
VI International Conference on 
Computational Methods in Marine 
Engineering

MARINE 2015
15 - 17 June 2015, Rome, Italy

Edited by: Francesco Salvatore, Riccardo Broglia and Roberto Muscari.

1





VI International Conference on

Computational Methods in
Marine Engineering 
MARINE 2015

PROGRAMME

Rome, Italy
June 15 – 17, 2015

VI International Conference on

Computational Methods in
Marine Engineering 
MARINE 2015

PROGRAMME

Rome, Italy
June 15 – 17, 2015



A publication of:

International Center for Numerical 
Methods in Engineering (CIMNE)
Barcelona, Spain

Printed by: Artes Gráficas Torres S.L., Huelva 9, 08940 Cornellà de Llobregat, 
Spain

Depósito legal: B-13769-2015

ISBN: 978-84-943928-6-3



Identification of material parameters of thin curvilinear viscoelastic solid layers in ships and ocean structures by 
sensing the bulk acoustic signals

VI International Conference on Computational Methods in Marine Engineering
MARINE 2015

F. Salvatore, R. Broglia and R. Muscari (Eds)

IDENTIFICATION OF MATERIAL PARAMETERS
OF THIN CURVILINEAR VISCOELASTIC SOLID LAYERS

IN SHIPS AND OCEAN STRUCTURES
BY SENSING THE BULK ACOUSTIC SIGNALS

EUGEN MAMONTOV * AND VIKTOR BERBYUK †

* Department of Research and Development, Foundation Chalmers Industrial Technology
SE-412 88 Gothenburg, Sweden

e-mail: eugen.mamontov@cit.chalmers.se, www.cit.chalmers.se/en/

† Department of Applied Mechanics, Chalmers University of Technology
SE-412 96 Gothenburg, Sweden

e-mail: viktor.berbyuk@chalmers.se, www.chalmers.se/en/Pages/default.aspx 

Key words: marine system, thin-solid-layer component, parameter identification, passive
acoustic sensing, acoustic partial integro-differential equation for viscoelastic materials

Summary. Ships and other ocean structures have components, which are thin planar or
curvilinear viscoelastic solid layers surrounded by air or water. The present work deals with the
identification of material parameters of these layers to extend the scope of the real-time structural
health monitoring. The work proposes the approach to the parameter identification from passive
sensing of acoustic signals resulting from the operational load. The identification is based on the
partial integro-differential equation (PIDE) for the non-equilibrium part of the average normal
stress. The PIDE is derived in the work. It includes the Boltzmann superposition integral
associated with the stress-relaxation function. It is shown that, in the exponential approximation
for this function, the PIDE expresses the steady-state solution (with respect to a certain variable)
of the corresponding third-order partial differential equation (PDE) of the Zener type. The operat-
ors of both the equations are identical. The equations are applicable at all values of the stress-re-
laxation time. The roots of the characteristic equation of this operator are consistently analyzed,
and the acoustic attenuation coefficient for arbitrary high frequencies is indicated.

The approach is exemplified with the identification of the layer-material stress-relaxation time
and ratio of the bulk-wave speed to the layer thickness. This identification can be carried out
from the acoustic acceleration normal to the layer measured by an acoustic accelerometer
attached to the layer surface and is applicable to both planar and curvilinear layers. The
identification method presumes the finite-difference calculation of the time derivatives of the
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measured acoustic acceleration up to the third order and can be computationally efficient.

1 INTRODUCTION

Ships and other ocean structures have components presenting thin planar or curvilinear layers
of solid materials, generally viscoelastic. The examples are skins, bulkheads, and so on. The
operational load on these components is contributed by the system operation and the irregular
excitations from external environments (e.g., sea waves and winds). The load causes
spatiotemporal distributions of various acoustic variables in a thin-layer solid material. These
distributions can reach the unforeseen levels corresponding to alterations of the material
properties, which can result in failures or damages of the layer, thereby threatening the
functionality of the entire system. In order to timely detect and prevent the undesirable events and
losses, one uses structural health monitoring.

Many methods of structural health monitoring of systems are based on the measurement of
signals by sensors attached to the system. If a tested layer is at equilibrium, there is no acoustic
signal in it. In order to make the signal available for sensing, one first generates the signal in the
layer by acoustic actuators and then measures the resulting acoustic echo. This technique is
known as active sensing. If a tested layer is not at equilibrium, there is an acoustic signal
distributed in the system due to the aforementioned operational load. This signal can be
measured. This sensing is known as passive.

One can also try to apply active sensing to test a system, which is not at equilibrium. However,
in this case, one needs to separate the activated echo in the measured signal from the operational-
load-caused componentwhich is usually unknown. Techniques for this separation have not been
developed yet.

The present work considers passive sensing only. Acoustic signals obtained by it provide the
data corresponding to the actual operational load. This load can also affect the material parame-
ters of the thin-solid-layer components of marine systems, for example, the mass density, the
elastic moduli, and the stress-relaxation time, and result in their variations in space or time. These
variations can in particular be caused by damages developed in the layer due to excessive fatigue.

The present work focuses on the identification of the above parameter variations on the basis
of the passive-sensing data.

2 A SCALAR ACOUSTIC EQUATION FOR VISCOELASTIC MEDIA
The work assumes that a thin-layer component is isotropic, homogeneous in both space and

time at equilibrium, and at a constant temperature.
As is well known, physical quantities at equilibrium are independent of time. The present work

only considers materials, which are at equilibrium independent of space as well. Consequently,
the equilibrium versions of physical quantities do not depend on space either. These versions are
denoted with the sign “overline” applied to the notation of the corresponding quantity (e.g., see
the notation “ ” below).

A scalar acoustic equation was derived in [1] in the form of the Stokes-type partial differential
equation (PDE) (see [1, (3.1)])
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(2.1)
for the non-equilibrium part (NEP)  of the average normal stress (ANS)  in a viscoelastic
medium. In equation (2.1):
•  is the speed of the bulk waves in the medium, which are understood in the present work as

the waves corresponding to the bulk modulus , more specifically, to uniform compressions
/rarefactions;

•  is the stress-relaxation time;
•  is the Laplace differential expression with respect to the entries , , and  of the space

vector.
If the bulk and shear moduli for the medium,  and , are known, stress-relaxation time 

determines the volume and shear viscosities,  and , respectively. Parameters  and  are
coupled with relation (e.g., [1, (2.7)])

(2.2)
where  is the volumetric mass density of the medium. (Note that, in PDE (2.1), all of the effects
associated with the shear modulus are neglected.)

Equation (2.1) was obtained under the conditions listed in [1, Table 1] and is applicable to
gases, liquids, and solid including viscoelastic media. A necessary condition for the applicability
of linear quasi-equilibrium continuum-mechanics models such as (2.1) is relation

. (2.3)
where  is the NEP of the pressure  in the medium.
  In the derivation of PDE (2.1), equations

, (2.4)
. (2.5)

were also derived (see [1, (3.2) and (A.3.6)]). It was shown that the last term on the right-hand
side of (2.1) is due to the last term on the right-hand side of (2.4).

The present work generalizes (2.4) to the form, which includes the normalized stress-relation
function (NSRF) discussed in Appendix. The generalization can be obtained from Remark A.3.
Indeed, in the present case where the elastic-stress NEP  and total-stress NEP  are
specified with expression (A.5) and expression

, (2.6)
relations (A.11) and (A.13) are specified to

,    (2.7)

(2.8)
where the latter equation is only applicable under the condition that (see (A.12))

. (2.9)
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Applying operation  to (2.7)–(2.9) and substituting (2.5) into the resulting equalities,
one obtains

,    (2.10)

, (2.11)

, (2.12)

respectively. Equation (2.10) presents an acoustic partial integro-differential equation (PIDE) for
NEP  of the ANS. It includes NSRF . On the strength of (A.7), the small-  or,
equivalently, the Kelvin–Voigt particular cases of expression (2.7) and PIDE (2.10) are reduced
to expression (2.4) and Stokes-type wave PDE (2.1). Consequently, (2.7) and (2.10) generalize
(2.4) and (2.1) from small  to arbitrary  and, thus, present acoustic model for a fairly large set
of viscoelastic media. The other versions of the small-  particular case of continuum-mechanics
/acoustic PDEs can be found in [2, (6.15)] and [3, §34].

Remark 2.1. One can check that PIDE (2.12) expresses the steady-state solution of PDE (2.11)
regarded as ordinary differential equation (ODE)

for variable . Thus, equality (2.12) shows in what specific sense PDE
(2.11) should be considered. A steady-state solution of an asymptotically stable ODE in Euclidian
space or a function Banach space is, loosely speaking, its solution with an initial condition in the
limit case as the initial time point tends to  (e.g., see [4] for the details). G

At , both PIDE (2.12) and PDE (2.11) are reduced to the common wave equation, i.e.,
. For the case where , one can prove the following theorem.

Theorem 2.1. Let  and  be arbitrary fixed. Let also the Laplace differential express-
ion in (2.11) and (2.12), more precisely, , be endowed with the boundary condition such
that they together present the Laplace operator in the corresponding   function Banach space
([5, § 21]). As is well known, all eigenvalues of this operator are nonnegative.

Then the linear operators of equations (2.12) and (2.11) are the same if and only if the Laplace
operator does not have zero eigenvalue, and if it does not, the real parts of all eigenvalues of the
operators is greater than . Moreover, at any eigenvalue of the Laplace operator, say,
where , the following assertions are also valid, thereby indicating asymptotic stability. 

    (i) The characteristic equation of the linear operator in PIDE (2.12) or PDE (2.11) is
. (2.13)

   (ii) Characteristic equation (2.13) has one real root, , and a pair of the complex conjugate
roots,   where  is the imaginary unit, i.e., .

  (iii) .
  (iv) ,  , and  strictly monotonically increases as 

increases from zero to infinity.

505



Eugen Mamontov and Viktor Berbyuk
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

5

   (v) ,  , and  strictly monotonically de-
creases as  increases from zero to infinity.

  (vi) Asymptotic representation for  in the limit case as  is , and
, as a function of , is convex.

 (vii) .
(viii) Asymptotic representations for  in the limit cases as  and  are

 and , respectively. G

We note three main implications of Theorem 2.1. First, it reveals in what specific sense
equations (2.12) and (2.11) are equivalent and establishes asymptotic stability of them. The
complex root in assertion (ii) of the theorem shows that both the equations are wave equations.

Next, the complete analytical dependences of  and  on  can be obtained by
means of assertion (iii) and the well-known method of S. del Ferro and N. F. Tartaglia for solving
cubic equations, which is nowadays known as the Cardano solution (e.g., [6, 1.8-3, 1.8-4]). The
result for  provides a new, unavailable in theoretical physics before insight in the acoustic-
wave attenuation coefficient   where  is the speed of the longitudinal, transverse,
or bulk acoustic waves. This result generalizes the small-  particular case (e.g., [3, (35.3),
(35.4)], [7, pp. 198, 203]) to arbitrary . In order to illustrate the matter, we indicate the
simplest approximation for , which allows for all of the features indicated in assertions (v)
and (vi), namely

. (2.14)

There are in-depth discussions on a possibility of a unified expression for attenuation coefficient
as a function of  (e.g., [7, Chapter 17]). The above outcomes on , in particular, (2.14)
contribute to the finalizing this discussion. The expressions for  and  resulting from
(2.14) can readily be obtained with the help of assertions (vii) and (iii), respectively.

Finally, the aforementioned dependences and assertions of Theorem 2.1 provide the
characteristic times , , and  of PDE (2.11) (or PIDE (2.12)), which
reveal the time scale of it. This picture in particular allows to evaluate the relevance of the time
step in passive sensing of acoustic signals, which corresponds to exact or approximate solutions
of equation (2.11) (e.g., the time step between points  discussed in Section 4).

Wave PDE (2.11) is a wave PDE of the Zener type (e.g., [2, (6.40)]). However, profound
differences between PDE (2.11) and Zener’s PDE originates from the comparison summarized
in Table A.1. Compared to PIDE (2.12), a significant advantage of PDE (2.11) is that it does not
include the NSRF explicitly and depends on the stress-relaxation time  linearly.

Applying operation  to (2.8) and substituting (2.5) into the resulting equality, one obtains
 that, after combination with (2.8), leads to

. (2.15)
that generalizes equality [1, (3.3)]. Expression (2.15) and inequality (2.3) endow PDE (2.11)
with, so to say, the self-testing capabilities. Indeed, after a solution of (2.11) is obtained in the
space-time domain of interest, one calculates term (2.15) and tests inequality (2.3) in this domain.
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If it is valid, PDE (2.11) is applicable and the determined solution can be accepted. Otherwise,
the solution must not be accepted.

3 EQUATION UNDERLYING THE IDENTIFICATION METHOD

Without a loss of generality, one assumes that an accelerometer is located at spatial point
 and considers the planar disk in the layer component of a marine system, which is normal

to the -axis, with the center at point  and radius . Then the measured acoustic
acceleration normal to the -plane is expressed as follows

. (3.1)
Denoting the thickness of the layer with , one regards the inner and outer surfaces of the
layer located at  and , respectively. These settings endow the PDE for the above disk,
(2.11), with the corresponding geometric parameters as follows

, , , (3.2)
where . The disk of the thickness  and radius  is a cylinder. Using the well-
known form of the Laplace differential expression in the cylindrical coordinates (e.g., [8, (96)
of Chapter XXX]), one rewrites PDE (3.2) as

,

, , (3.3)
where  is the angle variable in the cylindrical coordinates.

Remark 3.1. The term in the brackets in (3.3) emphasizes the fact that the -dependent 
stress  is contributed with the stress distribution in the -coordinates.    G

Passing in PDE (3.3) to dimensionless variables  and , one obtains

, , . (3.4)

We assume that the disk of thickness  and radius  in the layer is, firstly, thin in the sense that
inequality

(3.5)
holds and, secondly, planar in the sense that the curvilinear-layer region corresponding to the
disk is well approximated with the plane presumed by Cartesian coordinates in PDE (3.4). This
assumption, which is, for brevity, termed the thin-planar-disk (TPD) approximation. In this
approximation, equation (3.4) with small parameter  is a singularly perturbed PDE.
Theory and methods for PDEs of this type are well-known (e.g., [9]). In this treatment, the small
parameter is in many cases introduced by means of geometric reasoning similar to (3.5).
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Small parameter   in (3.4) enables one to neglect the term in the brackets. Then the
passing back from dimensionless variable  to spatial variable , one obtains

, , (3.6)
where  is the -independent approximation for the function indicated in Remark
3.1. The corresponding version of (3.1) is

. (3.7)
Comparison of (3.6) with (3.2) shows that the TPD approximation allows reduction of the
equation in the three spatial coordinates to the equation in one spatial coordinate and application
of the present approach to the thin-layer components of marine systems, no matter if they are
planar or curvilinear.

The boundary condition for PDE (3.6) at the air/water-solid interfaces are written as
. (3.8)

Notably, in view of (3.8), the versions of PDE (3.6) at  and  are

, (3.9)
. (3.10)

Differentiating (3.6) with respect to , substituting value  into the resulting equality, and
combining with (3.7), one obtains

. (3.11)

The thin-layer parameters such as , , , or  are important for structural health. For example,
the last term on the right-hand side of (2.10) and hence of (2.12) or (2.1) is due to the internal
friction in the material. The intensity of this friction is directly proportional to stress-relaxation
time  (see (A.6)). The last term on the right-hand side of (2.1) shows that explicitly. The higher
the internal friction is, the more prone to structural damages the material is. Moreover, as is noted
in Section 1, equilibrium values of the layer parameters at a fixed spatial point generally become
dependent on the time due to the resulting non-equilibrium effects of the operational load. 

Equation (3.11) enables identification of the some of the aforementioned parameters of the
layer. The identification method is considered in the next section.

4 IDENTIFICATION OF THE STRESS-RELAXATION TIME AND
THE RATIO OF THE BULK-WAVE SPEED TO THE LAYER THICKNESS

Equality (3.11) can be used for identification of the layer-material parameters provided that
one estimates the term in the brackets by means of available acceleration  or the parameters
to be identified. In order to do that, it can be sufficient to approximate  with the fourth-
order polynomial, i.e.

, , (4.1)
which has two -independent roots  and  according to (3.8), and a pair of real or com-
plex conjugate roots that need not be -independent. Indeed, combining (4.1), (3.7), (3.9), and
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(3.10), one obtains 
that, after substitution into (3.11), results in

(4.2)
where

. (4.3)
Acceleration  is usually measured in a set of successive time points, say,  with

constant time step . This provides corresponding values of . Conse-
quently, equation (4.2) can be regarded as a series of equations

, , (4.4)
where , , is the finite-difference (FD) approximation for  at point .

There are different ways to identify parameters  and  from (4.4). The simplest one is based
on the equations at two successive time points,  and . This results in relations

, (4.5)

. (4.6)

If quadratic equation (4.6) has the unique non-negative solution  such that  determined
with (4.5) is finite and positive, then  and  are the identified values of parameters 
and , which are -independent in interval . Applying this procedure to the intervals
between any two neighboring time points, one obtains the piecewise-constant -dependent
approximations for the parameters. These -dependences include the influence of the operational
load upon the parameters.
 In view of the approximate nature of the aforementioned FD formulas, the -dependences can
be rather irregular. Consequently, they, in general, need to be “smoothed” in order to provide the
component, which is caused by the operational load rather than the quantitative FD errors. The
“smoothing” method can be a topic for future research. Another topic for future research is
calibration of the proposed identification method with respect to the related experimental data.

Importantly, if  is identified and any of the two parameters on the right-hand side of (4.3)
is available, then the other one can be identified as well. Also note that knowledge of  allows
evaluation of mass density  by means of (2.2) where  is generally a function of .  

Quantity   used in the analysis of the roots of characteristic equation (2.13) (see Theorem
2.1 and the discussion below it) is, in terms of (4.2), expressed as follows

. (4.7)
Thus, if  and  are identified, then one can by means of (4.7) apply the aforementioned
analysis to the time scales of the behavior described with (4.2). They can in particular be used
to evaluate the relevance of time step  (as was already mentioned in Section 2).

The above identification method based on relations (4.4) can computationally efficient and
suitable for implementation in the real-time mode. In particular, it can be used in conjunction
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with the corresponding sensing system outlined below.
The marine-system curvilinear thin-layer components can be regarded as the surfaces where

the domains of low curvatures are viewed as planar disks. The radiuses of these disks should be
sufficiently small in order to reasonably approximate the corresponding domains of the actual,
curvilinear surface with planar disks but sufficiently big in order to allow inequality (3.5) for
each disk to hold. At the center of each disk, one attaches a wireless acoustic accelerometer. The
accelerometer network can wirelessly be controlled by a personal computer (PC) and a gateway
in the real-time mode. Each of the accelerometers measures and transmits to the PC the time
development of the acoustic acceleration at the point of its locations, thereby forming the time-
varying “landscape” of the data over the entire surface of the thin-layer component. These data
are transformed into the space-time heterogeneous values of the material parameters by the above
identification method. 

These settings can be implemented already today, by means of the wireless systems available
from a number of the related sources. One of them is [10]. The wireless accelerometer network
can be endowed with acoustic-energy harvesters for better energy efficiency and less costly
maintenance.

5 CONCLUSIONS
Ships and other ocean structures have components, which are thin planar or curvilinear

viscoelastic solid layers surrounded by air or water. The present work deals with the identificati-
on of material parameters of these layers to extend the scope of the real-time structural health
monitoring. The work proposes the approach to the parameter identification from passive sensing
of acoustic signals resulting from the operational load.

The identification is based on the partial integro-differential equation (PIDE) for the non-
equilibrium part of the average normal stress. The PIDE is derived in the work (Section 2 and
Appendix). It includes the Boltzmann superposition integral associated with the stress-relaxation
function. It is shown that, in the exponential approximation for this function, the PIDE expresses
the steady-state solution (with respect to a certain variable) of the corresponding third-order
partial differential equation (PDE) of the Zener type but the operators of both the equations are
identical. These equations applicable at all values of the stress-relaxation time.

It is proven that, at any nonzero frequency, the characteristic equation related to the aforemen-
tioned operator has a real root and a pair of complex conjugate roots. The asymptotes of these
roots in the limit cases of zero and infinite frequencies are obtained. In the case of the real part
of the complex root (which determines the acoustic-attenuation coefficient), the zero-frequency
asymptote coincides with the one well known in theoretical physics, whereas the infinite-
frequency asymptote provides an extra insight unavailable before.

The approach is exemplified with the identification of the layer-material stress-relaxation time
and the ratio of the bulk-wave speed to the layer thickness. This identification can be carried out
from the acoustic acceleration normal to the layer measured by an acoustic accelerometer attach-
ed to the layer surface and is applicable to both planar and curvilinear layers (Section 3). The de-
veloped identification method presumes the FD calculation of the time derivatives of the mea-
sured acoustic acceleration up to the third order and can be computationally efficient (Section 4).
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The two topics for future research are suggested (see Section 4).
The authors express their gratitude to the Swedish Energy Agency for a partial support of the

present work via the Project 37286-1.

APPENDIX. GENERAL DYNAMIC SCALAR STRESS-STRAIN RELATIONSHIP

One of the most general scalar stress-strain relationships in theory of viscoelastic linear isotropic
solids is (e.g., [11, (10b) on p. 18 and the discussion on p. 18], [12, (32)], [13, (8.6)])

,      (A.1)
where , , and  are the NEPs of the total, elastic, and viscous stresses,
respectively. The viscous-stress NEP  is expressed with the Boltzmann superposition
integral (e.g., [11, Section 6 of Chapter II], [13, (8.6)]) as follows

, (A.2)
where  is the NSRF. It is a function of the time separation  at all  and  such
that . In view of (A.2), expression (A.1) is equivalent to

. (A.3)

Remark A.1. One can briefly term a continuum medium, which is described by a linear model
with the time-independent parameters, the time-invariant linear medium. Theories of time-
invariant linear solids and fluids are based on Lagrangian and Eulerian approaches to modeling
the space-time phenomena (e.g., [14, Sections 2.1 and 2.2]). They are formally different but
equivalent in the sense of mechanics. This equivalence contributes to the fact that the approaches
share many theoretical-physics relations. A number of these relations are discussed in particular
in [1, Appendixes A and B; e.g., see Remarks A.1.1 and A.2.1]. Also note that expressions (A.1)
and (A.2) are equally applicable to time-invariant linear solids and fluids. G

An example of the relation specific to solids is the Hook law discussed in Remark A.2.

Remark A.2. Elastic stress in a time-invariant linear solid is described with the Hook law,
,     (A.4)

where  is the NEP of the scalar strain and  is the related elastic modulus of the medium.
If  and  represent tensile, shear, or normal strains and stresses, then  is the Young
modulus, shear modulus, or bulk modulus , respectively. In the latter case, it is well known
(e.g., [2, (1.38), (1.13)]) that the normal-stress NEP  is the NEP of the pressure, i.e.,

, (A.5)
the normal-strain NEP  is the dilation with the sign “minus”, and . G

The aforementioned term “normalized” with respect to NSRF  means that . The
other main properties of the NSRF are  and  at all , as well as the
fact that integral  exists and is finite. The latter property in particular implies that

. The mentioned integral also determines the stress-relaxation time, ,
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. (A.6)

The asymptotic representation

, in the limit case as , (A.7)
is well known. Under condition (A.4), it reduces expression (A.3) to the Kelvin–Voigt model
(e.g., [2, (6.8)]).

The simplest form of function  is
, . (A.8)

It possesses all of the aforementioned properties of the NSRF . In general, the form of the
-dependence of the NSRF is more complicated that the one shown in (A.8), and the NSRF

depends on various parameters. Stress-relaxation time (A.6) is one of them. There are a number
of empirical or semi-empirical models for NSRF  (e.g., [15]). However, the consistent
theoretical-physics model for it and the corresponding list of its parameters remain unknown. In
connection with this problem, one can note that approximation (A.8) describes the NSRF in terms
of a single parameter, stress-relaxation time  (see (A.6)). Moreover, expression (A.8) enables
other simplifications. Indeed, it reduces (A.3) to

. (A.9)
Differentiating (A.9) with respect to  and combining the resulting relation with the mentioned
equality, one obtains

. (A.10)
This means that (A.9) implies (A.10). However, in general, (A.10) does not imply (A.9).
Consequently, in applications of (A.10), condition (A.9) cannot be omitted.

Notably, in contrast to (A.9), equation (A.10) does not apply the integral where the NSRF
plays a role of the memory function. Also, equation (A.10) under condition (A.4) is an equation
of the Zener type (e.g., [2, (6.25)]), which nowadays is also known as standard linear solid model

Table A.1.  Differences between the Zener equation (e.g., [2, (6.25)]) and equation (A.10).
(see Remark A.1 on the term “time-invariant linear”)

PROPERTY THE ZENER EQUATION EQUATION (A.10)

Origin assumed, as a heuristic
combination of terms

consistently derived from (A.3)
under condition (A.8)

Is condition (A.4) presumed? yes no

Materials which the equation describes time-invariant linear solids
(see Remark A.2)

time-invariant linear
solids and fluids

Relation to the Boltzmann superposition
integral (see any of the integrals in (A.3))

unknown explicit
due to a use of (A.3)

Number of the relaxation terms two two

Number of the relaxation-time parameters two one
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(e.g., http://en.wikipedia.org/wiki/Standard_linear_solid_model; last modified on the 23rd of
January, 2014). However, there are profound differences between (A.10) and Zener’s equation.
They are summarized in Table A.1.

Remark A.3. If  and  depend not only on  but also on the -independent
variables, equations (A.3), (A.9), and (A.10) are specified to

,    (A.11)

 (A.12)

(A.13)
at all values of the  -independent  variables. Note that equation (A.13) is only applicable under
condition (A.12) as follows from the text on (A.9) below (A.10). G

Equations (A.11)–(A.13) are used in Section 2.
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