it is not the case that the first-order energy uptake is equal among the species,
then we may use a technique described by Gerstung et al. [9] and Stadler [20],
namely that we define an alternative payoff matrix E with elements

Eji = γηEi + γη2Eji (3.14)

so that the fitness function (1.2) may be constructed as

φ̃i(x) =
3∑
j=1

Eijxj (3.15)

which is equivalent to the linear fitness function (1.2) when we define the entries of
the payoff matrix A as aij = Eij. The proof of the equality of the fitness (3.15) to
the affine fitness (1.10) is straightforward, and relies on the fact that

∑3
j=1 xj = 1,

so that

φ̃i(x) =
3∑
j=1

Eijxj

= γη
3∑
j=1

(Ei + ηEji)xj

= γη
3∑
j=1

xjEi + γη2
3∑
j=1
Ejixj

= γηEi + γη2
3∑
j=1
Ejixj

= φi(x).
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Hence, the affine fitness function (1.10) is equivalent to the linear fitness function
(1.2) so that the set of possible dynamics of the two corresponding replicator systems
are the same. This is easily generalised to higher orders of interaction, as described
in Appendix C.

3.3 A necessary criterion for permanence

We are now to derive general conditions for existence and stability of fixed points in
the interior of the state space S2 that do not depend on any pair-wise interactions.
The conditions are necessary but not sufficient for permanence, as there are repli-
cator systems with a stable fixed point in the interior of the simplex that can not
be reached from all initial states. The method is due to Bomze [2] and also used by
Stadler and Schuster [20] and is based on finding two coordinates p, q that define a
unique fixed point

x∗ = 1
1 + p+ q

(1, p, q). (3.16)

that lies in the interior of S2 when p, q are positive. The coordinates are given by

p = ∆1

∆3
(3.17)

q = ∆2

∆3
(3.18)

where ∆k are the 2× 2 co-factors of the payoff matrix (A.5), defined as

∆1 = (λ32 − λ31)(λ13 − λ11)− (λ12 − λ11)(λ33 − λ31) (3.19)

∆2 = (λ12 − λ11)(λ23 − λ21)− (λ22 − λ21)(λ13 − λ11) (3.20)

∆3 = (λ22 − λ21)(λ33 − λ31)− (λ32 − λ31)(λ23 − λ21) (3.21)

where λij = Ei + ηEij.
The criterion for existence of the fixed point (3.16) is that p, q are real and positive,
which occurs when all of the ∆i have the same sign,

sgn(∆1) = sgn(∆2) = sgn(∆3) (3.22)

where sgn |R → {−1, 0, 1} denotes the sign function. The stability properties of
the fixed point is based on its (non-zero) eigenvalues

µ1, 2 = 1
2

(
αp+ βq ±

√
(αp+ βq)2 − 4pq∆3

)
(3.23)

where we have defined, for convenience,

α = λ22 − λ21 (3.24)

β = λ33 − λ31 (3.25)

as described in Proposition 6 of [2]. There are two non-trivial types of fixed points
for a stable system. If the eigenvalues at the fixed point have negative real parts, the
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fixed point is called a nodal or a spiral sink if the eigenvalues are real or complex,
respectively. The real part of the eigenvalues will be negative if

αp+ βq < 0 (3.26)

since then we have by Corollary 7 (iii) [2] that the product pq∆3 is positive so that∣∣∣∣√(αp+ βq)2 − 4pq∆3

∣∣∣∣ < |αp+ βq|. (3.27)

The conditions for existence and stability of fixed points in the interior of the simplex
are collected in Table 3.1.

Inner fixed point
Existence (3.22)

Stability

(3.16) (3.26)

x∗ sgn(∆1) = sgn(∆2) = sgn(∆3) αp+ βq < 0

Table 3.1: Criteria for permanent system, described by a stable fixed point in the
interior of the simplex.

3.4 Centre fixed points and cyclic trajectories

As complex eigenvalues always come in conjugate pairs, a fixed point to the three-
species system has at most two complex eigenvalues µk. If the eigenvalues to the
payoff matrix of the replicator system (1.1) are strictly imaginary, i.e., with a zero
real part, in a neighborhood of an inner fixed point, then all trajectories in the
neighborhood will be cyclic corresponding to a solution of Class IV and we will call
the fixed point a center. Note that a center fixed point does not necessarily need to
be located in the barycenter of the simplex, ”center” just means that it is circled by
the periodic trajectories of the system. We will now discuss the conditions under
which we can expect to find these trajectories.
Assume that the replicator system is determined by the fitness function (1.2), so
that we have existence of the unique fixed point (3.16) to the replicator system (1.1)
when the sign criterion (3.22) holds. If the eigenvalues (3.23) of the fixed point
x∗ = 1

1+p+q (1, p, q) are strictly imaginary, then any trajectories of the system are
cyclic. This occurs when

∆3 > 0 (3.28)

αp+ βq = 0 (3.29)

as derived by Bomze [2]. Note that the criterion (3.28) means that the terms ∆i

of (3.19)-(3.21) are all positive for existence of the fixed point. A cyclic system is
described in phase portrait 16 of Bomze, where the non-zero eigenvalues of the fixed
point have the form

µ1,2 = ±i
√
pq∆3, (3.30)
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as seen when using the criteria (3.28)-(3.29) in the eigenvalues (3.23). An example
of a system with the above properties is the rock-paper-scissors game with payoff

Arps =


0 −1 1

1 0 −1

−1 1 0

 , (3.31)

and eigenvalues

µ2, 3 = ±i
√

3. (3.32)

The trajectory of the system for a random starting point is shown on the regular
2-simplex in R3 in Figure 3.5.
The center fixed point with imaginary eigenvalues is the limiting case between com-
plex eigenvalues with negative and positive real parts. Teschl [21] defines the so-
called center manifold as the set spanned by eigenvectors corresponding to purely
imaginary eigenvalues of a dynamical system at a particular fixed point, and notes
that the manifold is ”generally not stable under small perturbations” and is for that
reason oftentimes assumed empty. As an illustration, consider the case where a
small perturbation δ ∈ R is added to the imaginary eigenvalues

µ2, 3 = δ ± i
√
pq∆3. (3.33)

The phase portrait of the rock-paper-scissors example (3.32) is shown in the left
subfigure of Figure 3.5. Three trajectories are shown: the Bomze phase portrait 17
(dotted) [2] that is characterised by eigenvalues (3.33) with a negative real part δ and
converges to a stable fixed point, the corresponding portrait (dashed) with a positive
real part δ of the eigenvalues where the trajectory diverges from the unstable fixed
point, and the limiting case that is Bomze phase portrait 16 (solid) [2]. Note that
the location of a center fixed point is dependent on the relative magnitude of the
elements of the payoff matrix, which means that the fixed point need not be centered
in the simplex. An example system is shown in the right subfigure of Figure 3.5.
Going back to the cross-feeding system, the question is: how likely is a Class IV
solution with a center fixed point? To summarise the conditions above, we have
existence of a fixed point x∗ = 1

1+p+q (1, p, q) in the interior of the simplex S2, with
strictly imaginary eigenvalues if

∆1 > 0, (3.34)

∆2 > 0, (3.35)

∆3 > 0, (3.36)

αp+ βq = 0. (3.37)

As seen in the example in Figure 3.5, even a small disturbance to the condition
of zero real part will change the stability of the fixed point to make it stable or
unstable. This phenomenon, where a shift in a parameter causes a change in the
stability of an ODE system is known as a bifurcation [21].
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Figure 3.5: Intransitive rock-paper-scissors replicator system of Class IV. Pure
system (solid) compared to system with unstable fixed point (dashed) with real part
δ > 0 of eigenvalues and a system with a stable fixed point (dotted) with a real part
δ < 0 as of (3.33).

To investigate the probability of having an interior fixed point, given that the system
is cyclic, we assume that the criterion αp + βq = 0 of (3.37) holds and use the
definitions of p (3.17), q (3.17), α (3.24) and β (3.25) to rewrite it as

(λ33 − λ31) = (λ13 − λ11)λ21 − λ22

λ11 − λ12

λ32 − λ33

λ22 − λ23
(3.38)

Then, the conditions (3.34) to (3.36) may be rewritten as

−(λ22 − λ21)2 (λ13 − λ11)(λ32 − λ33)
(λ11 − λ12)(λ22 − λ23) − (λ32 − λ31)(λ23 − λ21) > 0 (3.39)

(λ12 − λ11)(λ23 − λ21)− (λ22 − λ21)(λ13 − λ11) > 0 (3.40)

(λ13 − λ11)
(
λ32 − λ31 + (λ21 − λ22)(λ32 − λ33)

λ22 − λ23

)
> 0 (3.41)

These conditions for an interior fixed point are investigated in the numerical simu-
lations in Section 4.2.3.

3.5 Pair-wise coexistence

In a permanent three-species system, it may be the case that two or more of the
involved species are pair-wise coexistent when isolated from the third species, which
is the case discussed in Section 2. In terms of dynamical systems, the criterion for
pair-wise coexistence is that there exists a stable fixed point on the non-corner edges
of the simplex. If the fixed point on a given edge is stable, any trajectories along
that edge will converge to the fixed point as t→∞, as shown in the left subfigure of
Figure 3.6. In the interior of the simplex near the fixed point there are however more
than one possible behaviour. A semi-stable fixed point will repel the trajectories in
the part of its neighborhood that lies in the interior of the simplex, shown as case
(a) of Figure 3.6, whereas a stable fixed point will attract any trajectories in its
neighborhood, shown as case (b) of Figure 3.6.
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Figure 3.6: Left: Illustration of pair-wise coexistence in species triplets. Right:
Differing behaviour between trajectories in neighborhood of semi-stable (a) and sta-
ble (b) fixed point.

A stable fixed point — as in the general case described in Section 3.3 — in the
interior of the simplex S2 is necessary for a permanent replicator system. For positive
coordinates p, q, a general interior fixed point has the form

x∗ = 1
1 + p+ q

(1, p, q) (3.42)

where the coordinates p, q are defined as

p = ∆1

∆3
(3.43)

q = ∆2

∆3
(3.44)

and are positive if ∆i have the same sign for i = 1, 2, 3. Recall the definition

∆1 = (λ32 − λ31)(λ13 − λ11)− (λ12 − λ11)(λ33 − λ31) (3.45)

∆2 = (λ12 − λ11)(λ23 − λ21)− (λ22 − λ21)(λ13 − λ11) (3.46)

∆3 = (λ22 − λ21)(λ33 − λ31)− (λ32 − λ31)(λ23 − λ21) (3.47)

as outlined in Section 3.3. For stability of the interior fixed point, the eigenvalues
(3.23) of the linearisation of the system at the fixed point must have a negative real
part. Condition (3.26) ensures this.
An interior fixed point is not sufficient for permanence and not enough for the present
scenario. We also require the pair-wise coexistence of one to three of the species pairs,
which is defined as stable fixed points on the non-corner boundary of the simplex
S2. We use the payoff matrix (3.14) on its normal form (A.4) that corresponds the
homogenous replicator system of Bomze [2] as outlined in Appendix A and find that
the non-corner edge fixed points are

x∗12 = 1
λ12 − λ11 + λ21 − λ22

(λ21 − λ22, λ12 − λ11, 0) (3.48)

x∗23 = 1
λ23 − λ22 + λ32 − λ33

(0, λ32 − λ33, λ23 − λ22) (3.49)

x∗31 = 1
λ13 − λ11 + λ31 − λ33

(λ31 − λ33, 0, λ13 − λ11) (3.50)
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under the conditions

(λ12 − λ11)(λ21 − λ22) > 0 (3.51)

(λ23 − λ22)(λ32 − λ33) > 0 (3.52)

(λ13 − λ11)(λ31 − λ33) > 0 (3.53)

which ensure that each pair of payoff elements, for example λ21−λ22 and λ12−λ11 of
(3.48), have the same sign so that the coordinates of x∗12 are properly defined on the
intervals [0, 1) when normalised by the coordinate sum. We recall the definition that
the parameters λij are the elements of the 3×3 payoff matrix E (3.14). For a sketch
of the fixed points, see Figure 3.7. The fixed points (3.48) and (3.50) are given by
Proposition 2 of Bomze [2] and the fixed point on the edge {x ∈ S2| x3 = 0} is given
by Proposition 5 of the same paper. Stadler & Schuster [20] give an alternative,
although equivalent, formulation of the fixed points.

Figure 3.7: Pair-wise coexistence fixed points (3.48) through (3.50).

In order to have permanence, we require that the edge fixed points are so-called
saddle points which attract trajectories on the edge and repel trajectories in the
interior of the simplex (cf. Figure 3.6 a). For stability along the edges, we modify
the conditions (3.51)-(3.53) to require positiveness for each element in the pairs of
payoff elements

(λ12 − λ11) > 0, (λ21 − λ22) > 0 (3.54)

(λ23 − λ22) > 0, (λ32 − λ33) > 0 (3.55)

(λ13 − λ11) > 0, (λ31 − λ33) > 0 (3.56)

so that edge-bound trajectories on both sides of the fixed point will tend to the fixed
point. Three fixed points on the simplex boundary, combined with a stable fixed
point in the interior of the simplex is a sufficient condition for permanence so that
any trajectory near the edge in the interior of the simplex will tend towards the
interior fixed point [2].

27
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3.5.1 Three coexistent pairs

Bomze recognises one phase portrait of the replicator system of equations with
semi-stable fixed points on each edge of the simplex, phase portrait 7, such that
trajectories on the edges tend toward the fixed point and trajectories in the interior
are repelled from the fixed points. This phase portrait has the properties that there
is exactly one fixed point in the interior of the simplex and that there are three
non-corner fixed points on the edges [2].

Figure 3.8: Illustration of Bomze phase portrait 7 [2] with pair-wise fixed points
(3.48)-(3.50).

We have existence of unique fixed points x∗ij as of (3.48)-(3.50) on the edges of
the simplex when the conditions (3.51)-(3.53) are fulfilled. Furthermore, the fixed
points are semi-stable when the conditions (3.54)-(3.56) hold and there exists a
stable interior fixed point (3.42) and we note. We also note that the criteria for
stability of the boundary fixed points imply existence of the interior fixed point.
The conditions are collected in Table 3.2, where all conditions are necessary for a
system with three pair-wise fixed points and one triplet fixed point in the interior
of the state space.

Fixed point Existence Stability

x∗12 (3.48) (λ12 − λ11)(λ21 − λ22) > 0 (3.51) (λ12 − λ11) > 0 (λ21 − λ22) > 0

x∗23 (3.49) (λ23 − λ22)(λ32 − λ33) > 0 (3.52) (λ23 − λ22) > 0 (λ32 − λ33) > 0

x∗31 (3.50) (λ31 − λ33)(λ13 − λ11) > 0 (3.53) (λ31 − λ33) > 0 (λ13 − λ11) > 0

x∗ (3.42) sgn(∆i) = sgn(∆j)∀i, j (3.22) αp+ βq < 0 (3.26)

Table 3.2: Criteria for permanent system with semi-stable fixed points along
boundary.

3.5.2 Two coexistent pairs

For a system with two pairs that are coexistent in isolation from the third species,
we require that some — but not all — of the conditions in Table 3.2 hold. We will
discuss which of the criteria that are relevant and also derive additional criteria.
If a system has stable non-corner fixed points on each edge of the boundary, as
discussed in section (3.5.1), then the simplex corners must be unstable fixed points
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as shown in the left subfigure of Figure 3.8. In the present case, where we have
two semi-stable fixed points with the stable axes aligned with the simplex boundary,
we will have that one of the semi-stable fixed points will have migrated to the
remaining corner. The system is visualised by Bomze as phase portrait 9 and shown
in Figure 3.9.

Figure 3.9: Illustration of Bomze phase portrait 9 [2] with pair-wise fixed points
(3.48)-(3.50) where x∗12 have migrated to the left corner.

As before, we need a stable internal fixed point, where existence is given by the
condition (3.22) and the stability is given by (3.26). Furthermore, we need that two
out of the three conditions for existence and stability (3.54)-(3.56) of the edge fixed
points hold. This means that for each case — where a specific edge fixed point does
not exist — we need that one of the conditions

(λ12 − λ11)(λ21 − λ22) ≤ 0 (3.57)

(λ23 − λ22)(λ32 − λ33) ≤ 0 (3.58)

(λ13 − λ11)(λ31 − λ33) ≤ 0 (3.59)

that negate (3.51)-(3.53) hold. The conditions for existence of such a system are
shown in Table 3.3.
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Edge fixed points† Existent and stable if

¬x∗12 (3.48) (λ12 − λ11)(λ21 − λ22) ≤ 0 (3.57)

x∗23 (3.49) (λ23 − λ22) > 0, (λ32 − λ33) > 0 (3.55)

x∗31 (3.50) (λ13 − λ11) > 0, (λ31 − λ33) > 0 (3.56)

x∗12 (3.48) (λ12 − λ11) > 0, (λ21 − λ22) > 0 (3.54)

¬x∗23 (3.49) (λ23 − λ22)(λ32 − λ33) ≤ 0 (3.58)

x∗31 (3.50) (λ13 − λ11) > 0, (λ31 − λ33) > 0 (3.56)

x∗12 (3.48) (λ12 − λ11) > 0, (λ21 − λ22) > 0 (3.54)

x∗23 (3.49) (λ23 − λ22) > 0, (λ32 − λ33) > 0 (3.55)

¬x∗31 (3.50) (λ13 − λ11)(λ31 − λ33) ≤ 0 (3.59)

interior fixed point Existent and stable if

x∗ (3.42)
sgn(∆1) = sgn(∆2) = sgn(∆3) (3.22)

αp+ βq < 0 (3.26)

Table 3.3: Criteria for permanent system with two semi-stable fixed points along
boundary. †Only one of the three sets of fixed points can occur, ¬x denotes that
the fixed point is non-existent.

3.5.3 One coexistent pair

The final case of pair-wise coexistence occurs when two of the boundary fixed points
have migrated onto corners of the simplex. In biological terms, we have one pair of
coexistent species and an additional species that is dominant with respect to one
species in the pair and dominated by the other. Figure 3.10 shows the phase portrait
of an example system where species 1 and 3 are coexistent and where species 2 is
dominant with respect to species 3 and recessive with respect to species 1. The
system has phase portrait number 15 in Bomze [2].

For permanence of the system, we require the existence of a stable fixed point in the
interior of the simplex S2, by the conditions found in Table 3.1. In addition, one of
the three sets of conditions in Table 3.4 need to hold.
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Edge fixed points† Existent and stable if

x∗12 (3.48) (λ12 − λ11) > 0, (λ21 − λ22) > 0 (3.54)

¬x∗23 (3.49) (λ23 − λ22)(λ32 − λ33) ≤ 0 (3.58)

¬x∗31 (3.50) (λ13 − λ11)(λ31 − λ33) ≤ 0 (3.59)

¬x∗12 (3.48) (λ12 − λ11)(λ21 − λ22) ≤ 0 (3.57)

x∗23 (3.49) (λ23 − λ22) > 0, (λ32 − λ33) > 0 (3.55)

¬x∗31 (3.50) (λ13 − λ11)(λ31 − λ33) ≤ 0 (3.59)

¬x∗12 (3.48) (λ12 − λ11)(λ21 − λ22) ≤ 0 (3.57)

¬x∗23 (3.49) (λ23 − λ22)(λ32 − λ33) ≤ 0 (3.58)

x∗31 (3.50) (λ13 − λ11) > 0, (λ31 − λ33) > 0 (3.56)

Inner fixed point Existent and stable if

x∗ (3.42)
sgn(∆1) = sgn(∆2) = sgn(∆3) (3.22)

αp+ βq < 0 (3.26)

Table 3.4: Criteria for permanent system with one semi-stable fixed point along
boundary. †Only one of the three sets of fixed points can occur, ¬x denotes that
the fixed point is non-existent.

Figure 3.10: Illustration of Bomze phase portrait 15 [2] with pair-wise fixed points
(3.48)-(3.50) where x∗12 and x∗23 have migrated to the bottom corners.

3.6 Intransitivity and permanence

The definition used in Section 1.3.4 for intransitivity does not consider the ordering
of the species i = 1, 2, . . . N , since the labels i are arbitrary. This theoretical set-
ting does not differ between a right-handed intransitive system where species i + 1
outcompetes species i and a left-handed system where i outcompetes i+ 1, see Fig-
ure 3.11 for an illustration. In the present section, we take all indices modulo n, so
that the pair (i, i+ 1) is well defined also for i = n.
We first need to make sure that the definition of intransitivity, Definition 2 of Lundh
& Gerlee [16], works both ways. The ordering of species in the numerical simulations
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may be sorted with respect to which species outcompetes which, but the computa-
tional cost for this is high. Rather, the following paragraphs outline an argument to
cover both possibilities for intransitivity when species’ labeling is considered fixed.

Figure 3.11: Illustration of the two possibilities for pair-wise intransitive triplets,
left-handed (a) and right-handed (b).

The conditions for intransitivity (1.23), (1.24) for a pair (i, i+ 1) may be expressed
as

λi+1,i − λi+1,i+1 > 0 (3.60)

λi,i − λi,i+1 > 0, (3.61)

where λij is the i-th row, j-th column element of the payoff matrix (3.14). These
conditions follow from considering the ordered pairs (i, i+ 1) such that the species
i+ 1 outcompetes species i when no other species is present. In terms of the phase
portrait of the replicator system, this means that the fixed point (x∗i , x∗i+1) = (1, 0)
is unstable and that the fixed point (x∗i , x∗i+1) = (0, 1) is stable. Reversing the
intransitivity, we have that (x∗i , x∗i+1) = (1, 0) is stable and that the fixed point
(x∗i , x∗i+1) = (0, 1) is unstable, equivalent to the reversion of the conditions (3.60)
and (3.61) as

λi+1,i − λi+1,i+1 < 0 (3.62)

λi,i − λi,i+1 < 0. (3.63)

So in conclusion, we may say that the system is pair-wise intransitive in both direc-
tions as long as

λi+1,i − λi+1,i+1 = Ei − Ei+1 + η(Ei+1,i − Ei+1,i+1) (3.64)

λi,i − λi,i+1 = Ei − Ei+1 + η(Ei,i − Ei,i+1) (3.65)

have the same sign for all pairs (i, i+ 1) of species.
The criterion for permanence for an intransitive three-species replicator system is

Γ12Γ23Γ31 < 1, (3.66)

as stated in Theorem 2 of Lundh & Gerlee [16]. The permanence factors Γij are
defined as

Γij = λji − λjj
λii − λij

, (3.67)

and are positive as long as the differences λji−λjj and λii−λij have the same sign.
In conclusion, the three-species replicator system (1.1) is pair-wise intransitive and
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permanent if condition (3.66) holds together with either the conditions (3.60) and
(3.61) or the conditions (3.62) and (3.63). The conditions are collected in Table 3.5.

Species pair (1, 2) (2, 3) (3, 1)

Intransitive if λ21 − λ22 > 0 λ32 − λ33 > 0 λ13 − λ11 > 0

(3.60), (3.61) λ11 − λ12 > 0 λ22 − λ23 > 0 λ33 − λ31 > 0

or if λ21 − λ22 < 0 λ32 − λ33 < 0 λ13 − λ11 < 0

(3.62), (3.63) λ11 − λ12 < 0 λ22 − λ23 < 0 λ33 − λ31 < 0

Coexistent if (3.66) Γ12Γ23Γ31 < 1

Table 3.5: Criteria for existence of intransitive triplet.
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4
Numerical simulations of

replicator systems
For the three-species system, the derived criteria for existence and stability of fixed
points in the 2-simplex are hard to interpret due to the high dimensionality of the
parameters and are hence simulated rather than studied analytically. The statistical
properties of both two- and three-species systems are evaluated numerically for ran-
dom interactions parameters, which are drawn according to two distributions in the
independent and hierarchical parameter model. The distributions under evaluation
are the standard uniform Uni(0,1) with a probability density function

fU(u) =

1, u ∈ [0, 1]
0, otherwise

(4.1)

which is taken to model the case where any (finite) energy uptake is equally likely
and normalised onto the [0, 1] interval. This is contrasted to the exponential Exp(λ)-
distribution, with density function

fX(x) =

λe−λx, x ≥ 0
0, otherwise

(4.2)

where the parameter λ = 2 is chosen to ensure that the mean is the same for both
distributions. Any deviations from the standard values of the simulation parameters
of Table 4.1 will be clearly noted.

Simulation
Value Explanation

parameters

N 106 Number of systems

λ 2 Exponential PDF rate

γ 0.03 Nutrient inflow [8]

κ 0.25 Nutrient uptake [16]

η κ
κ+γ ≈ 0.89 κ-γ quotient [16]

Table 4.1: Parameters used in most simulations, exceptions are stated when used.

4.1 Two-species coexistence

The data collected from the simulations on two-species systems are the coordinates
ξα, ξβ that form the coexistence criteria as outlined in Section 1.3.3. In the sim-
ulations, a system is formed from random interactions parameters Ei, Eij and the
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coordinates ξi are computed according to the model used. The number of simulated
systems that fulfil the criteria ξα > 0, ξβ > 0 divided by the total number of simu-
lation runs is used as an estimate for the probability in question. The estimations
are compared to the analytical probabilities (2.11), (2.15), (2.33) and (2.41).

The estimate probability of permanence from the simulations is presented in Ta-
ble 4.2, where we see the expected correspondence of the numerical results to the
analytical. Detailed investigations of the two distributions under the independent
and hierarchical model follow in the subsections.

Probability of permanence Analytic
P(ξα > 0, ξβ > 0)

Simulated (2.1), (2.2)

Ei model

Uni(0, 1), Indep. 0.1552 [Eq. (2.11)] 0.1553

Uni(0, 1), Tree 0.1109 [Eq. (2.33)] 0.1110

Exp(2), Indep. 0.1585 [Eq. (2.15)] 0.1584

Exp(2), Tree 7.591×10−2 [Eq. (2.41)] 7.606×10−2

Table 4.2: Estimate probabilities for permanence for N = 105 simulated systems
compared to derived analytical expressions.

4.1.1 Uni(0, 1)-distributed parameters

The parameters Ei and Eij for species i, j are drawn either independently or ac-
cording to the tree hierarchy (2.18) from a Uni(0,1) distribution. We recall that for
the hierarchical model, the parameters Ei are drawn uniformly and then additional
Uniform random numbers rj were drawn to compute Eij = rjEi for species i, j. This
assures that Eij < Ei.
The empirical distribution of the fixed points in the system state space — which in
the two-species case is the 1-simplex given as the interval [0, 1] — is shown as a
histogram in Figure 4.1 with the independent parameter model in the left subfigure
and the tree hierarchy in the right. We note that there is a slight preference for
fixed points in the center of the 1-simplex and that the probability of permanence
is lower in the tree hierarchy model.

The condition for coexistence in two species is that the coordinates ξα, ξβ are both
positive by (2.1) and (2.2). The scatter plot of sampled (ξα, ξβ) points in Fig-
ure 4.2 shows that the empirical distribution of the coordinates exhibits a negative
correlation between the variables. More specifically, they are bounded by the ellipse

(
x cos(θ)− y sin(θ)

a

)2

+
(
x sin(θ) + y cos(θ)

b

)2

= 1 (4.3)

with major axis of length a and minor axis of length b that is slanted by an angle θ
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Figure 4.1: Histogram of empirical distribution over 1-simplex of interior fixed
points x∗. Left: Independent Uni(0,1) parameter model. Right: Tree hierarchy

to the x-axis. For the independent parameters, we have

a =
√

2(1 + η) (4.4)

b =
√

2η (4.5)

θ = −π4 (4.6)

as derived in Appendix D.1. Furthermore, a larger section of the elliptical distri-
bution is found in the second and fourth quadrant where the coordinates ξα and ξβ
have different signs. A majority of the sampled systems have (ξα, ξβ) in the second
or fourth quadrants, where x∗ = 1 or x∗ = 0, respectively, is a fixed point. These
systems tend to dominance of one of the species, in accordance with the analytical
results that show that only a small part of the two-species systems are coexistent.
For the tree hierarchy model, the situation is somewhat different. We repeat the
definitions (2.19), (2.20) for convenience

ξα = Eβ − Eα (1− ηtα) (4.7)

ξβ = Eα − Eβ (1− ηtβ) (4.8)

and see that for Uni(0,1)-distributed Eα, Eβ and Tri(-1,1)-distributed tα, tβ we have

max ξα = 1⇒ ξβ = − (1− ηtβ) ∼ Tri
(
− (1 + η),−(1− η)

)
(4.9)

max ξβ = 1⇒ ξα = − (1− ηtα) ∼ Tri
(
− (1 + η),−(1− η)

)
(4.10)

when Eβ = 1, Eα = 0 and Eα = 1, Eβ = 0, respectively. We note that due to the
negative correlation, the minimum of one variable is obtained when the other is at
its maximum and that . On the axis where ξα = ξβ — corresponding to the minor
axis of the ellipse in the independent case — we have from (4.7) and (4.8) that

Eα = Eβ
2− ηtβ
2− ηtα

(4.11)

so that the maximum of ξα,
max ξα = η (4.12)
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is attained when Eα = Eβ = 1 and tα = tβ = 1. A similar argument shows that

min ξα = −η (4.13)

when Eα = Eβ = 1 and tα = tβ = −1. In conclusion, we have that the minor axis
have the same length as in the independent model.

−2 0 2
−3

−2

−1

0

1

2

3

ξα

ξ β

−2 0 2
−3

−2

−1

0

1

2

3

ξα

ξ β

Figure 4.2: Scatter plot of N = 105 simulated points (ξα, ξβ) with Uni(0,1)-
distributed parameters with bounding ellipse (4.3). Left: Independent model. Right:
Tree hierarchy model.

4.1.2 Exp(2)-distributed parameters

The energy extraction parameters Ei, Eij are assumed to be independently Exp(2)-
distributed and the other simulation parameters are the same as in the Uniform case.
The end state distribution have largely the same properties as in the Uniform case
as seen in Figure 4.3, i.e., the fixed points are to a large extent located in the corners
(0, 1) or (1, 0) and the interior fixed points show a small tendency of clustering
in the middle of the interval. This is however not the case for the tree hierarchy,
where the fixed points in the interior of the simplex are more likely to be located
near the edges x = 0 and x = 1. As for the systems with Uni(0, 1)-distributed
parameters, the number of interior fixed points is less in the hierarchical model and
the clustering of fixed points near the edges is a likely explanation for the lower
probability of permanence.
The scatter plot of the points (ξα, ξβ) form an elliptic shape also when the param-
eters are Exp(λ)-distributed, as shown in Figure 4.5. Since the coordinates are not
bounded in this case, the ellipse (4.3) is defined so that the probability of exceeding
a certain range is less than a given threshold α, similar to a confidence level. For
the major and minor axes of the ellipse, we define the quantiles ξm and ξM as the
solutions to

(1 + λ

η
ξm)e−

2λ
η
ξm = 2α (4.14)

e−λξM − η2e−
λ
η
ξM = 2α(1− η2) (4.15)
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Figure 4.3: Histogram of empirical distribution over 1-simplex of interior fixed
points x∗. Left: Independent Exp(2) parameter model. Right: Tree hierarchy

and we define the axes lengths as

b =
√

2ξm (4.16)

a =
√

2ξM (4.17)

The derivation of the equations can be found in Appendix D and the dependence of
the quantiles ξm and ξM on η is shown in Figure 4.4. For a chosen confidence level
α = 10−3, we have

b ≈ 4.8 (4.18)

a ≈ 2.5 (4.19)

which gives the bounding ellipse in Figure 4.5.
The scatter plot in the right subfigure of Figure 4.5 follow the same pattern as
the one for the independent Uni[0, 1)-distributed parameters. The differences lie
in that the coordinates are not bounded but rather have a probability 1 − α of
taking values in the interval [0, z∗) for some arbitrary threshold z∗. We have that
ξα ≈ Eβ ∼ Exp(λ) for small Eα and analogously for ξβ so that instead of reaching a
max value, the coordinates are nearly Exp(λ)-distributed for small Eα and Eβ. Also,
we have that ξα ≈ Eβ − Eα ∼ Laplace(0, λ) for t1 ≈ 1 so that ξα and ξβ each follow
a distribution that is near the Laplace(0, λ)-distribution when the other is large.
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confidence ellipse (4.3). Left: Independent model. Right: Tree hierarchy model.
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4.2 Three-species system

The three-species replicator system is defined from the interactions parameters Ei
and Eij, which are drawn independently or according to the hierarchical model (2.17).
The simulation parameters can be found in Table 4.1. The dynamics of the three-
species system is more complex than the system with two species, and we will
differentiate between fixed points in corners where there is exactly one species i
with frequency xi = 1 and the non-corner boundary where there is exactly one
frequency xi = 0.

4.2.1 Classification of end states

The fixed points of the simulated replicator systems may be categorised in the classes
I-IV as described in Section (3.2), which we repeat for convenience

Class I
Corner fixed points, where only one species has a non-zero frequency.

Class II
Non-corner boundary points, where two species have a non-zero frequency.

Class III
Interior fixed points, where all frequencies are non-zero.

Class IV
Cyclic trajectories described by interior fixed points with imaginary eigenval-
ues.

The criteria for the fixed points x∗ ∈ S2 that we use in the implementations are

Class I
No interior fixed point by negation of the criteria in Table 3.1 and no fixed
point on the S2 boundaries by negation of criteria (3.51)-(3.53) of existence of
boundary fixed points.

Class II
Exactly one of the criteria (3.51)-(3.53) of existence of boundary fixed points
hold.

Class III
Existence of stable interior fixed point by Table 3.1.

Class IV
Existence of interior fixed point with imaginary eigenvalues by (3.34)-(3.37).

Table 4.3 displays the fractions of systems that fall into the classes I-IV. A few prop-
erties are noteworthy: the systems with uniformly distributed parameters are likely
to tend to a corner fixed point where all species but one will perish. This is not the
case for the systems with exponentially distributed parameters, which tend toward
fixed points on the non-corner edges. The probability of an Exponential system to
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fall into the most likely Class II is more than 90%, which makes Exponential systems
more homogenous in their behaviour than Uniform systems, which have a smaller
probability (near 80%) of being Class I-systems. Also, Exponential systems are more
likely to be permanent than to be dominated by a single species. Finally, note that
the results of the last column are in agreement with the theory: the probability of
having a cyclic trajectory is zero, since it requires eigenvalues with zero real part.

Fraction of solutions Class I Class II Class III Class IV

Ei model

Uni(0, 1), Indep. 0.775 0.208 1.69×10−2 0

Uni(0, 1), Tree 0.812 0.181 6.88×10−3 0

Exp(2), Indep. 0.004 0.928 6.80×10−2 0

Exp(2), Tree 0.002 0.926 7.22×10−2 0

Table 4.3: Empirical distribution of N = 105 systems into classes I-IV as outlined
in Section 3.2.

For a simulation of N = 106 systems, the results of Table 4.4 describes the empirical
behaviour of the the triplets Ei of first-order energy uptake. The numerical results
are in agreement with the theory, in that all the simulated systems fall into the third
category, where one species is dominant. The theoretical reason for this is similar to
the one for having no Class IV-solutions in Table 4.3, that the probability of equality
between two continous random variables is of a zero measure.

Fraction of systems

Case 1) Case 2) Case 3)

Ei = Ej Ei = Ej > Ek Ei > Ej > Ek
all i, j Ei = Ej < Ek

Ei model
Uni(0, 1), Indep. 0.00 0.00 1.00

Uni(0, 1) Tree 0.00 0.00 1.00

Exp(2), Indep. 0.00 0.00 1.00

Exp(2), Tree 0.00 0.00 1.00

Table 4.4: Empirical probability of balance of first-order energy uptake Ei as out-
lined in Section 3.2 for N = 106 systems.

4.2.2 Stable interior fixed points

Existence of the interior fixed point x∗ = 1
1+p+q (1, p, q) is determined by the signs

of the sub-determinants (3.19)-(3.21), which gives the criterion

sgn(∆1) = sgn(∆2) = sgn(∆3) (4.20)
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Figure 4.6: N = 105 interior fixed points for indepdent model. Left: Uniformly
distributed. Right: Exponentially distributed.

Figure 4.7: N = 105 interior fixed points for tree hierarchy model. Left: Uniformly
distributed. Right: Exponentially distributed.

where sgn() denotes the sign function. The necessary criterion for permanence of
the system is negative real parts of the eigenvalues (3.23) to the interior fixed point.
By Corollary 7 of Bomze [2], we have

αp+ βq < 0 (4.21)

Table 4.5 collects the results from simulations of the independent and tree-hierarchy
model for uniformly and expontentially distributed random variables. For the proba-
bility of existence in the independent model, we note that the difference between the
distributions is small whereas it is larger, relatively speaking, for the tree hierarchy
models. This behaviour is also seen in Figures 4.6 and 4.7, where the scatter plot
for systems with Exponentially distributed parameters in the latter figure is clearly
less dense than the corresponding plot for systems with Uniformly distributed pa-
rameters in the former.
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Probability
P(Existent) P(Coexistent) P(Coexistent|Existent)

(4.20) (4.21) (4.20) & (4.21)

Ei model

Uni(0, 1), Indep. 7.063×10−2 1.775×10−2 0.251

Uni(0, 1), Tree 1.240×10−2 3.156×10−3 0.255

Exp(2), Indep. 8.303×10−2 2.338×10−2 0.282

Exp(2), Tree 3.704×10−3 8.780×10−4 0.237

Table 4.5: Empirical probability of existence of a stable interior fixed point.
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4.2.3 Cyclic trajectories

For existence of a cyclic fixed point, with a Class IV solution, the criterion (4.20) is
not enough, as the subdeterminants ∆i need to be positive as described by (3.34)-
(3.36). For the simulated systems that have an interior fixed point, the cyclic prop-
erty described by (3.37) is considered. Simulations of the system is found in the
second column of Table 4.6. As expected from theory, no simulated system is cyclic,
since this would require eigenvalues with zero real parts.
The criterion (3.37) forms a surface in the parameter space and we may consider
the probability of having an interior fixed point given that the parameters lie on
this plane. In other terms, we assume the criterion (3.37) of the cyclic property and
investigate the probability of existence for the fixed point. The estimate probability
of existence of an interior fixed point, given that it is cyclic, is computed from
system simulations is found in Table 4.6. As seen when comparing the results to the
probabilities of existence found in Table 4.5, the cyclic fixed points are slightly less
likely in the independent model and more likely in the hierarchical.

Probability
P(Cyclic) P(Existent|Cyclic)

(3.34)-(3.37) (3.39)-(3.41)

Ei model

Uni(0, 1), Indep. 0.00 6.790×10−2

Uni(0, 1), Tree 0.00 2.736×10−2

Exp(2), Indep. 0.00 6.948×10−2

Exp(2), Tree 0.00 1.579×10−2

Table 4.6: Empirical probability of a cyclic system by (3.34)-(3.37) as well as
probability of existence of an interior fixed point, given that it is cyclic by criteria
(3.39)-(3.41).
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4.2.4 Pair-wise coexistence

For a pair-wise coexistent triplet, we require a stable interior fixed point as inves-
tigated in Section 4.2.2. In addition, we use the criteria found in Table 3.2, 3.3
or 3.4 for existence and semi-stability of the three, two or one edge fixed points.
The criteria for stability are sufficient also for existence of the fixed points so that
existence will not be reported for the systems in question. The results on stability
and existence of the boundary fixed points are found in Table 4.7.

The simulation results for the criteria of existence of the stable interior fixed point are
found in Table 4.5, which are used when computing the probability of permanence
of the different versions of the pair-wise coexistence. The permanence results, which
combine a stable interior fixed point with one to three semi-stable fixed points in
the boundary of the simplex, are found in Table 4.8.

P(Boundary fixed points)
Three pairs Two pairs One pair

(Table 3.2) (Table 3.3) (Table 3.4)

Ei model

Uni(0, 1), Indep. 1.174×10−2 6.003×10−2 2.248×10−1

Uni(0, 1), Tree 2.229×10−3 1.183×10−2 1.394×10−1

Exp(2), Indep. 1.107×10−2 6.190×10−2 2.295×10−1

Exp(2), Tree 6.410×10−4 4.174×10−3 9.397×10−2

Table 4.7: Empirical probability of existence of three, two or one stable boundary
fixed points (3.48)-(3.50), by criteria found in Table 3.2, 3.3 or 3.4.
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P(Permanence)
Three pairs Two pairs One pair

(Table 3.2) (Table 3.3) (Table 3.4)

Ei model

Uni(0, 1), Indep. 6.441×10−3 5.370×10−3 3.957×10−3

Uni(0, 1), Tree 1.097×10−3 9.820×10−4 7.280×10−4

Exp(2), Indep. 4.836×10−3 8.812×10−3 7.262×10−3

Exp(2), Tree 2.750×10−4 2.950×10−4 2.100×10−4

P(Permanence|Boundary FPs) Three pairs Two pairs One pair

Ei model

Uni(0, 1), Indep. 0.5486 8.946×10−2 1.760×10−2

Uni(0, 1), Tree 0.4922 8.300×10−2 5.222×10−3

Exp(2), Indep. 0.4757 0.1424 3.165×10−2

Exp(2), Tree 0.4290 7.068×10−2 2.235×10−3

Table 4.8: Top: Empirical probability of permanence, computed from the criteria
in Table 3.2, 3.3 or 3.4 on fixed points in the interior and on the boundary of the
simplex in systems with three, two and one coexistent pairs. Bottom: Probability
of permanence given that stable boundary fixed points exist.

With respect to the existence results in Table 4.7, we see that the probability of
existence is decreasing with the number of fixed points on the boundary. This is
not fully reflected in the permanence results shown in the upper part of Table 4.8,
where we see that three coexistent pairs is the most likely configuration for systems
with Uniformly distributed parameters and that two coexistent pairs is most likely
for Exponentially distributed parameters. This is due to correlation between the
conditions for having a stable interior fixed point and the conditions for stable fixed
points on the boundary.

We may also investigate the probability of permanence conditionally on the number
of fixed points on the boundary of the simplex. Then we see that the systems
with three coexistent pairs on the simplex boundary is indeed the most likely to be
permanent.

4.2.5 Intransitivity and permanence

To properly define the clock-wise and anti-clockwise versions of intransitivity, we
need that either the conditions (3.60)-(3.61) or (3.62)-(3.63) hold for all pairs (xi, xi+1)
where we as usual consider the indices as modulo 3. The results of the simulations
are collected in Table 4.9, where we see that the tree hierarchy model is less likely to
be intransitive and permanent and also note that the probability of permanence is
less than or on the order of one permanent system per thousand. Finally, note that
approximately half of the intransitive systems are permanent. This corresponds well
to theory, as the intransitive systems that do not have an interior fixed point (cf.
phase portrait 46 of Bomze [2]) constitute a zero-measure set which is also the case
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for the intransitive system with a center fixed point (cf. Section 4.2.3 and phase
portrait 16 of Bomze [2]). The only systems with an interior fixed point that have
a non-zero probability either have positive eigenvalues so that the fixed point is un-
stable or have negative eigenvalues and a stable fixed point, which is the coxistent
case.

Probability
Intransitivity Intrans. & permanent Permanent

(Table 3.5) Table 3.5 & (3.66) fraction

Ei model

Uni(0, 1), Indep. 2.341×10−3 1.168×10−3 0.4989

Uni(0, 1), Tree 4.300×10−4 2.140×10−4 0.4977

Exp(2), Indep. 2.417×10−3 1.200×10−3 0.4965

Exp(2), Tree 1.380×10−4 7.700×10−5 0.5580

Table 4.9: Probability of permanence in intransitive scenario by criteria (3.66) and
Table 3.5.

4.2.6 Comparison of coexistent systems

To compare the different forms of coexistence, we will now repeat the permanence
results presented in Section 4.2.2-4.2.5 and also compute the fraction that each
different form of coexistence covers of the whole set of permanent systems. We will
not repeat the trivial results of zero probability for cyclic systems, to save some
space in the tables.

First, we notice that the intransitive scenario is an order of magnitude less likely
than even the least likely version of the pair-wise coexistence scenarios. Also, the
fraction of intransitive systems in the set of systems with stable interior fixed points
is largely constant over the four different models for the parameters. Second, the
pair-wise coexistence scenarios were discussed in Section 4.2.4 and we only add that
the cases with three or two coexistent pairs occupy some two thirds of the systems
with a stable interior fixed point for systems with Uni(0, 1)-distributed parameters.
In the case where the parameters are Exp(2)-distributed, we have that two or one
coexistent pair are most likely for independent parameters and cover more than two
thirds of the systems with stable interior fixed points, whereas the tree hierarchy is
more similar to the systems with Uniform parameters. As a last note, we see that
the sum of pair-wise coexistent and intransitive systems do not cover the full set
of systems with interior fixed points. This is due to non-permanent systems that
have a stable interior fixed point that can only be reached from some states in the
simplex, like Bomze phase portraits 12-13 [2].
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Probability

Stable interior Pair-wise coexistent and permanent Intransitive and

fixed point Three pairs Two pairs One pair permanent

(Table 4.5) (Table 4.8) (Table 4.9)

Uni(0, 1), Indep. 1.78×10−2 6.44×10−3 5.37×10−3 3.96×10−3 1.17×10−3

Uni(0, 1), Tree 3.16×10−3 1.10×10−3 9.82×10−4 7.28×10−4 2.14×10−4

Exp(2), Indep. 2.34×10−2 4.84×10−3 8.81×10−3 7.26×10−3 1.20×10−3

Exp(2), Tree 8.78×10−4 2.75×10−4 2.95×10−4 2.10×10−4 7.70×10−5

Fraction of stable Stable interior Pair-wise coexistent and permanent Intransitive and

interior fixed point fixed point Three pairs Two pairs One pair permanent

Uni(0, 1), Indep. 1.00 0.363 0.302 0.223 0.066

Uni(0, 1), Tree 1.00 0.347 0.311 0.231 0.068

Exp(2), Indep. 1.00 0.207 0.377 0.311 0.051

Exp(2), Tree 1.00 0.313 0.336 0.239 0.088

Table 4.10: Probability of permanence in general, pair-wise coexistence and in-
transitive scenarios, collected from Table 4.5, 4.8 and 4.9.

We may also study the fraction of the investigated systems that are permanent,
i.e., the probability of permanence conditionally on existence of the system. The
results are collected in Table 4.11. First, we note that there is a pattern to the
pair-wise coexistent systems in that the probability of permanence is increasing
with the number of coexistent pairs. This pattern is the same for both models and
distributions for the interactions parameters. We also note that the probability of
permanence in triplets with three coexistent pairs is by far larger than the probability
for triplets with two or one coexistent pairs. Finally, although intransitive systems
are unlikely to exist when the interactions parameters are random (as shown in
Table 4.9), close to half of the intransitive systems are permanent. This means
that the intransitive property, and not the permanence, is the limiting factor. The
converse is true for systems with one or two coexistent pairs on the boundary, as these
systems are fairly likely to exist (Table 4.7) but have a low conditional probability
of permanence.
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Fraction of Pair-wise coexistent and permanent Intransitive and

systems that Three pairs Two pairs One pair permanent

are permanent (Table 4.8) (Table 4.9)

Uni(0, 1), Indep. 0.549 8.95×10−2 1.76×10−2 0.499

Uni(0, 1), Tree 0.492 8.30×10−2 5.22×10−3 0.498

Exp(2), Indep. 0.476 0.142 3.17×10−2 0.497

Exp(2), Tree 0.429 7.07×10−2 2.24×10−3 0.558

Table 4.11: Fraction of permanent systems, collected from Table 4.8 and 4.9.

Finding an analytical expression for the probability of permanence as a function of η,
which was used in the two-species case, was deemed impractical in the three-species
case since the dimensionality of the inequalities that determine permanence is high.
Rather, the criteria for stable interior fixed points are evaluated numerically for η ∈
[0, 1] and graphs of the probability functions for the independent and tree hierarchy
models are shown Appendix E. A zero value of η corresponds to a zero nutrient
uptake κ in relation to the nutrient inflow γ, where no coexistence is possible. This
property features in the simulated curves, where all of the estimated probabilities
are increasing functions of η with P(Permanence)

∣∣∣
η=0

= 0. The highest probability

of permanence is attained for η = 1, which corresponds to the results of Pfeiffer &
Bonhoeffer [18] who found that coexistence is most likely for low dilution rates in
the chemostat.
The η-dependence forms a similar pattern, and we only note that the systems with
three coexistent pairs on the non-corner boundary have an interesting feature, as seen
in Figure 4.8. Where the rest of the graphs have a lower probability of permanence
for systems with Uniformly distributed parameters for all values of η, the system
with three coexistent pairs have point of equality in the probability of permanence
for Exponentially and Uniformly distributed parameters. The point is located at
η ≈ 0.55 and for larger η-values, systems with Uniformly distributed parameters are
more probable to be permanent.
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5
Discussion

5.1 Methods

The series-expansion model proposed by Lundh & Gerlee is a general model of
cross-feeding in a system with a high inflow of energy and different time-scales for
the metabolism and the population dynamics. It does not cover more than two
levels of metabolism in the form used in this project but may be extended as such
[16]. The basis of the model is the replicator equation, which models a well-mixed
and infinite population of species involved in frequency-dependent selection without
considering species evolution or spatial differences in the mixture [2, 10, 14, 16]. For
modelling of finite populations, Markov chains or Moran processes are often used
for modelling of stochastic interactions between individuals [22, 23].

To study statistical properties of the replicator system, we consider the parameters
Ei, Eij that model the energy uptake of a species [16] as random variables and
used two example distributions for the parameters. To model individual energy
uptake parameters require probability distributions that are defined on R+, as any
energy uptake is by necessity positive. For this, the Uni(0,1) distribution is chosen
to investigate the properties of the system under the assumption that any energy
uptake is equally likely when normalised onto the [0,1]-interval. This is contrasted
to the case where smaller amounts of energy are more likely than larger, which
is modelled as an Exp(λ)-distribution. In the simulations, the parameter λ = 2
is chosen to ensure a mean value of 1

2 , the same mean as for a random variable
from the Uni(0,1)-distribution. Other possible distributions are the log-normal and
the gamma distributions, where a certain interval for the extracted energy may be
specified [11]. If one would like to consider the difference in energy uptake between
species or between metabolites — rather than individual interactions parameters —
then it is possible to use probability distributions that are defined for the whole real
line. This approach may be used if the individual parameters are not known.

5.2 Parameter models

Two schemes are used for the random energy uptake parameters, the independent
where any species is allowed to extract any amount of energy from any metabolite
and, in particular, may extract more energy from a derived metabolite than from
the primary nutrient. This is the most general case of cross-feeding, where different
species may be specialised on different nutrients. To investigate the case where a
species is not able to extract more energy further down in the metabolic chain, the
tree hierarchy model with the condition Eij < Ei is used as an alternative. In the
simulations, the hierarchical model was implemented as the more specific relation
Eij = rijEi, where rij ∼ Uni(0, 1). In the performed simulations, the tree hierarchy
model exhibits a lower probability of permanence since the first-order interactions
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are more important and these tend to supress coexistence. The systems with only
first-order terms discussed in Section 3.2.1 were permanent only on a zero-measure
set, and would otherwise tend to a state of domination of one of the involved species.
This is also hinted at in the scatter plots in Figure 4.2 and 4.5 of the two-species
systems, where the bounded second-order interactions causes the coordinates ξα,
ξβ to cluster in the second and fourth quadrants corresponding to systems with
trajectories that tend to corners.

5.3 Two-species coexistence

The derived analytic expressions (2.11), (2.15), (2.33) and (2.41) for the probability
of permanence are more complex for the tree hierarchy model than for the indepen-
dent model. As seen in the the algebraic expressions and visualised in the graphs of
the probabilities, the behaviour of the probability as a function of η is also different.
Where the independent model in Figure 2.2 shows increasing functions with negative
curvature, the tree model in Figure 2.5 show functions with positive and nearly flat
curvature. In addition, the tree hierarchy model functions take lower values on the
interval η.
The analytic results are compared to simulations, where systems are generated by
drawing random parameters according to one of the models. The coexistence prop-
erties are determined from the criteria ξα > 0, ξβ > 0 and the distribution of inner
fixed points is computed from Eq. (17) of Lundh & Gerlee [16]. We find that the
simulations correspond to the analytical results, which is taken as an indicator of
the feasibility of numerical simulations in the three-species case.

5.4 Three-species system

The derived coexistence criteria for three-species systems are evaluated numerically
over a sweep of η-values and the general behaviour is that the probability of perma-
nence is an increasing function of η. In the independent model, the probability of
permanence for a given η is larger for the Exp(2)-distributed interactions parame-
ters than for systems with Uni(0, 1)-parameters. The notable exception is the case
for three coexistent pairs, where the curves for the probability intersect. The case
for the tree hierarchy model is the opposite: systems with uniformly distributed
interactions parameters have a larger probability of permanence than those with
exponentially distributed parameters.
Analytical expressions of the probability of permanence were considered infeasible
in the three-species systems due to the dimensionality of the inequalities that deter-
mined the permanent subspaces. Rather, the three-species system was investigated
numerically by drawing random samples from the two distributions and according
to the independent and hierarchical models.

5.5 From pairs to triplets

Having established that the replicator system on normal form (investigated thor-
oughly by Bomze [2, 3]) is equivalent to the affine system with a fitness function
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based on series-expansion as introduced by Lundh & Gerlee, we find that the possi-
ble dynamics of the series-expansion replicator system is the same as the dynamics
of a system with a payoff matrix on normal form. This fact shows that the infor-
mation on pair-wise interactions of the constituent species is not enough to draw
any deterministic conclusions on the triplet coexistence, as there are multiple three-
species systems with the same pair-wise dynamics but different stability properties
of any interior fixed points. For the permanent systems investigated, the permanent
intransitive system (Bomze phase portrait 17) has the same pair-wise properties as
the non-permanent phase portrait with number 46 [2]. The pair-wise coexistent
systems with Bomze phase portraits 7, 9 and 15 with three, two and one coexistent
pairs, respectively, have the corresponding non-permanent systems with the same
behaviour on the simplex boundary in phase portraits 35, 10 and 41 [2, 3]. Further-
more, any system with a stable inner fixed point has a mirror image in a system
with the same pair-wise interactions but with an unstable inner fixed point.
However, triplet coexistence is more or less likely to occur in the three-species sys-
tems, depending on the pair-wise interactions of the systems. We find that nearly
half of the systems with three coexistent pairs and intransitive systems are perma-
nent, where the corresponding numbers for systems with one and two coexistent
pairs are closer to one percent and ten percent, respectively.
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6
Conclusions

The main questions in this project was to investigate what conclusions on perma-
nence in three-species systems that could be drawn from known coexistence prop-
erties in the corresponding two-species systems. From the simulations, we find that
intransitivity and three-pair coexistence are more strongly correlated with perma-
nence than two- or one-pair coexistence. For the intransitive systems, there is a near
50% probability of permanence and the same holds for systems with three coexistent
pairs on the simplex boundary. There can, however, be no deterministic conclusions
on triplet permanence from pair-wise interactions. This is due to the result that the
affine fitness function (1.10) is equivalent to the linear (1.2) and that triplet perma-
nence in systems with a linear fitness function depends on stability of an inner fixed
point.
Coexistence criteria are derived for the possible modes of coexistence in two- and
three-species systems. The parameter η that relates the nutrient uptake κ to the
nutrient inflow rate γ is central for the present model, and the general behaviour is
that the probability of permanence increases with the parameter η.
Out of the investigated scenarios, a permanent system that exhibit pair-wise coexis-
tence is the most likely form of permanence. Furthermore, the subgroup of pair-wise
coexistence with three coexistent pairs on the boundary is the most likely for sys-
tems with Uni(0, 1)-distributed parameters. For systems with Exp(2)-distributed
parameters, the case is less clear with differing behaviour in the independent and
tree models.
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A
Comparison of fitness functions

The fitness function used by Bomze is formed from the payoff matrix

A =


0 0 0

a b c

d e f

 (A.1)

which has a zero first row due to it being mapped from the equivalent Lotka–Volterra
system [2]: ẋ = x(a+ bx+ cy)

ẏ = y(d+ ex+ fy)
.

Since the replicator dynamics are unchanged under column-wise addition and sub-
raction, we have that (A.1) may be written on normal form as

A =


0 −b −f

a 0 c− f

d e− b 0

 . (A.2)

This structure of the payoff matrix was however not used for the example system in
Section 3 for aestethic reasons.
The replicator system derived by Lundh & Gerlee [16] is shown [9] to be equivalent
to a system with a fitness function based on the matrix

E = γη


E1 + ηE11 E1 + ηE21 E1 + ηE31

E2 + ηE12 E2 + ηE22 E2 + ηE32

E3 + ηE13 E3 + ηE23 E3 + ηE33

 , (A.3)

which by the column-wise subraction transformation is equivalent to the normal
form

E = γη


0 λ21 − λ22 λ31 − λ33

λ12 − λ11 0 λ32 − λ33

λ13 − λ11 λ23 − λ22 0

 , (A.4)

or the Lotka–Volterra form of the payoff matrix (A.1)

E = γη


0 0 0

λ12 − λ11 λ22 − λ21 λ32 − λ31

λ13 − λ11 λ23 − λ21 λ33 − λ31

 , (A.5)
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A. Comparison of fitness functions

where we recall the definition
λji = Ei + ηEji. (A.6)

Hence, in order to map the affine system (1.10) used by Lundh & Gerlee [16] to the
results of Bomze [2] that uses a homogenous fitness equation (1.2), we define the
elements of the payoff matrix (A.1) as (A.5).
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B
Analytic probability

P(ξα > 0, ξβ > 0)
B.1 Derivation of distributions from difference of random

variables

As a step towards simplification of the expressions (1.20) and (1.21), note that the
sum of two independent random variables is distributed as the convolution of the
respective distribution functions [19], i.e., for X ∼ fX(x) and Y ∼ fY (y) we have
that the random variable Z = X + Y is distributed as

fX+Y (z) = (fX ? fY )(z) =
∫
R
fX(z − t)fY (t) dt. (B.1)

B.1.1 Triangular distribution from difference of uniform variables

In order to calculate the distribution of the difference Z = Eα − Eβ = Eα + (−Eβ),
we use the fact that for Eα, Eβ ∼ Uni(0, 1), the negative −Eβ ∼ Uni(−1, 0). Hence,
when fEα(t) = It∈[0,1] and f−Eβ(t) = It∈[−1,0] and the indicator function It∈S is
defined for a set S ⊂ R as

It∈S =

1, if x ∈ S
0, otherwise

, (B.2)

we have that the distribution fZ(z) = (fEα ? f−Eβ)(z). This convolution of the
distribution functions is straightforward. Use the fact that f−Eβ(t) = It∈[−1,0] in
(B.1) to see that

fZ(z) =
0∫
−1

fEα(z − t) dt. (B.3)

A substitution of variables s = z − t
ds = −dt

gives that (B.3) is equal to

fZ(z) =
z+1∫
z

fEα(s) ds. (B.4)
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The integration limits imply that the indicator funtion fEα(s) = Is∈[0,1] is non-zero
in two cases, as visualised in Figure B.1, namely

fZ(z) =



0 for z < −1 or z > 1
z+1∫
0

1 ds for z ∈ [−1, 0)
1∫
z

1 ds for z ∈ [0, 1]

. (B.5)

In conclusion, we have that

fZ(z) =


0 for z 6∈ [−1, 1]
1 + z for z ∈ [−1, 0)
1− z for z ∈ [0, 1]

, (B.6)

which is the distribution function of the triangle distribution.

Figure B.1: The two cases of z-s overlap in (B.5).

B.1.2 Laplace distribution from difference of exponential variables

For the exponentially distributed uptake parameters, we have the rate parameter
λ = 2 so that Ei, Eij ∼ Exp(2) in the simulations. For clarity, the derivations will
however consider a general λ. As a first step towards showing that the distribution
of the difference of two exponentially distributed parameters is Laplacian, define the
random variables

X = Eαα − Eαβ, (B.7)

Y = Eβα − Eββ, (B.8)

Z = Eα − Eα. (B.9)

Note that the definition (B.1) refers to a sum of random variables, whence we first
need to know how the negative of Eαβ is distributed. For the exponentially dis-
tributed Eαβ, we have that −Eαβ have the distribution function

f−Eαβ(t) =

λeλt, t ≤ 0
0, t > 0

(B.10)

when λ, as stated, is the rate parameter of the exponential distribution. Also −Eββ
and −Eα have the functional form (B.10). Then, as described by (B.1) in the section
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preamble, we have that the random variable Z is distributed as

fZ(z) =
∫
R
fEαα(z − t)f−Eαβ(t) dt

= λ
∫
R−
fEαα(z − t)eλt dt, (B.11)

where the non-zero part of fEαα(z− t) requires z− t > 0. We see that there are two
possibilities when t < 0, either that z > 0 so that the condition is true by default
and we have

fZ(z) = λ2
0∫

−∞

e−λ(z−t)eλt dt

= λ2e−λz
[ 1
2λe

2λt
]0

t=−∞

= λ

2 e
−λz. (B.12)

When z is negative, we have that z > t so that

fZ(z) = λ2
z∫

−∞

e−λ(z−t)eλt dt

= λ2e−λz
[ 1
2λe

2λt
]z
t=−∞

= λ

2 e
λz. (B.13)

The two cases may be collected into a single density function

fZ(z) = λ

2 e
−λ|z|, (B.14)

which is defined for all real z and known as the density for the Laplace distribution
[11] with location parameter a = 0 (which would otherwise have been found in the
exponent as |z − a|) and rate parameter λ. The same holds for the variables X and
Y .

B.2 Calculation of P(ξα > 0, ξβ > 0)
Below are the details of the calculations of the probabilities (2.11), (2.15), (2.33)
and (2.41).

B.2.1 Independent, uniformly distributed parameters

We are now to find an analytical expression for the probability of having a permanent
system as described by the coordinates ξα (1.20) and ξβ (1.21). The probability was
found to be described by the integral (2.7), which we now repeat for convenience

P(ξα > 0, ξβ > 0) =
1∫
−1

1∫
−1

1∫
−1

fX,Y,Z(x, y, z)I{ηx−z>0}I{ηy+z>0} dzdydx. (B.15)
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It is beneficial to decompose the region x ∈ [−1, 1], y ∈ [−1, 1] into its four main
quadrants

Q1 = { 0 < x ≤ 1, 0 < y ≤ 1} (B.16)

Q2 = {−1 < x ≤ 0, 0 < y ≤ 1} (B.17)

Q3 = {−1 < x ≤ 0,−1 < y ≤ 0} (B.18)

Q4 = { 0 < x ≤ 1,−1 < y ≤ 0} (B.19)

Then, the probability (B.15) with the idependence assumption (2.8) that leads to
the separability of the joint distribution, is expressed as the sum of four integrals

P(ξα > 0, ξβ > 0) = I1 + I2 + I3 + I4, (B.20)

where the integrals I1 through I4 are defined as

I1 =
1∫

0

fX(x)
1∫

0

fY (y)
1∫
−1

fZ(z)I{ηx−z>0}(x, z)I{ηy+z>0}(y, z) dzdydx (B.21)

I2 =
0∫
−1

fX(x)
1∫

0

fY (y)
1∫
−1

fZ(z)I{ηx−z>0}(x, z)I{ηy+z>0}(y, z) dzdydx (B.22)

I3 =
0∫
−1

fX(x)
0∫
−1

fY (y)
1∫
−1

fZ(z)I{ηx−z>0}(x, z)I{ηy+z>0}(y, z) dzdydx (B.23)

I4 =
1∫

0

fX(x)
0∫
−1

fY (y)
1∫
−1

fZ(z)I{ηx−z>0}(x, z)I{ηy+z>0}(y, z) dzdydx (B.24)

Recall now that the distribution functions fX(x), fY (y) and fZ(z) describe the
triangle distribution (B.6) and that the product of the indicator function can be
expressed as the condition

I{ηx−z>0}(x, z)I{ηy+z>0}(y, z) = I{−ηy<z<ηx}(x, y, z),

where it is also implied that −y < x. These two facts allow for the following
simplification:

I1 =
1∫

0

(1− x)
1∫

0

(1− y)
1∫
−1

fZ(z)I{−ηy<z<ηx}(x, y, z) dzdydx (B.25)

I2 =
0∫
−1

(1 + x)
1∫

0

(1− y)
1∫
−1

fZ(z)I{−ηy<z<ηx}(x, y, z) dzdydx (B.26)

I3 =
0∫
−1

(1 + x)
0∫
−1

(1 + y)
1∫
−1

fZ(z)I{−ηy<z<ηx}(x, y, z) dzdydx (B.27)

I4 =
1∫

0

(1− x)
0∫
−1

(1 + y)
1∫
−1

fZ(z)I{−ηy<z<ηx}(x, y, z) dzdydx (B.28)
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The indicator functions will behave differently in the four quadrants (B.16)-(B.19).
In the first quadrantQ1 = {x > 0, y > 0}, the condition provided by I{−ηy<z<ηx}(x, y, z)
are straightforward, since the implicit inequality −y < x is trivial for x > 0, y > 0.
Hence, I1 of (B.25) can be expressed as

I1 =
1∫

0

(1− x)
1∫

0

(1− y)
ηx∫
−ηy

fZ(z) dzdydx,

and for fZ as of (B.6) and y > 0, we have that

I1 =
1∫

0

(1− x)
1∫

0

(1− y)

 0∫
−ηy

(1 + z) dz +
ηx∫
0

(1− z) dz

 dydx,
which by calculation gives

I1 = η

6(1− η

4). (B.29)

In the second quadrant Q2 = {x < 0, y > 0}, we have that −y < x as long as
−x < y, by which we may express I2 of (B.26) as

I2 =
0∫
−1

(1 + x)
1∫
−x

(1− y)
ηx∫
−ηy

fZ(z) dzdydx.

While −1 < −y < x < 0, we have that z ∈ [−ηy, ηx] is negative (for positive η,
which is assumed) and hence that fZ(z) = 1 + z so that

I2 =
0∫
−1

(1 + x)
1∫
−x

(1− y)
ηx∫
−ηy

(1 + z) dzdydx, (B.30)

which is evaluated to

I2 = η

30(1− 3η
8 ). (B.31)

For the third quadrant Q3 = {x < 0, y < 0}, it is enough to note that no numbers
x < 0, y < 0 can fulfil −y < x. Hence,

I3 = 0. (B.32)

Consider now the last quadrant Q4 = {x > 0, y < 0}, where −y < x is realised
when −x < y as in the second quadrant. However, z ∈ [−ηy, ηx] is now positive so
that fZ(z) = 1− z. We will now claim that I4 = I2 by a symmetry argument. First,
define a new set of variables as

x̃ = y, dx̃ = dy

ỹ = x, dỹ = dx

z̃ = −z dz̃ = −dz
,
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so that

I4 =
1∫

0

(1− x)
0∫
−x

(1 + y)
ηx∫
−ηy

(1− z) dzdydx

=−
1∫

0

(1− ỹ)
0∫
−ỹ

(1 + x̃)
−ηỹ∫
ηx̃

(1 + z̃) dz̃dx̃dỹ.

Now, reverse the order of integration for x̃ and ỹ and adjust the integration limits
of z̃ so that

I4 =
0∫
−ỹ

(1 + x̃)
1∫

0

(1− ỹ)
ηx̃∫
−ηỹ

(1 + z̃) dz̃dỹdx̃. (B.33)

The integral limits of x̃ and ỹ in (B.33) are seemingly different from those of x and
y in (B.30). They are however equivalent since the bounds −1 < −y < x < 0 of
the x̃ integral in (B.33) are the same as the bounds 0 < −x < y < 1 present in the
y-integral in (B.30). Hence,

I4 = η

30(1− 3η
8 ), (B.34)

and the probability (B.20) may be computed from (B.29), (B.31), (B.32) and (B.34)
as P(ξα > 0, ξβ > 0) = I1 + I2 + I3 + I4. We find

P(ξα > 0, ξβ > 0) = η

30(7− 2η). (B.35)

B.2.2 Independent, exponentially distributed parameters

Having defined new random variables to model the difference between the exponen-
tially distributed energy uptake parameters as

X = Eαβ − Eαα ∼ Laplace(0, λ) (B.36)

Y = Eβα − Eββ ∼ Laplace(0, λ) (B.37)

Z = Eα − Eβ ∼ Laplace(0, λ) (B.38)

where the Laplace probability density function is (B.14). The joint density function
is

fX,Y,Z(x, y, z) = λ

2 e
−λ|x|λ

2 e
−λ|y|λ

2 e
−λ|z| (B.39)

for real x, y, z and we may define the probability of permanence as

P(ξα > 0, ξβ > 0) = λ2

4

∫
R
e−λ|x|

∫
R
e−λ|y|

∫
R

λ

2 e
−λ|z|I{ηx−z>0}I{ηy+z>0} dzdydx.

(B.40)
The innermost integral over z ∈ R will have its integration limits defined by x and
y so that we may define it as the function

Iz(x, y) = λ

2

ηx∫
−ηy

e−λ|z| dz, (B.41)
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the evaluation of which depending on whether x and y are positive or negative. The
function is piecewise defined on the four main quadrants of R2 as

Iz(x, y) = λ

2



0∫
−ηy

eλz dz +
ηx∫
0
e−λz dz, −y < 0 < x

ηx∫
−ηy

eλz dz, −y < x < 0

0, x < 0 < −y
ηx∫
−ηy

e−λz dz, 0 < −y < x

(B.42)

so that, when evaluating the integrals, we get

Iz(x, y) = 1
2


2− e−ληy − e−ληx, −y < 0 < x

eληx − e−ληy, −y < x < 0
0, x < 0 < −y
eληy − e−ληx, 0 < −y < x

. (B.43)

As in the uniformly distributed case, we split the probability integral (B.40) into its
components defined on the (x, y) quadrants so that the piecewise density functions
(B.14) are well-defined. Note that the cases of the piecewise (B.43) is sorted on the
proper form, where the first quadrant have variable values x > 0, y > 0, the second
having x < 0, y > 0 etc. We have the terms

I1 = λ2

8

∫
R+
e−λx

∫
R+
e−λy

(
2− e−ληy − e−ληx

)
dydx (B.44)

I2 = λ2

8

∫
R−
eλx

∫
R+
e−λy

(
eληx − e−ληy

)
dydx (B.45)

I3 = 0 (B.46)

I4 = λ2

8

∫
R+
e−λx

∫
R−
eλy

(
eληy − e−ληx

)
dydx (B.47)

and it is a straightforward calculation to find

I1 = η

2λ(1 + η) , (B.48)

I2 = η

4λ(2 + η)(1 + η) , (B.49)

I3 = 0, (B.50)

I4 = η

4λ(2 + η)(1 + η) . (B.51)

The probability as defined as the sum of the terms (B.48)-(B.51) so that

P(ξα > 0, ξβ > 0) = η(3 + η)
2λ(2 + η)(1 + η) . (B.52)
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B.2.3 Tree hierarchy, uniformly distributed

Recall the definition (2.30) of the probability of permanence

P(ξα > 0, ξβ > 0) =
1∫

0

1∫
0

1+η∫
1−η

1+η∫
1−η

fS,T,X,Y (s, t, x, y)I{ξα>0,ξβ>0} dydxdtds, (B.53)

the joint distribution (2.29)

fS,T,X,Y (s, t, x, y) = fS(s)fT (t)fX(x)fY (y), (B.54)

and the indicator function (2.28)

I{ξα>0,ξβ>0} = I{T>SX}I{S>TY } (B.55)

Defined for the tree hierarchy model, where Eij = rijEi. Now use the definition of
uniform probability densities

fS(s) = 1, s ∈ [0, 1],
fT (t) = 1, t ∈ [0, 1],

to simplify the joint probability (B.54) into

fS,T,X,Y (s, t, x, y) = fX(x)fY (y)Is∈[0,1], t∈[0,1]. (B.56)

The probability (B.53) may then be defined as

P(ξα > 0, ξβ > 0) =
1∫

0

1∫
0

 1+η∫
1−η

fX(x)I{T>SX} dx


 1+η∫

1−η

fY (y)I{S>TY } dy

 dtds.
(B.57)

For the present tree hierarchy model, we have the random variables X, Y ∼ Tri(1−
η, 1 + η) with the density function

fX(x) = η−2


η + x− 1, 1− η < x ≤ 1
η − x+ 1, 1 < x < 1 + η

0, x 6∈ [1− η, 1 + η)
. (B.58)

Similar to the procedure in the previous section, define the probability integral as
the sum of integrals over the the sub-intervals [1− η, 1] and [1, 1 + η] of x and y

P(ξα > 0, ξβ > 0) = I1 + I2 + I3 + I4, (B.59)
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so that the piecewise linear distribution functions fX(x) and fY (y) (2.27) are well
defined. The integral terms are

I1 =
1∫

0

1∫
0

η−2
1+η∫
1

(η − x+ 1)I{T>SX} dx
η−2

1+η∫
1

(η − y + 1)I{S>TY } dy
 dtds,

(B.60)

I2 =
1∫

0

1∫
0

η−2
1+η∫
1

(η − x+ 1)I{T>SX} dx

η−2

1∫
1−η

(η + y − 1)I{S>TY } dy

 dtds,
(B.61)

I3 =
1∫

0

1∫
0

η−2
1∫

1−η

(η + x− 1)I{T>SX} dx


η−2

1+η∫
1

(η − y + 1)I{S>TY } dy
 dtds,

(B.62)

I4 =
1∫

0

1∫
0

η−2
1∫

1−η

(η + x− 1)I{T>SX} dx


η−2

1∫
1−η

(η + y − 1)I{S>TY } dy

 dtds,
(B.63)

Next, we define the inner integrals over the x interval as the functions

J+(s, t) = η−2
1+η∫
1

(η − x+ 1)I{T>SX} dx (B.64)

J−(s, t) = η−2
1∫

1−η

(η + x− 1)I{T>SX} dx (B.65)

for s ∈ [0, 1), t ∈ [0, 1) and note that the integrals over the corresponding y intervals
may be defined as J+(t, s) and J−(t, s) due to the symmetry of the indicator functions

J+(t, s) = η−2
1+η∫
1

(η − y + 1)I{S>TY } dy, (B.66)

J−(t, s) = η−2
1∫

1−η

(η + y − 1)I{S>TY } dy. (B.67)

We will first consider (B.64), where the indicator function I{T>SX} of (B.64) is
determined by the relation of S and T , and — more specifically — whether t is
larger or smaller than (1 + η)t. There are two cases where I{T>SX} is non-zero:

t ∈ [sx, s(1 + η)]⇒ T > SX (B.68)

t > s(1 + η)⇒ T > SX (B.69)

for x ∈ [1, 1 + η]. We hence find the constraints

S < T < min((1 + η)S, 1), when s ∈ [0, 1) (B.70)
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when t < (1 + η)s, and

(1 + η)S < T < 1, when (1 + η)s < 1, s ∈ [0, 1). (B.71)

for t > (1 + η)s. Evaluation of the J+ integral of (B.64) under the conditions
(B.70)-(B.71) give

J+(s, t) = 1
2η2s2

(t− s) (s(2η + 1)− t) , s < t < (1 + η)s
η2s2, (1 + η)s < t < 1

(B.72)

for s ∈ [0, 1).
The corresponding division for (B.65) depends on the relation of t and s. When
t < s, we have that the characteristic function I{S>TX} is non-zero when

(1− η)s < t < s (B.73)

and for t > s we have
s < t < 1 (B.74)

for s ∈ [0, 1). Evaluation of the J− integral of (B.65) then yields

J−(s, t) = 1
2η2s2

(t+ ηs)2 + s2(1− 2η)− 2st, (1− η)s < t < s

η2s2, s < t < 1
(B.75)

for s ∈ [0, 1).
The first integral of the sum that constitutes the probability, (B.60), contains the
product J+(s, t)J+(t, s) which will be zero for all s, t ∈ [0, 1) due to the involved
indicator functions. First note that there is no overlap of the set s < t < (1 + η)s
of J+(s, t) with the sets t < s < min ((1 + η)t, 1) and (1 + η)t < s < 1 of J+(t, s)
and consider then the set (1 + η)s < t < 1 of J+(s, t) which does not overlap with
the sets indicated by J+(t, s). We may draw the conclusion that the first integral is
zero,

I1 = 0. (B.76)

In the second integral (B.61), we have the product J−(s, t)J+(t, s) since x ∈ [1−η, 1)
and y ∈ [1, 1 + η). The products between indicator functions that arise are

I{(1−η)S<T<S}I{(1+η)T<S<1} = I{(1−η)S<(1+η)T<S} (B.77)

I{(1−η)S<T<S}I{T<S<min((1+η)T,1)} = I{(1−η)S<T<S} (B.78)

I{S<T<1}I{(1+η)T<S<1} = ∅ (B.79)

I{S<T<1}I{T<S<min((1+η)T,1)} = ∅ (B.80)

for s, t ∈ [0, 1), meaning that the product

J−(s, t)J+(t, s) = 1
4η4t2s2

(
(t+ ηs)2 + s2(1− 2η)− 2st

)
η2t2 (B.81)

when s, t ∈ {0 < (1− η)S < (1 + η)T < S < 1} and

J−(s, t)J+(t, s) = 1
4η4t2s2

(
(t+ ηs)2 + s2(1− 2η)− 2st

)
(s−t)(t(2η+1)−s) (B.82)
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when s, t ∈ {0 < (1− η)S < T < S < 1}. The integral (B.61) is split into

I2 =
1∫

0

1
4η4s2

η2

s 1
1+η∫

s 1−η
1+η

(
(t+ ηs)2 + s2(1− 2η)− 2st

)
dt (B.83)

+
s∫

s(1−η)

(s− t)(t(2η + 1)− s)
t2

(
(t+ ηs)2 + s2(1− 2η)− 2st

)
dt

ds,
and evaluated to

I2 = −12 + 6η + 14η2 − 6η3 − 2η4 + η5

24η3(1 + η) + 2− 3η2 + η4

4η4(1 + η) log(1 + η). (B.84)

In the third integral (B.62), the domain is (x, y) ∈ [1 − η, 1) × [1 − η, 1) so that
we have the product J−(s, t)J−(t, s). The associated indicator functions are

I{(1−η)S<T<S}I{(1−η)T<S<T} = ∅ (B.85)

I{(1−η)S<T<S}I{T<S<1} = I{(1−η)S<T<S} (B.86)

I{S<T<1}I{(1−η)T<S<T} = I{(1−η)T<S<T} (B.87)

I{S<T<1}I{T<S<1} = ∅ (B.88)

so that the product has the functional form

J−(s, t)J−(t, s) = 1
4η4


1
s2 ((t+ ηs)2 + s2(1− 2η)− 2st) , (1− η)s < t < s
1
t2

((s+ ηt)2 + t2(1− 2η)− 2st) , (1− η)t < s < t

(B.89)
where, as before, s, t ∈ [0, 1). The symmetry of (B.89) shows that the integral
(B.62) is

I3 = 1
2η2

1∫
0

s∫
(1−η)s

1
s2

(
(t+ ηs)2 + s2(1− 2η)− 2st

)
dtds (B.90)

which is evaluated to

I3 = η

12 . (B.91)

The fourth integral (B.63) over the domain x ∈ [1, 1 + η) and y ∈ [1 − η, 1) is
symmetric in s and t to the second, and is hence equal to I2 so that

I4 = −12 + 6η + 14η2 − 6η3 − 2η4 + η5

24η3(1 + η) + 2− 3η2 + η4

4η4(1 + η) log(1 + η). (B.92)

Adding the integrals (B.76), (B.84), (B.91) and (B.92), we get

P(ξα > 0, ξβ > 0) = −12 + 6η + 14η2 − 6η3 − η4 + 2η5

12η3(1 + η) + 2− 3η2 + η4

2η4(1 + η) log(1 + η).

(B.93)
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B.2.4 Tree hierarchy, exponentially distributed

To compute the analytical probability of permanence in the tree-hierarchy model
with exponentially distributed energy-uptake parameters Ei, Eij, we define the vari-
ables

S = Eα ∼ Exp(λ), (B.94)

T = Eβ ∼ Exp(λ), (B.95)

X = 1− η (rαβ − rαα) ∼ Tri(1− η, 1 + η), (B.96)

Y = 1− η (rβα − rββ) ∼ Tri(1− η, 1 + η), (B.97)

and recall the exponential distribution density functions

fS(s) = λe−λs, s ≥ 0 (B.98)

fT (t) = λe−λt, t ≥ 0 (B.99)

and the triangle density function

fX(x) = η−2


η + x− 1, 1− η < x ≤ 1
η − x+ 1, 1 < x < 1 + η

0, x 6∈ [1− η, 1 + η)
(B.100)

that also holds for Y ∼ Tri(1 − η, 1 + η). From the densities, we may define the
probability of permanence based on the criteria (1.20), (1.21) as

P(ξα > 0, ξβ > 0) =
∫
R+
fS(s)

∫
R+
fT (t)

(
J+(s, t)+J−(s, t)

)(
J+(t, s)+J−(t, s)

)
dtds,

(B.101)
where we for convenience have defined the inner integrals

J+(s, t) + J−(s, t) =
1+η∫

1−η

fX(x)I{T>SX} dx (B.102)

J+(t, s) + J−(t, s) =
1+η∫

1−η

fY (y)I{S>TY } dy (B.103)

taking the functions

J+(s, t) = 1
2η2s2

(t− s) (s(2η + 1)− t) , s < t < (1 + η)s
η2s2, (1 + η)s < t

(B.104)

from (B.64) and

J−(s, t) = 1
2η2s2

((t+ ηs)2 + s2(1− 2η)− 2st) , (1− η)s < t < s

η2s2, s < t
(B.105)

from (B.65). Note that both functions are defined for all positive s and t, whereas
(B.64) and (B.65) were only defined for s, t ∈ [0, 1).
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We decompose the probability (B.101) into the four terms

I1 =
∫
R+
fS(s)

∫
R+
fT (t)J+(s, t)J+(t, s) dtds (B.106)

I2 =
∫
R+
fS(s)

∫
R+
fT (t)J−(s, t)J+(t, s) dtds (B.107)

I3 =
∫
R+
fS(s)

∫
R+
fT (t)J−(s, t)J−(t, s) dtds (B.108)

I4 =
∫
R+
fS(s)

∫
R+
fT (t)J+(s, t)J−(t, s) dtds (B.109)

analogously to the four quadrants (B.48)-(B.51) used to compute the probability of
permanence in the independent model.
For the first integral, (B.106), recall (see the paragraph leading up to (B.76)) that we
have that J+(s, t)J+(t, s) = 0 in the derivation of the tree-hierarchy model with uni-
formly distributed parameters. This is due to no overlap in the regions of definition
for s and t and leads to

I1 = 0. (B.110)

For the second integral, (B.107), we have derived that

J−(s, t)J+(t, s) = 1
4η4t2s2

(
(t+ ηs)2 + s2(1− 2η)− 2st

)
η2t2 (B.111)

when (1− η)s < (1 + η)t < s and

J−(s, t)J+(t, s) = 1
4η4t2s2

(
(t+ ηs)2 + s2(1− 2η)− 2st

)
(s− t)(t(2η + 1)− s)

(B.112)
when (1−η)s < t < s. The derivations of the expressions are found in the paragraphs
leading up to (B.81) and (B.82), respectively. Based on these results, we split (B.107)
further into

I2 =
∫
R+
fS(s) 1

4η4s2

η2

s 1
1+η∫

s 1−η
1+η

λe−λt
((

(t+ ηs)2 + s2(1− 2η)− 2st
))

dt (B.113)

+
s∫

s(1−η)

λe−λt
((

(t+ ηs)2 + s2(1− 2η)− 2st
)

(s− t)(t(2η + 1)− s)
)
dt

ds,
and find that

I2 = 1
4η4

(
4η2(2− η) coth−1

(
η2 − 2η − 4

η2

)
+ η(2− η)(η2 − 3) +

(
6 + 8η − 4η2)

)
log(1 + η)

+ 2η(2− η)(4 + η) log(2)− 2η(2− η)(4 + η) log(2 + η)
)

(B.114)

The third integral, I3 of (B.108), contains the product J−(s, t)J−(t, s), which was
found to be

J−(s, t)J−(t, s) = 1
4η4


1
s2 ((t+ ηs)2 + s2(1− 2η)− 2st) , (1− η)s < t < s
1
t2

((s+ ηt)2 + t2(1− 2η)− 2st) , (1− η)t < s < t

(B.115)
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so that due to the symmetry, we have

I3 = 1
2η4

∫
R+
fS(s)

s∫
(1−η)s

fT (t) 1
s2

(
(t+ ηs)2 + s2(1− 2η)− 2st

)
dtds (B.116)

which is evaluated to

I3 = 1
4η2

(
−η2 + 4η − 4(2− η) log(2) + 4(2− η) log(2− η)

)
(B.117)

By symmetry in s and t, we see that the product J+(s, t)J−(t, s) present in the
fourth integral (B.109) will cause the integral to be equal to the one in the second
case. We have

I4 = 1
4η4

(
4η2(2− η) coth−1

(
η2 − 2η − 4

η2

)
+ η(2− η)(η2 − 3)

+
(
6 + 8η − 4η2)

)
log(1 + η)

+ 2η(2− η)(4 + η) log(2)− 2η(2− η)(4 + η) log(2 + η)
)

(B.118)

The sum of the integrals finds the probability of permanence

P(ξα > 0, ξβ > 0) =−12 + 6η + 8η2 − 3η3

4η3 + 2(2− η)
η2 coth−1

(
η2 − 2η − 4

η2

)

+ 1
η4

(
(3 + 4η − η2) log(1 + η) + η2(2− η) log(2− η)

− η(2− η)(4 + η) log(2 + η) + 4η(2− η) log(2)
)

(B.119)
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C. Proof: d-order series dynamics described by (d+ 1)-order tensor

C
Proof: d-order series dynamics

described by (d + 1)-order tensor

In Section 3.2.3, we found that the affine fitness function (1.10) is equivalent to
the linear fitness function (1.2), which is easily generalised to higher dimensions. To
derive and prove this, we use the series expansion with d+1 orders of metabolisation
of Lundh & Gerlee [16], and also use the notation where I = i1i2 · · · id is the d-th
order multi-index of the tensor EI , Ii denotes the concatenation of I with the index

i and where xI =
d∏

k=1
xik . We claim that the fitness of a species

φi(x) = γηEi +γη2∑
i1

xi1Ei1i +γη3∑
i2

∑
i1

xi2xi1Ei2i1i + · · ·+γηd+1∑
i1

∑
i2

· · ·
∑
id

xIEIi,

(C.1)
can be described by a (d+ 1)-th order tensor

EIi = γηEi + γη2Ei1i + · · ·+ γηd+1EIi. (C.2)

so that

φi(x) =
∑
id

∑
id−1

· · ·
∑
i1

xIEIi. (C.3)

The dynamics of the replicator system based on the series expansion with d+1 orders
of metabolisation is hence determined by the dynamics of an equivalent replicator
system based on a (d + 1)-th order tensor. The latter may be interpreted as an
n-strategy, d + 1-player game, the dynamics of which is investigated by Gokhale &
Traulsen [10].

For proving the claim, assume that the fitness of a species is described by the d-th
order series expansion (C.1) of the metabolism, as described by Lundh & Gerlee [16].
Also, recall the notation I for the multi-index — the concatenation of d indices —
and the convention that xI = xidxid−1 · · ·xi2xi1 . The proof is adapted from Stadler
[20] and relies on the fact that the sum of species frequencies over all indices in a
multi-index, consisting of a finite number of indices i1, i2, . . . , id, is unity. This is
also used when proving the bound of the error of the series expansion in Lundh &
Gerlee [16] and is easily motivated

∑
id

∑
id−1

· · ·
∑
i1

xI =
∑
id

∑
id−1

· · ·
∑
i1

(
xidxid−1 · · ·xi1

)
=
∑
id

xid
∑
id−1

xid−1 · · ·
∑
i1

xi1 = 1.

(C.4)
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Using this information, we may decouple the fitness function as

φi(x) = γηEi + γη2∑
i1

xi1Ei1i + · · ·+ γηd+1∑
id

∑
id−1

· · ·
∑
i1

xIEIi =

∑
id

xid = 1


= γη

∑
id

xidEi + γη2∑
id

∑
i1

xidxi1Ei1i + · · ·+ γηd+1∑
id

∑
id−1

· · ·
∑
i1

xIEIi

=
∑
id

xid

γηEi + γη2∑
i1

xi1Ei1i + · · ·+ γηd+1 ∑
id−1

· · ·
∑
i1

(xid−1 · · · xi1)EIi


=

∑
id−1

xid−1 = 1


=
∑
id

xid

γη∑
id−1

xid−1Ei + · · ·+ γηd+1 ∑
id−1

· · ·
∑
i1

(xid−1 · · ·xi1)EIi


=
∑
id

∑
id−1

xidxid−1

γηEi + γη2∑
i1

xi1Ei1i + · · ·+ γηd+1 ∑
id−2

· · ·
∑
i1

(xid−2 · · ·xi1)EIi


...

=
∑
id

∑
id−1

· · ·
∑
i1

xI
(
γηEi + γη2Ei1i + · · ·+ γηd+1EIi

)
=
∑
id

∑
id−1

· · ·
∑
i1

xIEIi

= φ̃i(x).

Hence, we may conclude that the dynamics of a replicator system with a series-
expansion fitness function as derived by Lundh & Gerlee [16] is captured in the
dynamics of an effective tensor of order d+ 1.
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D. Bounding ellipse of (ξα, ξβ)

D
Bounding ellipse of (ξα, ξβ)

For the two-species system, recall that the coordinates are defined as

ξα = ηX − Z (D.1)

ξβ = ηY + Z (D.2)

where their components X, Y and Z are defined and distributed as

Xu = Eαβ − Eαα ∼ Tri(−1, 1) (D.3)

Yu = Eβα − Eββ ∼ Tri(−1, 1) (D.4)

Zu = Eα − Eβ ∼ Tri(−1, 1) (D.5)

when Ei, Eij ∼ Uni(0, 1)-distributed and

Xe = Eαβ − Eαα ∼ Laplace(0, λ) (D.6)

Ye = Eβα − Eββ ∼ Laplace(0, λ) (D.7)

Ze = Eα − Eβ ∼ Laplace(0, λ) (D.8)

when Ei, Eij ∼ Exp(λ).
The bounding ellipse, written on general form as(

x cos(θ)− y sin(θ)
a

)2

+
(
x sin(θ) + y cos(θ)

b

)2

= 1. (D.9)

is defined by the minor axis of length b and the major axis of length a and slanted
by an angle θ to the x-axis. From the definitions (D.1) and (D.2), we see that ξα
and ξβ are negatively correlated so that the ellipse is slanted by −π

4 . We see that
minor axis need to be located on the axis where

ξα = ξβ (D.10)

so that we have
Z = η

2(X − Y ) (D.11)

from the definitions (D.1), (D.2). Hence

ξi = η

2(X + Y ) (D.12)

for i = α, β. On the major axis, we have that

ξα = −ξβ, (D.13)

so that
X = −Y, (D.14)

from which we find

ξα = ηX − Z (D.15)

ξβ = −ξα. (D.16)
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D. Bounding ellipse of (ξα, ξβ)

D.1 Uni(0, 1)-distributed parameters

We note that all of the component variables Xu, Yu and Zu that form ξα, ξβ are
bounded within the interval (−1 1). Then, we have that the coordinates (D.12) are
bounded as

ξi ∈ (−η, η) (D.17)

on the minor axis, which lead to the extreme points (ξα, ξβ) = (−η, −η) and
(ξα, ξβ) = (η, η). On the major axis, the coordinates (D.15), (D.16) are bounded
as

ξα ∈ (−(1 + η), 1 + η) (D.18)

ξβ ∈ (−(1 + η), 1 + η) (D.19)

leading the points (−(1 +η), 1 +η) and (1 +η, −(1 +η)) at the extremes in the top
left and bottom right corners of the graph. Finally, the slanting angle θ is implicit
in the definitions (D.1) and (D.2).

In conclusion, the scatter plot of (ξα, ξβ) is bounded by the ellipse (D.9) with the
axes lengths a, b and the slanting angle θ as

a =
√

2(1 + η) (D.20)

b =
√

2η (D.21)

θ = −π4 . (D.22)

D.2 Exp(λ)-distributed parameters

The Laplace(λ)-distributed components X, Y and Z, that form the parameters
(D.1) and (D.2), are not bounded. The probability of exceeding a given quantile
does however decay exponentially which means that for a given sample size, we are
not likely to see values above a certain level. To find these extreme values, define
first a probability threshold α so that

P (Ξ ≤ ξ∗) = FΞ(ξ∗) = 1− α, (D.23)

i.e., that the probability of Ξ ∈ {ξα, ξβ} being larger than the threshold ξ∗ is less
than α. To find the quantiles that define the major and minor axes of the ellipse,
we need the joint distributions that define the ξi coordinates under the assumptions
(D.10) and (D.13). As in the uniform case, we have that ξα = ξβ = Ξm on the minor
axis (index m on all variables related to the minor axis) so that

Ξm = η

2(X + Y ) (D.24)

where the sum X + Y of the Laplace(λ)-distributed X, Y is distributed as

fX+Y (s) =
∫
R
fX(s− t)fY (t) dt = λ

4 e
−λ|s|(1 + λ|s|) (D.25)
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when the probability densities fX , fY are the Laplace density (B.14) since we have
the general result that the sum of two independent random variables is distributed
as the convolution of the respective distribution functions [11]. Then, joint CDF is

FX+Y (z) =
z∫

−∞

fX+Y (s) ds =


1
4

(
4− (2 + λz)e−λz

)
, z > 0

1
4(2− λz)eλz, z < 0

(D.26)

Hence, when we define Ξm as (D.24), we have that the probability (D.23) is

FX+Y (2ξm
η

) = 1− α (D.27)

for some quantile ξm > 0. The substitution z = 2ξm
η

into (D.26) is due to the

definition (D.24). This is simplified into

(1 + λ

η
ξm)e−

2λ
η
ξm = 2α, ξm > 0 (D.28)

and the (numerical) solution ξm(α) for λ = 2 is shown in Figure 4.4.
For the major axis, all related variables are indexed by M and we have ξα = −ξβ ≡
ΞM , where

ΞM = ηX − Z (D.29)

which is distributed as

fΞM (s) =
∫
R

1
η
fX(s− t

η
)f−Z(t) dt (D.30)

since an η-scaled random variable ηX is distributed as 1
η
fX(x

η
). Evaluation of the

integral shows that

fΞM (s) = λ

2(1− η2)

(
e−λ|s| − ηe−

λ
η
|s|
)

(D.31)

so that the CDF becomes

FΞM (z) = 1
2(1− η2)

eλz − η2e
λ
η
z, z < 0

2(1− η2)− e−λz + η2e−
λ
η
z, z > 0

. (D.32)

Simplification of FΞM (ξM) = 1− α under the assumption ξM > 0 shows

e−λξM − η2e−
λ
η
ξM = 2α(1− η2) (D.33)

and the solution ξM(α) is shown in Figure 4.4.
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E. Three-species permanence as function of η

E
Three-species permanence as

function of η
Due to the high dimensionality of the inequalities that form criteria for coexistence in
three-species systems, the analytical approach that was used in Section 2 to evaluate
the probability of permanence as a function of η is not used for three-species systems.
Rather, the dependence of the probabilities on η is evaluated numerically. For each
ηk ∈ [0, 1] in a suitably fine grid of nodes ηk, k = 1, 2, . . . , Nη, we draw N = 106

random samples of each Ei and Eij according to the models and distributions under
consideration. Then, the probability of permanence is estimated as the number of
permanent systems divided by the total number of sampled systems.
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Figure E.1: Probability of existence and stability of an interior fixed point by
the criteria in Table 3.1, as function of η. Left: Independent model. Right: Tree
hierarchy model.
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Figure E.2: Probability of existence of a fixed point in the interior of the sim-
plex, given that it would be cyclic by criteria (3.39)-(3.41), as function of η. Left:
Independent model. Right: Tree model.
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Figure E.3: Probability of permanence by the criteria in Table 3.2 for three coex-
istent pairs, as function of η. Left: Independent model. Right: Tree model.
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Figure E.4: Probability of permanence by the criteria in Table 3.3 for two coexis-
tent pairs, as function of η. Left: Independent model. Right: Tree model.
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Figure E.5: Probability of permanence by the criteria in Table 3.4 for one coexis-
tent pair, as function of η. Left: Independent model. Right: Tree model.
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Figure E.6: Probability of permanence in intransitive system by the criteria in
Table 3.5, as function of η. Left: Independent model. Right: Tree model.
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