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Nested Sparse Approximation: Structured Estimation of V2V
Channels Using Geometry-Based Stochastic Channel Model
Sajjad Beygi Student Member, IEEE, Urbashi Mitra Fellow, IEEE, and Erik G. Ström∗ Senior Member, IEEE

Abstract—Future intelligent transportation systems promise
increased safety and energy efficiency. Realization of such systems
will require vehicle-to-vehicle (V2V) communication technology.
High fidelity V2V communication is, in turn, dependent on accu-
rate V2V channel estimation. V2V channels have characteristics
differing from classical cellular communication channels. Herein,
geometry-based stochastic modeling is employed to develop a
characterization of V2V channel channels. The resultant model
exhibits significant structure; specifically, the V2V channel is
characterized by three distinct regions within the delay-Doppler
plane. Each region has a unique combination of specular reflec-
tions and diffuse components resulting in a particular element-
wise and group-wise sparsity. This joint sparsity structure is ex-
ploited to develop a novel channel estimation algorithm. A general
machinery is provided to solve the jointly element/group sparse
channel (signal) estimation problem using proximity operators of
a broad class of regularizers. The alternating direction method of
multipliers using the proximity operator is adapted to optimize
the mixed objective function. Key properties of the proposed
objective functions are proven which ensure that the optimal
solution is found by the new algorithm. The effects of pulse shape
leakage are explicitly characterized and compensated, resulting
in measurably improved performance. Numerical simulation and
real V2V channel measurement data are used to evaluate the
performance of the proposed method. Results show that the new
method can achieve significant gains over previously proposed
methods.

I. INTRODUCTION

VEHICLE-to-vehicle (V2V) communication is central to
future intelligent transportation systems, which will en-

able efficient and safer transportation with reduced fuel con-
sumption [1]. In general, V2V communication is anticipated
to be short range with transmission ranges varying from a few
meters to a few kilometers between two mobile vehicles on
a road. A big challenge of realizing V2V communication is
the inherent fast channel variations (faster than in cellular [2],
[3]) due to the mobility of both the transmitter and receiver.
Since channel state information can improve communication
performance, a fast algorithm to accurately estimate V2V
channels is of interest. Furthermore, V2V channels are highly
dependent on the geometry of road and the local physical
environment [1], [4].

A popular estimation strategy for fast time-varying channels
is to apply Wiener filtering [5], [6]. Recently, [2], [6] present
an adaptive Wiener filter to estimate V2V channels using
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subspace selection. The main drawback of Wiener-filtering is
that the knowledge of the scattering function is required [5];
however, the scattering function is not typically known at the
receiver. Often, a flat spectrum in the delay-Doppler domain
is assumed, which introduces performance degradation due to
the mismatch with respect to the true scattering function [6].

In this work, we adopt a V2V channel model in the delay-
Doppler domain, using the geometry-based stochastic channel
model proposed in [7]. Our characterization of this model
reveals the special structure of the V2V channel components
in the delay-Doppler domain. We show that the delay-Doppler
representation of the channel exhibits three key regions; within
these regions, the channel is a mixture of specular reflections
and diffuse components. While the specular contributions
appear all over the delay-Doppler plane sparsely, the diffuse
contributions are concentrated in specific regions of the delay-
Doppler plane. We see that the channel measurements from a
real data experiment also confirm to our analysis of the V2V
channel structures in the delay-Doppler domain.

In our prior work [8], [9], a Hybrid Sparse/Diffuse (HSD)
model was presented for a mixture of sparse and Gaussian dif-
fuse components for a static channel, which we have adapted
to estimate a V2V channel [10]. This approach requires
information about the V2V channel such as the statistics,
and power delay profile (PDP) of the diffuse and sparse
components [8]. Another approach for time-varying frequency-
selective channel estimation is via compressed sensing (CS)
or sparse approximation based on an l1-norm regularization
[11–13]. These algorithms perform well for channels with
a small number of scatterers or, clusters of scatterers. For
V2V channels, diffuse contributions from reflections along the
roadside will degrade the performance of CS methods that only
consider element-wise sparsity [6], [12].

Herein, we exploit the particular structure of the V2V
channel, inspired by recent work in 2D sparse signal estima-
tion [14], [15], to design a novel joint element- and group-
wise sparsity estimator to estimate the 2D time-varying V2V
channel using received data. Our proposed method provides
a general machinery to solve the joint sparse structured
estimation problem with a broad class of regularizers that
promote sparsity. We show that our proposed algorithm covers
both well-known convex and non-convex regularizers such
as smoothly clipped absolute deviation (SCAD) regularizers
[16], and the minimax concave penalty (MCP) [17] that were
proposed for element-wise sparsity estimation. We also present
a general way to design a proper regularizer function for joint
sparsity problem in our previous work [18]. Our method can
be applied to scenarios beyond V2V channels.

Recent algorithms for hierarchical sparsity (sparse groups
with sparsity within the groups) [19–21] also consider a
mixture of penalty functions (group-wise and element-wise).
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Of particular note is [20] where a similar nested solution
is determined, also in combination with the alternating di-
rection method of multipliers (ADMM) as we do herein.
Our modeling assumptions can be viewed as a generalization
of their assumptions which results in the need for different
methods for proving the optimization of the nested structures.
In particular, [20] examines a particular proximity operator for
which the original regularizing function is never specified1.
This proximity operator is built by generalizing the structure
of the proximity operator for the lp norm. In contrast, we begin
with a general class of regularizing functions, we specify the
properties needed for such functions (allowing for both convex
and non-convex functions). Thus, our proof methods rely only
on the properties induced by these assumptions. Furthermore,
our results are also applicable to the problem of hierarchical
sparsity [19–21]. We observe that the results in [19–21] cannot
be applied to non-convex regularizer functions such as SCAD
and MCP due to their concavity and a non-linear dependence
on the regularization parameter.

To find the optimal solution of our joint sparsity objective
function, we take advantage of ADMM [22], which is a very
flexible and efficient tool for optimization problems whose
objective functions are the combination of multiple terms.
Furthermore, we use the proximity operator [23] to show
that the estimation can be done by using simple thresholding
operations in each iteration, resulting in low complexity.

We also address the channel leakage effect due to finite
block length and bandwidth for channel estimation in the
delay-Doppler plane. In [12], the basis expansion for the
scattering function is optimized to compensate for the leakage
which can degrade performance. The resulting expansion
in [12] is computationally expensive. Herein, we take an
alternative view and show that with the proper sampling
resolution in time and frequency, we can explicitly derive the
leakage pattern and robustify the channel estimator with this
knowledge at the receiver to improve the sparsity, compensate
for leakage, and maintain modest algorithm complexity. The
main contributions of this work are as follows:

1) A general framework for joint sparsity estimation prob-
lem is proposed, which covers a broad class of reg-
ularizers including convex and non-convex functions.
Furthermore, we show that the solution for joint sparse
estimation problem is computed by applying the element-
wise and group-wise structure in a nested fashion using
simple thresholding operations.

2) We provide a simple model for the V2V channel in the
delay-Doppler plane, using the geometry-based stochastic
channel modeling proposed in [7]. We characterize the
three key regions in the delay-Doppler domain with
respect to the presence of sparse specular and diffuse
components. This structure is verified by experimental
channel measurement data, as presented in Section VIII.

3) The leakage pattern is explicitly computed and a com-
pensation procedure proposed.

4) A low complexity joint element- and group-wise sparsity
V2V channel estimation algorithm is proposed exploit-
ing the aforementioned channel model and optimization

1Note given a particular regularization function, there is a unique proximity
operator, but for a given proximity operator there may exist more than one
regularizer function.

result.
5) We use extensive numerical simulation and experimental

channel measurement data to investigate the performance
of the proposed joint sparse channel estimators and show
that our method outperforms classical and compressed
sensing methods [6], [10–12]

The rest of this paper is organized as follows. In Section
II, we review some definitions from variational analysis and
present our key optimization result for a joint sparse and
group sparse signal estimation. In Section III, the system
model for V2V communications is presented. In Section IV,
the geometry-based V2V channel model is developed. The
observation model and leakage effect are computed in Section
V. In Section VI, the channel estimation algorithm for the
time-varying V2V channel model using joint sparsity structure
is presented. In Section VII, we provide simulation results
and compare the performance of the estimators. In Section
VIII, the real channel measurements are provided to confirm
the validity of the channel model and numerical simulation.
Finally, Section IX concludes the paper. We present our
proofs, region specifier algorithm, and analysis of our proximal
ADMM in the Appendices.

Notation: We denote a scalar by x, a column vector by x,
and its i-th element with x[i]. Similarly, we denote a matrix by
X and its (i, j)-th element by X[i, j]. The transpose of X is
given by XT and its conjugate transpose by XH . A diagonal
matrix with elements x is written as diag{x} and the identity
matrix as I. The set of real numbers by R, and the set of
complex numbers by C. The element-wise (Schur) product is
denoted by �.

II. JOINTLY SPARSE SIGNAL ESTIMATION:
OPTIMIZATION RESULT

In this section, we propose a unified framework using
proximity operators [24] to solve the optimization problem
imposed by a structured sparse2 signal estimation problem.
Then, we apply this machinery to estimate the V2V channel,
exploiting the group- and element-wise sparsity structure dis-
covered in Section IV.

Proximal methods have drawn increasing attention in the
signal processing (e.g., [23], and numerous references therein)
and the machine learning communities (e.g., [25], [26], and
references therein), due to their convergence rates (optimal
for the class of first-order techniques) and their ability to
accommodate large, non-smooth, convex (and non-convex)
problems. In proximal algorithms, the base operation is eval-
uating the proximal operator of a function, which involves
solving a small optimization problem. These sub-problems can
be solved with standard methods, but they often admit closed-
form solutions or can be solved efficiently with specialized
numerical methods. Our main theoretical contribution is stated
in Theorem 1 in Section II.B. In this theorem, we show
that, for our proposed class of regularization functions, the
nested joint sparse structure can be recovered by applying the
element-wise sparsity and group-wise sparsity structures in a
nested fashion, see Eq. (10).

2A jointly sparse signal in this paper, is a signal that has both element-wise
and group-wise sparsity.
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A. Proximity Operator

We start with the definition of a proximity operator from
variational analysis [24].

Definition 1. Let φ(a;λ) be a continuous real-valued function
of a ∈ RN , the proximity operator Pλ,φ(b) is defined as

Pλ,φ(b) :=argmin
a∈RN

{
1

2
‖b− a‖22 + φ(a;λ)

}
, (1)

where b ∈ RN and λ > 0.

Remark 1. If φ(.) is a separable function, i.e., φ(a;λ) =∑N
i=1 f (a[i];λ). Then, [Pλ,φ(a)]i = Pλ,f (a[i]).

Remark 2. If the objective function J(a) = 1
2‖b − a‖22 +

φ(a;λ) is a strictly convex function, the proximity operator of
φ(a;λ) admits a unique solution.
Remark 3. Furthermore, Pλ,φ(b) is characterized by the in-
clusion

∀(a∗,b), a∗ = Pλ,φ(b) ⇐⇒ a∗ − b ∈ ∂φ(a∗;λ), (2)

where ∂φ(.) is the sub-gradient of the function φ [24].
Note that φ does not need to be a convex or differentiable

function to satisfy the conditions noted in Remarks 2 and 3.
Proximity operators have a very natural interpretation in terms
of denoising [23], [24]. Consider the problem of estimating
a vector a ∈ RN from an observation b ∈ RN , namely
b = a + n where n is additive white Gaussian noise. If
we consider the regularization function φ(a;λ) as the prior
information about the vector a, then Pλ,φ(b) can be interpret
as a maximum a posteriori (MAP) estimate of the vector a
[27]. Two well-known types of prior information about the
structure of a vector are element-wise sparsity and group-wise
sparsity structures. A N -vector a is element-wise sparse, if the
number of non-zero (or larger than some threshold) entries in
the vector is small compared to the length of the vector.
To define the group-wise sparsity, let us consider {Ii}Ngi=1 be a
partition of the index set {1, 2, . . . , N} to Ng groups, namely
∪Ngi=1Ii = {1, 2, . . . , N} and Ii ∩ Ij = ∅ for ∀i 6= j. We
define group vectors as follows

ai[k] =

{
a[k] k ∈ Ii
0 k /∈ Ii

(3)

for i = 1, . . . , Ng , where Ng is the total number of group
vectors. Based on above definition, we have a =

∑Ng
i=1 ai and

the nonzero elements of ai and aj are non-overlapping for
i 6= j. The vector a is called a group-wise sparse vector, if
the number of group vectors ai for i = 1, . . . , Ng with non-
zero l2-norm (or l2-norm larger than some threshold) is small
compared to the total number of group vectors, Ng .

B. Optimality of the Nesting of Proximity Operators

We consider the estimation of the vector a from vector b
as noted above. Furthermore, suppose that the vector a is a
jointly sparse vector. The desired optimization problem is as
follows

â = argmin
a∈RN

{
1

2
‖b− a‖22 + φg(a, λg) + φe(a;λe)

}
, (4)

where φg(a;λg) is a regularization term to induce group
sparsity and φe(a;λe) is a term to induce the element-wise
sparsity. In general, the weighting parameters, λg > 0, λe > 0,
can be selected from a given range via cross-validation, by
varying one of the parameters and keeping the other fixed [21].
We further consider penalty functions φg(a;λg) and φe(a;λe)
of the form:

φg(a;λg) =

Ng∑
j=1

fg (‖aj‖2;λg) , and (5)

φe(a;λe) =

N∑
i=1

fe (a[i];λe) , (6)

where fg : R → R and fe : R → R are continuous functions
to promote sparsity on groups and elements, respectively, N
is the length of vector a, and Ng is the number of groups
in vector a. Our goal here is to derive the solution of the
optimization problem in (4) using the proximity operators of
the functions fe and fg . We state the conditions imposed on the
regularizers, in terms of the univariate functions fg(x;λ) and
fe(x;λ) to promote sparsity and also to control the stability
of the solution of the optimization problem in (4).
Assumption I: For k ∈ {e, g}

i. fk is a non-decreasing function of x for x ≥ 0;
fk(0;λ) = 0; and fk(x; 0) = 0.

ii. fk is differentiable except at x = 0.
iii. For ∀z ∈ ∂fk(0;λ), then |z| ≤ λ, where ∂fk(0;λ) is

the subgradient3 of fk at zero.
iv. There exists a µ ≤ 1

2 such that the function fk(x;λ) +
µx2, is convex.

v. fg is a homogeneous function, i.e., fg(αx;αλ) =
α2fg(x;λ) for ∀α > 0.

vi. fe is a scale invariant function, i.e., fe(αx;λ) =
fe(x;αλ) = αfe(x;λ) for ∀α > 0.

It can be observed that conditions (i), (iv), (v), and (vi) ensure
the existence of the minimizer of the optimization problem in
Eq. (4), and they induce norm properties on the regularizer
function. Assumption (ii) promotes sparsity, (iii) controls the
stability of the solution in Eq. (4) and guarantees the optimality
of solution of optimization problem in Eq. (4) or (P0) in
Section VI. Finally Assumption (iv) enables the inclusion of
many non-convex functions in the optimization problem. Note
that the scale invariant property of fe implies that fe also
satisfies (v) (is a homogeneous function).

Many pairs of regularizer functions satisfy Assumption I.
For instance, the l1-norm, namely fg(x;λg) = λg|x| and
fe(x;λe) = λe|x|, satisfy Assumption I (see Appendix A).
We note that two recently popularized non-convex functions,
SCAD and MCP regularizers, also satisfy Assumption I. It is
worth pointing out that SCAD and MCP are more effective in
promoting sparsity than the lp norms. The SCAD regularizer
[16], is given by

fg(x;λ) =


λ|x| for |x| ≤ λ
−x

2−2µSλ|x|+λ2

2(µS−1) for λ < |x| ≤ µSλ
(µS+1)λ2

2 for |x| > µSλ

, (7)

3A precise definition of subgradients of functions is given in [24], page
301.
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where µS > 2 is a fixed parameter, and the MCP regularizer
[17], is

fg(x;λ) = sign(x)

∫ |x|
0

(
λ− z

µM

)
+

dz, (8)

where (x)+ = max(0, x) and µM > 0 is a fixed parameter.
In Appendix A, we show that Assumption I is met for SCAD
and MCP. The following theorem is our main technical result
that presents the solution of the optimization problem in (4)
based on the proximity operators of the functions fg and fe.

Theorem 1. Consider functions fe and fg that satisfy Assump-
tion I. The optimization problem in (4), can be decoupled as
follows

âi = argmin
ai∈RN

{
1

2
‖bi − ai‖22 + g(ai;λg) + E(ai;λe)

}
, (9)

where the index i = 1 . . . Ng denotes the group num-
ber, g(ai;λg) = fg (‖ai‖2;λg) , and E(ai;λe) =∑
j fe (ai[j];λe) . Then,

âi = Pλg,g (Pλe,E(bi)) , (10)

where Pλg,g and Pλe,E are the proximity operators of E and
g, respectively (see Definition 1) and can be written as

Pλg,g (b) =
Pλg,fg (‖b‖2)

‖b‖2
b, (11)

[Pλe,E (b)]j = Pλe,fe (b[j]) . (12)

The proof is provided in Appendix B. This result states
that within a group, joint sparsity is achieved by first applying
the element proximity operator and then the group proximity
operator. We observe the fg and fe can be chosen structurally
different, the resultant complexity is modest, and we can use
our result with any optimization algorithm based on proximity
operators, e.g., ADMM [22], proximal gradient methods [24],
proximal splitting methods [23], and so on.

C. Proximity Operator of Sparse-Inducing Regularizers

In this section, we compute closed form expressions for the
proximity operators of the sparsity inducing regularizers in-
troduced in Section II-B, using Definition 1 and Remarks 1 to
3. All of the aforementioned regularizers satisfy the condition
noted in Remark 2 due to property (iv) in Assumption I. Using
Definition 1, we can compute the proximity operators of the lp,
SCAD, and MCP regularizers. The proximity operator for the
lp-norm is given by, Pλ,fg (x) = sign(x) max{0, λu}, where
up−1 + u

p = |x|
λp . For p = 1, i.e., fe(x;λ) = λ|x|, the resulting

operator is often called soft-thresholding (see e.g. [21]),

Pλ,fe(x) = sign(x) max{0, |x| − λ}. (13)

The closed form solution of the proximity operator for the
SCAD regularizer [16] can be written as,

Pλ,fg (x) =


0, if |x| ≤ λ
x− sign(x)λ, if λ ≤ |x| ≤ 2λ
x−sign(x)

µSλ

µS−1

1− 1
µS−1

if 2λ < |x| ≤ µSλ
x if |x| > µSλ

, (14)
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Fig. 1: MCP and SCAD proximity operators. Here λ = 1 is
considered.

and finally the proximity operator for the MCP regularizer [17]
is

Pλ,fg (x) =


0, if |x| ≤ λ
x−sign(x)λ

1− 1
µM

if λ < |x| ≤ µMλ
x if |x| > µMλ

. (15)

In Fig. 1, MCP and SCAD proximity operators are depicted
for λ = 1 and three different values of the parameters µS and
µM . It is clear that when µS and µM are large, both SCAD
and MCP operators behave like the soft-thresholding operator
(for x smaller than µSλ and µMλ, respectively).

In the sequel, first we model a V2V communication system.
Then, we show that V2V channel representation in the delay-
Doppler domain has both element-wise and group-wise spar-
sity structures. Finally, we apply our key optimization result
derived in this section to estimate the V2V channel using an
ADMM algorithm.

III. COMMUNICATION SYSTEM MODEL

We will consider communication between two vehicles as
shown in Fig. 2. The transmitted signal s(t) is generated by
the modulation of the transmitted pilot sequence s[n] onto the
transmit pulse pt(t) as,

s(t) =

+∞∑
n=−∞

s[n]pt(t− nTs), (16)

where Ts is the sampling period. Note that this signal model
is quite general, and encompasses OFDM signals as well as
single-carrier signals. The signal s(t) is transmitted over a
linear, time-varying, V2V channel. The received signal y(t)
can be written as,

y(t) =

∫ +∞

−∞
h (t, τ) s(t− τ) dτ + z(t). (17)

Here, h(t, τ) is the channel’s time-varying impulse response,
and z(t) is a complex white Gaussian noise. At the receiver,
y(t) is converted into a discrete-time signal using an anti-
aliasing filter pr(t). That is,

y[n] =

∫ +∞

−∞
y(t)pr(nTs − t) dt. (18)

The relationship between the discrete-time signal s[n] and
received signal y[n], using Eqs. (16)–(18), can be written as,

y[n] =

+∞∑
m=−∞

hl [n,m] s[n−m] + z[n], (19)
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where hl[n,m] 4 is the discrete time-delay representation of
the observed channel, which is related to the continuous-time
channel impulse response h(t, τ) as follows,

hl[n,m] =

+∞∫∫
−∞

h (t+ nTs, τ) pt(t− τ +mTs)pr(−t) dtdτ.

With some loss of generality, we assume that pr(t) has a
root-Nyquist spectrum with respect to the sample duration
Ts, which implies that z[n] is a sequence of i.i.d circularly
symmetric complex Gaussian random variables with variance
σ2
z , and that hl[n,m] is causal with maximum delay M − 1,

i.e., hl[n,m] = 0 for m ≥M and m < 0. We can then write

y[n] =

M−1∑
m=0

(
K∑

k=−K

Hl [k,m] ej
2πnk
2K+1

)
s[n−m] + z[n],

(20)
for n = 0, 1, ..., Nr − 1,

where 2K + 1 ≥ Nr, and

Hl[k,m] =
1

2K + 1

Nr−1∑
n=0

hl[n,m]e−j
2πnk
2K+1 , for |k| ≤ K,

(21)

is the discrete delay-Doppler, spreading function of the chan-
nel. Here, Nr denotes the total number of received signal
samples used for the channel estimation.

IV. JOINT SPARSITY STRUCTURE OF V2V CHANNELS

In this section, we adopt the V2V geometry-based stochas-
tic channel model from [7] and analyze the structure such
a model imposes on the delay-Doppler spreading function.
The V2V channel model considers four types of multipath
components (MPCs): (i) the effective line-of-sight (LOS)
component, which may contain the ground reflections, (ii)
discrete components generated from reflections of discrete
mobile scatterers (MD), e.g., other vehicles, (iii) discrete
components reflected from discrete static scatterers (SD) such
as bridges, large traffic signs, etc., and (iv) diffuse components
(DI). Thus, the V2V channel impulse response can be written
as

h(t, τ) =hLOS(t, τ) +

NMD∑
i=1

hMD,i(t, τ)

+

NSD∑
i=1

hSD,i(t, τ) +

NDI∑
i=1

hDI,i(t, τ), (22)

where NMD denotes the number of discrete mobile scatterers,
NSD is the number of discrete static scatterers and NDI
is the number of diffuse scatterers, respectively. Typically,
NDI is much larger than NSD and NMD [7]. In the above
representation, the multipath components can be modeled as

hi(t, τ) = ηiδ(τ − τi)e−j2πνit, (23)

where ηi is the complex channel gain, τi is the delay, and
νi is the Doppler shift associated with path i and δ(t) is the
Dirac delta function. The channel description in (22) and (23)

4The subscript “l” hereafter denotes the channel with leakage. We discuss
the channel leakage effect with more details in Section V.

P 

Fig. 2: Geometric representation of the V2V channel. The
shaded areas on each side of the road contain static discrete
(SD) and diffuse (DI) scatters, while the road area contains
both SD and moving discrete (MD) scatterers.

explicitly models distance-dependent pathloss and scatterer
parameters [7]. We assume that these parameters can be
approximated as time-invariant over the pilot signal duration.
This is a reasonable assumption in practical systems as will be
illustrated in Figures 12 and 13 for the experimental channel
measurement data. The spatial distribution of the scatterers
and the statistical properties of the complex channel gains
are specified in [7] for rural and highway environments. It
is shown that the channel power delay profile is exponential.
Further details about the spatial evolution of the gains can
be found in [7], [28]. In geometry-based stochastic channel
modeling, point scatterers are randomly distributed in a ge-
ometry according to a specified distribution. The position and
speed of the scatterers, transmitter, and receiver determine the
delay-Doppler parameters for each MPC, which in turn, to-
gether with the transmitter and receive pulse shapes, determine
Hl[k,m].

We next determine the delay and Doppler contributions of
an ensemble of point scatterers of type (i)-(iv) for the road
geometry depicted in Fig. 2. If vehicles are assumed to travel
parallel with the x-axis, the overall Doppler shift for the path
from the transmitter (at position TX) via the point scatterer
(at position P) to the receiver (at position RX) can be written
as [7]

ν (θt, θr) =
1

λν
[(vT − vP ) cos θt + (vR − vP ) cos θr] , (24)

where λν is the wavelength, vT , vP , and vR are the speed of
the transmitter, scatterer, and receiver, respectively, and θt and
θr is the angle of departure and arrival, respectively. The path
delay is

τ =
d1 + d2

c0
, (25)

where c0 is the propagation speed, d1 is the distance from TX
to P, and d2 is the distance from P to RX. The path parameters
θt, θr, d1, and d2 are easily computed from TX, P, and RX.
The delay and Doppler parameters of each component (i)-(iv)
can now be specified by Eqs. (24) and (25).

LOS: If it exists, the most significant component of the
V2V channel is the line of sight (LOS) component, which
will have delay and Doppler parameters τ0 = d0

c0
and ν0 =

1
λν

(vT − vR) cos(θ), where d0 is the distance from TX and
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Fig. 3: Delay-Doppler contribution of line-of-sight (LOS) and
from static scatterers (SD/DI) placed on a parallel line beside
the road.

RX and θ is the angle between the x-axis (i.e., the moving
direction) and the line passing through TX and RX.

Diffuse Scatterers: The diffuse (DI) scatterers are static
(vP = 0) and uniformly distributed in the shadowed regions in
Fig. 2. Suppose we place a static scatterer at the coordinates
(x, y). The delay-Doppler pair, (τ(x, y), ν(x, y)), for the cor-
responding MPC can be calculated from Eqs. (24) and (25).
If we fix y = y0 and vary x from −∞ to +∞, the delay-
Doppler pair will trace out a U-shaped curve in the delay-
Doppler plane, as depicted in Fig. 3.

Repeating this procedure for the permissible y-coordinates
for the DI scatterers, |y0| ∈ [D/2, d + D/2], will result in
a family of curves that are confined to a U-shaped region,
see Fig. 4. Hence, the DI scatterers will result in multipath
components with delay-Doppler pairs inside this region. The
maximum and minimum Doppler values of the region is easily
found from Eq. (24). In fact, it follows from Eq. (24) that
the Doppler parameter of an MPC due to a static scatterer
will be confined to the symmetric interval [−νS , νS ], where
νS = 1

λν
(vT + vR).

Static Discrete Scatterers: The static discrete (SD) scat-
terers can appear outside the shadowed regions in Fig. 2. In
fact, the y-coordinates of the SD scatterers are drawn from
a Gaussian mixture consisting of two Gaussian pdfs with
the same standard deviation σy,SD and means y1,SD and
y2,SD [7]. The delay-Doppler pair for an MPC due to an
SD scatterer can therefore appear also outside the U-shaped
region in Fig. 4. However, since the SD scatterers are static,
the Doppler parameter is in the interval [−νS , νS ], i.e., the
same interval as for the diffuse scatterers.

Mobile Discrete Scatterers: We assume that no vehicle
travels with an absolute speed exceeding vmax. It then follows
from Eq. (24) that the Doppler due to a mobile discrete (MD)
scatterer is in the interval [−νmax, νmax], where νmax = 4vmax

λν
.

For example, in Fig. 4, the Doppler shift νp is due to an MD
scatterer (vehicle) that travels in the oncoming lane (vP < 0).

Based on the analysis above, we can conclude that the
delay-Doppler parameters for the multipath components can
be divided into three regions,

R1 ,
{

(τ, ν) ∈ R2 : τ ∈ (τ0, τ0 + ∆τ), ν ∈ (−νS , νS)
}

R2 ,
{

(τ, ν) ∈ R2 : τ ∈ [τ0 + ∆τ, τmax], |ν| ∈ [νS −∆ν, νS)
}

R3 ,
{

(τ, ν) ∈ R2 : τ ∈ [τ0, τmax], |ν| ≤ νmax]
}
\ (R1 ∪R2),

where τmax − τ0 is the maximum significant excess delay
for the V2V channel. Here, ∆τ and ∆ν are chosen such that
the contributions from all diffuse scatterers are confined to

MD#Sca'erer#

SD#Sca'erer#

LOS#

DI#Sca'erers#

Fig. 4: Delay-Doppler domain representation of V2V channel.
Delay-Doppler spreading function for diffuse components is
confined to a U-shaped area.

R1 ∪ R2. The exact choice of ∆τ is somewhat arbitrary. In
this paper, we consider a thresholding rule to compare the
noise level and channel components, which results in a par-
ticular choice of ∆τ ; the method is specified in Appendix C.
However, regardless of method, once ∆τ is chosen, we can
compute the height ∆ν of the two strips that make up R2.
This can be done by placing an ellipsoid with its foci at the
transmitter and receiver such that the path from the transmitter
to the receiver via any point on the ellipsoid has propagation
delay τ0 + ∆τ . By computing the associated Doppler along
the part of ellipsoid that is in the diffuse region (i.e., in the
strips just outside the highway, see Fig. 2), we can determine
the smallest absolute Doppler value among them as ν′ and
calculate ∆ν as ∆ν = νS − ν′. In Appendix C, we present a
data driven approach to approximate ∆ν. Note that the regions
gather channel components with similar behavior. Region R1,
contains the LOS, ground reflections, and (strong) discrete
and diffuse components due scatterers near the transmitter and
receiver. In Region R2, the delay-Doppler contribution of static
discrete and diffuse scatterers from farther locations appear.
Region R3 contains contributions from moving discrete and
static discrete scatters only.
Remark 4. In Fig. 4, we see that there are sparse contributions
from the SD and MD scatterers in all regions R1, R2, and R3.
However, clusters of DI components are confined to R1 ∪R2.
Therefore, V2V channel components can be divided into two
main clusters. One is the element-wise sparse components
(mobile and static discrete scatterers) that are distributed in
all three regions R1, R2, and R3, and the other one is
the group-wise sparse components (diffuse components) that
are located in regions R1 and R2. We note that, in V2V
channels due to the geometry of the channel and antenna
heights, there exists more diffuse components compared to
the cellular communication. Therefore, a proper V2V channel
estimation algorithm should consider the estimation of diffuse
components with higher quality compared to the cellular
communication channel. Since the diffuse components are
located in a specific part of delay-Doppler domain and the rest
of the channel support in the delay-Doppler is essentially zero,
we partition the channel into group vectors and take advantage
of group-wise sparsity of the channel to enhance the accuracy
of the estimate of the diffuse components. In Sec. VI, we
propose a method based on joint element-wise and group-wise
sparsity and Theorem 1 of Section II-B to estimate the discrete
delay-Doppler representation of V2V channel exploiting this
structure.
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V. OBSERVATION MODEL AND LEAKAGE EFFECT

In this section, we show how pulse shaping and a finite-
length training sequence can be taken into account when
formulating a linear observation model of the V2V channel.
We assume that pt(t) and pr(t) are causal with support
[0, Tsupp). The contribution to the received signal from one
of the 1 +NMD +NSD +NDI terms in (22) is of the form

s(t) ∗ hi(t, τ) =

∞∑
l=−∞

s[l]ηie
j2πνitpt(t− lTs − τi)

≈
∞∑

l=−∞

s[l]ηie
j2πνi(lTs+τi)pt(t− lTs − τi),

(26)

where the approximation is valid if we make the (reasonable)
assumption that νiTsupp � 1, and ∗ denotes convolution. If
we let p(t) = pt(t)∗pr(t), we can write the contribution after
filtering and sampling as

yi[n] = s(t) ∗ hi(t, τ) ∗ pr(t)|t=nT (27)

=

∞∑
l=−∞

s[l]ηie
j2πνi(lTs+τi)p((n− l)Ts − τi)

=

∞∑
m=−∞

s[n−m]ηie
j2πνi((n−m)Ts+τi)p(mTs − τi),

and identify hi[n,m] = ηie
j2πνi((n−m)Ts+τi)p(mTs − τi).

Suppose we have access to hi[n,m] for n = 0, 1, . . . , Nr − 1
and let ω2K+1 = exp(j2π/(2K + 1)). The (2K + 1)-point
DFT of hi[n,m], where we choose (2K + 1) ≥ Nr, is

Hl,i[k,m] =
1

2K + 1

Nr−1∑
n=0

hi[n,m]ω−nk2K+1 k ∈ K

= ηie
−j2πνi(mTs−τi)p(mTs − τi)w(k, νi), (28)

where K = {0,±1,±2, . . . ,±K} and w(k, x) is the (2K+1)-
point DFT of a discrete-time complex exponential with fre-
quency x and truncated to Nr samples

w(k, x) =


Nr

2K+1 , x = k/(2K + 1)

e
−jπ( k

2K+1
−x)(Nr−1)

2K+1

sin(π( k
2K+1−x)Nr)

sin(π( k
2K+1−x))

, otherwise

(29)

We note that the leakage in the delay and Doppler plane is
due to the non-zero support of p(·) and w(·, ·). The leakage
with respect to Doppler decreases with the observation length,
Nr, and the leakage with respect to delay decreases with
the bandwidth of the transmitted signal. We compute the
(effective) channel coefficients at time sample mi =

[
τi
Ts

]
and

Doppler sample ki = [νiTs(2K + 1)], where [.] indicates the
closest integer number. Note that the true channel parameters
τi and νi are not restricted to integer multiples of a sampling
interval. However, we do seek to estimate the effective channel
after appropriate sampling. Thus, at the receiver side, to
compensate (but not perfectly remove) for the channel leakage,
the effective channel components at those sampled times are
computed to equalize the channel (which may be different
from the actual channel components). We can then write

Hl,i[k,m] = ηig[k,m, ki,mi], k ∈ K,m ∈M (30)

where M = {0, 1, . . . ,M − 1} and

g[k,m, k′,m′] = ω
−k′(m−m′)
2K+1 w(k − k′, 0)p((m−m′)Ts).

(31)

Due to the linearity of the discrete Fourier transform, we
can conclude that the channel with leakage is given by

Hl[k,m] =
∑
i

Hl,i[k,m] =
∑
i

ηig[k,m, ki,mi], (32)

where the summation is over the LOS component and all the
NMD +NSD +NDI scatterers. The channel without leakage
is

H[k,m] =
∑
i

ηiδ[k − ki]δ[m−mi], (33)

where δ[n] is the Kronecker delta function. The channels in
(32) and (33) can be represented for k ∈ K and m ∈ M
by the vectors xl ∈ CN and x ∈ CN , respectively, where
N = |K||M| = (2K + 1)M , as

xl = vec

Hl[−K, 0] · · · Hl[−K,M − 1]
... · · ·

...
Hl[K, 0] · · · Hl[K,M − 1]

 (34)

x = vec

H[−K, 0] H[−K,M − 1]
... · · ·

...
H[K, 0] · · · H[K,M − 1]

 . (35)

where vec(H) is the vector formed by stacking the columns
of H on the top of each other. The relationship between xl
and x can be written as

xl = Gx, (36)

where G ∈ CN×N is defined as

G =
[
vec(G0) vec(G1) · · · vec(GN−1)

]
(37)

Gj =

g[−K, 0, k′,m′] · · · g[−K,M − 1, k′,m′]
... · · ·

...
g[K, 0, k′,m′] · · · g[K,M − 1, k′,m′]

 ,
where the one-to-one correspondence between j =
0, 1, . . . , (2K + 1)M − 1 and (k′,m′) ∈ K × M is given
by j = m′(2K + 1) + k′ +K.

The structure of G is a direct consequence of how we
vectorize Hl[k,m] in (35). If we consider an alternative way
of vectorizing Hl[k,m], then the leakage matrix G needs
to be recomputed accordingly, by appropriate permutation of
the columns and rows of leakage matrix defined in (37). As
K, M , and the pulse shape are known, G is completely
determined in (36). Thus, we can utilize the relationship in
(36) to compensate for leakage.

Consider that the source vehicle transmits a sequence of
Nr+M−1 pilots, s[n], for n = −(M−1),−(M−2), ..., Nr−
1, over the channel. We collect the Nr received samples in a
column vector

y = [y[0], y[1], ..., y[Nr − 1]]
ᵀ
. (38)

Using (20), we have the following matrix representation:

y = Sxl + z, (39)
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Fig. 5: Schematic of the V2V channel vector partitioning for
group vectors.

where z ∼ CN (0, σ2
zINr ) is a Gaussian noise vector, and S

is a Nr ×N block data matrix of the form

S = [S0, ...,SM−1] , (40)

where each block Sm ∈ CNr×(2K+1) is of the form

Sm = diag {s[−m], ..., s[Nr −m− 1]}Ω, (41)

for m = 0, 1, . . . ,M − 1, and Ω ∈ CNr×(2K+1) is a Vander-
monde matrix, Ω[i, j] = ω

i(j−K)
2K+1 , where i = 0, 1 . . . , Nr − 1

and j = 0, 1, . . . , 2K. Finally, by combining (39) and (36) we
have

y = Sxl + z = Ax + z, (42)

where A = SG and A ∈ CNr×N .

VI. CHANNEL ESTIMATION

Based on our analysis in Section IV, the components in the
vector x have both element- and group-wise sparsity. Given
estimates of the parameters that define regions R1, R2, and
R3 (see Section IV and Appendix C), we illustrate how to
partition the elements in the channel vector x to enforce the
group-wise sparsity structure. Our partitioning is based on the
sparsity structure of regions R1, R2, and R3, and Eq. (35),
which maps the entries of x into channel components, H[k,m]
for k = −K, . . . ,K and m = 0, . . . ,M−1. To partition the el-
ements in regions R1 and R2, we collect channel components
with a common Doppler value into a single group, e.g., I1, I2,
. . . , INg,1 (blue segments), and INg,1+1, . . . , INg,1+Ng,2 (red
segments) as depicted in Fig. 5. For R3, we know that this
region contains only the element-wise sparse components,
thus we consider each element of x in this region as a
single partition, e.g., INNg,1+NNg,2+1, . . . , INg , where Ng =
NNg,1+NNg,2+NNg,3 as depicted in Fig. 5. Now that we have
a partition of all the elements in x, we can easily determine
the group vectors xi as follows:

xi[k] =

{
x[k] k ∈ Ii
0 k /∈ Ii

, for i = 1, . . . , Ng (43)

We know that most of components in R3 are zero (or close
to zero) and there is a significant numbers of non-zero diffuse
components in region R1 and R2. Therefore, if we enforce the
group sparsity regularization over this partitioning of elements
in x, it will improve the quality of estimation of diffuse
components.

We next specify the regularizations to exploit the jointly
sparse structure of the V2V channel as follows

x̂ = argmin
x∈CN

{
1

2
‖y −Ax‖22 + φg(|x|;λg) + φe(|x|;λe)

}
, (P0)

where |x| = [|x[1]|, . . . , |x[N ]|]T with N = M(2K + 1)
and |x[i]| =

√
Re(x[i])2 + Im(x[i])2. Here the regularization

functions are

φg(|x|;λg) =

Ng∑
j=1

fg (‖xj‖2;λg) , (44)

φe(|x|;λe) =

N∑
i=1

fe (|x[i]|;λe) . (45)

We develop a proximal ADMM algorithm to solve problem
P0. Problem P0 can be rewritten using an auxiliary variable
w as follows,

min
x,w∈CN

1

2
‖y −Ax‖22 + φg(|w|;λg) + φe(|w|;λe)

s.t. w = x (46)

For the optimization problem in (46), ADMM consists of the
following iterations,
• Initialize: ρ 6= 0, λρg =

λg
ρ , λρe = λe

ρ , θ0 = w0 = 0,

A0 =
(
ρ2I + AHA

)−1
, and x0 = A0A

Hy.
• Update-x:

xn+1 = ρ2A0

(
wn − θnρ

)
+ x0, (47)

where θnρ = θn

ρ2 .
• Update-w: for i = 1, 2, . . . , Ng,

wn+1
i = argmin

wi

1

2

∥∥xn+1
i + θnρi −wi

∥∥2

2

+g(|wi|;λρg) + E(|wi|;λρe), (48)

where the index i denotes the group number, and

E(|wi|;λρe) =
∑
j

fe

( |wi[j]|
ρ

;λρe

)
, (49)

g(|wi|;λρg) = fg

(‖wi‖2
ρ

;λρg

)
. (50)

• Update-dual variable-θ:

θn+1
ρ = θnρ +

(
xn+1 −wn+1

)
. (51)

Details of this derivation are provided in Appendix D. Note
that both A0 and x0 are known and can be computed in
advance. In the update-w step, the index i denotes the group
number, thus, this step can be done in parallel for all groups,
simultaneously.

Since the vectors in optimization problem for updating w
in (48) are complex vectors, Theorem 1 in Section II-B,
cannot directly be applied to find a closed-form solution
for this optimization problem. However, in order to apply
Theorem 1, we introduce the following notation and lemma.
The vector w ∈ Cn can be written as w = |w| � Phase(w),
where the nth element of Phase(w) is exp(jAng(w[n])),
and Ang(w[n]) is the angle of w[n] in polar form, i.e.,
w[n] = |w[n]| exp(jAng(w[n])), and � is component-wise
multiplication (Schur product).
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TABLE I: Proposed V2V Channel Estimation Method

Input: y, A, λg , λe, ρ, nmax, ε.
Initialize: w0 = θ0

ρ = 0.
Pre-computation: A0 =

(
ρ2I + AHA

)−1
,

x0 = A0A
Hy.

For n = 0 to nmax − 1
xn+1 = ρ2A0

(
wn − θnρ

)
+ x0

wn+1
i = Pλρg,g

(
Pλρe,E

(∣∣xn+1
i + θnρi

∣∣))
�Phase

(
xn+1
i + θnρi

)
for i = 1, 2, . . . , Ng

θn+1
ρ = θnρ +

(
xn+1 −wn+1

)
if ‖xn+1 − xn‖2 < ε then break

End
Output: Vector x.

Lemma 1. For any c ∈ CN

argmin
z∈CN

‖c−w‖22 = Phase(c)� argmin
|w|∈RN

‖ |c| − |w| ‖22. (52)

The proof is provided in Appendix E. Since the two last
terms in (48) are independent of the phase of wi, we use
Lemma 1 to write the ith group problem in (48) as

wn+1
i = Phase

(
xn+1
i + θnρi

)
�(

argmin
|wi|

1

2

∥∥|xn+1
i + θnρi| − |wi|

∥∥2

2
+ g(|wi|;λρg)

+E(|wi|;λρe)
)

(53)

Now, the vectors in the optimization problem in (53) involve
only real vectors, therefore, the solution for this optimization
problem can be directly computed using Theorem 1. We
determine a closed form solution for the update-w step in
Corollary 1, below, using the proximity operators of the
univariate functions fe and fg . This update rule is a direct
consequence of Theorem 1.

Corollary 1. The second step, update-w, can be performed
as follows

wn+1
i = Pλρg,g

(
Pλρe,E

(∣∣xn+1
i + θnρi

∣∣))
�Phase

(
xn+1
i + θnρi

)
, (54)

where E and g are defined in Equations (49) and (50).

Based on Corollary 1, the update-w step only depends on
the proximity operators of the regularizer functions fe and
fg . The proposed algorithm to estimate the channel vector x
from the received data vector y is summarized in Table I. The
complexity of our joint sparse signal estimation algorithm is
as follows:
Step 1) update x, incurs a computational complexity of
O(N2), where N = M(2K + 1), due to a matrix/vector
multiplication. Step 2) updating w, requires Ng group-wise
threshold comparisons and N element-wise threshold com-
parisons. Thus, it has complexity of O(N + Ng) ≈ O(N).
Updating the dual variable in Step 3) has O(N) complexity.

Therefore, the overall complexity of our proposed algorithm
is O(N2). In our algorithm (similar to the other methods),

we compute a Least-Squares (LS) solution for the initializa-
tion. Computation of a least squares (LS) solution can be
implemented with complexity O(N3). Algorithms such as
the Wiener filter, the Hybrid Sparse/Diffuse (HSD) estimator
that are designed based on statistical knowledge of channel
parameters require a large number of samples to estimate the
required covariance matrices. If the correlation matrices are
known, then the Wiener filter and the Hybrid Sparse/Diffuse
(HSD) estimator have computational complexity in order of
O(N3).

VII. NUMERICAL RESULTS

In this section, we demonstrate the performance gains that
can be achieved with our proposed, structured, estimation
using both convex and non-convex sparsity-inducing regular-
izers, in comparison to prior methods such as Wiener filtering
[6], the Hybrid Sparse/Diffuse (HSD) estimator [8–10], and
the compressed sensing (CS) method [11], [12].

To simulate the channel, we consider a geometry with
length of 1 km around the transmitter-receiver pair, road width
D = 50 m, and the width of the diffuse strip around the road
d = 25 m, as Fig. 2. The locations of the transmitter and
receiver are chosen in this geometry with distance 100 m to
200 m from each other. The speeds of the transmit and receive
vehicles are chosen randomly from the interval [60, 160]
(km/h), the speed limits for a highway. It is assumed that
the number of MD scatterers NMD = 10, and their speeds
are also chosen randomly from the interval [60, 160] (km/h);
we have NSD = 10 and NDI = 400, SD and DI scatterers,
respectively [7]. Using these parameters, we compute the delay
and Doppler values for each scatterer. The statistical parameter
values for different scatterers are selected as in Table I of
[7], which are determined from experimental measurements.
The scatterer amplitudes were randomly drawn from zero
mean, complex Gaussian distributions with three different
power delay profiles for the LOS and mobile discrete (MD)
scatterers, static discrete scatterers, and diffuse scatterers. We
assume that the mean power of the static scatterers is 10 dB
less than the mean power of the LOS and MD scatterers,
and the mean power of the diffuse scatterers also is 20 dB
less than the mean power of the LOS and MD scatterers
[7]. Furthermore, we consider fc = 5.8 GHz, Ts = 10 ns,
Nr = 1024, K = 512, and M = 256. The pilot samples are
drawn from a zero-mean, unit variance Gaussian distribution.
The interpolation/anti-aliasing filters pt(t) = pr(t) are root-
raised-cosine filters with roll-off factor 0.25 and Tsupp = 1µs.
The required regularization parameters were found by trial
and error using a cross-validation algorithm on the data [29].
Performance is measured by the normalized mean square
error (NMSE), normalized by the mean energy of the channel
coefficients. The NMSE is defined as E

{
‖x̂− x‖22/‖x‖22

}
,

where x̂ is the estimated channel vector and SNR defined as
SNR = E{‖y − z‖22}/E{‖z‖22}.

Fig. 6 depicts the MSE using our proposed estimator, our
previously proposed hybrid sparse/diffuse (HSD) estimator as
adapted to V2V channels [10], a compressed sensing (CS)
method [11], [12], and the Wiener based estimator of [6]. We
have also included a curve (known support) corresponding to
the case that the support (location of non-zero components)
of vector x is known when we apply our joint sparse esti-
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Fig. 6: Comparison of NMSE v.s SNR for Wiener filter
estimator [6], HSD estimator [8], [10], CS Method [11], [12],
and proposed method with different regularizes, i.e., Nested-
soft [19], [20], Nested-MCP, and Nested-SCAD regularizers.

mation method. This curve provides a lower bound for the
performance of our proposed estimator. The HSD estimator
considers the channel components as a summation of sparse
and diffuse components, i.e. x = xs+xd. Sparse components,
xs, are modeled by the element-wise product of an unknown
deterministic amplitude, as, and a random Bernoulli vector,
bs, xs = as � bs. Furthermore, the diffuse components are
assumed to follow a Gaussian distribution with exponential
profile, xd ∼ N (0,Σd) where Σd is diagonal and is the
Kronecker product of covariance matrices of the channel com-
ponent vectors with common Doppler values [10]. The profile
parameters are retrieved using the expectation-maximization
algorithm [8].

The HSD model estimation procedure can be
stated as: first, the location of sparse components,
i.e., the Bernoulli vector, are determined as
b̂s[k] = 1

(
|xLS [k]|2 ≥ γ

(
(Σe[k, k])

−1
+ Σd[k, k]

))
, where

1(.) is the indicator function, xLS =
(
ρ2I + AHA

)−1
AHy

is the regularized LS estimation, Σe is the covariance matrix
of the noise vector after LS estimation and γ is a known
parameter [10]. Then, the sparse components are computed
as x̂s = xLS � b̂s, and finally the diffuse components can be
estimated as x̂d = Σd

(
Σd + Σ−1

e

)−1
(xLS − x̂s) [8], [10].

The Wiener based estimator [6] estimates the channel as
x̂ = RxA

H
(
ARxA

H + σ2
zI
)−1

y with Rx = E{xxH},
which is not known at the receiver side, but is approximated by
assuming a delay-Doppler scattering function prototype with
flat spectrum in a 2D region as in [5]. The maximum path
delay and Doppler in the support of scattering function are
considered as τmax = 1.5µs and νmax = 860 Hz, respectively.
As we will see, this idealized scattering function assumption
results in degraded performance.

It is clear from Fig. 6 that there is performance improvement
when we consider the joint structural information of the
channel in the delay and Doppler domain. For our proposed
method, we have considered different types of regularizers.
In Fig. 6, Nested-Soft corresponds to our proposed structured
estimator with a soft-thresholding regularizer, i.e., fg(x;λg) =
λg|x| and fe(x;λe) = λe|x| (Note that this special case of
our algorithm is the case considered in [19] and [20] for
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Fig. 7: NMSE of the channel estimators. The (∗) in the legend
means that the leakage effect is not compensated, i.e., G = I
is assumed in the channel estimation algorithm.

unknown parameter p = 1); Nested-SCAD corresponds to
the case where fg(x;λg) is the SCAD regularizer function
with µS = 3 in Equation (7) and fe(x;λe) = λe|x|; and
Nested-MCP corresponds to the case where fg(x;λg) is the
MCP regularizer function with µM = 2 in Equation (8) and
fe(x;λe) = λe|x|, respectively. The penalty parameters for
the simulations have been considered as λg/λe ≈ 10 and
λg ∈ [0, 10]. Fig. 6 shows that the non-convex regularizers
improve estimation quality by about 5 dB at low SNR and 7 dB
at high SNR values with the same computational complexity
compared to the convex soft-thresholding regularizer. There
is also a significant improvement in effective SNR due to
the exploitation of the V2V channel structure in the delay-
Doppler domain. For instance, to achieve MSE = −20 dB,
the performance curve related to the the structured estimator
shows a 10dB improvement in SNR compared to that for the
HSD estimator, and 15 dB improvement in SNR compared
to that for the Wiener Filter estimator. From the results in
Fig. 6, we can conclude that since the channel components in
V2V channels (sparse and diffuse components) have different
levels of energy, proximity operators such as SCAD and MCP
with a multi-threshold nature of their proximal operators (see
Fig. 1 and Eq.s (14) and (15)) are (more) suited to the channel
structure.

In Fig. 7, we consider the effect of leakage compensation
(Section V) on the performance of sparse estimator of V2V
channels, such as the HSD estimator and our proposed joint
sparsity estimator using SCAD regularizer function for group
sparsity. From the results in Fig. 7, we observe that the
uncompensated leakage effect reduces performance severely,
more than 7 dB, particularly at higher SNR, due to the channel
mismatch introduced by the channel leakage.

Next, we assess the performance of our proposed V2V
channel estimation algorithm for different values of NSD,
NDI , and NMD in the channel. In Fig. 8.(a), the perfor-
mance of our algorithm for different choices of NSD +NMD

is depicted. Note that the static (SD) and mobile discrete
(MD) components have similar effects on the channel sparsity
pattern. Therefore, we consider the value of NSD + NMD

for our simulations. In Fig. 8.(b), the performance of our
algorithm for different choices of NDI is depicted For this
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Fig. 8: Performance of algorithm for different values of NDI
and NSD +NMD.
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Fig. 9: Performance of algorithm for different values of ∆τ
and ∆ν.

numerical simulation, we consider K = 1024, M = 512, and
Nr = 2048, and SNR=10 dB. It can be seen that by decreasing
the number of channel components, the performance of our
method improves.

Furthermore, we consider the performance of our proposed
method under different values of ∆τ , and ∆ν. Our numerical
results in Figures 9.(a) and 9.(b) show that by increasing both
∆τ and ∆ν the performance of our algorithm degrades. This is
due to the fact that increasing ∆τ and ∆ν reduces the sparsity
of the channel, which results in less noise reduction. Here
Nr = 512, M = 256, NSD + NMD = 20 and NDI = 200
are considered.

The value of parameter K is lower bounded by Nr, namely
the total number of measurements, in the sense that 2K +
1 ≥ Nr, as given in Eq. (21). To decrease the computational
complexity, we consider K = d(Nr − 1)/2e, which provides
a good performance results as seen in Fig. 10.

However, we can consider K ≥ d(Nr − 1)/2e by zero
padding the DFT transform in Eq. (21). The larger the K,
the better the leakage is compensated, but the higher the signal
dimension of x. The first will improve the signal recovery, but
the latter degrades the signal reconstruction as more unknown
variables are introduced. To understand the effect of increasing
K, we consider K = γd(Nr − 1)/2e, where 1 ≤ γ. Here for
computational efficiency, we consider γ = 2n, where n is
a nonnegative integer. Furthermore, Nr = 512, M = 256,
NSD + NMD = 20 and NDI = 200 are considered. Results
in Fig.10 show that by increasing γ, there is an improvement
in the performance of the algorithm for n ≤ 4. But after n ≥ 5
(increasing the signal dimension) increasing K, increases the
NMSE.

In Figures 11.(a) and 11.(b), we have considered the effect
of different choices of M and Nr on the NMSE of the
proposed V2V channel estimation algorithm. Note that the
values of Nr and M are dictated by the sampling time,
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Fig. 10: Performance of the proposed algorithm under different
values of K = γd(Nr − 1)/2e.
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Fig. 11: Performance of the proposed algorithm under different
values of Nr and M .

training signal length and channel delay spread. Therefore,
we can not increase the value of these parameters arbitrarily.
Figures 11.(a) and 11.(b) indicate that increasing the number
of measurements, Nr, and M , reduces the NMSE, as expected.

VIII. REAL CHANNEL MEASUREMENTS

In this section, we use experimental channel data, recorded
by WCAE5 measurements in a highway environment, to model
the V2V channel and also assess the performance of our pro-
posed channel estimation algorithm. The channel measurement
data was collected using the RUSK-Lund channel sounder in
Lund and Malmö city in Sweden. The complex 4 × 4 multi-
input-mutli-output (MIMO) channel transfer functions were
recorded at a 5.6 GHz carrier frequency over a bandwidth of
240 MHz in several different propagation environments with
two standard Volvo V70 cars used as the TX and RX cars
during the measurements [30].

A. Measurement setup
V2V channel measurements were performed with the

RUSK-LUND sounder using a multi-carrier signal with carrier
frequency 5.6 GHz to sound the channel and records the
time-variant complex channel transfer function H(t, f). The
measurement bandwidth was 240 MHz, and a test signal length
of 3.2µs was used. The time-varying channel was sampled
every 0.307 ms, corresponding to a sampling frequency of
3255 Hz during a time window of roughly 31.2 ms. The
sampling frequency implies a maximum resolvable Doppler
shift of 1.5 kHz, which corresponds to a relative speed of
about 350 km/h at 5.6 GHz.

5Wireless Communication in Automotive Environment
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By Inverse Discrete Fourier Transforming (IDFT) the
recorded frequency responses H(t, f), with a Hanning window
to suppress side lobes, the complex channel impulse responses
h(t, τ) are obtained. Finally, by taking Discrete Fourier Trans-
form (DFT) of h(t, τ) with respect to t, the channel scattering
function in the delay-Doppler domain, H[k,m], is computed.
In this experiment, K = 116 and M = 256 is considered.
Three recorded channel scattering functions, H[k,m], are
plotted in Figures 12 and 13. Fig. 12 presents a V2V channel
in the delay-Doppler domain. A discrete component is visible
at approximately 0.65µs propagation delay. Also plotted in the
figure is the Doppler shift vs. distance as produced by Equation
(24) and (25), i.e., for scatterers located on a line parallel
to (and a distance 5 m away from) the TX/RX direction of
motion. We notice that V2V channel scattering (in the delay-
Doppler domain) in Figures 12 and 13 (a) and (b) are highly
structured as predicted in Section IV. As seen in these figures,
the diffuse components are confined in a U-shaped area that
was also predicted by our analysis in Section IV. Furthermore,
we can observe the sparse structure of the discrete components
in all the figures.

In Fig. 14, we compare the performance of our proposed
nested estimators with the CS method [11], [12] to estimate
the channel given in Fig. 13 (a). The training pilot samples are
generated as discussed in Section VII. To vary the SNR, we
add additive white Gaussian noise to the signal at the output
of channel. Note that bandwidth and observation time for the
channel measurements are large enough to allow us to ignore
the leakage effect. The results in Fig. 14 confirm our numerical
analysis in Section VII and show that our proposed joint sparse
estimation algorithm has a better performance compared to the
(only) element-wise sparse estimator methods [11], [12].

In Fig. 15, we investigate the effect of specifying regions
on the channel estimation algorithm. We consider the channel
given in Fig. 13 (b) for this experiment. We have considered
three different region scenarios. In the first scenario, we
determine the regions as computed by our heuristic method
given in Appendix C. In the second scenario, we keep ∆τ
the same as the first scenario, but we set ∆ν = νmax

2 , which
means that we neglect the structure of the diffuse components
in regions R2 and we assume that the diffuse components can
occur in the entire delay-Doppler domain. Finally, in the third
scenario, we set ∆τ = τmax, i.e., R1 extends to cover the
entire delay-Doppler domain. Results in Fig. 15 indicate that
considering the structural information of the V2V channel in
the delay-Doppler (three regions) significantly improves the
performance of our joint sparse estimation algorithm.

IX. CONCLUSIONS

We provide a comprehensive analysis of V2V channels in
the delay-Doppler domain using the well-known geometry-
based stochastic channel modeling. Our characterization re-
veals that the V2V channel model has three key regions,
and these regions exhibit different sparse/hybrid structures
which can be exploited to improve channel estimation. Using
this structure, we have proposed a joint element- and group-
wise sparse approximation method using general regularization
functions. We prove that for the needed optimization, the
optimal solution results in a nested estimation of the channel
vector based on the group and element wise penalty functions.

Discrete(component(

Equa1on(((24)(

Fig. 12: The channel delay-Doppler scattering function for a
real channel measurement data [30].
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Fig. 13: Delay-Doppler spreading function. Diffuse compo-
nents are confined to a U-shaped area.
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Fig. 14: Comparison of NMSE v.s SNR for CS Method [11],
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Fig. 15: Performance of the proposed algorithm for different
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Our proposed method exploits proximity operators and the
alternating direction method of multipliers, resulting in a
modest complexity approach with excellent performance. We
characterized the leakage effect on the sparsity of the channel
and robustified the channel estimator by explicitly compensat-
ing for pulse shape leakage at the receiver using the leakage
matrix. Simulation results reveal that exploiting the joint
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sparsity structure with non-convex regularizers yields a 5 dB
improvement in SNR compared to our previous state of the art
HSD estimator in low SNR. Furthermore, using experimental
data of V2V channel from a WCAE measurement campaign,
we showed that our estimator yields 4 dB to 6 dB improvement
in SNR compared to the compressed sensing method in [11],
[12].

APPENDIX A
SPARSITY INDUCING REGULARIZERS

In this section, we show that the regularizer functions
summarized in Section II-B satisfy Assumptions I. We note
that showing the assumptions for the convex regularizers is
straightforward and thus omitted; we focus on the non-convex
regularizers which will be used to induce group sparsity.
SCAD regularizer [16]: This penalty takes the form

fg(x;λ) =


λ|x|, for |x| ≤ λ
−x

2−2µSλ|x|+λ2

2(µS−1) for λ < |x| ≤ µSλ
(µS+1)λ2,

2 for |x| > µSλ

(55)

where µS > 2 is a fixed parameter. This penalty function is
non-decreasing, fg(0;λ) = fg(x; 0) = 0 and it is clear that
fg(αx;αλ) = α2fg(x;λ) for ∀α > 0. The derivative of the
SCAD penalty function for x 6= 0 is given by

f ′g(x;λ) = sign(x)

(
(µSλ− |x|)+

µS − 1
I{|x| > λ}+ λI{|x| ≤ λ}

)
(56)

where I(.) is the indicator function, and any point in interval
[−λ,+λ] is a valid subgradient at x = 0, so condition (iv)
is satisfied. For µ = 1

µS−1 the function fg(x;λ) + µx2 is
also convex. Thus, Assumption I holds for the SCAD penalty
function with µS ≥ 3.
MCP regularizer [17]: This penalty takes the form

fg(x;λ) = sign(x)

∫ |x|
0

(
λ− z

µM

)
+

dz (57)

where µM > 0 is a fixed parameter. This penalty function is
non-decreasing for x ≥ 0 and fg(0;λ) = fg(x; 0) = 0. Also,
fg(αx;αλ) = α2fg(x;λ) for ∀α > 0. The derivative of the
MCP penalty function for x 6= 0 is given by

f ′g(x;λ) = sign(x)

(
λ− |x|

µM

)
+

(58)

and any point in [−λ,+λ] is a valid subgradient at x = 0. For
µ = 1

µM
the function fg(x;λ) + µx2 is also convex. Thus,

Assumption I holds for the MCP penalty function with µM ≥
2.

APPENDIX B
PROOF OF THEOREM 1

We first prove two lemmas, needed for the proof of Theorem
1 and Corollary 1.

Lemma 2. Consider that g(a;λ) = f
(
‖a‖2
ρ ;λ

)
, where

f(x;λ) is a non-decreasing function of x. Furthermore,
f(x;λ) is a homogeneous function, i.e., f(αx;αλ) =
α2f(x;λ). Then,

i) Pλ,g(a) = γa, where γ ∈ [0, 1].

ii) γ =

{
1
‖a‖2Pρλ, fρ2

(‖a‖2) if ‖a‖2 > 0

0 if ‖a‖2 = 0

Proof: i). For every z, we can write z = a⊥ + γa, where
a⊥ ⊥ a and γ ∈ R. Therefore, based on the proximity operator
definition we have,

Pλ,g(a) = argmin
z

{
1

2
‖a− z‖22 + g(z;λ)

}
(59)

= argmin
z=a⊥+γa

{
1

2

∥∥a− γa− a⊥
∥∥2

2
+ g

(
γa + a⊥;λ

)}
Since

∥∥γa + a⊥
∥∥

2
≥ max

{
|γ|‖a‖2, ‖a⊥‖2

}
and f is a non-

decreasing function, we have g
(
γa + a⊥;λ

)
≥ g (γa;λ) .

Therefore, a⊥ = 0 in the optimization problem (59) and we
can rewrite it as,

Pλ,g(a) = a argmin
γ

{
1

2
(γ − 1)2‖a‖22 + g (γa;λ)

}
. (60)

The two terms in the objective function in (60) are increasing
when γ increases from γ = 1 or decreases from γ = 0. Hence,
the minimizer lies in the interval [0, 1]. Therefore, we have
Pλ,g(a) = γa, where γ ∈ [0, 1].
ii). Let t = γ‖a‖2, then the optimization problem in (60) for
‖a‖2 > 0, can be written as,

Pλ,g(a) =
a

‖a‖2
argmin
t∈[0,‖a‖2]

{
1

2
(‖a‖2 − t)2

+ f

(
t

ρ
;λ

)}
(a)
=

a

‖a‖2
argmin
t∈[0,‖a‖2]

{
1

2
(‖a‖2 − t)2

+
1

ρ2
f(t; ρλ)

}
(b)
=

a

‖a‖2
Pρλ, f

ρ2
(‖x‖2). (61)

Equality (a) is due to the homogeneity of function f , i.e.,
f
(
t
ρ ;λ
)

= f
(
t
ρ ; ρλρ

)
= 1

ρ2 f(t; ρλ). Equality (b) is due
to the definition of the proximal operator. Thus, γ =

1
‖a‖2Pρλ, fρ2

(‖a‖2), and the proof of the Lemma is completed.

Lemma 3. If the function f(x;λ) is homogenous i.e.,
f(αx;αλ) = α2f(x;λ) for all α > 0, then Pαλ,f (αb) =
αPλ,f (b) for ∀b ∈ R and λ > 0.

Proof: By definition of the proximity operator, we have
Pαλ,f (αb) = argmin

x

{
1
2 (αb− x)

2
+ f(x;αλ)

}
. Consider

x = αz, and using the homogenous properties of f , we
have Pαλ,f (αb) = α argmin

z

{
α2

2 (b− z)2
+ α2f(z;λ)

}
=

α argmin
z

{
1
2 (b− z)2

+ f(z;λ)
}

= αPλ,f (b).

Proof of Theorem 1: Since the regularizer func-
tions φe and φg are separable, it is easy to show
that the solution of optimization problem in Equation
(4) can be computed in parallel for all the groups as,
âi = argmin

ai∈RN

{
1
2 ‖bi − ai‖22 + g(ai;λg) + E(ai;λe)

}
for

i = 1, . . . , Ng , where g(ai;λg) = fg (‖ai‖2;λg) and
E(ai;λe) =

∑
j fe (ai[j];λe). For the sake of sim-

plicity in notation of the proof for Theorem 1 and
Corollary 1, we drop the group index and we con-
sider â = argmin

a

{
1
2 ‖b− a‖22 + g(a;λρg) + E(ai;λρe)

}
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where g(a;λρg) = fg

(
‖a‖2
ρ ;λρg

)
and E(a;λρe) =∑

j fe

(
a[j]
ρ ;λρe

)
. Here λρg =

λg
ρ and λρe =

λg
ρ . Note that

for ρ = 1, we have the claim in Theorem 1.
Assume v = Pλρe,E(b) and u = Pλρg,g(v).
Based on above definitions, to prove the claim of Theorem

1, we need to show that a = u is the minimizer of
J(a) = 1

2 ‖b− a‖22 + g(a;λρg) + E(a;λρe). To prove this
claim, we consider two cases: I: u 6= 0, and II: u = 0.

Case (I): u 6= 0. Since u = Pλρg,g(v) and g(a;λρg) =

fg

(
‖a‖2
ρ ;λρg

)
, and fg is a homogenous non-decreasing

function, by Lemma 2 we have u = γv, for some
γ ∈ (0, 1]. Furthermore, u should satisfy the first order
optimality condition for the objective function in u =

argmin
a

{
1
2‖v − a‖22 + g(a;λρg)

}
, namely

0 ∈ u− v + ∂g(u;λρg). (62)

Using the definition of the proximity operator and Remark 1,
we have [Pλρe,E(b)]i = Pλρe,fe

(
b[i]
ρ

)
. Since fe is a homoge-

neous function, using Lemma 3, we have Pγλρe,fe
(
γ b[i]ρ

)
=

γPλρe,fe

(
b[i]
ρ

)
or equivalently,

Pγλρe,E(γb) = argmin
a

{
1

2
‖γb− a‖22 + E(a; γλρe)

}
(63)

= γ argmin
z

{
1

2
‖b− z‖22 + E(z;λρe)

}
= γPλρe,E(b) = γv = u

and by the first order optimality condition (of u) for the
objective function in (63), we have 0 ∈ u−γb+∂E(u; γλρe).
Since γ 6= 0, above Equation can be rewritten as

0 ∈ v − b +
1

γ
∂E(u; γλρe). (64)

Since E(u;λρe) =
∑
j fe

(
u[j]
ρ ;λρe

)
, applying scale in-

variant property of function fe, i.e., fe

(
u[j]
ρ ; γλρe

)
=

γfe

(
u[j]
ρ ;λρe

)
, we have 1

γ ∂E(u; γλρe) = ∂E(u;λρe).
Therefore, we can rewrite (64) as

0 ∈ v − b + ∂E(u;λρe). (65)

Summing Equations (62) and (65), we have 0 ∈ u − b +
∂g(u;λρg) + ∂E(u;λρe), which is the first order optimality
of u for the objective function J(a). Case (II): u = 0.
Here, we need to show the first-order optimality conditions
for u = 0 for the objective function J(a), i.e., 0 ∈
{u− b + ∂g(u;λρg) + ∂E(u;λρe)} |u=0 = ∂g(0;λρg) +
∂E(0;λρe)−b. This is equivalent to showing the existence of
a χ1 ∈ [−1,+1]N ,

(
equivalent to the term ∂E(0;λρe)

)
, where

χ2 with ‖χ2‖2 ≤ 1
ρ

(
equivalent to the term ∂g(0;λρg)

)
such

that b = λρeχ1 + λρeχ2, due to property (iii) in Assumption
I. By definition of the proximity operator we have

u = Pλρg,g(v) = argmin
z

{
1

2
‖v − z‖22 + g(z;λρg)

}
(66)

= argmin
z

{
1

2
‖v − z‖22 + fg

(‖z‖2
ρ

;λρg

)}
.
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Fig. 16: Discrete representation of the regions R1, R2, and
R3.

Using the first optimality condition of u = 0 for the objective
function in (66), we have

0 ∈ −v + ∂fg(0;λρg)
∂(‖0‖)
ρ

. (67)

Since ∂(‖0‖2) =
{
x ∈ RN , ‖x‖2 ≤ 1

}
and |z| ≤ λρg for

all z ∈ ∂fg(0;λρg) (using property (iii) in Assumption I),
using Equation (67) we have ‖v‖2 ≤ λρg

ρ . Furthermore, since
v = Pλρe,E(b), the first-order optimality condition implies
that 0 ∈ ∂E(v;λρe) + v − b. Thus for χ1 ∈ ∂E(v;λρe)
and χ2 = v

λρg
, we have b = λρeχ1 + λρeχ2 and proof is

completed.

APPENDIX C
REGION AND GROUP SPECIFICATION

Here, we propose a heuristic method to find the regions R1,
R2, and R3, depicted in Fig. 16, and introduced in Section IV.
To describe the regions, we need to compute the value of kS ,
∆k, and ∆m, i.e., the discrete Doppler and delay parameters
that corresponds to νS , ∆ν, and ∆τ , respectively. To estimate
the ∆m and ∆k, we use a regularized least-squares estimate
of x given by xLS = A0y = A0(Ax + z) ≈ x + e where
e = A0z and A0 = (AHA + ρ2I)−1AH and ρ is a small
real value. Based on relationship in the Eq. (35), we can write
xLS = vec {HLS}, where HLS is an estimate of the discrete
delay-Doppler spreading function. Let us define the function
Ed (m) = 1

m

∑m
j=1

∑+K
i=−K |HLS [i, j]|2 for 1 ≤ m ≤ M .

This function represent the energy profile of channel compo-
nents in delay direction. Then,

∆m = min
m
{m|Ed (m) ≤ T1} , (68)

where T1 = αdEd (0). Here 0 < αd < 1 is a tuning parameter.
For a highway environment [7], based on our numerical
analysis, αd ≈ 0.4 is a reasonable choice.

After computing ∆m, to compute the values of ∆k and
ks as labeled in Fig. 8, due to symmetry of channel diffuse
components around zero Doppler value, we define functions
Eν (k) =

∑M
i=∆m |HLS [k, i]|2+|HLS [−k, i]|2 for 0 ≤ k ≤ K.

This function represents the energy profile of channel compo-
nents in Doppler direction. Let us define k0 = maxk Eν (k).
Then, we can estimate ∆k and ks using following equations,

ks −∆k = max
k
{k|Eν (k) < T2, 0 ≤ k < k0} , (69)

ks = min
k
{k|Eν (k) < T2, k0 < k ≤ K} , (70)

where Tν = ανEν (k0) with 0 < αν < 1. For highway
environment, based on our numerical analysis, αν ≈ 0.6 is
a good choice.



15

APPENDIX D
PROXIMAL ADMM ITERATION DEVELOPMENT

For the optimization problem given in (46), we form the
augmented Lagrangian

Lρ (x,w,θ) =
1

2
‖y −Ax‖22 + φg(|w|;λg) + φe(|w|;λe)

+ 〈θ,x−w〉+
ρ2

2
‖x−w‖22, (71)

where θ is the dual variable, ρ 6= 0 is the augmented
Lagrangian parameter, and 〈a,b〉 = Re(bHa). Thus, ADMM
consists of the iterations:
• update-x: xn+1 = argmin

x

1
2 ‖y −Ax‖22 +

〈θn,x−wn〉+ ρ2

2 ‖x−wn‖22.
• update-w: wn+1 = argmin

w
φg(|w|;λg) + φe(|w|;λe) +〈

θn,xn+1 −w
〉

+ ρ2

2 ‖xn+1 −w‖22.
• update-dual variable: θn+1 = θn+ρ2

(
xn+1 −wn+1

)
.

Deriving a closed form expressions for update-x is straight-
forward, xn+1 = ρ2A0

(
wn − θnρ

)
+ x0, where θnρ = θn

ρ2 ,

A0 =
(
ρ2I + AHA

)−1
and x0 = A0A

Hy. If we pull the
linear terms into the quadratic ones in the objective function
of update-w and ignoring additive terms, independent of w,
then we can express this step as

wn+1 = argmin
w

{
1

2

∥∥xn+1 + θnρ −w
∥∥2

2
+

1

ρ2
(φg(|w|;λg)

+ φe(|w|;λe))
}

= argmin
w

Ng∑
i=1

{
1

2

∥∥xn+1
i + θnρi −wi

∥∥2

2
+ fg

(‖wi‖2
ρ

;
λg
ρ

)
+
∑
j

fe

( |wi[j]|
ρ

;
λe
ρ

) }
(72)

where xi, wi, and θρi are computed using the partitions
introduced for the channel vector in Section VI. Thus, we
can perform the update-w step in parallel for all groups,

wn+1
i = argmin

wi

{
1

2

∥∥xn+1
i + θnρi −wi

∥∥2

2
+ fg

(‖wi‖2
ρ

;
λg
ρ

)
+
∑
j

fe

( |wi[j]|
ρ

;
λe
ρ

) }
(73)

Here, for simplicity in representation, we define λρg =
λg
ρ

and λρe = λe
ρ . In addition, we define E(|wi|;λρe) =∑

j fe

(
|wi[j]|
ρ ;λρe

)
, g(|wi|;λρg) = fg

(
‖wi‖2
ρ ;λρg

)
. Thus,

we have

wn+1
i = argmin

wi

{
1

2

∥∥xn+1
i + θnρi −wi

∥∥2

2
+ g(|wi|;λρg)

+ E(|wi|;λρe)
}

(74)

To guarantee convergence to the optimal solution in
(P0), the overall objective function, i.e., 1

2 ‖y −Ax‖22 +
φg(|x|;λg) + φe(|x|;λe), should be a convex function [22].

Note that since the first term in the objective function, i.e.,
the quadratic penalty function, is convex, for any functions
fe and fg that satisfies condition (iv) in Assumption I, the
overall objective function is convex as well. Thus, ADMM
yields convergence for all choices of the convex and non-
convex functions given in Section II-B.

APPENDIX E
PROOF OF LEMMA 1

The function ‖c − w‖22 = ‖c‖22 + ‖w‖22 − 2Re{cHw} =
‖ |c| ‖22 + ‖ |w| ‖22− 2Re{cHw} is minimized, with respect to
phase of w, when Re{cHw} is maximized. Now,

Re{cHw} =

N∑
n=1

|c[n]||w[n]| cos(Ang(c[n])−Ang(w[n]))

≤
N∑
n=1

|c[n]||w[n]| = |c|T |w| (75)

with equality if and only if Phase(w) = Phase(c), which in
turn implies that ‖c−w‖22 = ‖ |c| − |w| ‖22. Hence,

argmin
|w|�Phase(w)∈CN

‖c−w‖22 = argmin
|w|�Phase(c)∈CN

‖ |c| − |w| ‖22

= Phase(c)� argmin
|w|∈RN

‖ |c| − |w| ‖22
(76)

and the lemma follows.
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