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Abstract

We consider iteratively regularized adaptive finite element method for reconstruction of spatially dis-

tributed dielectric permittivity and magnetic permeability functions, ε (x) and µ (x) , x ∈ R3 , simultane-

ously, using time-dependent backscattering data. These functions are unknown coefficients in Maxwell’s

system of equations. We formulate our problem as the coefficient inverse problem (CIP) for the full

Maxwell’s system. To solve our inverse problem we minimize Tikhonov regularization functional on the

locally adaptively refined meshes.

In this work, we consider and compare different techniques for choosing regularization parameter in the

Tikhonov functional in order to get improved solution of our inverse problem. Our goal is to choose

optimized regularization parameters in the solution of our CIP. This means, we choose regularization pa-

rameters and parameters in the set up of the program such that we will get best reconstructions of functions

ε (x) and µ (x) to our backscattering data of the electric field on every iteration of the optimization pro-

cedure. Our numerical work consist in the reconstruction of unknown coefficients ε (x) and µ (x), on

the adaptivity locally refined meshes. Software packages WavES [60] and PETSc [50] are used for com-

putations of reconstructions of these functions. Simulations are done on resources at Chalmers Centre

for Computational Science and Engineering (C3SE) provided by the Swedish National Infrastructure for

Computing (SNIC).



1 Introduction

In this work we consider a coefficient inverse problem (CIP) for Maxwell’s system in 3-D. This is con-

tinuation of the recent research on this topic presented in [15]. Both spatially distributed functions of this

equation, dielectric permittivity ε (x) and magnetic permeability µ (x), are of our interest and we try to re-

construct simultaneously these two functions using time-dependent backscattering data of the electric field

E(x, t). Here we are dealing only with a single measurement data of the electric field E(x, t). This means,

that we are working only with a single direction of the propagation of a plane wave.

The numerical procedure for the reconstruction of unknown coefficients, ε (x) and µ (x), is formulated as

an optimization problem. To solve forward and adjoint problems in the optimization problem we use hybrid

finite element/difference approach of [13].

The theoretical part related to stability results for our CIP have been proposed by Dirichlet-to-Neumann

map for the case of multiply measurements or by Carleman estimates for the case of finite measurements.

We refer to [16, 22, 23, 38, 47, 52] for results using Dirichlet-to-Neumann map with an infinite number of

boundary observations. See also [18, 29, 37, 41, 42] for various Carleman estimation results.

As we already mentioned, in our study we work with a CIP where data are generated by a single propagation

of a plane wave. The theoretical stability results for a such kind of CIPs for Maxwell’s equations involving

both electricE(x, t) and magnecticH(x, t) fields are presented in [41, 42]. Stability and uniqueness results

for both coefficients ε(x) and µ(x) when we have observations of only the electric field E(x) are presented

in [15, 18].

The applications of our CIP are, for example, in airport security system, imaging of land mines [10, 11, 12],

reconstructing the electromagnetic parameters in nanocomposites or artificial material [51, 53, 54], imaging

of defects and their sizes in a non-destructive testing of materials and in photonic crystals [25], measurement

of the moisture content [24] and drying processes [44].

The main new impact of our work compared with [15] is that we have improved reconstructions of ε, µ using

the optimization technique of [14]. We apply a posteriori error estimates for the error in the reconstructed

coefficients and in the Tikhonov functional using iterative choice of the regularization parameters appearing

in this functional. Our computations show that using iteratively regularized adaptive finite element method

we can significantly improve shapes and locations of reconstructed functions.

In this work, we reconstruct coefficients ε (x) and µ (x) by finding the stationary point of the a Lagrangian

involving the solution of a forward equation (the state equation), a backward equation (the adjoint equation)

and two equations expressing that the gradients with respect to the coefficients, ε (x) and µ (x) vanish.

To do that, we seek a solution for the forward and backward equations and update both coefficients ε (x) and

µ (x) at every step of our iterations in a conjugate gradient method. To solve forward and backward equa-

tions we consider numerical solution of the Maxwell’s system. There exist different numerical techniques
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to solve the Maxwell’s equations, for example, the edge elements of Nédélec [46], the node-based first-

order formulation of Lee and Madsen [40], the node-based curl-curl formulation with divergence condition

of Paulsen and Lynch [48] or the interior-penalty discontinuous Galerkin FEM [33]. In the finite element

computations, the edge elements are the most satisfactory from the theoretical point of view [43] since they

automatically satisfy the divergence free condition. On the other hand, since the solution of a linear system

is required at every time iteration and this could be time consuming we are not interested in them for time-

dependent computations. Besides, explicit time stepping scheme cannot be used generally since the results

from mass-lumping may not lead to a matrix with strictly positive entries on its diameter [30].

In our work, we use the stabilized domain decomposition finite element/finite difference approach developed

in [9] and further extended in [13] to the case which we use, with divergence free condition of Paulsen and

Lynch [48]. This condition allows to remove the spurious solutions from the computational solution during

the local mesh refinement in the case when discontinuities in material are not too big [13]. In our implemen-

tations, we use the software package WavES [60] and PETSc [50] with MPI (message passing interface) due

to its efficiency and convenience.

The outline of our work is following. In section 2 we describe topic of Inverse Problems and application of

it in the science and engineering. In sections 3-6 we explain definitions and mathematical tools, generally

theoretical part applied in our computations. In section 7 we describe the methods applied for the itera-

tive choice of regularization parameters in the Tikhonov functional. The Maxwell’s system of equations is

presented in section 8. In section 9 we present the model problem for the Maxwell’s equations as well as

domain decomposition, forward problem and numerical methods applied for the Maxwell’s system solution.

We state our CIP, the optimization approach which is used for its solution and describe numerical methods

applied to solution of our CIP in section 10. In section 11 we present general framework of a posteriori error

estimate, formulate a posteriori error estimates for the regularized solution and for the Tikhonov functional.

Adaptive algorithms for reconstruction of both coefficients are presented in section 12. Finally, we show

numerical results obtained in our computations using adaptive algorithms in section 13.
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2 Inverse Problems: Theory and Applications in Science and Engi-

neering

2.1 Scattering Idea

The main goal of this master thesis is reconstruction of unknown parameters in Maxwell’s equations using

solution of the corresponding Inverse Problem. Here some questions arise when we come to an Inverse

Problem. The first question is " What is an Inverse Problem?" and we try to answer to this question with a

simple example taken in [34, 61, 62] which we present in this section .

Inverse Problems is a research area dealing with inversion of models or data which arises naturally in many

branches of science and engineering where the values of some model parameters must be obtained from

the observed data. This means that when we want to gain information about a physical object or system

from observed measurements, we can consider a mathematical framework named Inverse Problem. Theory

and applications of inverse problems have experienced a considerable growth in the last few years. In-

verse problems have applications in science and mathematics, including computer vision, natural language

processing, machine learning, statistics, statistical inference, geophysics, medical imaging (such as com-

puted axial tomography and EEG/ERP), remote sensing, ocean acoustic tomography, nondestructive testing,

acoustics, aerodynamics, electromagnetics, hydrological engineering, image analysis, shape design, struc-

tural dynamic modification and reconstruction, tomography and many other fields.

Potential topics include, but are not limited to:

• Inverse problems for differential and integral equations,

• Inverse problems and homogenization techniques,

• Regularization techniques,

• Statistical inverse problems,

• Numerical algorithms for inverse problems,

• Fractal-based methods in inverse problems.

Solution of Inverse Problems (IPs) is important due to providing information about a physical parameters

that we cannot observe directly or it is very difficult and not reasonable for us to solve them directly.

2.2 Example of an Inverse problem

Here we show an example of Inverse Problem which arises in geophysics [62] and uses multiply measure-

ments. Imagine a situation where we want to gain information about the structure of the wave speed g inside
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Figure 1: Earthquake in the Earth.

the earth Ω, from the observed seismic wave-field, denoted by Λg at the boundary of the earth ∂Ω. We just

consider Λg as the available measurements at the surface of the earth.

In Figure 1, we see the traveling seismic waves g produced by an earthquake inside the earth. Having

knowledge about the traveling seismic waves provides information about the location of oil and minerals

deposits. To gain this information, we need to perturb the boundary of the earth by an artificial explosion

or by a natural earthquake. This perturbation produces waves that travels through geodesics in the metric g

and hits the oil and mineral deposits and reflects back to the surface of the earth. We wait up to time T until

the waves have reached the boundary. After that we are able to measure the backscattered wave-field using

a seismograph.

The wave equation in the bounded domain Ω ∈ R3 with the boundary ∂Ω illustrates the mathematical

formulation of the problem described above:
utt −∇ · (g∇u) = 0, in Ω× (0, T ),

u(x, 0) = ut(x, 0) = 0, for x ∈ Ω,

u(x, t) = f(x, t), on ∂Ω× (0, T ),

(1)
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Figure 2: Flowchart of forwards and inverse problem.

where u(x, t) is the displacement in some direction of the point x and the time t, where T is the final time.

The information of the seismic wave field is encoded in the hyperbolic Dirichlet to Neumann map

Λg : f → ∂u

∂n

∣∣∣∣
∂Ω

(2)

Here, n denotes the outer unit normal to ∂Ω and Λg maps the initial perturbation f . Dirichlet condition

is applied to the recovered wave-field ∂u
∂n |∂Ω. Neumann condition carries within information of the inside

metric of the earth.

In this example, the aim is to recover g from Λg via the forward problem which is an well-posed problem

under regularity assumptions over g. This means that the Neumann data ∂u
∂n |∂Ω can be obtained by solving

the problem (1) for u with Dirichlet data f when the metric g is known.

Let A denote the Forward Operator with A(g) = Λg , and this operator is well-posed and A−1 denote

the inversion operator. The general idea behind inverse problems is to invert this operator and study the

properties of this inversion, see Figure (2). Here the unknown parameter is g while the data is Λg . We are

interested to answer the question "What can we say about metric g by having enough measurements?"
(

or

when we have Λg = (f, ∂u∂n
∣∣
∂Ω

)
)
.

When we come to an inverse problem, some questions arise. These questions are : By having the

observed data measurement,
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1. Existence: Does any unknown parameter exist that fulfills these observations?

2. Uniqueness: Can the unknown parameters be reconstructed uniquely by the observed data measure-

ments?

3. Stability: How the errors in the data measurements will affect reconstruction of our interest parame-

ter?

4. Reconstruction: How can we reconstruct the unknown parameter from the data measurements com-

putationally?

The forward problem is to predict what happens to the solution of the problem over time or space by having

all background knowledge of the problem including mathematical model and parameters in the partial dif-

ferential equations, initial conditions and boundary conditions.

However, the inverse problem should recover the missing information that provides the solution when some

background knowledge of the problem including mathematical model and some data observed at the bound-

ary of our domain are given but all parameters in partial differential equation are not clarified. On the other

side, one should remember that Inverse Problems are mostly ill-posed and non-linear so we may need to

consider more conditions to be able to treat them in the desired way.

3 Introduction to the Theory of Ill-posed Problems

Theory of well and ill-posed problems is completely described in the literature, see for example [5, 8, 56,

58, 59]. Below we briefly present main definitions of the theory of well and ill-posed problems.

3.1 Well-posed and Ill-posed Problems

Well-posed problem: Based on idea introduced by Jacques Hadamard, a problem is well-posed if all fol-

lowing conditions are satisfied:

1. Solution to the problem exists,

2. The existed solution is unique,

3. Solution is continuous with respect to initial conditions and boundary conditions.

Ill-posed problem: If at least one of the conditions (1, 2, 3) is violated, the problem is not well-posed any

more and is named as an ill-posed problem.

Most of inverse problems do not fulfill Hadamard’s postulates of well-posedness so one can say an inverse

problem is often (almost always) ill-posed. This is because of not existing a unique solution to the problem
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that continuously depends on its data. The results below are well known and we briefly present them.

Well-posed and Ill-posed problems in Operator Forms:

Let A be a mapping operator on a Hilbert space H1 into a Hilbert space H2 such that A : H1 → H2.

Consider a Hilbert space H1 and let O(z∗) denote a neighbourhood of an element z∗ ∈ H1 and D(A) is the

domain of definition and R(A) is the range of A.

The problem A(z) = u is well-posed on the pair of Hilbert spaces H1 and H2 if

1. Existence: ∀u ∈ H2,∃z∗ ∈ H1 s.t A(z∗) = u, i.e.R(A) = H2,

2. Uniqueness: if
(
A(z1) = u ∧ A(z2) = u

)
→ z1 = z2 so the inverse operator A−1 : H2 → H1

exists,

3. Stability: for any neighbourhood O(z∗) ⊂ H1 of the solution z∗to the equation Az = u, ∃ neigh-

bourhood O(u) ⊂ H2 of the right-hand side u such that for all uδ ∈ O(u) the element A−1uδ = zδ

belongs to the neighbourhood O(zδ) which shows continuity of the operator A−1 .

Consequently, the problem A(z) = u is ill-posed on the pair of Hilbert spaces H1 and H2 if at least one of

the three well-posedness conditions does not hold. Here z∗ denotes the exact solution to the problem.

3.2 The Regularity Condition

All results below are due to [7, 8] and we briefly present them here. We consider the operator equation in

the following form:

A(z) = 0. (3)

Here A : H1 → H2 is a non-linear operator which acts on a real Hilbert spaces (H1, H2). Consider z∗ as

the solution of our interest which we call the exact solution. Let L(H1, H2) denote the normed space of all

linear continuous operators from H1 into H2. Assume that A is defined and also is Fréchet differentiable

everywhere in H1, see section (4.2).

Thus two following assumptions and sometimes weaker conditions than (4), (5) are considered here on the

Fréchet derivative A′ for iterative processes:

‖A′(z1)‖L(H1,H2) ≤M1, ∀z1 ∈ H1, (4)

‖A′(z1)−A′(z2)‖L(H1,H2) ≤M2‖z2 − z1‖, ∀z1, z2 ∈ H1. (5)

On weaker conditions, one may replace ∀z1, z2 ∈ H1 with ∀z1, z2 ∈ Ω, where Ω is a bounded subset of H1.

As an example, we may take Ω = B(0, R), a ball of a sufficiently large radius. Generally,

B(z1, r) = {z2 ∈ H1 : ‖z2 − z1‖H1
≤ r} (6)
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We can claim that if we use z1, z2 ∈ Ω instead of ∀z1, z2 ∈ H1 in (4), (5), then condition (4) with

M1 = ‖A′(z̄)‖L(H1,H2) +M2 sup
∀z1∈Ω

‖z1 − z̄‖H1
, (7)

is a result of (5) for any z̄ ∈ Ω. It follows from (5) that A′(z) is dependent continuously on z which maps

from H1 to L(H1, H2). For the operator which has a continuous derivative and for operators from the class

A(M1,M2) particularly, we have

A(z1 + h)−A(z1) =

∫ 1

0

A′(z1 + th)h dt, z1, h ∈ H1, (8)

as a result of the Newton-Leibniz theorem. The modified version of the Taylor expansion’s formula reads as

A(z1 + h) = A(z1) +A′(z1)h+ T (z1, h), ∀z1, h ∈ H1. (9)

By our assumption on T (z1, h)

‖T (z1, h)‖H2 ≤
1

2
M2‖h‖2H1

, (10)

and it follows then

‖A(z1 + h)−A(z1)‖H2 ≤M1‖h‖H1 , ∀z1, h ∈ H1, (11)

Linearization Approach: One can choose linearization approach among all other approaches for recon-

struction in iterative methods for different equations with differentiable operators. We may take an arbitrary

z0 ∈ H1. Then we rewrite (3) in the following way

A(z0 + h) = 0, (12)

where h = z1− z0 is an unknown. Let us consider the Linearization procedure for the operator equation (3)

at the point z0. We neglect the term T (z, h) in (9) in order to get the following approximation

A(z + h) ≈ A(z) +A′(z)h. (13)

Equation (12) becomes linear with respect to h

A(z0) +A′(z0)h = 0, h ∈ H1. (14)

We consider an approximation to the solution of equation (14), ĥ ∈ H1, when there exists a solution to the

linearized equation (14). One may consider the point ẑ = z0 + ĥ as approximation of initial solution, z∗,

of equation (3). The linearization procedure is based on the discarding the small term T (z, h) in the right
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hand side of (9) when z = z0. Moreover, when we want to be sure about existing a unique solution for

any A(z0) ∈ H2, it is necessary to have a continuous invertible operator A′(z0) ∈ H2 together with some

estimate on the norm of the inverse operator A′(z0)−1.

Remark: The operator A ∈ L(H1, H2) is continuous invertible if there exists an inverse operator A−1 such

that A−1 ∈ L(H2, H1).

If A′(z0) is not continuous and invertible then the operator A′(z0)−1 is either undefined, or its domain

D(A′(z0)−1) does not coincide with the entire space H2. This results in having unsolvable equation (14)

or this equation may have infinitely many solutions. If A′(z0)−1 /∈ L(H2, H1) then even for A(z0) ∈

D(A′(z0)−1) the solution to (14) can not be dependent continuously on A(z0). So even small errors in the

problem, which are not avoidable in computational process, will results in significant changes of the results,

or may turn (14) into an unsolvable equation.

Regularity and Irregularity conditions: Assume A′(z0) as a continuous invertible,i.e.,

A′(z0)−1 ∈ L(H2, H1). (15)

Then A is called regular at the point z0. The equation (3) is regular in a neighbourhood O(z∗, δ) of the

solution z∗, if there exists a neighbourhood O(z∗, δ), such that for any z ∈ O(z∗, δ) the operator A′(z−1)

exists and belongs to L(H1, H2). If not, equation (3) is called irregular in a neighbourhood of z∗. So the

irregularity of (3) in a neighbourhood of z∗ means that there exists an arbitrary point z, close to z∗, where

either the operator A′(z)−1 is not defined, or A′(z) /∈ L(H2, H1).

Linearization Procedure: Consider for some m > 0

‖A′(z0)−1‖L(H2,H1) ≤ m <∞. (16)

By considering (8), (10), (14), and (16), we can estimate the error ‖ẑ−z∗‖H1
in terms of ‖z0−z∗‖H1

. Also

by (14) we get

ĥ = −A′(z0)−1A(z0), (17)

then

ẑ = z0 −A′(z0)−1A(z0) (18)

By subtracting z∗ from (18) then using the fact that A(z∗) = 0, taking the norm of it we get:

‖ẑ − z∗‖H1
= ‖z0 − z∗ −A′(z0)−1

(
A(z0)−A(z∗)

)
‖H1

. (19)

Then (9) and (10) provide,

A(z∗)−A(z0) = A′(z0)(z∗ − z0) + T (z0, z
∗ − z0), (20)
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where

‖T (z0, z
∗ − z0)‖H2

≤ 1

2
M2‖z0 − z∗‖2H1

.

By substituting (20) into (19) we get:

‖ẑ − z∗‖H1
= ‖z0 − z∗ −A′(z0)−1

[
−A′(z0)(z∗ − z0)− T (z0, z

∗ − z0)
]
‖H1

≤ ‖z0 − z∗ −A′(z0)−1[−A′(z0)(z∗ − z0)− 1

2
M2(z∗ − z0)

]
‖H1

= ‖z0 − z∗ −m
[
−A′(z0))(z∗ − z0) +

1

2
M2(z∗ − z0)

]
‖H1

.

(21)

Now we have:

‖ẑ − z∗‖H1
≤ 1

2
mM2‖z0 − z∗‖H1

. (22)

Now we can claim from (22) that ẑ the solution of linearized equation (14), ẑ, is closer to the solution of

original equation, z∗, than the initial element z0, which shows that z0 is not that far from z∗. If we repeat

this linearization procedure at the point z1 = ẑ, then we will get an iterative process.

4 Tikhonov’s Scheme

In this section we will describe the Tikhonov’s method for the solution of ill-posed problems. We present

Tikhonov’s scheme according to [7].

4.1 The Tikhonov Functional

Let us consider the operator equation:

A(z) = u. (23)

We assume that the right hand side of (23) is given with the small parameter δ ∈ (0, 1) which character-

izes the level of the error in data. Let u∗ be the perfect noiseless right hand side of (23) which corresponds

to the exact solution z∗ such that

A (z∗) = u∗, ‖u− u∗‖ ≤ δ. (24)

Introduce the operator F : H → L2 such that

F (z) := Az − u. (25)

Hence Az∗ − u∗ = 0. Since ‖u− u∗‖ ≤ δ then

||F (z∗)|| ≤ δ. (26)
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The operator ‖F‖2 has the Frechét derivative at every point α ∈ H . Although H is a finite dimensional

space, where all norms are equivalent, we have used in our computations L2(Ω) norm in the regularizing

term of the Tikhonov functional.

Recall that the problem of solution of the operator equation (23) is a classical ill-posed problem [56] since

the operator A−1 may not be compact. Thus, we assume that there exists the exact solution z∗ to our inverse

problem but we never will get this solution in computations. Because of that we call by the regularized

solution zγ some approximation of the unknown exact solution z∗ which is satisfied to the requirements of

closeness to the exact solution z∗ and stability with respect to the small errors of the right-hand side u of

equation (23).

We use Tikhonov regularization algorithm of [7, 56] which is based on the minimization of the Tikhonov

functional. Thus, to find regularized solution zγ of equation (23), we minimize the Tikhonov regularization

functional Ψγ(z)

Ψγ (z) =
1

2
‖F (z)‖2L2

+
γ

2
‖z − z0‖2L2

, (27)

Ψγ : H → R, z0 ∈ H,

where γ = γ (α(δ)) := γ(δ) > 0 is a small regularization parameter. The choice of the point z0 and

the regularization parameter γ depends on the concrete minimization problem. Usually z0 is a good first

approximation for the exact solution z∗. To make it more clear, assume that (3) has a solution and let X∗(A)

contain its solutions. then the set of minimizers of functional

Ψ(z) =
1

2
‖A(z)‖2H2

for z ∈ H1, (28)

coincides with X∗(A). It is clear that the The Tikhonov functional (27) does not necessarily have a global

minimizer. However for any γ > 0 and for any α > 0 there exists an element zαγ ∈ H1, such that Ψγ(zαγ )

differs from the infimum by not more than α, i.e.,

inf
z∈H1

Ψγ(z) ≤ Ψγ(zαγ ) ≤ inf
z∈H1

Ψγ(z) + α. (29)

Suppose α = α(γ) depends on the regularization parameter γ in such a way that

lim
γ→0

α(γ)

γ
= 0. (30)

Take some z∗ ∈ X∗(A). Recall, that by our assumption, X∗(A) 6= ∅. By the definition of zαγ ,

Ψγ(zαγ ) ≤ Ψγ(z∗) + α(γ). (31)

Therefore, by (27), (28) and (31) we have

Ψ(zαγ ) +
γ

2
‖zαγ − z0‖2H1

≤ γ

2
‖z∗ − z0‖2H1

+ α(γ) (32)
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From (32) follows that every part in the left hand side is less than right hand side :

Ψ(zαγ ) ≤ γ

2
‖z∗ − z0‖2H1

+ α(γ), (33)

‖zαγ − z0‖2H1
≤ ‖z∗ − z0‖2H1

+
2α(γ)

γ
. (34)

For simplification the set of elements {zα(γ)
γ }γ∈(0,γ0](γ0 > 0) is called a sequence from now. By (30)

lim
γ→0

α(γ) = 0.

Hence, (33) indicates that the sequence {zα(γ)
γ } is minimizing for the functional Ψ as γ tends to zero, i.e.,

lim
γ→0

Ψ(zα(γ)
γ ) = inf

z∈H1

Ψ(z) = 0.

4.2 The Fréchet Derivative and the convexity of the Tikhonov Functional

In our description of the iterative regularization we follow [7, 8].

We consider a general form of the Tikhonov functional (27) to present the convexity property of this func-

tional. Let H1,H2, H be three Hilbert spaces, H ⊆ H1 as a set, the norm in H is stronger than the norm in

H1 and H = H1, where the closure is understood in the norm of H1. We denote scalar products and norms

in these spaces as

(·, ·) , ‖·‖ for H1

(·, ·)2 , ‖·‖2 for H2

and [·, ·] , [·] for H .

Let A : H1 → W2 be a bounded linear operator. Our goal is to find the function z ∈ H which minimizes

the Tikhonov functional

Ψγ (z) : H → R, (35)

Ψγ (z) =
1

2
‖Az − u‖22 +

γ

2
[z − z0]

2
, u ∈ H2; z, z0 ∈ H, (36)

where γ ∈ (0, 1) is the regularization parameter.

To do that we search for a stationary point of the above functional with respect to z satisfying ∀b ∈ H

Ψ′γ(z)(b) = 0. (37)

where Ψ′γ(z) is the Fréchet derivative of the functional (36) and Ψ′γ(z)(b) means that Ψ′γ acts on b.

The following lemma is well known [7] and we present it for the case when the operator A : L2 → L2.

In the case when A : H1 → L2 the explicit derivation of the Fréchet derivative of the functional (36) is
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technically more difficult because of the presence of H1 norm in the regularization term of the functional

(36), and we omit here explicit presentation of the Fréchet derivative of the functional (36) in this case.

Lemma 1. Let A : L2 → L2 be a bounded linear operator. Then the Fréchet derivative of the functional

(35) is

Ψ′γ (z) (b) = (A∗Az −A∗u, b) + γ [z − z0, b] ,∀b ∈ H. (38)

Lemma 2 is also well known since A : H1 → H2 is a bounded linear operator. We again formulate this

lemma only for our specific case, referring to [58] for a more general case. The situation is naturally more

complicated for a nonlinear operator, and we refer to [6] for this case.

Lemma 2. Let the operatorA : H1 → H2 be a bounded linear operator which has the Fréchet derivative

of the functional (35). Then the functional Ψγ (z) is strongly convex on the space H and

(
Ψ′γ (z1)−Ψ′γ (z2) , z1 − z2

)
≥ γ[z1 − z2]2,∀z1, z2 ∈ H.

It is known from the theory of convex optimization that Lemma 2 implies existence and uniqueness of

the global minimizer zγ ∈ H of the functional Ψα defined in (35) such that

Ψγ(zγ) = inf
z∈H

Ψγ(z).

It is well known that the operator F is Lipschitz continuous if

‖F (z1)− F (z2)‖ ≤ ||A|| · ‖z1 − z2‖ ∀z1, z2 ∈ H.

We also have introduced new constant M2 = M2 (||A||, γ) = const. > 0 [7] such that

∥∥Ψ′γ (z1)−Ψ′γ (z2)
∥∥ ≤M2 ‖z1 − z2‖ ,∀z1, z2 ∈ H. (39)

5 Optimisation Methods

To find minimum of the Tikhonov functional we can use any gradient-like method, for example, gradient

method (GM) or conjugate gradient method (CGM). We briefly present usual gradient method and it’s mod-

ification, CGM, which improves speed of computations. We refer to [7, 8, 31, 56] for analysis of these

methods.

Let (z1, z2) denotes scalar product in the Euclidean space E. Let z∗ be the perfect noiseless solution such

that Az∗ = u∗, where A is the matrix in (3). From (3) also follows that u∗ = 0. Let z̃ be measured

permittivity which corresponds to measured functions k, β such that Az̃ = ũ.

We assume that the level of the noise δ in data is such that

||ũ− u∗|| ≤ δ. (40)
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Since u∗ = 0 then the equation above means that

||ũ|| ≤ δ. (41)

Here we present briefly the gradient method and conjugate gradient method to minimize the quadratic

functional

f(z) =
1

2
(Az, z)− (ũ, z), (42)

whereA is the positive definite matrix. It is easy to see that f ′(z) = Az− ũ, f ′′(z) = A. WhenA is positive

definite then λmin(A) > 0 and quadratic functional is strictly convex. If λmin(A) = 0 the functional is

convex, but not strictly convex and z0 is an initial approximation to z.

5.1 Gradient Method (GM)

The minimizing sequence in a gradient method is constructed via the following formulas:

hk = −f ′(zk)

zk+1 = zk + αkhk,

αk = argmin{f(zk + αhk) : α ≥ 0}.

(43)

5.2 Conjugate Gradient Method (CGM)

The minimizing sequence in a conjugate gradient method is constructed via the following formulas:

h0 = −f ′(z0),

zk+1 = zk + αkhk,

αk = argmin{f(zk + αhk) : α ≥ 0},

hk = −f ′(zk) + βk−1hk−1.

(44)

In the case when βk−1 is determined as

βk−1 =


||f ′(zk)||2
||f ′(zk−1)||2 if k 6= 1, n+ 1, 2n+ 1, ...,

0 otherwise,
(45)

then the method is called Fletcher-Reeves method.

If βk−1 is determined as

βk−1 =


(f ′(zk),f ′(zk)−f ′(zk−1))

||f ′(zk−1)||2 ifk 6= 1, n+ 1, 2n+ 1, ...,

0 otherwise,
(46)

then the method is called Polack-Ribiere method.
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6 Principle of Iterative Regularization

In our description of the iterative regularization we follow [7, 8].

6.1 The idea of iterative regularization

Let us consider an arbitrary sequence of the regularization parameters {γ} such that γn > 0 and γn →

0 as n → 0. We are able to find an approximate minimum of a strongly convex functional Ψγn with an

accuracy αn = α(γn) where αn is a positive number. We may take some finite number Mγnof steps of the

chosen method. We consider the point, zαn
γn , gained by these assumptions. Using (33) and (34) for this zαn

γn

we get :

Ψ(zαn
γn ) ≤ γn

2
‖z∗ − z0‖2H1

+ αn, Ψ(z) =
1

2
‖A(z)‖2H2

, (47)

‖zαn
γn − z0‖2H1

≤ ‖z∗ − z0‖2H1
+

2αn
γn

. (48)

Here assume that

lim
n→∞

αn = lim
n→∞

γn = lim
n→

αn
γn

= 0. (49)

We assume that the sequence {zαn
γn } converges weakly in H1 to some point z∗. Since a continuous convex

functional Ψ is weakly lower semi-continuous, therefore

Ψ(z∗) ≤ lim inf
n→∞

Ψ(zαn
γn ).

(47) and (49) result in Ψ(z∗) = 0, i.e., z∗ ∈ X∗(A). Considering arguments of section 4 and using (48) and

(49), we get

lim
n→∞

‖zαn
γn − z

∗
z0‖H1

= 0. (50)

where z∗z0 denotes the nearest point to z0 in X∗. So the sequence {zαn
γn }minimizes the discrepancy functional

that converges strongly to z∗z0 ∈ X∗(A) when we have convexity and closeness property for X∗(A). Also if

we assume that X∗(A) 6= ∅, we saw that Mγn is rapidly growing as γn, αn → 0. Practically, the mentioned

approach is not that good because of being done in two steps and also due to being uncertain about choice

of Mγn . We want here to expand a special one-step iterative process which guarantees convergence of the

generated sequence zn to the z∗z0 . How we do reconstruction of such processes is coming below. We consider

a basic scheme for minimizing the strongly convex functional. Besides, we take an arbitrary sequence such

that

0 < γn+1 ≤ γn, n = 0, 1, ..., lim
n→∞

γn = 0. (51)

We suppose the point zn has already been constructed. Then the next point could be obtained by fixing

a number of steps (independent of n) of the basic iterative method applied to the minimization problem
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for the Tikhonov functional Ψγn with the initial point zn. After doing this, by repeating the process with

γ = γn+1 and with initial point zn+1, etc. This algorithm for the reconstruction of the convergent min-

imizing sequences for the discrepancy Ψ is called the iterative regularization principle [9]. To do such a

implementation, we need to

1 Choose a basic method, acceptable for finding a global minimizer of an arbitrary strongly convex

functional, and to fix a number of iterations that one has to perform at every step of the main iterative

process; in most cases, one iteration is performed;

2 Choose a sequence of the regularization parameters{γn}, satisfying conditions (51);

3 Adjust the inner parameters of the basic method (step size, etc) and the regularization parameter

γn, n = 0, 1, ....

6.2 An illustrative example of the equations with a convex discrepancy functional

Consider a gradient method with a constant step applied to a functional Ψγ for a fixed regularization param-

eter γ > 0, as an example. This method takes the form

zn+1 = zn − αΨ′γ(zn), n = 0, 1, ... and z0 ∈ H1. (52)

According to (38) we have the following necessary condition for minimum:

Ψ′γ(zγ) := Ψ′(zγ) + γ(zγ − z0) = 0. (53)

By subtracting global minimizer zγ from both side of (52), taking norms, then taking into account equations

(53) and (48) we get : ‖zn+1 − zγ‖2H1
= ‖zn − zγ − α

(
Ψ′γ(zn)−Ψ′γ(zγ)

)
‖2
H1

= ‖zn − zγ‖2H1
− 2α

(
(Ψ′γ(zn)−Ψ′γ(zγ), zn − zγ

)
H1

+ α2‖Ψ′γ(zn)−Ψ′γ(zγ)
)
‖2
H1
.

(54)

In (54) we have used the fact that Ψ′γ(zγ) = 0.

Recalling that

Ψ′(z) = A′∗(z)A(z), z ∈ H1. (55)
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Taking into account (53) and (55), then using (4) and (5), adding and subtracting the term ‖A′∗(zn)‖ ·

‖A(zγ)‖ we have :

‖Ψ′γ(zn)−Ψ′γ(zγ)
)
‖
H1
≤ ‖Ψ′(zn)−Ψ′(zγ‖H1

+ γ‖zn − zγ‖H1
(56)

≤ ‖A′∗(zn)‖L(H2,H1)‖A(zn)−A(zγ)‖H2

+‖A′∗(zn)−A′∗(zγ)‖L(H2,H1)‖A(zγ)‖H2

+γ‖zn − zγ‖H1

≤
(
M2

1 +M2‖A(zγ)‖H2
+ γ
)
‖zn − zγ‖H1

.

By definition of Ψ(zγ) in (36), then using (29) and (32) we obtain :

Ψγ(zγ) =
1

2
‖A(zγ)‖2H2

+
γ

2
‖zγ − z0‖2H1

≤ Ψ(z∗z0) =
γ

2
‖z∗z0 − z0‖2H1

.

Now taking square root of the above inequality we get,

‖A(zγ)‖H2 ≤
√
γ‖z∗z0 − z0‖H1 . (57)

By substituting (57) into (56) we have

‖Ψ′γ(zn)−Ψ′γ(zγ)‖
H1
≤ L‖zn − zγ‖H1

,where L = M2
1 +M2‖z∗z0 − z0‖H1

√
γ + γ. (58)

We substitute (56) and (58) into (54) and using the fact that the functional Ψγ is strongly convex in the space

H1 for any γ > 0 which means

(
Ψ′(z1)−Ψ′(z2)

)
H1
≥ 0 ∀z1, z2 ∈ H1.

Thus,

(
Ψ′(z1)−Ψ′(z2), z1 − z2

)
H1
≥ ‖z1 − z2‖2H1

∀z1, z2 ∈ H1 (59)

we get

‖zn+1 − zγ‖H1 ≤
√

1− 2αγ + α2L2‖zn − zγ‖H1
, n = 0, 1, .... (60)

Clearly, if α is an arbitrary positive number then the expression under the radical in (60) is positive. The

step size α > 0 must be chosen to make this small expression as small as possible. To have convergence in

(60) we should have

1− 2αγ + α2L2 < 1.

We need to have following assumption to get the above inequality

0 < α <
2γ

L2
. (61)
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If (61) is satisfied, then estimate (60) yields

‖zn − zγ‖H1
≤ ‖z0 − zγ‖H1

qn(γ), n = 0, 1, ...,

q(γ) =
√

1− 2αγ + α2L2, q(γ) ∈ (0, 1). (62)

Based on (62), the sequence {zn}, defined in (52), converges to zγ linearly. The quadratic polynomial under

the radical in (60) takes its minimum with respect to α when α = γL−2. The corresponding minimal value

of the polynomial is 1− γ2L−2. So if γ → 0, then q(γ) in (62) converges to 1 for any γ satisfying condition

(61). So the regularization parameter γ is decreasing, the number of iterations in (52) must grow in order to

insure the uniform with respect to γ accuracy of the approximation of zγ by the elements zn. If we choose

α =
εγ

L2
, ε ∈ (0, 2),

then the expression under the radical in (60) takes the form

1− 2αγ + α2L2 = 1− C(ε)γ2, C(ε) =
ε(2− L2ε)

L2
.

Thus, estimate (60) can be written as

‖zn+1 − zγ‖H1 ≤
√

1− C(ε)γ2‖ zn − zγ‖H1 .

6.3 The iteratively regularized gradient method

In this section we present a general scheme for the analysis of the convergence of iteratively regularized

algorithms. We show how we use gradient descent method with a constant step as the basic method to obtain

the iteratively regularized gradient method.

The iteratively regularized gradient method is zn+1 = zn − αnΨ(γn)(zn) where z0 ∈ H1,

= zn − αn(A′∗(zn)A
(
zn) + γn(zn − z0)

)
,

(63)

where αn > 0 shows the step size, which is an inner parameter of the gradient method, has to be chosen as

a function of the regularization parameter γn. Consider an arbitrary sequence, {γn} which has properties of

(51). Moreover,

lim
n→∞

‖zγn − z∗z0‖H1
= 0. (64)

By considering (64) and

lim
n→∞

‖zn − zγn‖H1 = 0. (65)
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We can say the sequence {zn} converges to z∗z0 as n→∞.

By considering

ηn = ‖zn − zγn‖H1
,

for the value of the ηn a certain difference inequality is fulfilled. For obtaining this inequality, we need

to have an estimate on the norm of the difference between the elements zγ1 and zγ2 , the global minimizes

of Tikhonov’s functional Ψγ1 and Ψγ2 with two different regularization parameters γ1 and γ2 > 0. These

elements satisfy the operator equations

Ψ′γ1(zγ1) = 0, Ψ′γ2(zγ2) = 0. (66)

Here we explain in more details. Consider

Ψ′(zγ1) + γ1(zγ1 − z0) = 0, (67)

Ψ′(zγ2) + γ2(zγ2 − z0) = 0. (68)

Subtracting last two identities from each other, we obtain

(γ1 − γ2)(zγ2 − z0) = Ψ′(zγ2)−Ψ′(zγ1) + γ1(zγ2 − zγ1).

If we multiply both sides of this equality by (zγ2 − zγ1) and then by considering the convexity of the

functional Ψ, we have (
Ψ′(zβ)−Ψ′(zγ1), zβ − zγ1

)
H1
≥ 0,

then we achieve

(γ1 − γ2)(zγ2 − z0, zγ2 − zγ1)H1
≥ γ1‖zγ2 − zγ1‖2H1

. (69)

By considering the Cauchy-Schwartz inequality for the left hand side of the (69) and dividing the inequality

(69) by ‖zγ2 − zγ1‖H1
, we obtain

‖zγ2 − zγ1‖H1
≤ |γ1 − γ2|

γ1
‖zγ2 − z0‖H1

∀γ1, γ2 > 0. (70)

Let α(γ) be zero in (34). Then

‖zγ2 − z0‖H1
≤ ‖z∗z0 − z0‖H1

∀γ1 > 0.

So (70) gives

‖zγ2 − zγ1‖H1
≤ |γ1 − γ2‖

γ1
‖z∗z0 − z0‖H1

∀γ1, γ2 > 0. (71)

Subtracting zγn+1
from both sides of (63) we get :

zn+1 − zγn+1
=
(
zn − zγn − αnΨ′γn(zn)

)
+ (zγn − zγn+1

) = I1 + I2. (72)
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To estimate I1 we take norm of it and apply (54) with zγ := zγn and then use (60) to get following estimate:

‖zn − zγn − αnΨ′γn(zn)‖
H1
≤
√

1− 2αnγn + α2
nL

2.‖zn − zγn‖, (73)

To estimate I2 we apply (71) to get:

‖zγn − zγn+1
‖
H1
≤ γn − γn+1

γn
‖z∗z0 − z0‖. (74)

After we combine both estimates for I1 and I2 to obtain:

ηn+1 = ‖zn+1 − zγn+1‖H1
≤ ‖zn − zγn − αnΨ′γn(zn)‖

H1
+ ‖zγn − zγn+1‖H1

, (75)

≤
√

1− 2αnγn + α2
nL

2 ηn +
γn − γn+1

γn
‖z∗z0 − z0‖H1

, (76)

Here based on (58) and (51) we have,

L = M2
1 +M2‖z∗z0 − z0‖H1

√
γ0 + γ0.

Any arbitrary sequence of positive step size {αn} guarantees existence of the inequality (76) .

We can be sure that ηn → 0, if we guarantee that the coefficient with ηn in (76) is less than 1 for sufficiently

large enough n. To doing so we need to have

lim
αn
γn

= 0. (77)

We get following estimate √
1− 2αnγn + α2

nL
2 ≤ 1− 2αnγn

since √
1− 2αnγn + α2

nL
2 =

√
1− αnγn

(
2− αn

γn
L2
)

(78)

and also with help of (77) for enough large n ∈ N. So if we take a large number n, for the sequence{ηn}

the inequality

ηn+1 ≤
(
1− 2αnγn

)
ηn +

γn − γn+1

γn
‖z∗z0 − z0‖H1

(79)

is satisfied. Moreover, we can say that (51) and (77) provide

lim
n→∞

αn = 0. (80)

Now we need following Lemma.

Lemma. [59] Let the sequence of non-negative numbers {ωn} be such that

ωn+1 ≤ (1− an)ωn + bn, n = 0, 1, ..., (81)

where {an}, {bn} satisfy the assumptions

0 < an ≤ 1, bn ≥ 0, n = 0, 1, ...,
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∑∞

n=0
an =∞, lim

n→∞

bn
an

= 0. (82)

Then

lim
n→∞

ωn = 0. (83)

We can apply the Lemma above to (79). Then for the case of (79) we have should choose an and bn such

that

an := γnαn, bn :=
γn − γn+1

γn
. (84)

We should have that (82) is fulfilled, or following properties should be satisfied.∑∞

n=0
γnαn =∞, lim

n→∞

γn − γn+1

γ2
nαn

= 0. (85)

We may take sequences {γn} and {αn} such that the conditions (51), (77) and (85) are fulfilled. In this case

these sequences should slowly converge to zero. As an example, we may take

γn =
γ0

(n+ 1)p
, αn =

α0

(n+ 1)p+q
, n = 0, 1, ..., (86)

here α0, γ0 > 0, p ∈ (0, 1) and q > 0. Therefore assumptions (51) and (77) are satisfied. The first condition

of (85) holds if

2p+ q ≤ 1. (87)

Obviously by having inequality (87), the second condition in (85) holds. Besides, the following convergence

rate guarantees for the sequence {ηn} in this case:

ηn = O
( 1

n1−2p−q

)
. (88)

Now we can claim that by considering (51), (77) and (85), process (63) converges z∗z0 , i.e., the identity

lim
n→∞

‖zn − z∗z0‖ = 0

holds, for any choice of the initial approximation z0 ∈ H1.

7 Methods for the Choice of Regularization Parameters in the Tikhonov

Functional

In section 6.3 we described in details that we should choose iterative regularizations parameters, γ1, γ2, in

the Tikhonov functional (138) such that conditions (51), (77) and (85) are fulfilled with γ := γ1 or γ := γ2.

As an example, we may take sequences such that

γn =
γ0

(n+ 1)p
, αn =

α0

(n+ 1)p+q
, n = 0, 1, ..., (89)
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here α0, γ0 > 0, p ∈ (0, 1) and q > 0. So one method for choosing iterative regularization parameters,

γ1, γ2, in the Tikhonov functional is sequences such that (86) holds.

Regularization independent of the noise level (Heuristic): quasi-optimality [3]

The quasi-optimality criterion chooses the regularization parameter in inverse problems without taking into

account the noise level. This rule works remarkably well in practice, although in [2] is shown that there are

always counter examples with very poor performance.

The classical quasi-optimality criterion is applied to the regularized solutions, zγ , based on Tikhonov’s

method and proposes to choose positive regularization parameters, γ1, γ2, with γ := γ1 or γ := γ2 in the

Tikhonov functional such that

min
γn
‖γn

dzγn
dγn
‖ → 0. (90)

Using reparametrization with γn = Cqn for q ∈ (0, 1), n ∈ R, the condition (90) is fulfilled. In numerical

tests we use the following second rule for iterative computation of the regularization parameters γ1, γ2:

γn := Cqn, n = 1, 2, ..., (91)

where n is the number of iteration in conjugate gradient method. Then condition (90) reduces to the follow-

ing criterion:

min
n
‖zCqn − zCqn+1‖ → 0. (92)

8 System of Maxwell’s Equations

We consider the Maxwell’s equations in an inhomogeneous isotropic medium in Ω with a piecewise smooth

boundary ∂Ω, where the bounded domain Ω ⊂ Rd, d = 2, 3. We define ΩT := Ω × (0, T ), ∂ΩT :=

∂Ω× (0, T ), T > 0. Electromagnetic equations then are :

∂tD −∇×H(x, t) = 0, (x, t) ∈ Ω× (0, T ),

∂tB +∇× E(x, t) = 0, (x, t) ∈ Ω× (0, T ),

D(x, t) = εE(x, t), B(x, t) = µH(x, t),

E(x, 0) = E0(x), H(x, 0) = H0(x),

∇ ·D(x, t) = 0, ∇ ·B(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),

n×D(x, t) = 0, n×B(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ).

(93)

Here E(x, t) and H(x, t) are the three-dimensional electric and magnetic fields of the time t and the space

variable x = (x1, x2, x3), while D (x) and B (x) are the electric and magnetic inductions, respectively.

The dielectric permittivity and magnetic permeability functions, ε (x) and µ (x), depend only on x ∈ Ω and

n = n(x) presents the outward normal vector on ∂Ω.
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Our goal is to reconstruct the coefficients ε (x) and µ (x) simultaneously using only backscattered elec-

tric field in the system (93). In (93) functions ε(x) = εr(x)ε0 , µ(x) = µr(x)µ0 and ε0 ≈ 8.85 ×

10−12(F/m), µ0 ≈ 4π10−7(H/m) are the electric permittivity and magnetic permeability of vacuum and

εr and µr are dimensionless relative electric permittivity and relative magnetic permeability, respectively.

Since the units of both parameters, ε(x) and ε0 are the same and equals to Farad/meter, it results in di-

mensionless form of εr(x). In the same way, µr(x) is dimensionless. We consider only a finite number of

observations of the electric field on the boundary ∂Ω of the bounded domain Ω.

For solving the problem (93) numerically we apply the domain decomposition FEM/FDM method of [13].

In doing so we decompose Ω into two subregions, such that Ω = ΩFEM ∪ ΩFDM, ΩFEM ∩ ΩFDM = ∅ , see

Figure 4 for example of these domains. We apply a finite element method and a finite difference method to

the sub-domains, ΩFEM and ΩFDM , respectively, with first order absorbing boundary conditions, see Figure

3. The boundary ∂Ω is such that ∂Ω = ∂1Ω∪∂2Ω∪∂3Ω where ∂1Ω and ∂2Ω denote the front and back sides

of the domain Ω, respectively, and ∂3Ω is the union of the left, right, top and bottom sides of the domain.

We assume that functions ε and µ of equation (93) are such that

ε(x) ≥ 1, µ(x) ≥ 1 for x ∈ ΩFEM,

ε(x) = 1, µ(x) = 1 for x ∈ ΩFDM.

We also assume that functions ε and µ should be determined only inside the finite element domain and

are known inside of finite difference domain such that,

ε ∈ C2
(
R3
)
, ε(x) ∈ [1, b1] for x ∈ R3, ε(x) = 1 for x ∈ R3 \ ΩFEM , (94)

µ ∈ C2
(
R3
)
, µ(x) ∈ [1, b2] for x ∈ R3, µ(x) = 1 for x ∈ R3 \ ΩFEM . (95)

Here, b1 and b2 are constants strictly larger than 1 and are chosen experimentally in the similar way with

[12, 39, 57] and we have priori knowledge about them.

By eliminating B and D from (93) we obtain the model problem for the electric field E only with the

perfectly conducting boundary conditions at the boundary ∂Ω such that

ε(x)
∂2E(x, t)

∂t2
+∇×

(
µ−1(x)∇× E(x, t)

)
= 0, (x, t) ∈ Ω× (0, T ), (96)

∇ ·
(
ε(x)E(x)

)
= 0, (x, t) ∈ Ω× (0, T ), (97)

E(x, 0) = f1(x), Et(x, 0) = f2(x), x ∈ Ω, (98)

n× E = 0 (x, t) ∈ ∂Ω× (0, T ). (99)
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The similar equation can be obtained also for H . Here we assume that

f1 ∈ H1(Ω), f2 ∈ L2(Ω).

For solving the equations (96)–(99) numerically, we use the finite difference method on a structured mesh

with constant coefficients ε = ε̂ = 1 and µ = µ̂ = 1 in finite difference domain. In our computations all

materials with values of ε > 10 are treated as metals and we call ε as “appearing dielectric constant”, see

[12, 57] for more information and explanation.

9 The Model Problem

For stabilization of the finite element solution using standard piecewise continuous functions, we enforce

the divergence condition and add a Coulomb-type gauge condition [1, 45, 48] to (96) with 0 ≤ s ≤ 1:

ε(x)
∂2E(x, t)

∂t2
+∇×

(
µ−1(x)∇× E(x, t)

)
− s∇

(
∇ ·
(
ε(x)E(x, t)

))
= 0, (x, t) ∈ Ω× (0, T ), (100)

E(x, 0) = f1(x), Et(x, 0) = f2(x), x ∈ Ω, (101)

n× E = 0 (x, t) ∈ ∂Ω× (0, T ). (102)

In our computations we apply the Neumann boundary conditions to the left and right hand side of a domain

and first order absorbing boundary conditions [32] at the rest of boundaries as well as homogeneous initial

conditions. Then the forward problem used in our computations is

ε(x)
∂2E(x, t)

∂t2
+∇×

(
µ−1(x)∇× E(x, t)

)
− s∇

(
∇ ·
(
ε(x)E(x, t)

))
= 0, (x, t) ∈ Ω× (0, T ), (103)

E(x, 0) = 0, Et(x, 0) = 0, x ∈ Ω, (104)

∂nE (x, t) = (0, f(t), 0), (x, t) ∈ ∂1Ω× (0, t1] , (105)

∂nE(x, t) = −∂tE(x, t), (x, t) ∈ ∂1Ω× (t1, T ) , (106)

∂nE(x, t) = −∂tE(x, t), (x, t) ∈ ∂2Ω× (0, T ), (107)

∂nE(x, t) = 0, (x, t) ∈ ∂3Ω× (0, T ). (108)

Due to application of Neumann boundary conditions, we are allowed to have assumption of infinite structure

in lateral directions and thus, considering the CIPs of the reconstruction of unknown parameters ε and µ in

a waveguide. Numerical solution of the forward problem (103)-(108) approximates well the solution of the

original Maxwell’s equations for s = 1, check [13].
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9.1 The finite element method for the model problem

In this section we formulate the finite element method for the problem (103)-(108) which for convenience

of the reader we write below

ε(x)
∂2E(x, t)

∂t2
+∇×

(
µ−1(x)∇× E(x, t)

)
− s∇

(
∇ ·
(
ε(x)E(x, t)

))
= 0, (x, t) ∈ ΩT = Ω× (0, T ), (109)

E(x, 0) = 0, Et(x, 0) = 0, x ∈ Ω, (110)

∂nE (x, t) = (0, f(t), 0), (x, t) ∈ S1,1 = ∂1Ω× (0, t1] , (111)

∂nE(x, t) = −∂tE(x, t), (x, t) ∈ S1,2 = ∂1Ω× (t1, T ) , (112)

∂nE(x, t) = −∂tE(x, t), (x, t) ∈ S2 = ∂2Ω× (0, T ), (113)

∂nE(x, t) = 0, (x, t) ∈ S3 = ∂3Ω× (0, T ). (114)

To do that we discretize ΩFEM × (0, T ) presenting by Kh = {K} a partition of the domain ΩFEM into

tetrahedra K, see p.10 of [15]. Here h = h(x) is a mesh function defined as h|K = hK− the local diameter

of the elements, and we let Jk be a partition of the time interval (0, T ) into time subintervals J = (tk−1, tk]

of uniform length τ = tk − tk−1. Here the minimal angle condition on the Kh [19] is considered as well.

We need to define the finite element trial and test spaces, WE
h and Wφ

h , respectively, to formulate the finite

element method and solve the state problem (103)–(108). We introduce the finite element trial space WE
h

defined by

WE
h := {w ∈WE : w|K×J ∈ [P1(K)× P1(J)]3, ∀K ∈ Kh, ∀J ∈ Jτ},

where P1(K) and P1(J) denote the set of piecewise linear functions on K and J , respectively. and

WE = {w ∈ H1(ΩT )3 : w(·, 0) = 0, where ∂nw|∂Ω = −∂tw},

We also introduce the finite element test space Wφ
h defined by

Wφ
h := {w ∈Wφ : w|K×J ∈ [P1(K)× P1(J)]3, ∀K ∈ Kh, ∀J ∈ Jτ},

where

Wφ = {w ∈ H1(ΩT )3 : w(·, T ) = 0, where ∂nw|∂Ω = −∂tw}.

Hence, the finite element spaces WE
h and Wφ

h consist of continuous piecewise linear functions in space

and time, which satisfy homogeneous initial and first order absorbing boundary conditions. We also define

the following L2 inner products and norms:

((p, q)) =

∫
Ω

∫ T

0

pqdxdt, ‖p‖2 = ((p, p)), (α, β) =

∫
Ω

αβdx, |α|2 = (α, α).

27



Multiplying (109) by φ̄ ∈Wφ and integrating in space and time we get :

((
ε
∂2E

∂t2
+∇× (µ−1∇× E)− s∇(∇ · (εE), φ̄

))
=

((
ε
∂2E

∂t2
, φ̄

))
+((

∇× (µ−1∇× E), φ̄

))
− s
((
∇(∇ · (εE)), φ̄

))
= I1 + I2 + I3, ∀φ̄ ∈Wφ.

(115)

We now integrate by parts (115), term I1 in time and terms I2, I3 in space, to get :

I1 =

((
ε
∂2E

∂t2
, φ̄

))
=

(
ε,

[
φ̄ · ∂E

∂t

]T
0

−
T∫

0

∂E

∂t

∂φ̄

∂t
dt

)

=

(
ε,

[
¯φ(t)
∂E

∂t
(T )− φ̄(0)

∂E

∂t
(0)

]
−

T∫
0

∂E

∂t

∂φ̄

∂t
dt

)
=

((
ε
∂E

∂t
,
∂φ̄

∂t

))
. (116)

Since µ = ε = 1 on ∂Ω and in ΩFDM we have

I2 =

(
∇× (µ−1∇× E), φ̄

)
=

(
φ̄ · n× (µ−1∇× E) |∂Ω

)
+

((
µ−1∇× E,∇× φ̄

))
=(

n× φ̄, µ−1∇× E
)
S1,1∪S1,2∪S2∪S3

+

((
µ−1∇× E,∇× φ̄

))
=(

p(t), φ̄

)
S1,1

−
(
∂E

∂t
, φ̄

)
S1,2∪S2

+

((
µ−1∇× E,∇× φ̄

))
(117)

with p(t) = (0, f(t), 0).

I3 = s

((
∇(∇·(εE), φ̄

))
= s

[(
φ̄·n·

(
∇·(εE)

))
∂Ω

−
((
∇·(εE),∇·φ̄

))]
= −s

((
∇·
(
εE),∇·φ̄

))
.

(118)

Collecting I1, I2, I3 we get the following variational formulation :((
ε
∂E

∂t
,
∂φ̄

∂t

))
+

(
p(t), φ̄

)
S1,1

−
(
∂E

∂t
, φ̄

)
S1,2∪S2

+

((
µ−1∇×E,∇×φ̄

))
+s

((
∇·
(
εE),∇·φ̄

))
= 0.

(119)

Also E is the weak solution of equation (109) if E ∈ WE and (119) holds. We approximate E(x, t) with

Eh(x, t) ∈WE
h and the finite element method reads : find Eh ∈WE

h such that((
ε
∂Eh
∂t

,
∂φ̄

∂t

))
+

(
p(t), φ̄

)
S1,1

−
(
∂Eh
∂t

, φ̄

)
S1,2∪S2

+((
µ−1∇× Eh,∇× φ̄

))
+ s

(
∇ · (εEh),∇ · φ̄

))
= 0, ∀φ̄ ∈Wφ

h .

9.2 The explicit FEM scheme for the electric field

We expand Eh(x, t) in terms of the standard continuous piecewise linear functions {φi(x)}mi=1 in space and

{ψk(t)}nk=1 in time asEh(x, t) = Σnk=1Σmi=1Eiφi(x)ψk(t), whereEi = Ehi,k
denote unknown coefficients
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at the point i of the mesh Kh and time moment k substitute this expansion in variational formulation (119)

with φ̄(x, t) = φj(x)ψl(t) and obtain the following system of discrete equations

−
∑

K∈ΩFEM

n∑
k,l=1

m∑
i,j=1

Ei

∫
k

ε(x)φi(x)φj(x)

∫ tk+1

tk−1

∂tψk(t)∂tψl(t)dxdt

−
∑

∂K∈∂ΩFEM

n∑
k,l=1

m∑
i,j=1

Ei

∫
∂k

φi(x)φj(x)

∫ tk+1

tk−1

∂tψk(t)ψl(t)dSdt

+
∑

K∈ΩFEM

n∑
k,l=1

m∑
i,j=1

Ei

∫
k

µ−1∇× φi(x)∇× φj(x)

∫ tk+1

tk−1

ψk(t)ψl(t)dxdt

+s
∑

K∈ΩFEM

n∑
k,l=1

m∑
i,j=1

Ei

∫
k

∇ · (εφi(x))∇ · φj(x)

∫ tk+1

tk−1

ψk(t)ψl(t)dxdt

+
∑

∂K∈∂ΩFEM

n∑
k,l=1

m∑
i,j=1

∫
∂K

∫ tk+1

tk−1

pkφj(x)ψl(t)dxdt

= I1 + I2 + I3 + I4 + I5 = 0. (120)

Here pk are nodes values of p(t) at nodes of the time mesh Jτ .

Similarly with [13], now by the definition of piecewise linear functions in time, we are able to compute

explicitly the time integrals appearing in (120). After substituting computed integrals in time in (120) we

get the following linear system of equations

M(Ek+1 − 2Ek + Ek−1) = −τ2K
(1

6
Ek−1 +

2

3
Ek +

1

6
Ek+1

)
−sτ2C

(1

6
Ek−1 +

2

3
Ek +

1

6
Ek+1

)
+

1

2
τM∂Ω(Ek+1 − Ek−1)− τ2pk. (121)

In the scheme above E0 and E1 are equal to zero. Here M and M∂Ω denote the block mass matrices in

space, in Ω and over the boundary of Ω, respectively. K is the block stiffness matrix corresponding to the

rotation term, C is the stiffness matrices corresponding to the divergence terms, and τ is the time step.

Similarly with [13] we define the mapping FK for the reference element K̂ such that FK(K̂) = K and let φ̂

be the piecewise linear local basis function on the the reference element K̂ where φ◦FK = φ̂. The matrices

entries in (121) can be computed explicitly by:

MK
i,j = (εφi ◦ FK , φj ◦ FK)K ,

M∂Ω
i,j = (φi ◦ FK , φj ◦ FK)∂ΩK

,

KK
i,j = (µ−1∇× ϕi ◦ FK ,∇× ϕj ◦ FK)K ,

CKi,j = (∇ · (εφi) ◦ FK),∇ · φj ◦ FK)K ,

PKi,j = (pk, φj)K .
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We approximate M by the lumped mass matrix ML in space to obtain an explicit scheme. In other words,

the diagonal approximation is obtained by taking the row sum of M [35, 36]. We also use the mass lumping

in time by replacing terms corresponding to the mass matrix in time, E
k−1

6 + 2Ek

3 + Ek+1

6 , by Ek. Then

(121) becomes

M(Ek+1 − 2Ek + Ek−1) = −τ2KEk − sτ2CEk +
1

2
τM∂Ω(Ek+1 − Ek−1)− τ2pk. (122)

Next, we multiply (122) by (ML)−1 to obtain the following fully explicit time-stepping method to solve

(109)-(114):

Ek+1
(
1− 1

2
τM∂Ω(ML)−1

)
= 2Ek − τ2(ML)−1KEk − sτ2(ML)−1CEk

−
(
1 +

1

2
τM∂Ω(ML)−1

)
Ek−1 − τ2(ML)−1pk. (123)

When we apply finite element method only in ΩFEM then the scheme (123) will be reduced to :

Ek+1 = 2Ek − τ2(ML)−1KEk − sτ2(ML)−1CEk − Ek−1 − τ2(ML)−1pk. (124)

9.3 The explicit FDM scheme

As mentioned before, we set ε(x) = µ(x) = 1 in ΩFDM so in ΩFDM we need to solve a system of vector

wave equations for vector field E = E(E1, E2, E3):

∂2
tE −∆E = 0, (125)

E(x, 0) = 0, Et(x, 0) = 0, x ∈ Ω, (126)

∂nE (x, t) = (0, f(t), 0), (x, t) ∈ ∂1Ω× (0, t1] , (127)

∂nE(x, t) = −∂tE(x, t), (x, t) ∈ ∂1Ω× (t1, T ) , (128)

∂nE(x, t) = −∂tE(x, t), (x, t) ∈ ∂2Ω× (0, T ), (129)

∂nE(x, t) = 0, (x, t) ∈ ∂3Ω× (0, T ). (130)

We gain the below explicit scheme in ΩFDM by using standard finite difference discretization:

Ek+1
i,j,m = −τ2∆Eki,j,m + 2Eki,j,m − Ek−1

i,j,m. (131)

Here Eki,j,m denotes the solution on the time iteration k at the discrete point (i, j,m), τ is the time step, and

∆Eki,j,m is the discrete Laplacian which can be written as

∆Eki,j,m =
Eki+1,j,m − 2Eki,j,m + Eki−1,j,m

dx2
1

+
Eki,j+1,m − 2Eki,j,m + Eki,j−1,m

dx2
2

(132)

+
Eki,j,m+1 − 2Eki,j,m + Eki,j,m−1

dx2
3

,
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where dx1, dx2, and dx3 denote the steps of discrete finite difference meshes in x1, x2, x3 directions, re-

spectively.

To approximate absorbing boundary conditions in (128)–(130) we apply a forward finite difference approx-

imation at the middle point. This helps to get a numerical approximation of higher order than a normal

backward or forward finite difference approximation. At the left boundary of ΩFDM the absorbing bound-

ary conditions (127) can be written as

∂E(x, t)

∂x
=
∂E(x, t)

∂t
. (133)

By discretizing (133) we get:

Ek+1
i,j,m − Eki,j,m

dt
+
Ek+1
i+1,j,m − Eki+1,j,m

dt
−
Eki+1,j,m − Eki,j,m

dx
−
Ek+1
i+1,j,m − Eki,j,m

dx
= 0.

The above equation can be transformed to get the explicit scheme for computation of boundary condition on

the left boundary of ΩFDM :

Ek+1
i,j,m = Eki+1,j,m + Eki,j,m

dx− dt
dx+ dt

− Ek+1
i+1,j,m

dx− dt
dx+ dt

.

Similarly we get discretizations for all other boundaries.

9.4 The domain decomposition FEM/FDM methods

We consider the data correlation between the finite element method on the unstructured part of the mesh,

ΩFEM , and the finite difference method on the structured part, ΩFDM for the solution of the forward prob-

lem in (103)-(108). Their correlation is related to having mesh overlapping across a two-element thick layer

around ΩFEM , see Figure 6 for the domain decomposition.

The interior nodes of computational domain Ω belong to either of the following sets, see Figure 6.

N◦ nodes ’◦’ interior to ΩFDM that lie on the boundary of ΩFEM ,

N♦ nodes ’♦’ interior to ΩFEM that lie on the boundary of ΩFDM ,

N∗ nodes ’∗’ interior to ΩFEM that are not contained in ΩFDM ,

N+ nodes ’+’ interior to ΩFDM that are not contained in ΩFEM .

Stability of the explicit scheme:

Since we use explicit domain decomposition FEM/FDM, we also need to check stability such that with our

choice of the time step τ the whole scheme (131) remains stable. We use stability analysis on the structured

meshes and we choose the largest time step in our computation according to CFL stability condition [9]

where
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τ ≤
√
εµ√

1
dx2

1
+ 1

dx2
2

+ 1
dx2

3

. (134)

(135)

We assume dx1 = dx2 = dx3, and condition (134) is transformed in 3D as

τ ≤ h
√
εµ

3
(136)

Algorithm for the hybrid FEM/FDM method At every time step we do following operation:

1 Compute Ek+1 from (131) with absorbing boundary conditions (128)-(129) at ∂Ω on the structured

part of the mesh ΩFDM when Ek and Ek−1 are known.

2 Compute Ek+1 by means of explicit finite element scheme (124) on the unstructured part of the mesh

ΩFEM when Ek and Ek−1 are known.

3 Use the values of the electric field Ek+1 at nodes N♦, which are computed using the finite element

scheme (124), as a boundary condition for the finite difference method in ΩFDM .

4 Use the values of the electric field Ek+1 at nodes N◦, which are computed using the finite difference

scheme (131), as a boundary condition for the finite element method in ΩFEM .

5 Apply swap of the solutions for the electric field in order to apply the algorithm on a new time level k.

10 Statement of Inverse Problem

In this section, we present the coefficient inverse problems (CIP). We also describe how we optimize our

inverse problem by means of domain decomposition finite element/finite difference and Tikhonov functional.

10.1 Coefficient Inverse Problem (CIP)

Assume that the coefficients ε and µ satisfy (94)–(95) such that b1, b2 are given. Also functions ε, µ are

unknown in the domain Ω \ ΩFDM . Determine the functions ε (x) , µ(x) for x ∈ Ω\ΩFDM, assuming that

the following function Ẽ (x, t) is known

E (x, t) = Ẽ (x, t) , ∀ (x, t) ∈ ST . (137)
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In applications, the assumption ε (x) = µ(x) = 1 for x ∈ ΩFDM means that the functions ε (x) and µ(x)

have a known constant value outside of the medium of interest Ω\ΩFDM. The function Ẽ (x, t) models time

dependent measurements of the electric wave field at the backscattering boundary ∂1Ω of the domain of

interest. In practice, measurements are performed on a number of detectors, see [12, 57].

10.2 Optimization method via Tikhonov functional

We reformulate our inverse problem as an optimization problem and solve the equations (103)-(108) in a

way that two functions, ε(x) and µ(x), lead us to a best fit solution to time and space domain observations

Ẽ(x, t) measured at a finite number of observation points on ∂1Ω.

We introduce the Tikhonov regularization functional to solve our CIP as

F (E, ε, µ) =
1

2

∫
ST

(
E(x, t)− Ẽ(x, t)

)2
zδ(t) dσ dx (138)

+
1

2
γ1

∫
Ω

(
ε(x)− ε0(x)

)2
dx

+
1

2
γ2

∫
Ω

(
µ(x)− µ0(x)

)2
dx.

The regularization parameters, γ1 and γ2, are strictly positive constants and ε0 and µ0 are initial guess

for permittivity and permeability functions, respectively. Moreover, ST := ∂1Ω × (0, T ) where ∂1Ω is the

backscattering side of the domain Ω with the time domain observations.

Here zδ is a cut-off function, which is introduced to ensure that the compability conditions at ΩT ∩ {t = T}

for the adjoint problem (check section 4.3 of [5]) are satisfied, and δ is a strictly small positive number. We

choose a function zδ such that

zδ ∈ C∞ [0, T ] , zδ (t) =


1 for t ∈ [0, T − δ] ,

0 for t ∈
(
T − δ

2 , T
]
,

0 < zδ < 1 for t ∈
(
T − δ, T − δ

2

)
.

For our analysis we introduce the following spaces of real valued vector functions

H1
E := {w ∈ H1(ΩT ) : w(·, 0) = 0},

H1
λ := {w ∈ H1(ΩT ) : w(·, T ) = 0},

U1 = H1
E(ΩT )×H1

λ(ΩT )× C
(
Ω
)
× C

(
Ω
)
,

U0 = L2 (ΩT )× L2 (ΩT )× L2 (Ω)× L2 (Ω) .
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Next we introduce the Lagrangian for minimization of the functional (138)

L(u) = F (E, ε, µ)−
∫

ΩT

ε
∂λ

∂t

∂E

∂t
dxdt+

∫
ΩT

(µ−1∇× E)(∇× λ) dxdt

+ s

∫
ΩT

(∇ · (εE))(∇ · λ) dxdt

−
∫
S1,1

λp(t) dσdt−
∫
S1,2

λ∂tE dσdt−
∫
S2

λ∂tE dσdt.

(139)

Here u = (E, λ, ε, µ) ∈ U1 and p(t) = (0, f(t), 0). Also we have assumed S1,1 := ∂1Ω × (0, t1],

S1,2 := ∂1Ω× (t1, T ), S2 := ∂2Ω× (0, T ), S3 := ∂3Ω× (0, T ).

We seek for a stationary point with respect to u such that ∀ū = (Ē, λ̄, ε̄r, µ̄r) ∈ U1,

L′(u; ū) = 0, (140)

where L′ denote the Jacobian of L at u. Functions E and λ depend on the ε(x) and µ(x) , also E and λ

represent the weak form solutions of the forward and adjoint problems respectively, check [11] for details.

For knowing how to obtain the Jacobian L′ of the Lagrangian precisely, see section 4.8 of [5] where we as-

sume that the variations of functions E and λ depend on variations of the coefficients ε and µ. In this work,

we assume that the elements of the vector function (E, λ, ε, µ) in Jacobian L′ of the Lagrangian are not

dependent on each other. In both cases we obtain the same expressions for L′, see [5] for similar conclusion.

We assume that λ (x, T ) = ∂tλ (x, T ) = 0 and try to impose such conditions on the function λ that

L (E, λ, ε, µ) := L (u) = F (E, ε, µ) . Next, we use the fact that λ(x, T ) = ∂λ
∂t (x, T ) = 0 and E(x, 0) =

∂E
∂t (x, 0) = 0, as well as µ = ε = 1 on ∂Ω, together with boundary conditions ∂nE = 0 and ∂nλ = 0 on

S3. We use the equation (140) to gain the Jacobian L′(u) so we have for all ū,

0 =
∂L

∂λ
(u)(λ̄) =−

∫
ΩT

ε
∂λ̄

∂t

∂E

∂t
dxdt+

∫
ΩT

(µ−1∇× E)(∇× λ̄) dxdt

+ s

∫
ΩT

(∇ · (εE))(∇ · λ̄) dxdt

−
∫
S1,1

λ̄p(t) dσdt−
∫
S1,2

λ̄∂tE dσdt

−
∫
S2

λ̄∂tE dσdt, ∀λ̄ ∈ H1
λ(ΩT ),

(141)

0 =
∂L

∂E
(u)(Ē) =

∫
ST

(E − Ẽ) Ē zδ dxdt

−
∫

ΩT

ε
∂λ

∂t

∂Ē

∂t
dxdt+

∫
ΩT

(µ−1∇× λ)(∇× Ē) dxdt

+ s

∫
ΩT

(∇ · λ)(∇ · (εĒ)) dxdt, ∀Ē ∈ H1
E(ΩT ).

(142)

34



Finally, we obtain two equations that express that the gradients with respect to ε and µ vanish:

0 =
∂L

∂ε
(u)(ε̄) = −

∫
ΩT

∂λ

∂t

∂E

∂t
ε̄ dxdt+ s

∫
ΩT

(∇ · E)(∇ · λ)ε̄ dxdt

+ γ1

∫
Ω

(ε− ε0)ε̄ dx, x ∈ Ω,

(143)

0 =
∂L

∂µ
(u)(µ̄) = −

∫
ΩT

1

µ2
∇× E ∇× λ µ̄ dxdt+ γ2

∫
Ω

(µ− µ0) µ̄ dx, x ∈ Ω. (144)

The equation (141) is the weak formulation of the state equation and the equation (142) is the weak

formulation of the following adjoint problem

ε
∂2λ

∂t2
+∇× (µ−1∇× λ)− sε∇(∇ · λ) = −(E − Ẽ)zδ, x ∈ ST ,

λ(·, T ) =
∂λ

∂t
(·, T ) = 0,

∂nλ = 0, on S3.

(145)

10.3 Finite element method for CIP

For convenience of reader we repeat the definitions of the trial and test spaces from section 9. We discretize

ΩFEM×(0, T ) presenting byKh = {K} a partition of the domain ΩFEM into tetrahedraK. Here h = h(x)

is a mesh function defined as h|K = hK− the local diameter of the elements, and we let Jk be a partition

of the time interval (0, T ) into time subintervals J = (tk−1, tk] of uniform length τ = tk − tk−1. Here he

minimal angle condition on the Kh [19] is considered as well.

We need to define the finite element spaces Vh, WE
h and Wλ

h to formulate the finite element method and

solve the the adjoint problem. We introduce the finite element trial space WE
h for the electric field E for the

case when functions ε(x), µ(x) are smooth as

WE
h := {w ∈ H1

E : w|K×J ∈ [P1(K)× P1(J)]3, ∀K ∈ Kh, ∀J ∈ Jτ},

where P1(K) and P1(J) denote the set of linear functions on K and J , respectively. We also introduce the

finite element test space Wλ
h defined by

Wλ
h := {w ∈ H1

λ : w|K×J ∈ [P1(K)× P1(J)]3, ∀K ∈ Kh, ∀J ∈ Jτ}.

Hence, the finite element spaces WE
h and Wλ

h consist of continuous piecewise linear functions in space and

time.

The space of piecewise constant functions Vh ⊂ L2(Ω) is used to approximate functions ε and µ, where

Vh := {u ∈ L2(Ω) : u|K ∈ P0(K),∀K ∈ Kh},

and P0(K) is the piecewise constant function on K.
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In a general case we allow functions ε(x), µ(x) to be discontinuous. Let S be the internal face of the

non-empty intersection of the boundaries of two neighbouring elements K+ and K−. We denote the jump

of the function vh computed from the two neighbouring elements K+ and K− sharing the common side S

as

[vh] = v+
h − v

−
h , (146)

and the jump of the normal component vh across the side S as

[[vh]] = v+
h · n

+ + v−h · n
−, (147)

where n+, n− is the unit outward normal on S+, S−, respectively.

Thus, for a general case when functions ε(x), µ(x) are discontinuous we also introduce the discontinuous

finite element space Wh as

Wh =
{
v(x) ∈ H1(Ω) : v|K ∈ DP1(K) ∀K ∈ Kh

}
, (148)

where DP1(K) denotes the discontinuous piecewise linear function on K. The finite element space Wh is

constructed such that Wh ⊂ H1(Ω).

Let Ph be the L2(Ω) orthogonal projection. We define by f Ih the standard nodal interpolant [28] of f

into the space of continuous piecewise-linear functions on the mesh Kh. Then by one of properties of the

orthogonal projection

‖f − Phf‖L2(Ω) ≤
∥∥f − f Ih∥∥L2(Ω)

. (149)

It follows from [55] that

‖f − Phf‖L2(Ω) ≤ CIh ‖ f‖H1(Ω) ,∀f ∈ H
1(Ω), (150)

where CI = CI (Ω) is positive constant depending only on the domain Ω.

Next, we define Uh = WE
h ×Wλ

h ×Vh×Vh. When functions ε(x), µ(x) are discontinuous, we introduce

the space DUh = WE
h ×Wλ

h ×Wh×Wh. Usually dimUh <∞ and Uh ⊂ U1 as a set and we consider Uh

as a discrete analogue of the space U1.We introduce the same norm in Uh as the one in U0, ‖·‖Uh
:= ‖·‖U0 .

This means that in finite dimensional spaces all norms are equivalent and in our computations we compute

coefficients in the space Vh. The finite element method for the case of continuous functions ε(x), µ(x) reads:

Find uh ∈ Uh, such that

L′(uh)(ū) = 0 ∀ū ∈ Uh.

The finite element method for the case of discontinuous functions ε(x), µ(x) reads: Find uh ∈ DUh, such

that

L′(uh)(ū) = 0 ∀ū ∈ DUh. (151)
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10.4 Fully discrete scheme for the adjoint problem

We expand λ(x, t) in terms of the standard continuous piecewise linear functions {φi}mi=1 in space and

{ψi}ni=1 in time and substitute them into (145), similar to section 9.2, to obtain the following system of

linear equation:

M(λk+1 − 2λk + λk−1) = −τ2Sk − τ2Kλk − sτ2Dλk. (152)

with the initial condition λ(·, T ) = ∂λ
∂t (·, T ) = 0.

Here, M is the block mass matrix in space, K is the block stiffness matrix corresponding to the rotation

term, D is the stiffness matrices corresponding to the divergence term, Sk is the load vector at time level

tk, λk denote the nodal values of λ(·, tk), τ is the time step. Similarly with section 9.2 we get the explicit

formulas for the entries in system (145) at each element K as:

MK
i,j = (ε ϕi ◦ FK , ϕj ◦ FK)K ,

KK
i,j = (µ−1∇× ϕi ◦ FK ,∇× ϕj ◦ FK)K ,

DK
i,j = (ε∇ · ϕi ◦ FK ,∇ · ϕj ◦ FK)K ,

SKj,m = (E − Ẽ, ϕj ◦ FK)K ,

(153)

where (·, ·)K denotes the L2(K) scalar product. To obtain an explicit scheme, we approximate M with the

lumped mass matrix ML (for further details, see [26]). Next, we multiply (153) with (ML)−1 and get the

following explicit method:

λk−1 = −τ2(ML)−1Sk + 2λk − τ2(ML)−1Kλk − sτ2(ML)−1Dλk − λk+1. (154)

11 General Framework of a Posteriori Error Estimate

In this section we briefly present a posteriori error estimates for three kinds of errors as they are described

in [4]:

• For the error |L(u)− L(uh)| in the Lagrangian (139),

• For the error |F (ε, µ)− F (εh, µh)| in the Tikhonov functional (138),

• For the errors |ε− εh| and |µ− µh| in the regularized solutions of this functional ε, µ.

Here, uh, εh, µh are finite element approximations of the functions u, ε, µ, respectively. A posteriori er-

ror estimate in the Lagrangian was already derived in [14] for the case when only the function ε(x) in system

(109) is unknown. In [20, 21] were derived a posteriori error estimate in the Lagrangian which corresponds

to modified system (109). A posteriori error in the Lagrangian (139) can be derived straightforward from a

posteriori error estimate presented in [14] and thus, all details of this derivation are not presented here.
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However, to make clear how a posteriori errors in the Lagrangian and in the Tikhonov functional can be

obtained, we present general framework for them. First we note that

F (ε, µ)− F (εh, µh) = F ′ε(εh, µh)(ε− εh) + F ′µ(εh, µh)(µ− µh) +R(ε, εh) +R(µ, µh),

L(u)− L(uh) = L′(uh)(u− uh) +R(u, uh),
(155)

where R(ε, εh), R(µ, µh), R(u, uh), are remainders of the second order. We assume that (εh, µh) are lo-

cated in the small neighborhood of the regularized solutions (ε, µ), correspondingly. Thus, since the terms

R(u, uh), R(ε, εh), R(µ, µh) are of the second order then they will be small and we can neglect them in

(155).

We now use the splitting

u− uh = (u− uIh) + (uIh − uh),

ε− εh = (ε− εIh) + (εIh − εh),

µ− µh = (µ− µIh) + (µIh − µh),

(156)

together with the Galerkin orthogonality principle

L′(uh)(ū) = 0 ∀ū ∈ Uh,

F ′(zh)(b) = 0 ∀b ∈ Vh or ∀b ∈Wh,
(157)

insert (156) into (155) and get the following error representations:

L(u)− L(uh) ≈ L′(uh)(u− uIh),

F (ε, µ)− F (εh, µh) ≈ F ′ε(εh, µh)(ε− εIh) + F ′µ(εh, µh)(µ− µIh).
(158)

In (156), (158) functions uIh ∈ Uh and εIh, µ
I
h ∈ Vh or εIh, µ

I
h ∈ Wh denote the interpolants of u, ε, µ,

correspondingly.

Using (158) we conclude that a posteriori error estimate in the Lagrangian involves the derivative of the

Lagrangian L′(uh) which we define as a residual, multiplied by weights u − uIh. Similarly, a posteriori

error estimate in the Tikhonov functional involves the derivatives of the Tikhonov functional F ′ε(εh, µh) and

F ′µ(εh, µh) which represents residuals, multiplied by weights ε− εIh and µ− µIh, correspondingly.

To derive the errors |ε− εh| and |µ−µh| in the regularized solutions ε, µ of the functional (138) we will

use the convexity property of the Tikhonov functional together with the interpolation property (150). We

now make both error estimates more explicit.

11.1 A posteriori error estimate in the regularized solution

In this section we formulate theorem for a posteriori error estimates |ε− εh| and |µ− µh| in the regularized

solution (ε, µ) of the functional (138) which was derived in [4]. We define the scalar product (·, ·)L2 as (·, ·),
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as well as define the norm ‖·, ·‖L2
as ‖·, ·‖.

Theorem

Assume the Tikhonov functional (138) is strongly convex in the neighbourhood V(γ1,γ2)(δ) (ε∗, µ∗) . Let

(εh, µh) ∈ Wh be a finite element approximations of the regularized solution (ε, µ) ∈ H1(Ω) on the

finite element mesh Kh. Then there exists a constant D defined as D = D (M1,M2) = const. > 0 and

z∗ = (ε∗, µ∗) defied as exact solution to our exact function such that

‖F ′ (z1)− F ′ (z2)‖ ≤ D ‖z1 − z2‖ ,∀z1, z2 ∈ V1(z∗). (159)

such that the following a posteriori error estimates hold

‖ε− εh‖ ≤
D

α1
CI (||hεh||+ ‖[εh]‖) =

2D

δ2ν1
CI (||hεh||+ ‖[εh]‖) ∀εh ∈Wh,

‖µ− µh‖ ≤
D

α2
CI (‖hµh‖+ ‖[µh]‖) =

2D

δ2ν2
CI (‖hµh‖+ ‖[µh]‖) ∀µh ∈Wh.

(160)

In the case when εh, µh ∈ Vh we have a posteriori error estimate

‖ε− εh‖ ≤
D

α1
CI ‖hεh‖L2(Ω) =

2D

δ2ν1
CI ‖hεh‖L2(Ω) ,

‖µ− µh‖ ≤
D

α2
CI ‖hµh‖L2(Ω) =

D

δ2ν2
CI ‖hµh‖L2(Ω) .

Proof: For the proof see [4].

11.2 A posteriori error estimate for the Tikhonov functional

In next theorem we present a posteriori error estimate for the error in the Tikhonov functional (138) on the

finite element mesh Kh which was derived in [4].

Theorem

Suppose that there exists minimizer (ε, µ) ∈ H1(Ω) of the Tikhonov functional (138) on the mesh Kh.

Suppose also that there exists finite element approximation (εh, µh) of (ε, µ) of F (ε, µ) on the set Wh and

mesh Kh with the mesh function h. Then the following approximate a posteriori error estimate for the error

e = |F (ε, µ)− F (εh, µh)| in the Tikhonov functional (138) holds

e = |F (ε, µ)− F (εh, µh)| ≤ CI(‖F ′ε(εh, µh)‖ (||hεh||+ ‖[εh]‖)

+
∥∥F ′µ(εh, µh)

∥∥ (||hµh||+ ‖[µh]‖)).
(161)

In the case when the finite element approximation zh ∈ Vh we have following a posteriori error estimate

e = |F (ε, µ)− F (εh, µh)| ≤ CI
(
‖F ′ε(εh, µh)‖ ||hεh||+

∥∥F ′µ(εh, µh)
∥∥ ||hµh||) . (162)

Proof: For the proof see [4].
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12 The Adaptive Algorithms

In our adaptive algorithms for the mesh refinement we apply the ideas of [17], Theorem 5.1 and the criterion

of Remark 5.2 of [14]. In Algorithm 1 we use constant regularization parameters in the optimization proce-

dure while in Algorithm 2 we choose these parameters iteratively. FunctionsEh (x, t, εmh , µ
m
h ) , λh (x, t, εmh , µ

m
h )

are computed by solving the state and adjoint problems with ε := εmh and µ := µmh . We iteratively update

approximations εmh and µmh of the functions εh and µh, respectively , where m is the number of iteration in

our optimization procedure.

Algorithm 1 : Adaptive Algorithm

Step 0. Choose the mesh Kh in Ω and time partition J of the time interval (0, T ) . Start with the initial

approximations ε0
h = ε0 and µ0

h = µ0 and which are located in the small neighbourhood of the exact

solution (ε∗, µ∗), see [7] for details, then compute the sequences of εmh , µ
m
h via the following steps:

Step 1. Compute the approximate solutions Eh (x, t, εmh , µ
m
h ) and λh (x, t, εmh , µ

m
h ) of state (103) and adjoint

(145) problems on Kh and J , using domain decomposition FEM/FDM method described in section

9.4.

Step 2. Update the coefficient εh := εm+1
h and µh := µm+1

h on Kh and J using the conjugate gradient

method:

εm+1
h (x) := εmh (x) + α1d

m
1 (x),

µm+1
h (x) := µmh (x) + α2d

m
2 (x),

where αi, i = 1, 2, are step-sizes in the gradient update [49] and

dm1 (x) = −gm1 (x) + βm1 d
m−1
1 (x),

dm2 (x) = −gm2 (x) + βm2 d
m−1
2 (x),

with

βm1 =
||gm1 (x)||2

||gm−1
1 (x)||2

,

βm2 =
||gm2 (x)||2

||gm−1
2 (x)||2

,

where d0
1(x) = −g0

1(x), d0
2(x) = −g0

2(x).

Here, functions gm1 (x) and gm2 (x) are defined as :

gm1 (x) = −
∫

0

T ∂λmh
∂t

(x, t) · ∂E
m
h

∂t
(x, t) dt

+ ξ

∫ T

0

∇ · Emh (x, t)∇ · λmh (x, t) dt+ γ1(εh
m(x)− ε0(x)),

(163)
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gm2 (x) = −
∫

0

T 1

(µmh )
2 ∇× E

m
h (x, t)∇× λmh (x, t) dt+ γ2(µmh (x)− µ0(x)). (164)

Step 3. Stop updating the coefficient εmh and set εh := εm+1
h , M := m+ 1 if either ||gm1 ||L2(Ω) ≤ θ or norms

||εmh ||L2(Ω) are stabilized. Here, θ is the tolerance in m updates of the gradient method.

Step 4. Stop updating the coefficient µmh and set µh := µm+1
h , M := m + 1 if either ||gm2 (x)||L2(Ω) ≤ θ or

norms ||µmh ||L2(Ω) are stabilized. Otherwise set m := m+ 1 and go to step 1.

Step 5. Compute gM1 and gM2 via (165). Refine the mesh at all grid points x where

|gM1 (x) + gM2 (x) | ≥ β1 max
x∈Ω
|gM1 (x) + gM2 (x) |.

Here the tolerance number β1 ∈ (0, 1) is chosen by the user.

Step 6. Construct a new mesh Kh in Ω and a new partition Jk of the time interval (0, T ). On Jk the new

time step τ should be chosen in such a way that the CFL condition (134) is satisfied. Interpolate the

initial guess ε0 and µ0 from the previous mesh to the new mesh. Next, return to step 1 at m = 1 and

perform all above steps on the new mesh. Stop mesh refinements if norms defined in steps 3 and 4

either increase or stabilize, compared with the previous mesh.

Algorithm 2 : Iteratively regularized adaptive algorithm

Step 0. Choose the mesh Kh in Ω and time partition J of the time interval (0, T ) . Start with the initial

approximations ε0
h = ε0 and µ0

h = µ0 and which are located in the small neighbourhood of the exact

solution (ε∗, µ∗), see [7] for details, then compute the sequences of εmh , µ
m
h via the following steps:

Step 1. Compute the approximate solutions Eh (x, t, εmh , µ
m
h ) and λh (x, t, εmh , µ

m
h ) of state (103) and adjoint

(145) problems on Kh and J , using domain decomposition FEM/FDM method described in section

9.4.

Step 2. Update the coefficient εh := εm+1
h and µh := µm+1

h on Kh and J using the conjugate gradient

method:

εm+1
h (x) := εmh (x) + α1d

m
1 (x),

µm+1
h (x) := µmh (x) + α2d

m
2 (x),

where αi, i = 1, 2, are step-sizes in the gradient update [49] and

dm1 (x) = −gm1 (x) + βm1 d
m−1
1 (x),

dm2 (x) = −gm2 (x) + βm2 d
m−1
2 (x),
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with

βm1 =
||gm1 (x)||2

||gm−1
1 (x)||2

,

βm2 =
||gm2 (x)||2

||gm−1
2 (x)||2

,

where d0
1(x) = −g0

1(x), d0
2(x) = −g0

2(x).

Here, functions gm1 (x) and gm2 (x) are defined as :

gm1 (x) = −
∫

0

T ∂λmh
∂t

(x, t) · ∂E
m
h

∂t
(x, t) dt

+ ξ

∫ T

0

∇ · Emh (x, t)∇ · λmh (x, t) dt+ γm1 (εh
m(x)− ε0(x)),

(165)

gm2 (x) = −
∫

0

T 1

(µmh )
2 ∇× E

m
h (x, t)∇× λmh (x, t) dt+ γm2 (µmh (x)− µ0(x)). (166)

where functions Eh (x, t, εmh , µ
m
h ) , λh (x, t, εmh , µ

m
h ) are computed by solving the state and adjoint

problems with ε := εmh and µ := µmh . We iteratively update approximations εmh and µmh of the

functions εh and µh, respectively , where m is the number of iteration in our optimization procedure.

Also here,γm1 and γm2 are iteratively chosen regularization parameters by rules of section 6.3.

Step 3. Stop updating the coefficient εmh and set εh := εm+1
h , M := m+ 1 if either ||gm1 ||L2(Ω) ≤ θ or norms

||εmh ||L2(Ω) are stabilized. Here, θ is the tolerance in m updates of the gradient method.

Step 4. Stop updating the coefficient µmh and set µh := µm+1
h , M := m + 1 if either ||gm2 (x)||L2(Ω) ≤ θ or

norms ||µmh ||L2(Ω) are stabilized. Otherwise set m := m+ 1 and go to step 1.

Step 5. Compute gM1 and gM2 via (165). Refine the mesh at all grid points x where

|gM1 (x) + gM2 (x) | ≥ β1 max
x∈Ω
|gM1 (x) + gM2 (x) |.

Here the tolerance number β1 ∈ (0, 1) is chosen by the user.

Step 6. Construct a new mesh Kh in Ω and a new partition Jk of the time interval (0, T ). On Jk the new

time step τ should be chosen in such a way that the CFL condition (134) is satisfied. Interpolate the

initial guess ε0 and µ0 from the previous mesh to the new mesh. Next, return to step 1 at m = 1 and

perform all above steps on the new mesh. Stop mesh refinements if norms defined in steps 3 and 4

either increase or stabilize, compared with the previous mesh.

In step 2 of these algorithms the parameters α1 and α2 can be computed by a line search procedure, see,

e.g. [49].
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13 Numerical Studies

In this section we discuss the numerical simulation of the reconstruction of two unknown functions, ε and µ,

inside a domain ΩFEM using the adaptive algorithm presented in section 12 as well as using hybrid FEM/FDM

of section 9.4. We set values of two functions ε = µ = 1 inside of ΩFDM .

Our goal is to reconstruct dielectric permittivity and magnetic permeability, ε and µ. In our numerical

experience we work with relative dielectric permittivity and magnetic permeability, εr and µr, which are

dimensionless and are defined as ε = εrε0, µ = µrµ0. Here εr and µr can take values in the following

intervals:

εr(target) ∈ (1, 13),

µr(target) ∈ (1, 2).

In all of our computations we initialize only one component E2 of the electrical field E(E1, E2, E3) as the

boundary condition in (96)–(99) on ST [33]. Initial conditions are considered as zero. We used modified

version of the stabilized domain decomposition method of [13] which was implemented using the software

packages WavES [60] with two functions εr and µr.

13.1 Specific aims

We have following aims in our computations.

1 Simulation of the forward problem (109)-(114) in order to obtain backscattering data. Before

reconstruction of two unknown relative coefficients, εr and µr, from backscattering data simultane-

ously, we need to simulate these data. To do this we generate geometry with exact values of εr and µr

and compute the forward problem with the known exact values in them. Then we save computed

solution E(x, t) at the observation points at ST at the backscattered side ∂Ω1. We work only with

these backscattering data to solve our CIP.

2 Reconstruction of 12 targets.

The second goal is to reconstruct targets in a finite element domain ΩFEM using backscattering data

of item 1, see Figure 4.

3 Checking stability with respect to the frequency.

The third aim is to check if computations of our IP are stable with respect to the wave length. The

wave length can be computed by λ = 2πc
ω , where c = 1√

εµ is the wave speed and ω is frequency in
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the initialized plane wave. We choose frequency in the interval [20, 50], ω ∈ [20, 50], and then check

how the Maxwell’s system response to our fixed parameters when frequency is changing.

4 Checking stability with respect to the noise level.

The fourth aim is to find the interval for the noise level which makes our computations stable. This

means that we search for a noise interval on what we can get stable reconstruction of ε and µ such that

this noise does not destroys the reconstruction.

5 Checking the impact of the choice of the regularization parameters

Finally, we reconstruct εr and µr using our 2 adaptive algorithm of section 12. In Algorithm 1 we

consider regularization parameters as fixed numbers. Algorithm 2 is based on iteratively computed

regularization parameters as described in section 12. Then we compare results obtained via these both

algorithms.

To achieve our goals, we split the entire domain into two geometries, ΩFEM and ΩFDM , such that Ω =

ΩFEM ∪ ΩFDM , see Figure 4. Next, we consider dimensionless spatial variables x′ = x/(1m) to get the

dimensionless computational domain form of the domain ΩFEM

ΩFEM = {x = (x1, x2, x3) ∈ (−3.2, 3.2)× (−0.6, 0.6)× (−0.3, 0.3)}

The dimensionless size of our computational domain Ω for the forward problem is

Ω = {x = (x1, x2, x3) ∈ (−3.4, 3.4)× (−0.8, 0.8)× (−0.4, 0.4)}.

The space mesh in ΩFEM and ΩFDM consists of tetrahedra and cubes, respectively. We take mesh

size, h = 0.1, in the optimization algorithm in our geometries in the hybrid FEM/FDM method, as well as

in the overlapping regions between FEM and FDM domains. While doing computational tests, the penalty

factor s in the explicit FEM scheme (123) is equal to one in ΩFEM . We note that due to using the domain

decomposition method as well as conditions (94)–(95), the Maxwell’s system in ΩFDM transforms to the

wave equation

∂2E

∂t2
−4E = 0, in ΩFDM × (0, T ),

E(x, 0) = f0(x), Et(x, 0) = 0 in ΩFDM ,

∂nE(x, t) = (0, f (t) , 0), on ∂Ω1 × (0, t1],

∂nE(x, t) = −∂tE(x, t), on ∂Ω1 × (t1, T ),

∂nE(x, t) = −∂tE(x, t), on ∂Ω2 × (0, T ),

∂nE(x, t) = 0, on ∂Ω3 × (0, T ).

(167)
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We initialize only the second component of the electric field E2 as a plane wave f(t) in ΩFDM in time

T = [0, 3] such that

f(t) =

 sin(ωt), if t ∈ (0, 2π
ω ),

0, if t > 2π
ω ,

(168)

while two other components of electric field E2, E3 are initialized as zero. This means that for the solution

of forward problem via hybrid FEM/FDM method, it is required to solve equation (167) in ΩFDM , and in

ΩFEM we have to solve

ε
∂2E

∂t2
+∇× (µ−1∇× E)− s∇(∇ · (εE)) = 0, in ΩFEM,

E(x, 0) = 0, Et(x, 0) = 0 in ΩFEM,

E(x, t)|∂ΩFEM
= E(x, t)|∂ΩFDMI

.

Here, ∂ΩFDMI
is internal boundary of the domain ΩFDM, and ∂ΩFEM is the boundary of the domain ΩFEM.

Similarly, in ΩFDM the adjoint problem transforms to the wave equation

∂2λ

∂t2
−4λ = −(E − Ẽ)zδ, in ST ,

λ(x, T ) = 0, λt(x, T ) = 0 in Ω,

∂nλ(x, t) = 0 on S3.

(169)

When solving the adjoint problem via hybrid FEM/FDM method in ΩFDM we solve the problem (169) and

in ΩFEM we have to solve

ε
∂2λ

∂t2
+∇× (µ−1∇× λ)− s∇(∇ · (ελ)) = 0, in ΩFEM,

λ(x, T ) = 0, λt(x, T ) = 0 in ΩFEM,

λ(x, t)|∂ΩFEM
= λ(x, t)|∂ΩFDMI

.

We define exact functions to be reconstructed εr = 12 and µr = 2 inside of all inclusions, see Figure 5, and

εr = µr = 1 at all other points of computational domain ΩFEM . We choose in our computations the time

step τ = 0.006 which satisfies the CFL condition [27] and perform computation in time interval [0, 3].

13.2 Generation of backscattered data

To generate backscattered data Ẽ at the observation points at ST in (137) we solve the forward problem

(109)–(114), with function f(t) given by (168) in the time interval T = [0, 3] with the exact values of the

parameters εr = 12, µr = 2 inside inclusions of the Figure 5, and εr = µr = 1 everywhere else in Ω, see

Figures 7–12. We avoid the variational crime in our tests since the data were generated on a locally refined

mesh where inclusions were presented. However, we use our optimization algorithm on a different struc-

tured mesh with the mesh size h = 0.1 at the overlapping nodes between FEM/FDM domain, see section
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9.4 for description of these nodes.

We present the isosurfaces of the simulated exact solution of the initialized componentsE1(x, t) andE2(x, t)

of the electric field in the forward problem (96)–(99) with ω ∈ [20, 50] at different times in Figures 14–18.

We observe at these figures the backscattering wave field of the two components, E1(x, t) and E2(x, t).

13.3 Reconstructions

To start our optimization algorithm we need to have initial guess values ε0, µ0 in all points of Ω. We let

ε0 = 1, µ0 = 1 in all points of Ω. This initial guesses are chosen similarly to [14, 15] since our computations

show that these initial guesses reconstruct both functions εr, µr good , see also [17] for similar observations.

Such choice of the initial guess values means that we start the conjugate gradient method from the homoge-

neous domain.

To do computations the minimal and maximal values of the functions εr(x) and µr(x) belong to the follow-

ing sets of desired acceptable parameters

Cεr ∈ {εr ∈ C(Ω̄)|1 ≤ εr(x) ≤ 13},

Cµr
∈ {µr ∈ C(Ω̄)|1 ≤ µr(x) ≤ 2}.

The solution of the inverse problem requires to be regularized since different coefficients can correspond

to similar wave reflection data on ∂1Ω. To do so, we need two different regularization parameters γ1 =

0.01 and γ2 = 0.7 in (138) for the computation of inverse problem. Chosen values for these regularization

parameters are based on our computational experience of our previous work [15] on this topic. We choose

the regularization parameters in a way that the values of the regularization parameters give the smallest

reconstruction relative L2 errors, eε and eµ where eε = ‖ε−εh‖
‖ε‖ and eµ = ‖µ−µh‖

‖µ‖ . Here ε, µ are the exact

values of the coefficients and εh, µh are computed ones. Now, we consider regularization parameters as

fixed constants but in our final step of our computations, regularization parameters are chosen iteratively.

The tolerance θ in our adaptive algorithm is set to θ = 10−6. To get images of Figures 19–39, we assume

that the function εn(x) and µl(x) are our reconstructions gained by the adaptive algorithm where n and l are

number of iterations in conjugate gradient method when we have stopped to compute ε(x) and µ(x). Then

we let

ε̃n(x) =

 εn(x) if εn(x) > 0.63 max
Ω

εn(x),

1, otherwise.

and

µ̃l(x) =

 µl(x) if µl(x) > 0.5 max
Ω

µl(x),

1, otherwise.
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The simultaneous reconstruction of εr and µr for the frequency ω ∈ [20, 50] and for different level of

additive noise is presented in Figures 19–39.

13.4 Stability results with respect to the frequency

To achieve our second goal, checking stability of our system with respect to ω, we need to generate the

backscattering data for various frequencies from interval [20, 50] with the additive noise as well as with

parameters defined in our computations of Inverse problem which are fixed numbers. We introduce additive

noise to our simulated data as

Eobs = Eobs(1 + pα), (170)

where Eobs are computed values of E(x, t) with known values of εr and µr via hybrid FEM/FDM method,

α ∈ [−1, 1] is randomly chosen constants and p is the noise level.

We consider the following test cases for the generation of the backscattering data:

i) Fixed additive noise 3%, p = 0.03 in (170) with frequency ω ∈ [20, 50];

ii) Fixed additive noise 7%, p = 0.07 in (170) with frequency ω ∈ [20, 50].

Using a posteriori error estimates of section 11.2, we expect to get the better reconstruction of our coeffi-

cients and consequently improved images of reconstructed functions after refinement in our finite element

domain. Figures 19–39 show reconstruction results of εr, µr obtained via the adaptive algorithm 1.

Numerical Results: Figure 19 presents images of computed coefficients when noise is low and regular-

ization parameters are fixed constants. After the first iteration in conjugate gradient method, none of the

coefficients reach their maximum values considered in (94)–(95).

In next step, see Figure 20, still we do not have any refinement in the geometry at the last iteration in the

conjugate gradient method. This Figure shows the reconstructed functions, εr, µr, such that max
ΩFEM

εr =

13, max
ΩFEM

µr = 2.06. Figure 23 presents the final result of our adaptive algorithm 1 on a 5 times locally

refined mesh in ΩFEM .

Figure 24 and 32 show that the computed images of the reconstructed function εr on the coarse mesh in

ΩFEM are not good in almost half of the finite element domain while function µr is reconstructed properly.

These computations are done with the noise level p = 0.03 and p = 0.07 in (170) and for the frequency

ω = 30 in (168).

Figure 24 and 32 show that we do not have good reconstruction of εr after the first iteration in the conjugate

gradient method on the coarse mesh. Meanwhile, Figures 25–32 present that the image of function µr on

the 5 times adaptively refined mesh is reconstructed properly with max
ΩFEM

µr = 1.567. Figure 26 presents
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reconstruction of functions εr and µr for the frequency ω = 40 in (168) and additive noise p = 0.03 in (170)

on a coarse mesh. We observe good reconstruction of locations of all inclusions and values for εr and µr.

However, shapes in z direction should be improved.

Figure 27 shows that on the 5 times adaptively refined mesh in ΩFEM we reconstruct both functions

εr(x) and µr(x) properly. Comparing Figures 26 and 27, we can see that adaptive algorithm can signif-

icantly improve shapes of our inclusions in all x1, x2, x3 directions. Figure 28 presents reconstruction of

functions εr and µr on a coarse mesh such that max
ΩFEM

εr = 13, max
ΩFEM

µr = 1.65. These computations were

performed with frequency ω = 50 and noise level p = 0.03.

13.5 Stability results with respect to the noise level

Analyzing the results obtained in the previous section, we can claim that the appropriate interval of fre-

quencies where we obtain stable reconstructions is interval ω ∈ [40, 50]. Now we choose a fixed frequency

ω = 40 in (168) and check how our system responds to the different noise level. In this section we check sta-

bility of reconstructions functions εr and µr for the frequency ω = 40 and for the noise level 12%, 17%, 25%

and 35% in backscattering data. We have already tested in the previous section smaller additive noise such

that p = 0.03, 0.07 in (170). The obtained results are shown in Figures 40–47.

Numerical Results: We fix frequency ω = 40 in (168) and check behaviour of the reconstructed functions,

εr and µr, for a higher additive noise 12% and 17% such that p = 0.12 and p = 0.17 in (170). Using figures

41 and 43 we observe that the maximum of values for εr and µr is not small.

Figures 40–41 show that the functions εr and µr have a small error in the computed maximum values after

the first iteration in the conjugate gradient method on a coarse mesh. The obtained results are compatible

with our anticipation based on the theoretical observations.

Figure 43 presents that we are able to reconstruct functions, εr and µr, with a higher noise 17% with

max
ΩFEM

εr = 12.95, max
ΩFEM

µr = 1.56. In the next step we increase the additive noise from 17% to 25% using

frequency ω = 40 to check reconstructions of functions εr and µr on a coarse mesh. In these computations

both functions reach their maximum values. Figure 44 presents the obtained results.

We continue our investigations through increasing the additive noise. We let additive noise p = 0.35 in (170)

and frequency ω = 40 in (168). Figure 46 shows obtained reconstructions on a coarse mesh.

Figure 47 presents that even with a higher additive noise, 35%, we can reconstruct both functions εr and µr

for the frequency ω = 40 on the 5 times adaptively refined mesh. This figure shows that we can not see

clearly reconstructions for µr since about 1
6 part of the finite element domain, top left side of the ΩFEM , is

not reconstructed properly.
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13.6 Application of different techniques for the choice of regularization parameter

In the computations of this section we apply adaptive algorithm 2 with iterative choice of the regularization

parameters in the Tikhonov functional (138). We consider two methods for choosing iterative regularization

parameters, γ1, γ2, in the Tikhonov functional (138). Up to now, we have presented results based on the

optimal choice of the regularization parameters, γ1, γ2, which were chosen in a computational efficient way.

Now we choose our regularization parameters iteratively based on the theory given in section 6 specifically

rules given by (89) and (91). Using rule 2 given by the (91) we test our adaptive algorithms choosing the

regularization parameter in the Tikhonov functional without taking into account the noise level. Then we

compare the results obtained by considering the iterative regularization parameters, γ1, γ2, with the results

obtained by using fixed regularization parameters. Finally, we fix frequency ω = 40 in (168) and test our

adaptive algorithms for different additive noise level in all methods. The obtained results of our computa-

tions are given in Figures 50–57.

Numerical Results: In Figure 50, we want to check how choice of regularization parameters γ1, γ2, affects

the obtained reconstruction of functions, εr and µr. Our computations show that for the frequency ω = 40

in (168) and additive noise p = 0.17 the reconstruction of εr is not sensitive to the choice of the method

for computation of the regularization parameters via rule 2 given by (89). Figure 51 presents that the recon-

struction of µr is more sensitive to chosen method for computation of regularization parameters. One should

note that although both figures look similar to each other, the iteratively computed regularization parameters

γ1, γ2 via rule 1 given by (89) affects the maximum value of the reconstructed function µr, see Table 3. We

can conclude that this method has enormous impact on the reconstruction of function µr in ΩFEM .

Figure 57 shows that the iteratively computed regularization parameters, γ1, γ2, using the rule 1 given by

(89) in the adaptive algorithms helps us to maintain the proper reconstruction of µr while the additive noise

in data is high and p = 0.35 in (170), see Table 3.

Now we test the adaptive algorithm 2 with iteratively computed regularization parameters γ1, γ2 using the

rule 2 given by (91). Figure 60 shows that using Algorithm 2 for the frequency ω = 40 with p = 0.17 in data

in (170) the reconstruction of εr is not too sensitive to the iteratively computed regularization parameters via

rule 2 given by (91).

Figure 61 presents that reconstruction of µr is more sensitive to the iterative choice of the regularization

parameters γ1, γ2, computed via rule (91). One should note that although both figures look similar to each

other, when applying rule 2 given by (91) the maximum value of the reconstructed function µr is higher, see

Table 3. We can conclude that the choice of regularization parameters has enormous impact on the recon-

struction of µr in ΩFEM .

Figure 64 shows that for the frequency ω = 40 and p = 0.35 in data the reconstruction of εr is not sensitive

to the method for the computation of the regularization parameters. Figure 65 shows that using the iteratively
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computed regularization parameters, γ1 and γ2, via the rule 2 given by (91) helps us to maintain the proper

reconstruction of function µr with a high additive noise p = 0.35.

14 Discussion and Conclusion

In this work we have used time-dependent backscattering data for reconstruction of both coefficients, ε(x) and µ(x).

Our goal was to improve reconstructions of εr and µr obtained by optimization approach in [15] using iter-

atively regularized adaptive finite element method. In the theoretical part we presented different strategies

for the choice of regularization parameters in the Tikhonov functional (138). We described main framework

for derivation of a posteriori error estimates for CIPs and formulated two adaptive algorithms. In the nu-

merical part of this work we tested adaptive algorithm 1 with two different noise levels, 3% and 7%, for

different frequencies ω on the interval [20, 50]. We also performed tests with fixed frequency ω = 40 in

(168) and observed simultaneously reconstruction of both coefficients, εr(x) and µr(x), with higher noise

levels 12%, 17%, 25% and 35%. We tested adaptive algorithm 2 with iterative choice of regularization

parameters, γ1 and γ2, in the Tikhonov functional (138). First part of our numerical simulations is done

using adaptive algorithm 1 when regularization parameters in the Tikhonov functional is chosen optimally

based on experimental results. The second part is done using adaptive algorithm 2 with iterative choice of

regularization parameters computed via (89) and (91). We have used two different rules in this algorithm

for choosing regularization parameters. An important aspect of this part is that we are able to reconstruct

simultaneously both coefficients, εr(x) and µr(x), with high noise level such as 35 % and we have signifi-

cant improvement in shapes and locations of all inclusions to be reconstructed. We conclude that we can get

significant improvement in obtained images using adaptive algorithms with different values for computation

of regularization parameters in the Tikhonov functional. So we can claim that iteratively regularized adap-

tive FEM is powerful tool for the reconstruction of both functions, εr(x) and µr(x), and their locations and

shapes accurately.
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Figure 3: Hybrid domain, Ω = ΩFEM ∪ ΩFDM .

Figure 4: The finite element domain ΩFEM with inclusions to be reconstructed.

Figure 5: The FEM domain ΩFEM with inclusions, the exact values of functions εr(x) and µr(x) are: εr(x) =

12, µr(x) = 2 inside the twelve small inclusions, and εr(x) and µr(x) are known everywhere else in ΩFEM .
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Figure 6: Domain decomposition: hybrid FEM/FDM.
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Figure 7: Backscattering data of the one component of the electric field E(x, t), E2(x, t), frequency ω = 20 in (168):

(a) we show backscattered data with 5% of additive noise; (b) data of (a) in xy projection; (c) backscattered data with

40% of additive noise; (d) data of (c) in xy projection.
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Figure 8: Backscattering data of the one component of the electric field E(x, t), E2(x, t), frequency ω = 40 in (168):

(a) we show backscattered data with 5% of additive noise; (b) data of (a) in xy projection; (c) backscattered data with

40% of additive noise; (d) data of (c) in xy projection.
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Figure 9: (a) Backscattering data of the component E2(x, t), frequency ω = 20 in (168) with 5% of additive noise in

data: (b) Backscattering data of a) in xy projection.
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Figure 10: Comparison between computed E2 (below) and E1 (on top) components of the backscattered electric field

with 20% additive noise: (a) Frequency ω = 20 in (168) (b) Frequency ω = 40 in (168).

55



100

The electric field of backscattering data

50

00

5

10

15

0.2

0

-0.2

-0.4

-0.6

-0.8

20

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

100

The electric field of backscattering data

50

00

5

10

15

0.05

0

-0.05

-0.1

-0.15

20

-0.1

-0.08

-0.06

-0.04

-0.02

0

(a) (b)

Figure 11: Comparison between computed E2 (below) and E1 and E3 (on top) components of the backscattering

electric field with 20% additive noise in data: (a) Frequency ω = 20 in (168). (b) Frequency ω = 40 in (168).
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(a) t=0.3 s.

(b) t=0.6 s.

(c) t=0.9 s.

Figure 13: Isosurface of the simulated exact solution of the component E1(x, t) for the forward problem at different

times. The snapshot times are: (a) 0.3 s, (b) 0.6 s and (c) 0.9 s, respectively.
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(a) t=1.2 s.

(b) t=1.5 s.

(c) t=1.8.

Figure 14: Isosurface of the simulated exact solution of the component E1(x, t) for the forward problem at different

times. The snapshot times are: (a) 1.2 s, (b) 1.5 s and (c) 1.8 s, respectively.
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(a) t= 2.1 s.

(b) t=2.4 s.

(c) t=2.7 s.

Figure 15: Isosurface of the simulated exact solution of the component E1(x, t) for the forward problem at different

times. The snapshot times are: (a) 2.1 s, (b) 2.4 s and (c) 2.7 s, respectively.
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(a) t=0.3 s.

(b) t=0.6 s.

(c) t=0.9 s.

Figure 16: Isosurface of the simulated exact solution of the component E2(x, t) for the forward problem at different

times. The snapshot times are: (a) 0.3 s, (b) 0.6 s and (c) 0.9 s, respectively.
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(a) t=1.2 s.

(b) t=1.5 s.

(c) t=1.8 s.

Figure 17: Isosurface of the simulated exact solution of the component E2(x, t) for the forward problem at different

times. The snapshot times are: (a) 1.2 s, (b) 1.5 s and (c) 1.8 s, respectively.
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(a) t= 2.1 s.

(b) t= 2.4 s.

(c) t= 2.7 s.

Figure 18: Isosurface of the simulated exact solution of the component E2(x, t) for the forward problem at different

times. The snapshot times are: (a) 2.1 s, (b) 2.4 s and (c) 2.7 s, respectively.
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Frequency ω coarse mesh 1 ref. mesh 2 ref. mesh 3 ref. mesh 4 ref. mesh 5 ref. mesh

20 # nodes 10958 11061 11299 12121 14007 18758

# elements 55296 55752 61440 72508 96378

εcomp
r 13 13 13 13 13 12.92

µcomp
r 2.06 2.06 2.06 2.06 2.06 1.52

30 # nodes 10958 11272 12115 13575 16763 25797

# elements 55292 57018 60875 69450 885381 131932

εcomp
r 13 13 13 13 13 12.98

µcomp
r 2.06 2.06 2.06 2.06 2.06 1.56

40 # nodes 10958 11001 11091 11408 12156 13952

# elements 55296 55392 55872 57544 61794 71276

εcomp
r 13 13 13 13 13 12.97

µcomp
r 2.06 2.06 2.06 2.06 2.06 1.565

50 # nodes 10958 11052 11901 12291 14017 18594

# elements 55296 55693 56680 60228 72504 95554

εcomp
r 13 13 13 13 13 12.96

µcomp
r 1.65 1.65 1.65 1.65 1.65 1.464

Table 1: Computed values of εcomp
r := max

ΩFEM

εr and µcomp
r := max

ΩFEM

µr on the adaptively refined meshes.

Here regularization parameters, γ1, γ2, are fixed constants. Computations of CIP are done with the noise

p = 0.03 in (170).
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Frequency ω coarse mesh 1 ref. mesh 2 ref. mesh 3 ref. mesh 4 ref. mesh 5 ref. mesh

20 # nodes 10958 11075 11331 12292 14328 19954

# elements 55296 55836 57042 62382 74354 102604

εcomp
r 13 13 13 13 13 12.96

µcomp
r 2.06 2.06 2.06 2.06 2.06 1.53

30 # nodes 10958 11309 12337 14043 17629 28738

# elements 55292 57240 61930 72056 93656 146974

εcomp
r 13 13 13 13 13 12.97

µcomp
r 2.06 2.06 2.06 2.06 2.06 1.55

40 # nodes 10958 11001 11091 11408 12156 13952

# elements 55296 55392 55872 57544 61794 71276

εcomp
r 13 13 13 13 13 12.95

µcomp
r 2.06 2.06 2.07 2.06 2.06 1.57

50 # nodes 10958 11087 11408 12291 14527 20542

# elements 55296 55908 57432 62354 75464 105856

εcomp
r 13 13 13 13 13 12.96

µcomp
r 2.06 2.06 2.06 2.06 2.06 1.56

Table 2: Computed values of εcomp
r := max

ΩFEM

εr and µcomp
r := max

ΩFEM

µr on the adaptively refined meshes.

Here regularization parameters, γ1, γ2, are fixed constants. Computations of CIP are done with the noise

p = 0.07 in (170).
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Test Regularization parameter / Noise coarse mesh 1 ref. mesh 2 ref. mesh 3 ref. mesh 4 ref. mesh 5 ref. mesh

1 Fixed / Noise 17% # nodes 10958 11020 11170 11673 13330 16552

# elements 55296 55542 56258 58994 68516 85226

εcomp
r 13 13 13 13 13 12.95

µcomp
r 2.06 2.06 2.06 2.06 2.06 1.56

2 Iterative rule 1 (89) / Noise 17% # nodes 10958 11030 11165 11683 13244 16388

# elements 55292 56224 59054 72056 68038 84338

εcomp
r 13 13 13 13 13 12.97

µcomp
r 2.06 2.06 2.06 2.06 2.06 2.06

3 Iterative rule 2 (91) / Noise 17% # nodes 10958 11030 11165 11683 13245 16387

# elements 55292 55566 56224 59054 68044 84332

εcomp
r 13 13 13 13 13 12.99

µcomp
r 2.06 2.06 2.06 2.06 2.06 2.06

4 Fixed / Noise 35% # nodes 10958 11049 11270 11876 13943 18576

# elements 55296 55680 56742 60096 72074 95586

εcomp
r 13 13 13 13 13 12.96

µcomp
r 2.06 2.06 2.06 2.06 2.06 1.56

5 Iterative rule 1 (89) / Noise 35% # nodes 10958 11049 11271 11897 14042 18578

# elements 55296 55680 56764 60210 72640 95614

εcomp
r 13 13 13 13 13 12.99

µcomp
r 2.06 2.06 2.06 2.06 2.06 2.06

6 Iterative rule 2 (91) / Noise 35% # nodes 10958 11049 11273 11891 14050 18568

# elements 55296 55680 56756 60176 72684 95586

εcomp
r 13 13 13 13 13 13

µcomp
r 2.06 2.06 2.06 2.06 2.06 2.06

Table 3: Computed values of εcomp
r := max

ΩFEM

εr and µcomp
r := max

ΩFEM

µr. Computations of CIP are done

with the two noise level p = 0.17 and p = 0.35 in (170). Here regularization parameters, γ1, γ2, are given

fixed constants (tests 1,4), iteratively computed via rule 1 given by (89) (tests 2,5) and iteratively computed

via rule 2 given by (91) (tests 3,6).
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(a) max εr ≈ 3.324 (b) maxµr ≈ 1.04

Figure 19: Computed images of reconstructed functions µr(x) and εr(x) after first iteration in conjugate gradient method on a coarse

mesh with 3% additive noise (p = 0.03 in (170)), frequency ω = 20 in (168), regularization parameters, γ1, γ2, are fixed constants.

(a) max εr ≈ 13 (b) maxµr ≈ 2.06

Figure 20: Computed images of reconstructed functions µr(x) and εr(x) after 8-th iteration in conjugate gradient method on a coarse

mesh with 3% additive noise (p=0.03 in (170)), frequency ω = 20 in (168), regularization parameters, γ1, γ2, are fixed constants.
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(a) 1 ref mesh, xy-view (b) xz-view (c) yz-view

(d) 2 ref mesh, xy-view (e) xz-view (f) yz-view

(h) 3 ref mesh, xy-view (i) xz-view (j) yz-view

(k) 4 ref mesh, xy-view (l) xz-view (m) yz-view

Figure 21: Adaptively refined meshes of Table 1 for frequency ω = 20 in (168) with additive noise 3% in data. Reconstructions on a

coarse mesh are presented in Figure 20.
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(a) 5 ref mesh, xy-view (b) xz-view (c) yz-view

Figure 22: Different projections of five times adaptively refined mesh for computed images of Figure 23.

(a) max εr ≈ 12.92 (b) maxµr ≈ 1.52

Figure 23: Computed images of reconstructed functions µr(x) and εr(x) after second iteration in conjugate gradient method on a 5

times adaptively refined mesh presented in Figure 22 with 3% additive noise (p=0.03 in (170)), frequency ω = 20 in (168), regularization

parameters, γ1, γ2, are fixed constants.
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(a) max εr ≈ 13 (b) maxµr ≈ 2.06

Figure 24: Computed images of reconstructed functions µr(x) and εr(x) after 6-th iteration in conjugate gradient method on a coarse

mesh with 3% additive noise (p = 0.03 in (170)), frequency ω = 30 in (168), regularization parameters, γ1, γ2, are fixed constants.

(a) max εr ≈ 12.98 (b) maxµr ≈ 1.56

Figure 25: Computed images of reconstructed functions µr(x) and εr(x) after 3-th iteration in conjugate gradient method on a 5 times

adaptively refined mesh with 3% additive noise (p = 0.03 in (170)), frequency ω = 30 in (168), regularization parameters, γ1, γ2, are fixed

constants.
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(a) max εr ≈ 13 (b) maxµr ≈ 2.06

Figure 26: Computed images of reconstructed functions µr(x) and εr(x) after 10-th iteration in conjugate gradient method on a coarse

mesh with 3% additive noise (p = 0.03 in (170)), frequency ω = 40 in (168), regularization parameters, γ1, γ2, are fixed constants.

(a) max εr ≈ 12.97 (b) maxµr ≈ 1.565

Figure 27: Computed images of reconstructed functions µr(x) and εr(x) after 3-th iteration in conjugate gradient method on a 5 times

adaptively refined mesh with 3% additive noise (p = 0.03 in (170)), frequency ω = 40 in (168), regularization parameters, γ1, γ2, are fixed

constants.
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(a) max εr ≈ 13 (b) maxµr ≈ 1.65

Figure 28: Computed images of reconstructed functions µr(x) and εr(x) after 10-th iteration in conjugate gradient method on a coarse

mesh with 3% additive noise (p = 0.03 in (170)), frequency ω = 50 in (168), regularization parameters, γ1, γ2, are fixed constants..

a) max εr ≈ 12.96 b) maxµr ≈ 1.464

Figure 29: Computed images of reconstructed functions µr(x) and εr(x) after 3-th iteration in conjugate gradient method on a 5 times

adaptively refined mesh with 3% additive noise (p = 0.03 in (170)), frequency ω = 50 in (168), regularization parameters, γ1, γ2, are fixed

constants.
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(a) max εr ≈ 13 (b) maxµr ≈ 2.06

Figure 30: Computed images of reconstructed functions µr(x) and εr(x) after 8-th iteration in conjugate gradient method on a coarse

mesh with 7% additive noise (p = 0.07 in (170)), frequency ω = 20 in (168), regularization parameters, γ1, γ2, are fixed constants.

(a) max εr ≈ 12.96 (b) maxµr ≈ 1.53

Figure 31: Interpolation of computed images of reconstructed functions µr(x) and εr(x) after 10-th iteration in conjugate gradient

method on a 5 times adaptively refined mesh with 7% additive noise (p = 0.07 in (170)), frequency ω = 20 in (168), regularization

parameters, γ1, γ2, are fixed constants.
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(a) max εr ≈ 13 (b) maxµr ≈ 2.06

Figure 32: Computed images of reconstructed functions µr(x) and εr(x) after 6-th iteration in conjugate gradient method on a coarse

mesh with 7% additive noise (p = 0.07 in (170)), frequency ω = 30 in (168), regularization parameters, γ1, γ2, are fixed constants.

(a) max εr ≈ 12.97 (b) maxµr ≈ 1.55

Figure 33: Computed images of reconstructed functions µr(x) and εr(x) after 3-th iteration in conjugate gradient method on a 5 times

adaptively refined mesh with 7% additive noise (p = 0.07 in (170)), frequency ω = 30 in (168), regularization parameters, γ1, γ2, are fixed

constants.
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(a) max εr ≈ 13 (b) maxµr ≈ 2.06

Figure 34: Computed images of reconstructed functions εr(x)and µr(x) from backscattering data on a coarse mesh with 7% additive

noise (p = 0.07 in (170)), frequency ω = 40 in (168), regularization parameters, γ1, γ2, are fixed constants.

(a) max εr ≈ 12.95 (b) maxµr ≈ 1.57

Figure 35: Computed images of reconstructed functions εr(x) and µr(x) from backscattering data on a 5 times adaptively refined mesh

with 7% additive noise (p = 0.07 in (170)), frequency ω = 40 in (168), regularization parameters, γ1, γ2, are fixed constants.
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(a) 1 ref mesh, xy-view (b) xz-view (c) yz-view

(d) 2 ref mesh, xy-view (e) xz-view (f) yz-view

(h) 3 ref mesh, xy-view (i) xz-view (j) yz-view

(k) 4 ref mesh, xy-view (l) xz-view (m) yz-view

Figure 36: Adaptively refined meshes of Table 2 when ω = 40 in (170) with 7% additive noise in data.
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(a) 5 ref mesh, xy-view (b) xz-view (c) yz-view

a) max εr ≈ 12.95 b) maxµr ≈ 1.57

Figure 37: Computed images of reconstructed functions µr(x) and εr(x) after 3-th iteration in conjugate gradient method on a 5 times

adaptively refined mesh with 7% additive noise (p = 0.07 in (170)), frequency ω = 40 in (168), regularization parameters, γ1, γ2, are fixed

constants.
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(a) max εr ≈ 13 (b) maxµr ≈ 2.06

Figure 38: Computed images of reconstructed functions µr(x) and εr(x) after 7-th iteration in conjugate gradient method on a coarse

mesh with 7% additive noise (p = 0.07 in (170)), frequency ω = 50, regularization parameters, γ1, γ2, are fixed constants.

(a) max εr ≈ 12.96 (b) maxµr ≈ 1.56

Figure 39: Computed images of reconstructed functions µr(x) and εr(x) after 3-th iteration in conjugate gradient method on a 5 times

adaptively refined mesh with 7% additive noise (p = 0.07 in (170)), frequency ω = 50 in (168), regularization parameters, γ1, γ2, are fixed

constants.
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(a) max εr ≈ 13 (b) maxµr ≈ 1.58

Figure 40: Computed images of reconstructed functions µr(x) and εr(x) after first iteration in conjugate gradient method on first

adaptively refined mesh with 12% additive noise (p = 0.12 in (170)), frequency ω = 40 in (168), regularization parameters, γ1, γ2, are

fixed constants.

(a) max εr ≈ 12.9933 (b) maxµr ≈ 1.374

Figure 41: Computed images of reconstructed functions µr(x) and εr(x) after 10-th iteration in conjugate gradient method on a 5 times

adaptively refined mesh with 12% additive noise (p = 0.12 in (170)), frequency ω = 40 in (168), regularization parameters, γ1, γ2, are

fixed constants.

78



(a) max εr ≈ 13 (b) maxµr ≈ 2.06

Figure 42: Computed images of reconstructed functions µr(x) and εr(x) after 6-th iteration in conjugate gradient method on a coarse

mesh with 17% additive noise (p = 0.17 in (170)), frequency ω = 40 in (168), regularization parameters, γ1, γ2, are fixed constants.

(a) max εr ≈ 12.95 (b) maxµr ≈ 1.56

Figure 43: Computed images of reconstructed functions µr(x) and εr(x) from backscattering data on a 5 times adaptively refined mesh,

with 17% additive noise (p = 0.17 in (170)), frequency ω = 40 in (168), regularization parameters, γ1, γ2, are fixed constants.
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(a) max εr ≈ 13 (b) maxµr ≈ 2.06

Figure 44: Computed images of reconstructed functions µr(x) and εr(x) after 7-th iteration in conjugate gradient method on a coarse

mesh with 25% additive noise (p = 0.25 in (170)), frequency ω = 40 in (168), regularization parameters,γ1, γ2, are fixed constants.

a) max εr ≈ 12.97 b) maxµr ≈ 1.571

Figure 45: Computed images of reconstructed functions µr(x) and εr(x) after 3-th iteration in conjugate gradient method on a 5 times

adaptively refined mesh with 25% additive noise (p = 0.25 in (170)), frequency ω = 40 in (168), regularization parameters, γ1, γ2, are

fixed constants.
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(a) max εr ≈ 13 (b) maxµr ≈ 2.06

Figure 46: Computed images of reconstructed functions µr(x) and εr(x) after 7-th iteration in conjugate gradient method on a coarse

mesh with 35% additive noise (p = 0.35 in (170)), frequency ω = 40 in (168), regularization parameters, γ1, γ2, are fixed constants.

a) max εr ≈ 12.9687 b) maxµr ≈ 1.562

Figure 47: Computed images of reconstructed functions µr(x) and εr(x) after 3-th iteration in conjugate gradient method on a 5 times

adaptively refined mesh with 35% additive noise (p = 0.35 in (170)), frequency ω = 40 in (168), regularization parameters, γ1, γ2, are

fixed constants.
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(a) max εr ≈ 13 (b) max εr ≈ 13

Figure 48: Comparison of computed images of reconstructed function εr(x) from backscattering data on a coarse mesh with 17% additive

noise (p = 0.17 in (170)), frequency ω = 40 in (168), with different regularization parameters γ1, γ2: (a) fixed γ1, γ2, (b) iteratively

computed γ1, γ2 via rule 1 given by (89).

(a) maxµr ≈ 2.06 (b) maxµr ≈ 2.06

Figure 49: Comparison between computed images of reconstructed function µr(x) on a coarse mesh with 17% additive noise (p = 0.17

in (170)), frequency ω = 40 in (168), with different regularization parameters γ1, γ2: (a) fixed γ1, γ2, (b) iteratively computed γ1, γ2 via

rule 1 given by (89).
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(a) max εr ≈ 12.95 (b) max εr ≈ 12.97

Figure 50: Comparison of computed images of reconstructed function εr(x) from backscattering data on a 5 times adaptively refined

mesh, with 17% additive noise (p = 0.17 in (170)), frequency ω = 40 in (168) with different regularization parameters γ1, γ2: (a) fixed

γ1, γ2, (b) iteratively computed γ1, γ2 via rule 1 given by (89).

(a) maxµr ≈ 1.56 (b) maxµr ≈ 2.06

Figure 51: Comparison between computed images of reconstructed function µr(x) on a 5 times adaptively refined mesh with 17% additive

noise (p = 0.17 in (170)), frequency ω = 40 in (168), regularization parameters γ1, γ2: (a) fixed γ1, γ2, (b) iteratively computed γ1, γ2 via

rule 1 given by (89).
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(a) 1 ref mesh, xy-view (b) xz-view (c) yz-view

(d) 2 ref mesh, xy-view (e) xz-view (f) yz-view

(h) 3 ref mesh, xy-view (i) xz-view (j) yz-view

(k) 4 ref mesh, xy-view (l) xz-view (m) yz-view

Figure 52: Adaptively refined mesh of test 2 in Table 3.
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(a) 5 ref mesh, xy-view (b) xz-view (c) yz-view

(a) max εr ≈ 12.97 (b) maxµr ≈ 2.06

Figure 53: Computed images of reconstructed functions εr(x) and µr(x) on a 5 times adaptively refined mesh with 17% additive noise

(p = 0.35 in (170)), frequency ω = 40 in (168), regularization parameters, γ1, γ2, iteratively computed via rule 1 given by (89).
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(a) max εr ≈ 13 (b) max εr ≈ 13

Figure 54: Comparison of computed images of reconstructed function εr(x) on a coarse mesh with 35% additive noise (p = 0.35 in

(170)), frequency ω = 40 in (168), with different regularization parameters, γ1, γ2: (a) fixed γ1, γ2, (b) iteratively computed γ1, γ2 via rule

1 given by (89).

(a) maxµr ≈ 2.06 (b) maxµr ≈ 2.06

Figure 55: Comparison of computed images of reconstructed function µr(x) on a coarse mesh with 35% additive noise (p = 0.35 in

(170)), frequency ω = 40 in (168), with different regularization parameters γ1, γ2: (a) fixed γ1, γ2, (b) iteratively computed γ1, γ2 via rule

1 given by (89).
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(a) max εr ≈ 12.96 (b) max εr ≈ 12.99

Figure 56: Comparison of computed images of reconstructed function εr(x) on a 5 times adaptively refined mesh with 35% additive noise

(p = 0.35 in (170)), frequency ω = 40 in (168), with different regularization parameters γ1, γ2: (a) fixed γ1, γ2, (b) iteratively computed

γ1, γ2 via rule 1 given by (89).

(a) maxµr ≈ 1.56 (b) maxµr ≈ 2.06

Figure 57: Comparison of computed images of reconstructed function µr(x) on a 5 times adaptively refined mesh with 35% additive noise

(p = 0.35 in (170)), frequency ω = 40 in (168), with different regularization parameters γ1, γ2: (a) fixed γ1, γ2, (b) iteratively computed

γ1, γ2 via rule 1 given by (89).
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(a) max εr ≈ 13 (b) max εr ≈ 13

Figure 58: Comparison of computed images of reconstructed function εr(x) on a coarse mesh with 17% additive noise (p = 0.17 in

(170)), frequency ω = 40 in (168), with different regularization parameters γ1, γ2: (a) fixed γ1, γ2, (b) iteratively computed γ1, γ2 via rule

2 given by (91).

(a) maxµr ≈ 2.06 (b) maxµr ≈ 2.06

Figure 59: Comparison of computed images of reconstructed function µr(x) on a coarse mesh with 17% additive noise (p = 0.17 in

(170)), frequency ω = 40 in (168), with different regularization parameters γ1, γ2: (a) fixed γ1, γ2, (b) iteratively computed γ1, γ2 via rule

2 given by (91).
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(a) max εr ≈ 12.95 (b) max εr ≈ 12.99

Figure 60: Comparison of computed images of reconstructed function εr(x) on a 5 times adaptively refined mesh with 17% additive noise

(p = 0.17 in (170)), frequency ω = 40 in (168), with different regularization parameters γ1, γ2: (a) fixed γ1, γ2, (b) iteratively computed

γ1, γ2 via rule 2 given by (91).

(a) maxµr ≈ 1.56 (b) maxµr ≈ 2.06

Figure 61: Comparison of computed images of reconstructed function µr(x) on a 5 times adaptively refined mesh with 17% additive noise

(p = 0.17 in (170)), frequency ω = 40 in (168), with different regularization parameters γ1, γ2: (a) fixed γ1, γ2, (b) iteratively computed

γ1, γ2 via rule 2 given by (91).
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(a) max εr ≈ 13 (b) max εr ≈ 13

Figure 62: Comparison of computed images of reconstructed function εr(x) on a coarse mesh with 35% additive noise (p = 0.35 in

(170)), frequency ω = 40 in (168), with different regularization parameters γ1, γ2: (a) fixed γ1, γ2, (b) iteratively computed γ1, γ2 via rule

2 given by (91).

(a) maxµr ≈ 2.06 (b) maxµr ≈ 2.06

Figure 63: Comparison of computed images of reconstructed function µr(x) on a coarse mesh with 35% additive noise (p = 0.35 in

(170)), frequency ω = 40 in (168), with different regularization parameters γ1, γ2: (a) fixed γ1, γ2, (b) iteratively computed γ1, γ2 via rule

2 given by (91).
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(a) max εr ≈ 12.96 (b) max εr ≈ 13

Figure 64: Comparison of computed images of reconstructed function εr(x) on a 5 times adaptively refined mesh with 35% additive noise

(p = 0.35 in (170)), frequency ω = 40 in (168), with different regularization parameters γ1, γ2: (a) fixed γ1, γ2, (b) iteratively computed

γ1, γ2 via rule 2 given by (91).

(a) maxµr ≈ 1.56 (b) maxµr ≈ 2.06

Figure 65: Comparison of computed images of reconstructed function µr(x) on a 5 times adaptively refined mesh with 35% additive noise

(p = 0.35 in (170)), frequency ω = 40 in (168), with different regularization parameters γ1, γ2: (a) fixed γ1, γ2, (b) iteratively computed

γ1, γ2 via rule 2 given by (91).

91



(a) 1 ref mesh, xy-view (b) xz-view (c) yz-view

(d) 2 ref mesh, xy-view (e) xz-view (f) yz-view

(h) 3 ref mesh, xy-view (i) xz-view (j) yz-view

(k) 4 ref mesh, xy-view (l) xz-view (m) yz-view

Figure 66: Adaptively refined meshes of test 6 in Table 3.
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(a) 5 ref mesh, xy-view (b) xz-view (c) yz-view

Figure 67: Different projections of five times adaptively refined mesh for computed images of Figure 68.

(a) max εr ≈ 13 (b) maxµr ≈ 2.06

Figure 68: Comparison of computed images of reconstructed functions εr(x) and µr(x) on a 5 times adaptively refined mesh presented in

Figure 67 with 35% additive noise (p = 0.35 in (170)), frequency ω = 40 in (168), regularization parameters, γ1, γ2, iteratively computed

via rule 2 given by (91).

93



(a) max εr ≈ 12.96 (b) maxµr ≈ 1.56

(c) max εr ≈ 12.99 (d) maxµr ≈ 2.06

(e) max εr ≈ 13 (f) maxµr ≈ 2.06

Figure 69: Comparison of computed images of reconstructed functions εr(x) and µr(x) on a 5 times adaptively refined mesh with 35%

additive noise (p = 0.35 in (170)), frequency ω = 40 in (168), with different regularization parameters γ1, γ2: (a)-(b) fixed γ1, γ2, (c)-(d)

iteratively computed γ1, γ2 via rule 1 given by (89), (e)-(f) iteratively computed γ1, γ2 via rule 2 given by (91).
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