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Abstract. In this work we study the Zeeman effect on strato-

spheric O2 using ground-based microwave radiometer mea-

surements. The interaction of the Earth magnetic field with

the oxygen dipole leads to a splitting of O2 energy states,

which polarizes the emission spectra. A special campaign

was carried out in order to measure this effect in the oxygen

emission line centered at 53.07 GHz. Both a fixed and a ro-

tating mirror were incorporated into the TEMPERA (TEM-

PERature RAdiometer) in order to be able to measure un-

der different observational angles. This new configuration al-

lowed us to change the angle between the observational path

and the Earth magnetic field direction. Moreover, a high-

resolution spectrometer (1 kHz) was used in order to mea-

sure for the first time the polarization state of the radiation

due to the Zeeman effect in the main isotopologue of oxygen

from ground-based microwave measurements. The measured

spectra showed a clear polarized signature when the obser-

vational angles were changed, evidencing the Zeeman effect

in the oxygen molecule. In addition, simulations carried out

with the Atmospheric Radiative Transfer Simulator (ARTS)

allowed us to verify the microwave measurements showing a

very good agreement between model and measurements. The

results suggest some interesting new aspects for research of

the upper atmosphere.

1 Introduction

The Zeeman effect is a phenomenon which occurs when

an external magnetic field interacts with a molecule or an

atom of total electron spin different from 0. Such an inter-

action will split an original energy level into several sub-

levels (Lenoir, 1967). In the atmosphere, oxygen is an abun-

dant molecule which in its ground electronic state has a per-

manent magnetic dipole moment coming from two parallel

electron spins. The interaction of the magnetic dipole mo-

ment with the Earth magnetic field leads to a Zeeman split-

ting of the O2 rotational transitions. In this state, each rota-

tional level with quantum number N is split into three levels

of total quantum number J (JJ ) following a Hund’s coupling

case (Pardo et al., 1995). This effect was studied by Gautier

(1967) and Lenoir (1967, 1968) in the 60 GHz band of the

main isotopologue 16O2. It is established, from these works,

that the Earth’s magnetic field splits the different Zeeman

components over a range of a few megahertz around the cen-

ter of each rotational line. The shape of each component is

governed by a pressure broadening mechanism up to 60 km

of altitude and by a Doppler mechanism above (Pardo et al.,

1995).

Zeeman splitting of millimeter-wavelength emissions of

oxygen molecules must be taken into account for altitudes

above 45 km in the terrestrial atmosphere when modeling the

radiative transfer of these molecules. Temperature soundings

of the atmosphere at high altitudes are not possible without

including this effect (Von Engeln et al., 1998; Von Engeln

and Buehler, 2002; Stähli et al., 2013; Shvetsov et al., 2010).
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Observation of the Zeeman effect from ground-based mea-

surements was first performed by Waters (1973) for atmo-

spheric O2 at 53 GHz. Pardo et al. (1995) were able to mea-

sure the Zeeman substructure for atmospheric 16O18O at

233.95 GHz. For this rare isotopic species the relative abun-

dance is much lower than for 16O molecule, and its emis-

sion from upper atmospheric layers can be observed and the

Zeeman substructure detected from the ground (Pardo et al.,

1995). The main difficulty for observations of the Zeeman

structure of 16O molecule comes from its very broad tropo-

spheric emission and the high opacity of low layers which

eliminate any structure.

The observation of this effect for 16O has also been possi-

ble from satellite measurements. Hartmann et al. (1996) ob-

served the Zeeman broadening of the oxygen emission line of

the 9+ line in the 61.1509± 0.062 GHz frequency range us-

ing the Millimeter-Wave Atmospheric Sounder on the NASA

space shuttle during the ATLAS missions. Comparison of

satellite measurements and radiative transfer models includ-

ing the Zeeman effect have also been addressed (Han et al.,

2007, 2010; Schwartz et al., 2006). Han et al. (2007) used

spectral passband measurements from the Special Sensor

Microwave Imager/Sounder (SSMIS) on board the Defense

Meteorology Satellite Program F-16 satellite to measure the

oxygen magnetic dipole transitions (7+, 9+, 15+, and 17+;

Rosenkranz, 1993). These measurements were used to vali-

date a fast model developed from the radiative transfer model

of Rosenkranz and Staelin (1988). Moreover, the measure-

ments were also used together with data from the Microwave

Limb Sounder (MLS) on board the Aura spacecraft for as-

similation in a numerical weather prediction (NWP) model

(Hoppel et al., 2013). Schwartz et al. (2006) also reported

a comparison of another radiative transfer model with mea-

surements of the 118 GHz oxygen line from MLS.

In this work we present an experiment in which the Zee-

man broadening of the oxygen emission line at 53.0669 GHz

is observed and the polarization state of the radiation due to

this effect is detected for the first time using a ground-based

microwave radiometer.

The measurements were possible using a fast Fourier

transform (FFT) spectrometer with 1 GHz of bandwidth

to measure the whole oxygen emission line centered at

53.07 GHz and a narrow spectrometer (4 MHz) to measure

the center of the line with a very high resolution (1 kHz).

These measurements have been compared to a model which

includes the Zeeman-splitting effect. The incorporation of

this effect to the forward model will allow extension to the

temperature retrievals beyond 50 km. This improvement in

the forward model will be very useful for the assimilation

of brightness temperatures in NWP models. It is also impor-

tant to note that ground-based measurements of the atmo-

sphere with good temporal resolution complement satellite

measurements, which are temporally limited by their satel-

lite’s orbital parameters.

The paper is organized as follows: in Sect. 2, the instru-

mentation and the measurements are briefly outlined. The

Zeeman effect theory and the modeling are presented in

Sect. 3. Section 4 presents the results of this study. Firstly

the simulations using a model are addressed and secondly

the tropospheric correction performed to the radiometer mea-

surements and the results obtained during this campaign are

presented. Finally, the conclusions are given in Sect. 5.

2 Instrumentation and measurements

The TEMPERA (TEMPERature RAdiometer) radiometer is

a microwave radiometer that provides temperature profiles

from the ground to around 50 km (Stähli et al., 2013). This

is the first microwave radiometer that measures temperature

in the troposphere and stratosphere at the same time. The in-

strument is a heterodyne receiver at a frequency range of 51–

57 GHz. Figure 1 shows a picture of TEMPERA, which is

operated in a temperature-stabilized laboratory in the ExWi

building of the University of Bern (Bern, Switzerland; 575 m

above sea level; 46.95◦ N, 7.44◦ E). In this lab a styrofoam

window allows views of the atmosphere over the zenith angle

range from 30 to 70◦. The instrument mainly consists of three

parts: the front end to collect and detect the microwave radia-

tion and two back ends consisting of a filter bank and a digital

FFT spectrometer for the spectral analysis. The radiation is

directed into the corrugated horn antenna using an off-axis

parabolic mirror. The antenna beam has a half power beam

width (HPBW) of 4◦. The signal is then amplified and down-

converted to an intermediate frequency for further spectral

analysis. A noise diode in combination with an ambient hot

load is used for calibration in each measurement cycle. The

noise diode is calibrated regularly (about once a month) us-

ing a cold load (liquid nitrogen) and a hot load (ambient).

The receiver noise temperature TN is in the range from 475

to 665 K. More details about the calibration with TEMPERA

can be found in Stähli et al. (2013).

For tropospheric measurements the instrument uses a fil-

ter bank with four channels. By switching the local oscilla-

tor frequency with a synthesizer, it is possible to measure at

12 frequencies. In this way TEMPERA covers uniformly the

range from 51 to 57 GHz at positions between the emission

lines. Tropospheric retrievals are not addressed in this paper

and more details about this measurement mode can be found

in Stähli et al. (2013) and Navas-Guzmán et al. (2014).

The second back end is used for stratospheric measure-

ments and contains a digital FFT spectrometer (Acqiris

AC240) for the two emission lines centered at 52.5424

and 53.0669 GHz. The FFT spectrometer measures the two

emission lines with a resolution of 30.5 kHz and a band-

width of 960 MHz. The receiver noise temperature TN for

the receiver–spectrometer combination is around 480 K. An

overview of the technical specifications is given in Table 1.

An example of FFT measurements is shown in Fig. 2 (up-

per panel). This figure shows the brightness temperature on
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Table 1. Specifications of TEMPERA.

Optical system Corrugated horn antenna with parabolic mirror, HPBW= 4◦

Receiver type Uncooled heterodyne receiver, filter bank; digital FFT spectrometer

RF frequency range Filter bank: 51–57 GHz, FFT spectrometer: 52.4–53.2 GHz

Receiver operation Single sideband mode

Receiver noise temperature 475–665 K

Filter bank Four filters, bandwidth 250 MHz and 1 GHz

FFT spectrometer Bandwidth 1 GHz, resolution 30.5 kHz, 32 768 channels

Mixer (FFT back end) I/Q

Calibration Hot load, noise diode

Figure 1. TEMPERA at the laboratory at ExWi, Bern (Switzer-

land).

16 January of 2012 for the oxygen emission line centered at

53.07 GHz. The red box indicates the influence of the Zee-

man effect by the broadened line shape in the center with a

kind of a plateau (round line shape around the line center:

±1 MHz).

A second spectrometer was installed in TEMPERA in or-

der to measure with a higher resolution the narrow spectral

region where a broadening in the oxygen emission line is pro-

duced due to the Zeeman effect. This narrow-band software

defined ratio (SDR) spectrometer consists of 4096 channels

which cover a bandwidth of 4 MHz with a resolution of
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Fig. 2. a) Brightness temperature spectrum measured with the FFT spectrometer in the oxygen emission line

of 53.07 GHz. The red box indicates the broadened line shape due to the Zeeman effect. b) Monthly mean

brightness temperature spectrum measured with the SDR spectrometer.

3 Zeeman effect theory and modeling

3.1 Theory

The Zeeman effect (Zeeman, 1897) occurs because the spin of unpaired electrons couples to the130

external magnetic field, changing the internal energy of the molecule. A transition between two of

these altered energy levels can change the frequency dependence of the absorption spectrum. The

Zeeman energy change is calculated by

∆E =−gµ0M |H|, (1)

where g depends on the line and molecule [see, e.g., Christensen and Veseth (1978), for molecular135

oxygen], µ0 is the Bohr magneton, M(JM ) is the projection of J on the magnetic field, and H

6

Figure 2. Upper panel: brightness temperature spectrum mea-

sured with the FFT spectrometer in the oxygen emission line of

53.07 GHz. The red box indicates the broadened line shape due to

the Zeeman effect. Lower panel: monthly mean brightness temper-

ature spectrum measured with the SDR spectrometer.

1 kHz. An example of a monthly mean brightness tempera-

ture spectrum centered at 53.07 GHz measured with the SDR

spectrometer is shown in Fig. 2 (lower panel).

Moreover, a set of two auxiliary mirrors was installed on

the roof of the ExWi building in the University of Bern

(Fig. 3). A rotating mirror allows one to observe the atmo-

sphere under different azimuth angles and with a fixed el-

evation angle, while the fixed mirror directs the radiation

from the rotating mirror into TEMPERA radiometer. The
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Figure 3. Secondary mirror installed on the roof of the ExWi build-

ing at the University of Bern.

main goal of using these auxiliary mirrors is to measure the

Zeeman-broadened oxygen line under different angles rela-

tive to the Earth’s magnetic field.

A special campaign was carried out in autumn of 2013

in order to detect the Zeeman effect with TEMPERA. Three

months of measurements (September–November 2013) were

performed using these auxiliary mirrors and the SDR spec-

trometer. A special measurement cycle was designed for

TEMPERA during this period. Periodic cycles of almost

5 min were performed. This whole cycle consisted of 13 sub-

cycles, each one starting with a hot load calibration in com-

bination with a noise diode for 10 s followed by other 10 s of

atmospheric measurements in one azimuth direction. A to-

tal of 13 azimuth angles were scanned ranging from 71.5 to

191◦ in steps of 10◦ during the whole cycle. The elevation

angle was fixed at 60◦ during all the measurements since it

was found as the angle at which the intensity of the emission

lines was highest (Stähli et al., 2013).

3 Zeeman effect theory and modeling

3.1 Theory

The Zeeman effect (Zeeman, 1897) occurs because the spin

of unpaired electrons couples to the external magnetic field,

changing the internal energy of the molecule. A transition

between two of these altered energy levels can change the

frequency dependence of the absorption spectrum. The Zee-

man energy change is calculated by

1E =−gµ0M |H |, (1)

where g depends on the line and molecule (see, e.g., Chris-

tensen and Veseth (1978) for molecular oxygen), µ0 is the

Bohr magneton, M(JM) is the projection of J on the mag-

netic field, and H is the magnetic field vector. The quantum

numbers necessary can be found in most databases, e.g., HI-

TRAN (Rothman et al., 2013). There are 2J + 1 possible M

for a state level (these are M =−J, −J + 1, · · ·, J − 1, J ),

and M can only change by 0 or ±1. A transition without

changing the value of M is called a π transition, and a tran-

sition with changing M is called a σ± transition. The total

line strength is not altered by the effect but will be distributed

among the new lines. Each line “produced” by this procedure

then undergoes the same broadening mechanisms (thermal

and pressure) to create the absorption spectrum.

In addition to splitting the line, the change in energy level

depends on the direction of the magnetic field and the propa-

gation path of the radiation, which means that the absorption

also depends on the polarization of the radiation. The main

polarization occurs along the magnetic field in the plane per-

pendicular to the propagating radiation. If H is entirely in

this plane, then the radiation will be linearly polarized along

H for σ± transitions and linearly polarized perpendicular to

H for π transitions. If H is parallel/anti-parallel to the path

of the propagating radiation, then the σ+ and σ− transitions

will circularly polarize the radiation in opposite ways, and π

transitions do not affect the radiation at all. The polarizing

effect will generally scale between the two cases above as a

function of the angle that H forms with the direction of the

propagating radiation.

3.2 Modeling

The first official release of the Atmospheric Radiative Trans-

fer Simulator (ARTS) was by Buehler et al. (2005) as a

flexible/modular code base for radiative transfer simulations.

Since then, ARTS has been under continual development.

One key release is version 2.0 by Eriksson et al. (2011),

which describes the ARTS scripting potential and a few of

the modules. Presently, ARTS is at version 2.2; the latest ver-

sion includes, among other new features, a module that cal-

culates the Zeeman effect presented by Larsson et al. (2014).

In short, ARTS calculates each of the three polarization

components individually before adding their absorption con-

tributions to a Stokes vector propagation matrix. The polar-

ization of the radiation is internally kept in a universal coor-

dinate system defined by the sensor through all of the prop-

agation. The line shape should return both its imaginary and

real part to account for dispersion-caused polarization rota-

tion. The input magnetic field is either static or three 3-D-

gridded fields, one field for each coordinate: x, y, and z. This

propagation matrix is then sent to the radiative transfer calcu-

lator, which solves the vector radiative transfer equation (as

Atmos. Meas. Tech., 8, 1863–1874, 2015 www.atmos-meas-tech.net/8/1863/2015/
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Figure 4. Example of Zeeman pattern for the 53 GHz 16O2 line

that is observed by TEMPERA. The colors represent the Zeeman

component as indicated by the legend. The plot is renormalized on

both axes as described in the text.

in, e.g., del Toro Ininiesta, 2003)

dI

dr
=−K(I −B) , (2)

where I is the Stokes vector, r is the path vector, K is the

propagation matrix, and B is the Stokes version of Planck’s

function for blackbody radiation. For details on the ARTS

Zeeman effect module see Larsson et al. (2014).

The calculated relative Zeeman pattern for the line mea-

sured by TEMPERA can be found in Fig. 4. This otherwise

singular line is split into 159 Zeeman lines, 53 for each polar-

ization component. The plot has been renormalized for read-

ability. The strongest split line accounts for less than 1.5 %

of the original strength of the line, the maximum splitting

from the central line is ∼ 27.99 kHz µT−1, and the splitting

between the individual lines is about 1.08 kHz µT−1 within a

component. The last number is significantly small. The ther-

mal broadening in the stratosphere is under normal condi-

tions larger than the magnetic line splitting above Bern, so

individual Zeeman lines cannot be discerned from the over-

all shape.

4 Results

4.1 Brightness temperature simulations incorporating

the Zeeman effect

Brightness temperature spectra have been simulated using

the ARTS model which was described in the previous sec-

tion. ARTS was set with all the information about instrumen-

tal aspects and location of TEMPERA in order to simulate

the same measurement conditions. The brightness tempera-

ture was calculated for 13 azimuth angles (71.5 : 10 : 191.5◦)

and a fixed elevation angle (60◦) and to simulate the atmo-

spheric conditions of 15 October 2013 (Figs. 5 and 6). The

altitude of the platform was set at 12 km in order to avoid any

tropospheric effect in the spectra. On 15 October 2013, the

total intensity of the magnetic field over Bern at the altitude

of 50 km was 46 547 nT with a declination of 1◦21′44′′ and

an inclination of 62◦46′16′′ (www.ngdc.noaa.gov/geomag/

magfield.shtml). Figure 5 shows the calculated brightness

temperature spectra for a linear horizontal polarization of

the oxygen emission line centered at 53.07 GHz in a range

of 5 MHz. From these simulations we can observe that the

spectra are almost identical for most of the frequency range

plotted here and differences are only observed in the central

part when the observational azimuth angle is changed. In the

narrow central frequency range we can observe that both the

shape and the intensity of the spectra changes for the differ-

ent observations. For the higher azimuth angles the bright-

ness temperature spectra are lower and the shape is flatter,

while for lower angles the spectra are higher and the shape

is less flat. The maximum difference in brightness temper-

ature between the most intensive spectrum (91.5◦) and the

least intensive (191.5◦) is 2.5 K. Figure 6 shows linear verti-

cal polarization. We observe a similar pattern for linear ver-

tical polarization as for linear horizontal polarization, with

the peak strength of the signal changing mostly in the center

of the line as a function of the azimuthal angle. However, the

change is much smaller for linear vertical polarization, which

only has a maximum difference of 1 K between the most and

least intense spectra. Also, the change with azimuthal angle

is inverted compared to linear horizontal polarization. For the

linear vertical polarization the most intensive spectrum cor-

responds to the observational angle of 181.5◦ while the least

intensive corresponds to 91.5◦. This behavior is clearly asso-

ciated with the polarized nature of the Zeeman effect, since

the polarized state of the observed radiation changes when

the angle between the propagation path and the direction of

the Earth magnetic field is varied. It is also interesting to note

from Figs. 5 and 6 that the differences between horizontal

and vertical polarization are very small when close to the

181◦ azimuth angle. This is in good agreement with theory,

as this direction corresponds to measurements of radiation

which has been propagated along the magnetic field towards

TEMPERA. This parallel propagation results in minimal dif-

ferences among linear polarizations.

The brightness temperature has also been simulated with-

out considering the Zeeman effect in the ARTS model.

These simulations correspond to the dashed lines shown in

Figs. 5 and 6. We found that when the Zeeman module is

not active there is no difference in the spectra for differ-

ence observational angles. Moreover, the spectrum presents

higher brightness temperature values and it does not show

any broadening in the center of the oxygen emission line.

In order to compare the simulated spectra from ARTS with

the measurements, the effects of the different optical compo-

nents of TEMPERA on the polarization state of the radiation,

www.atmos-meas-tech.net/8/1863/2015/ Atmos. Meas. Tech., 8, 1863–1874, 2015
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Figure 5. Simulated horizontally polarized spectra on 15 October

2013 with (continuous lines) and without (dashed line) the Zeeman

effect.

as well as the vertically polarized observing antenna, have

to be considered. A full characterization of the polarization

state of the radiation can be done by means of the Stokes

vector, s, which is defined as

s =


I

Q

U

V

= 1

2

√
ε

µ
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〈
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v +EhE

∗
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h −EhE
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v
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EhE
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v −EvE

∗

h

〉
 , (3)

where ε and µ are the electric and magnetic constants, re-

spectively, < ·> indicates time average, and Ev and Eh are

the complex amplitudes for vertical and horizontal polariza-

tion. The first Stokes component (I ) is the total intensity, the

second component (Q) is the difference between vertical and

horizontal polarization, and the last two components, U and

V , correspond to linear ±45◦ and circular polarization, re-

spectively. The Stokes components are converted to bright-

ness temperature by inverting the Planck function (Eriksson

et al., 2011); this new Stokes vector of brightness tempera-

tures is denoted as s′.

The calculus of the measured brightness temperature (T
p

b )

considering the sensor polarization response can be ex-

pressed as (cf. Eriksson et al. (2011), Eq. 19)

T
p

b = pL(χ)s′, (4)

where p is a row vector of length 4 which describes the sen-

sor polarization response. In the case of TEMPERA, whose

antenna is vertically polarized, the vector p is [1100]. The

rotation of the Stokes reference frame due to the reflection in

the different mirrors and the rotation of the external mirror

is considered using the transformation matrix L(χ ), which

allows one to obtain a consistent definition between the po-

larization directions for atmospheric radiation and sensor re-
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Figure 6. As in Fig. 5 but considering vertical polarization.

sponse. This matrix is defined as (Liou, 2002)

L(χ)=


1 0 0 0

0 cos2χ sin2χ 0

0 −sin2χ cos2χ 0

0 0 0 1

 . (5)

The rotational angle (χ ) has been calculated using

the GRASP software package (www.ticra.com/products/

software/grasp). This software package allows design and

analysis of complex reflector elements using physical op-

tics, physical theory of diffraction and the method of mo-

ments. Figure 7 shows the setup of this simulation, where we

can see the different TEMPERA components (horn antenna,

parabolic mirror and the two auxiliary mirrors, the fixed and

the rotating mirror) and the ray tracing of an electric field

which is propagated from the antenna to the atmosphere. The

calculated angle χ can be expressed as χ = ϕ+ϕoffset, where

ϕ is the observational azimuth angle defined in our experi-

ments (ϕ = 71.5 : 10 : 191.5◦) and ϕoffset is 141.5◦. Once the

sensor polarization response and the rotation of the polar-

ized radiation have been characterized, the effective bright-

ness temperature can be calculated as (Eriksson et al., 2006)

T
p

b = [1100]L(χ)s′. (6)

Figure 8 shows the effective brightness temperature spec-

tra calculated for the case simulated in ARTS (15 October

2013) in Figs. 5 and 6. For these spectra we can appreciate

again the same pattern as in the ARTS simulations, with al-

most the same intensity on the wings of the oxygen emission

line and some differences in the central frequencies when the

azimuth angle is changed. The highest brightness tempera-

ture is found at 71.5◦, while the lowest is found at 191.5◦.

The latter position corresponds to the maximum broadening

found when the direction of observation is almost antipar-

allel to the direction south–north. The maximum difference

between the most and the least intense spectra is 2.5 K.
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Figure 7. Simulation of the propagation of a vertical electric field

from the TEMPERA antenna to the atmosphere and passing through

the different mirrors using the GRASP package software.
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Figure 8. Simulated effective brightness temperature, taking into

account that the radiation passed through the different TEMPERA

components.

In order to study the difference in the broadening of each

azimuth observational spectrum due to the Zeeman effect,

we have calculated the ratio among each spectrum to the
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Figure 9. Ratio between the effective temperature for each obser-

vational angle and the averaged spectra for ARTS simulations.

averaged spectrum from all the observational angles. Fig-

ure 9 shows these ratios for the different azimuth angles. Az-

imuthal behavior with a ratio below unity in the center of the

line also has a ratio above unity in the wings, which means

that the line experienced more than average broadening. The

opposite is also true: azimuthal behavior with values above

unity in the center means less than average broadening. The

different ratios show a clear azimuth dependence, indicating

that the highest broadening is found when the azimuth angle

is 191.5◦ while the smaller broadening is found at 71.5◦.

4.2 Tropospheric correction of SDR spectrometer

A ground-based microwave radiometer measures a superpo-

sition of emission and absorption of radiation at different

altitudes. The received intensity at ground level can be ex-

pressed in the Rayleigh–Jeans limit (hυ� kT ) as a function

of the brightness temperature. In these conditions the radia-

tive transfer equation is given by

Tb(υ,z0)= T0e
−τ(υ,z1)+

z1∫
z0

T (z)e−τ(υ,z)α(υ,z)dz, (7)

where Tb is the brightness temperature at frequency υ, T0 is

the brightness temperature of the cosmic background radia-

tion, T (z) is the physical temperature at height z, z0 is the

Earth surface, z1 is the upper boundary in the atmosphere, α

is the absorption coefficient, and τ is the opacity. The opacity

is defined as

τ(υ,z)=

z∫
z0

α(υ,z′)dz′. (8)
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Figure 10. Example of calibrated spectrum of the FFT spectrom-

eter. The frequency ranges marked in red are the areas used for

the correction of tropospheric attenuation. The mean value of each

range, indicated by a black star, is the value used for the correction.

The contribution of the troposphere to the brightness tem-

perature measured with a microwave radiometer at ground

level is very important and it could be very different de-

pending on the observational direction or on the period of

measurements. After oxygen, water vapor and liquid water

(clouds) are the most important components in the atmo-

sphere, the emissions of which have relevance in the mi-

crowave spectrum. It is very important to correct our mea-

surements for any tropospheric effect in order to ensure that

the changes observed in our measurements for different ob-

servational directions come from the stratosphere (Zeeman

effect) and not from the troposphere.

Since the tropospheric portion of the pathlength provides a

relatively spectrally flat signal the microwave radiative trans-

fer equation can be rewritten as

Tb(z0)= Tb(ztrop)e
−τ
+ Ttrop(1− e

−τ ), (9)

where Tb(ztrop) is the brightness temperature as observed

from the tropopause, τ is the tropospheric zenith opacity, and

Ttrop is the effective temperature of the troposphere.

From this equation the opacity can be calculated as

τ =−ln

(
Ttrop− Tb(z0)

Ttrop− Tb(ztrop)

)
. (10)

Since the atmospheric opacity is dominated by the contri-

bution from the troposphere, the stratospheric contribution is

considered negligible and the cosmic background radiation,

Tbg, is in practice used instead of Tb(ztrop) in Eq. (10). This

means that the calculated τ actually is approximately the to-

tal atmospheric opacity and hence includes the minor contri-

bution from altitudes above the troposphere (e.g., absorption

by stratospheric O2 and H2O) (Forkman et al., 2012).

Ttrop has been estimated using a linear model between the

weighted tropospheric temperature and the ground temper-

ature (Ingold et al., 1998). The weighted tropospheric tem-

perature was calculated using radiosonde measurements. Ra-

diosondes are launched twice a day at the aerological sta-

tion of MeteoSwiss in Payerne (40 km west of Bern). One

year of radiosonde data was used and the linear fit found be-

tween Ttrop at 53 GHz and the ground temperature Tz0
was

Ttrop = 0.8159Tz0
+ 47.21 K. The constant term Tbg is in-

dependent of frequency and has a value of 2.7 K (Gush et

al., 1990). The term Tb(z0) is measured using the wings of

the oxygen emission line centered at 53.07 GHz for every

azimuth angle. The simultaneous measurements performed

with the FFT spectrometer allow us to measure in the wings

of the oxygen emission line, where most of the contribution

to the brightness temperature comes from the troposphere. In

the frequency range of interest, the tropospheric attenuation

increases with increasing frequency. In order to account for

this, we determine the correction factor at each frequency us-

ing a linear fit between the frequency ranges highlighted in

red in Fig. 10.

Once all the terms are calculated, the brightness tempera-

ture corrected for tropospheric effects can be obtained as

Tb(ztrop)=
Tb(z0)− Ttrop(1− e

−τ )

e−τ
. (11)

It is interesting to note that for the correction presented in

this section we have used the scalar radiative transfer equa-

tion, since this tropospheric correction is independent of po-

larization state. This assumption is valid if scattering can be

neglected, which should hold in the absence of strong precip-

itation.

4.3 Stratospheric brightness temperature

measurements

As already described in Sect. 2, a special campaign of mi-

crowave radiometer measurements has been performed for

3 months in autumn 2013 in the ExWi building of Uni-

versity of Bern. During this campaign, TEMPERA was set

with a special configuration in order to be able to observe

the Zeeman effect from ground-based measurements. Ra-

diometer measurements in different azimuth angles (13 an-

gles) were carried out in order to scan the atmosphere under

different angles between the propagation path and the local

Earth magnetic field. Figure 11 shows mean monthly bright-

ness temperature spectra obtained for different azimuth an-

gles in October 2013. All the measurements were corrected

for tropospheric effects following the procedure described

in the previous section. Figure 11a shows the whole range

(4 MHz) measured with the SDR spectrometer. From this

plot we observe that the mean spectra for the different az-

imuth angles show almost identical values outside of the nar-

row central region. However, differences in the intensity and
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Fig. 11. Monthly Brightness temperature from SDR corrected of tropospheric effects (October 2013).

spectra show a higher broadening for the highest azimuth angle for both, measurements and

simulations. In order to compare in a more quantitative way the measurements with the model we

have compared the ratio between the maximum mean brightness temperature of each spectrum and

the mean value for all the spectra at the central frequencies (range of ± 0.25 MHz). Equation 12

indicates explicitly the expression of these calculation:355

Teff(max)
Tmean(max)

=
mean[Tb(υ1− υ2,ψi)]

mean[
∑nt

i=1Tb(υ1−υ2,ψi)

nt
]
. (12)

where υ1 and υ2 indicate the frequency range which corresponds to an interval of 0.5 MHz

centered at 53.067 GHz. ψi is the observational azimuth angle for a specific position and nt is

the total number of positions scanned by TEMPERA (13 positions).

Figure 13 shows these ratios calculated with the ARTS model simulating the conditions of 15360

October 2013 and the ones obtained from the mean monthly spectra (October 2013) measured by

17

Figure 11. Monthly brightness temperature from SDR corrected for

tropospheric effects (October 2013).

in the shape are observed in the very narrow range centered

on 53.067 GHz. Figure 11b shows a zoom of the spectra in

the central frequencies for some selected azimuth angles. We

can observe that for higher azimuth angles the spectra show

lower values of brightness temperature and flatter shapes in

the central frequency range (±0.5 MHz), while higher bright-

ness temperature and less flat shapes are observed in lower

azimuth angles.

These results are in good agreement with the simula-

tions performed including the Zeeman effect with ARTS

(Sect. 4.1). However, we can notice that there is an offset in

the brightness temperature spectra from model (highest peak

∼ 64 K) and from measurements (highest peak ∼ 54 K). The

offset could be due to an inappropriate consideration of the

continuum absorption from secondary species (water vapor,

ozone, etc.) in the forward model and the fact that the contri-

bution from line mixing to the oxygen spectra is not modeled.

Other reasons that could explain some differences could be

related to the uncertainties of the tropospheric correction in

the measurements and to the fact we are comparing differ-

ent periods of measurements: 1 day for the simulations (15
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Figure 12. Brightness temperature spectra from the SDR spectrom-

eter (solid lines) and simulated from ARTS (dash lines) for two dif-

ferent observational angles.

October 2015) and 1 month of integrated measurements (Oc-

tober 2013). In any case, while the baseline offset affects the

absolute difference between model and data, the shape of the

center line (±2 MHz) is not altered. Thus the main conclu-

sions of Zeeman polarization measurements and the ARTS

module validation are solid.

Figure 12 shows a direct comparison of the brightness tem-

perature spectra from SDR measurements (solid lines) and

from ARTS model (dashed lines) for two observational az-

imuth angles (91.5 and 181.5◦). An offset correction has been

applied to the simulated spectra in order to compare with the

measurements. Although the absolute values are not exactly

the same for the modeled and measured spectra in the cen-

ter of the oxygen emission line we can clearly observe that

the behavior of the spectra for the two azimuth angles are the

same. The spectra show a higher broadening for the high-

est azimuth angle for both measurements and simulations.

In order to compare the measurements with the model in a

more quantitative way, we have compared the ratio of the

maximum mean brightness temperature of each spectrum to

the mean value for all the spectra at the central frequencies

(range of ±0.25 MHz). Equation (12) indicates explicitly the

expression of these calculations:

Teff(max)

Tmean(max)
=

mean[Tb(υ1− υ2,ψi)]

mean[

∑nt
i=1Tb(υ1−υ2,ψi )

nt
]

, (12)

where υ1 and υ2 indicate the frequency range which corre-

sponds to an interval of 0.5 MHz centered at 53.067 GHz. ψi
is the observational azimuth angle for a specific position and

nt is the total number of positions scanned by TEMPERA

(13 positions).

Figure 13 shows these ratios calculated with the ARTS

model simulating the conditions of 15 October 2013 and the

ones obtained from the mean monthly spectra (October 2013)
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Figure 13. Ratios of maximum brightness temperature of each

spectrum to the mean value for all the spectra at the central fre-

quencies for TEMPERA radiometer (red points) and ARTS (blue

points).

measured by TEMPERA. We can observe that, in general,

there is a very good agreement between the measurements

and the model. Both simulations and measurements show

higher ratio values (> 1), which indicate a smaller broaden-

ing regarding the averaged spectrum for the smallest azimuth

angles and a larger broadening (ratios< 1) for the largest an-

gles. The relative differences between both ratios are lower

than 1 % for all the azimuth angles. We observe that the ra-

tios for some azimuth angles are almost identical while some

discrepancies are observed for other ones. The errors for the

TEMPERA measurements have been estimated by evaluat-

ing the uncertainties associated with the different terms of

the tropospheric correction (Eq. 11). The error bars shown in

Fig. 13 have been calculated using error propagation theory

and they presented values very similar (∼ 0.01) for all the ob-

servational angles. The errors associated with the simulations

were obtained by evaluating the ratio of the simulated spectra

plus Gaussian white noise. The calculated uncertainties pre-

sented values much smaller than the ones found for the mea-

surements (maximum value of 4.6×10−4). It is important to

note that the differences found between measurements and

simulations are within the measurement uncertainties. From

this comparison we can conclude that the agreement between

measurements and model is clear. These results show the po-

larized state of the radiation due to the Zeeman effect, which

is revealed for a different broadening in the spectra when the

angle of the Earth magnetic field and the observational path

is changed.

5 Conclusions

This work presents an experiment in which the Zeeman

broadening of the oxygen emission line at 53.0669 GHz is

observed and the polarization state of the radiation due to

this effect is detected for the first time using a ground-based

microwave radiometer. A special campaign was carried out

in order to detect this effect with the TEMPERA radiometer.

The installation of a fixed and a rotating mirror in front of

TEMPERA allowed us to measure under different angles be-

tween the observational path and the Earth’s magnetic field

direction. A total of 13 azimuth angles were scanned ranging

from 71.5 to 191.5◦. In addition, the use of a narrow spec-

trometer (4 MHz) allowed us to measure the center of the

oxygen emission line with a very high resolution of 1 kHz.

The brightness temperature spectra for the different az-

imuth angles were simulated using the ARTS model. This

forward model applies a vector radiative transfer code which

includes the Zeeman effect. ARTS was set up with all the in-

formation about instrumental aspects and location of TEM-

PERA in order to simulate the same measurement conditions.

These simulations showed almost identical spectra for most

of the frequency range (4 MHz) and differences were only

observed in the central part when the observational azimuth

angle was changed. The spectra considering linear horizon-

tal polarization showed lower values of brightness tempera-

ture and flatter shapes for the highest azimuth angles, while

for lower angles the spectra showed higher values and the

shapes were less flat. The maximum difference in brightness

temperature between the most intensive spectrum (91.5◦) and

the least intensive (191.5◦) was 2.5 K. For the linear vertical

polarization the effect in the central frequencies was smaller,

with a maximum difference of brightness temperature of 1 K

between the most and the least intensive spectra; the az-

imuthal order was the inverse. These results are an evidence

of the polarized nature associated with the Zeeman effect,

which shows changes in the polarized state of the observed

radiation when the angle between the propagation path and

the direction of the Earth’s magnetic field is varied.

In order to compare the ARTS simulations with the mea-

surements the effects on the polarization state of the radia-

tion due to the different optical components of TEMPERA

radiometer were taken into account using the GRASP soft-

ware package. The effective brightness temperature calcu-

lated after this correction showed that the most intense and

least-broad spectrum was found at 71.5◦ and the least intense

and most-broad spectrum was found at 131.5◦. The maxi-

mum difference between both spectra was 2.3 K.

Similar behavior to the simulations was observed for the

measured spectra from the TEMPERA radiometer. A direct

comparison of the ratios of the maximum brightness temper-

ature of each spectrum to the mean value for all the spec-

tra at the central frequencies showed a very good agree-

ment between the model and the measurements. Both sim-

ulations and measurements showed a smaller broadening for

the smallest azimuth angles and a larger broadening for the

largest angles. The small discrepancies found for some az-

imuth angles were always within of the measurement uncer-

tainties.
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This comparison is so far the most stringent test of the im-

plementation of the Zeeman effect in ARTS. The comparison

provides an effective test for the first three components of the

Stokes vector. The third component, U , affects the end result

through the rotation in Eq. (5). For example, ifU were treated

to be 0, this would give a clear degradation of the match be-

tween ARTS and TEMPERA in Fig. 11. ARTS is presently

compared to a Zeeman forward model developed especially

for handling circularly polarized radiation, providing a test

for the last Stokes component.

The inclusion of the Zeeman effect in the ARTS model

will allow extension of the upper limit of temperature profiles

from ground-based microwave radiometers beyond 50 km.

Preliminary results of the temperature retrievals including

the Zeeman effect show higher values of the measurement

response at higher altitudes, indicating a possible extension

of several kilometers of the temperature profiles. This new

retrieval setup and a detailed validation of the temperature

profiles will be presented in a separate paper.

It has also the potential for improving the temperature

retrieval for stratospheric and mesospheric T sounders on-

board satellites. A related application is the assimilation of

Zeeman affected brightness temperatures into NWP models,

where ARTS can help to assess the accuracy of the more ap-

proximate, but much faster, radiative transfer tools applied

for that purpose.
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