
Study on Open Source In-Vehicle
Infotainment (IVI) Software Platforms

Master of Science Thesis in Embedded Electronic System Design

ANDERS KLAVMARK
TERJE VIKINGSSON

Chalmers University of Technology
University of Gothenburg
Department of Computer Science & Engineering
Gothenburg, Sweden June 2015

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial pur-
pose make it accessible on the Internet. The Author warrants that he/she is the author
to the Work, and warrants that the Work does not contain text, pictures or other mate-
rial that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example
a publisher or a company), acknowledge the third party about this agreement. If the
Author has signed a copyright agreement with a third party regarding the Work, the
Author warrants hereby that he/she has obtained any necessary permission from this
third party to let Chalmers University of Technology and University of Gothenburg store
the Work electronically and make it accessible on the Internet.

Study on Open Source In-Vehicle Infotainment (IVI) Software Platforms

Anders Klavmark,
Terje Vikingsson,

c©Anders Klavmark, June 2015.
c©Terje Vikingsson, June 2015.

Examiner: Sven Knutsson
Supervisor: Per Larsson-Edefors

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden June 2015

Acknowledgements

This report is the result of a master thesis of 30 credits and was carried out by Anders
Klavmark and Terje Vikingsson from Chalmers University of Technology. The thesis
was conducted during 20 weeks in the spring of 2015 at ÅF in Lindholmen, Gothenburg.

We would like to give a special thanks to our supervisors at ÅF, Anders Rylander,
Mats Christiansson and Johan Almquist, for all the help and guidance throughout the
project.

We would also like to express our gratitude to Ola Wennberg, Manager infotain-
ment, SW & HMI, at ÅF Automotive, who believed in us and gave us the opportunity
to perform this master thesis. Thanks also to Per Larsson-Edefors, our supervisor at
Chalmers, for the continuous support and feedback during the project.

Last but not least, thank you Jeremiah Foster and Johan Thelin at Pelagicore, and
Gunnar Andersson at Volvo Car Corporation for providing us with so much valuable
information.

i

Abstract

On ÅF’s behalf, this report addresses three open source initiatives for use in automotive
infotainment, namely GENIVI, Automotive Grade Linux (AGL) and Automotive Grade
Android (AGA). This was carried out in form of a study that presents and analyses the
three named open source initiatives with respect to their respective objectives, backers,
technology, openness, licensing, maturity, etc. followed by a practical implementation
of one selected candidate of these initiatives. As the root cause for all of this was
ÅF’s willingness of facilitating the identification of a suitable platform for an In-Vehicle
Infotainment (IVI) project and to demonstrate open source as a successful concept for
IVI development.

For the study, on-line and literature reviews have been essential in our information
gathering efforts and have been used extensively throughout the project. With these, a
general understanding of each initiative was obtained and many of our initial questions
got answered. To obtain further knowledge, interviews were conducted with people
having insight and/or experience in IVI and open source development.

In the final stage of the study, practical work commenced on the development of
an IVI prototype aimed at demonstrating functionality of one investigated initiative.
Our main focus was the software, so the open source IVI platform to be used for the
prototype was selected prior to the hardware. For this design implementation, we chose
GENIVI since it had the largest numbers of backers, an active community, and the
most mature and comprehensive solution. Hardware was purchased subsequently and
the implementation of the prototype took off.

The results of the study have led us to believe that GENIVI possess the greatest
chances to be successful and achieve broad adoption from the industry since it has a
relatively high level of maturity, activity and large number of backers. Furthermore, the
prototype complies with the idea of working as a demonstrator for the GENIVI software
and design.

ii

Acronyms

ABI Application Binary Interface

AGA Automotive Grade Android

AGL Automotive Grade Linux

AMB Automotive Message Broker

API Application Program Interface

ASF Apache Software Foundation

BSP Board Support Package

CAN Controller Area Network

ECU Electronic Control Units

FMS Fleet Management System

FOSS Free and Open-Source Software

HMI Human Machine Interface

HVAC Heating Ventilation and Air Conditioning

IP Intellectual Property

IPR Intellectual Property Rights

ISV Independent Software Vendors

IVI In-Vehicle Infotainment

MOST Media Oriented System Transport

MPL 2.0 Mozilla Public License 2.0

NFC Near Field Communication

OEM Original Equipment Manufacturer

OGI Open Governance Index

OS Operating System

OSI Open Source Initiative

OSS Open Source Software

iii

OSV Operating System Vendors

PDK Platform Development Kit

PMC Project Management Committee

SDK Software Development Kit

SPDX Software Package Data Exchange

VIL Vehicle Interface Layers

iv

Dictionary

Artifact (Software) A tangible by-product of software development (e.g. code,
use cases, diagrams, requirement and design documents, etc.)[1].

Copyleft (License) Refers to licenses that use copyright law to offer the right
to distribute copies and modified versions of a work, and requiring the same rights
to be preserved in modified versions of the work. Most copyleft licenses are open
source licenses[2].

Head Unit Commonly used name for IVI system, including hardware and
software[3].

Permissive (License) A non copyleft open source license that guarantees free-
dom to use, modify, and redistribute, but that also permits proprietary derivative
works[4].

Runtime (System) A software designed to support the execution of computer
programs written in some computer language[5].

GStreamer (Software) Pipeline-based multimedia framework that allows pro-
grammers to create media-handling components[6].

Wayland (Software) A protocol that specifies the communication between a
display server and its clients[7].

SystemD (Software) A suite of system management assets designed as a cen-
tral management and configuration platform for Linux. Used in system startup
process[8].

v

Contents

1 Introduction 1
1.1 Background . 1

1.1.1 ÅF . 2
1.2 Purpose . 2
1.3 Problem description and Scope . 2
1.4 Limitations . 3
1.5 Report layout . 3

2 Background 4
2.1 In-Vehicle Infotainment (IVI) . 4
2.2 Open source software . 6

2.2.1 Governance . 7

3 Method 10
3.1 Study method . 10
3.2 Prototype method . 11
3.3 Tools and resources . 11

3.3.1 Software . 11
3.3.2 Hardware . 12
3.3.3 Resources . 12

4 IVI initiatives 13
4.1 GENIVI . 13

4.1.1 Objectives . 14
4.1.2 Backers and Organizational Structure 15
4.1.3 Technology . 17

4.1.3.1 Compliance Specification 17
4.1.3.2 Projects . 20
4.1.3.3 Baselines and Demo platform 21

4.1.4 Openness and Licensing . 23

vi

CONTENTS

4.1.4.1 Licenses . 24
4.1.5 Maturity . 25

4.2 Automotive Grade Linux (AGL) . 26
4.2.1 Objectives . 26
4.2.2 Backers and Organizational Structure 27
4.2.3 Technology . 29

4.2.3.1 Tizen . 31
4.2.4 Openness and Licensing . 32
4.2.5 Maturity . 32

4.3 Automotive Grade Android (AGA) . 33
4.3.1 Objectives . 33
4.3.2 Backers and Organizational Structure 34
4.3.3 Technology . 34
4.3.4 Openness and Licensing . 38
4.3.5 Maturity . 39

4.4 Evaluation . 40
4.4.1 Initiatives . 40
4.4.2 Future . 41

5 Design and Implementation 42
5.1 Software . 42
5.2 Hardware . 43
5.3 Hardware setup and software integration 43
5.4 Evaluation . 46

6 Conclusion 47

Bibliography 53

A The Open Source Definition 54

B GENIVI Members List 56

C GENIVI Open Source Projects and Baselines 60

D Automotive Grade Linux Members List 61

E Automotive Grade Android (Vehicle ICT Arena) Members List 63

F Brief Fact Sheet of the Freescale i.MX53 QSB 65

G Build Configurations for the GENIVI Demo Platform 69

vii

1
Introduction

The past few years, a number of commercial and open source initiatives for commoditiz-
ing software and hardware for use in automotive infotainment, have emerged. Choosing
a suitable platform for an In-Vehicle Infotainment (IVI) project is challenging given the
diversity between these initiatives in objectives, backers, technology, openness, licensing,
maturity, etc.

Since these initiatives are all relatively new, no comprehensive study of said initiatives
exist and a major challenge when choosing platform is to determine which initiative best
conforms to one’s needs and requirements.

Moreover, In-Vehicle Infotainment (IVI) system development is increasingly focused
on efforts to commoditize and integrate additional software systems and hardware to
the infotainment domain. This includes software architectures such as the Automotive
Open Software Architecture (AUTOSAR), which work, inter alia, to create a develop-
ment base for industry collaboration by standardizing basic software functionality of
automotive Electronic Control Units (ECU) [9]. It also includes additional hardware
components, which relates to the platform’s customizability towards different hardware
and adaptability to new components.

In this initial study, we seek to analyze and evaluate three main candidates for IVI
system development, namely GENIVI, Automotive Grade Linux (AGL) and Automotive
Grade Android (AGA). A practical implementation of one candidate on a development
board demonstrates basic functionality and enables an evaluation of the effort required
to input an additional external data signal.

1.1 Background

The components of current-day IVI systems are generally based on different operating
systems, with various proprietary software solutions on top. As such, for every update of
the system, IVI development must start over. In combination with the customer demand

1

CHAPTER 1. INTRODUCTION

to accommodate mobile devices, the industry is now increasingly considering open source
software solutions. A system based on Android or Linux would effectively build on prior
advances and enable incorporation of existing functionality [10]. This would enable
developers and manufacturers to increase their production cycle by creating a platform
with core services, middle-ware and application layer that is reusable [11].

Pioneering this field are the GENIVI Alliance, the Automotive Grade Linux working
group and the Automotive Grade Android initiative.

1.1.1 ÅF

This master thesis was performed on behalf of ÅF, an engineering and consulting com-
pany with missions in the areas; energy, industry and infrastructure. It was founded in
Sweden in 1895 and today has about 7000 employees. The company is based in Europe,
but has its business and clients worldwide.

1.2 Purpose

The purpose of this report is to provide a detailed description and comparison of three
main open source platform initiatives to IVI systems and to demonstrate how an imple-
mentation setup of one of these platforms can be made.

1.3 Problem description and Scope

ÅF is interested in a study which presents and analyzes open source IVI initiatives based
on their respective objectives, backers, technology, openness, licensing, maturity, etc.
Determining which best conforms to one’s needs and requirements is a major challenge
as no comprehensive study of these initiatives exist.

The study is focused on three principal open source initiatives; GENIVI [12], Automo-
tive Grade Linux (AGL) [13] and Automotive Grade Android (AGA) [14], with the aim
of easing identification of a suitable platform for IVI developers. Actors co-operating in
the same industrial sector, whether it be car manufacturers, original equipment manufac-
turers (OEM’s) or software developers, may, while sharing the same goal, have different
requirements on an IVI platform. As such, the study will also aim to conclude where
priorities of various actors are considered and which of the initiatives that best meet the
requirements from the actors respectively.

One platform will subsequently be selected for practical studies. It will be realized
on a development board as a demonstration of a possible implementation setup of one of
the open source initiatives and to enable an evaluation of its adaptability to additional
hardware, external sensor data will be inputted. The software’s potential to input and
process data originating from existing vehicular systems (e.g. sensor data) is of interest
for IVI solutions as these signals may provide valuable information about the state of
the vehicle. Presenting data on the IVI prototype through basic platform functionality
(e.g. GUI) is considered an optional goal.

2

CHAPTER 1. INTRODUCTION

1.4 Limitations

From the start of the project, we solely had one hard limitation. It was that we would
select only one of the open source platform alternatives to use for our prototype, even if
the study would show that more than one of the alternatives could be viable to use.

1.5 Report layout

An overview of the different chapters in the report is presented here. In order to facil-
itate the understanding of the results in the study and provide additional background
information, a chapter with relevant theory is presented in Chapter 2. The method that
the study and prototype development have followed is presented in Chapter 3, together
with a brief description of the main tools that were utilized. In Chapter 4, the three
investigated open source IVI initiatives are presented and compared. The design and im-
plementation of the prototype is presented in Chapter 5. Final conclusions are provided
in Chapter 6.

3

2
Background

This chapter provides background theory behind some of the concepts/areas addressed
in the rest of this report.

2.1 In-Vehicle Infotainment (IVI)

In-Vehicle Infotainment (IVI) is a term from the automotive industry which refers to ve-
hicle systems that combine the delivery of information with the delivery of entertainment
to passengers and drivers. To provide and manage these kind of services, IVI systems are
equipped with a Human Machine Interface (HMI) consisting of audio/video interfaces,
keypads, touchscreens, etc. Additional tools and features that are typical for these
systems include audio/video playback and two-way communication tools (CD/radio,
navigation, voice commands, rear seat entertainment, etc.). Furthermore, mobile device
connectivity has in recent years become a major component in IVI systems in an effort to
meet the increasing needs of accessing internet and common smartphone content, such
as music streaming, traffic information and weather forecasts. Safe use of IVI content is
another area that has received much attention lately, which has lead to that many IVI
systems have security features that are intended to prevent driver distraction [15].

An IVI system consists of many interconnected hardware and software components,
and the general architecture or framework of an arbitrary system can be described with
a set of layers, ranging from the hardware layer in the bottom, to the HMI at the top.
Between every layer are well defined interfaces and each layer includes a series of key
technology blocks in software and/or hardware to provide the desired functionality of
the system, see Figure 2.1. Below is a brief description of each layer and their principal
building blocks [16].

4

CHAPTER 2. BACKGROUND

Figure 2.1: System architecture overview for an IVI platform, reproduced from [16]

• Human Machine Interface (HMI) Layer: The HMI is the interface to the user
of the IVI system and controls the display of the IVI system’s head unit. It is
responsible for processing and responding to user inputs like touch screen input,
speech recognition input and knob/button-based input [16].

• Application Layer: The application layer contains a mix of applications, all de-
signed to provide a specific function to the benefit of the user. Applications are
dependent on other software referred to as system software to be able to execute.
System software differentiates from application software in the sense that the it
serves the latter (which in turn serves the user) [17].

• Middleware Layer: The middleware layer consists of components and interfaces
in software that supplies services to the application that are not available from
the operating system layer, so that the functional areas of the application layer
can be realized. Consequently, the middleware layer simplifies the communication
and input/output of data between the application layer and the operating system
layer, as a result application developers can focus on the particular purpose and
functionality of their application [18].

• Operating System (OS) Layer: The operating system layer generally constitute
the operating system along with a Board Support Package (BSP) and drivers. The
operating system itself typically manages hardware and software resources and pro-
vides applications with common services [19]. The BSP provides essential support

5

CHAPTER 2. BACKGROUND

code that facilitates the porting of an OS to a new hardware environment [20]. The
drivers operates and manages attached hardware devices by providing software in-
terfaces to hardware devices. Thus, the operating system can access hardware
functions without having to know any detailed information about the hardware
currently in use [21].

• Hardware Layer: The hardware layer is composed of a processor with additional
essential hardware and firmware to boot the OS. Additionally, this layer is often
equipped with a set of automotive I/O devices like CAN/MOST interfaces [16].

In recent years, the amount of software found in modern vehicles has increased dra-
matically and a typical car may have as many as 100 million lines of code in its sys-
tems [22]. As IVI systems have gone from luxury to commodity, the importance of
having a competitive advantage over one’s opponents on this frontier is vital. In the
traditional approach to IVI system development, the automotive manufacturer typically
has very few software engineers involved in actual development. Instead, tier one suppli-
ers develop all software for a set of requirements provided by the manufacturer [23]. This
approach may offer the delivery of a very mature product (e.g. Windows embedded),
but holds the manufacturer in complete dependency of the tools and features supplied
by that tier one.

A solution based on open source code on the other hand, enables OEM’s and tier
one developers to directly write features into that solution. Furthermore, open software
may have thousands of providers and contributors, mitigating the risk associated with
relying on one supplier for a system [24].

Many customers have also grown accustomed to the fast technological turnover found
in many of today’s consumer products (e.g. mobile phones) and expect the same from
the hardware and software found in their cars. As the automotive development/delivery
cycle for vehicles is close to three times that of a typical consumer electronic device, this
is a major challenge for manufacturers. Another thing an open source solution has going
for it is that the features and applications associated with IVI systems are rarely unique
to the automotive domain. Rather, most are heavily influenced by the consumer sector,
a connection which an open source software development model could exploit to enable
transfer of innovation between the two industries [3].

2.2 Open source software

According to the non-profit corporation Open Source Initiative (OSI), which educates
about and advocates for open source, the term ”open source software” refers to software
that can be freely used, changed and shared (modified or unmodified) by anyone. Even
so, open source does not only concern means of access to the source code, but also
distribution of the software [4]. See Appendix A for a complete list of criteria needed to
be fulfilled in order for a software to be labelled open source.

Contrasting open source software is closed source or proprietary software. This is
software which source code is not publicly available, rather the rights to use it is li-

6

CHAPTER 2. BACKGROUND

censed for a fee by the owner/developer. The application of such software is generally
surrounded by great restrictions and the source code kept secret [25].

Furthermore, a common misconception about open source software is the notion that
it is the same as free1 software. Even though the terms are, by many, used interchange-
ably, there is a fundamental difference between the two concepts; free software is always
open source, but open source software does not entail that it is also free software. The
term Free and Open-Source Software (FOSS) is sometimes used to emphasize that a
piece of software is both [26].

In a typical open source project, the content creator is also the maintainer and can
approve patches made by contributors to be incorporated into the original build. How-
ever, before they are, this process of modifying the original work is known as branching.
As these patches are approved and applied towards the source (content creator), it is
also known as ”upstreaming”. Sometimes changes are made in a branch that renders it
unfit for merging with the original build, this kind of permanent split is known as a fork.

The employment, contribution and distribution of open source software is today
widespread and in many business areas its use is considered common practice. Both
great successes such as Android, and less successful projects such as Symbian have
utilized open source software. Despite this, the aspect of openness and how to measure
it is not always clear and it can be difficult to see how open or closed an open source
project really is.

The Open Governance Index (OGI) introduces and quantifies governance as a mea-
sure of openness. It further expands on the open source licenses specifications of rights
to use, copy and modify by determining the rights to gain visibility, to influence and to
create derivatives of a project. As such, to properly differentiate between an open and a
closed project, one would have to look at its employment of governance; its governance
model [27].

2.2.1 Governance

Open source code is controlled by licenses, there are many, but some of the more popular
open source licenses include;

• Apache License 2.0

• BSD 3-Clause ”New” or ”Revised” li-
cense

• BSD 2-Clause ”Simplified” or
”FreeBSD” license

• GNU General Public License (GPL)

• GNU Library or ”Lesser” General

Public License (LGPL)

• MIT license

• Mozilla Public License 2.0

• Common Development and Distribu-
tion License

• Eclipse Public License

1Free as in freedom (libre), not its monetary equivalent

7

CHAPTER 2. BACKGROUND

However, these only apply to the source code, in contrast to governance which de-
termines who has influence and control over the actual project or platform.

In research conducted by the market analysis and strategy firm, VisionMobile, the
Best Practices for governance are outlined across four key areas [27].

Access

The primary concern of any open source project is the access to source code, it should
be easily read, downloaded, modified and run.

Any developer should have access to the code without restrictions and there should
be no bias/discrimination towards specific developers. Furthermore, all projects should
use an OSI approved license.

Development tools, mailing lists and forums should also be accessible, with minimum
effort, for developers.

Development

Copyright concerns and licenses that protects Intellectual Property (IP) should not
impede the code contribution process and, provided that an appropriate open source
license has been adopted in the first place, a broad copyright license should suffice. For
the long term success of any open source project, transparency of decision making and
equitable treatment of all developers, so that they can become committers, are identified
as critical. Recurring rejections or blatant ignorance of contributions will most certainly
result in loss of developer support.

Developers should also be granted access to information regarding the direction the
project is headed and the ability to influence this themselves. As such, any developer
who has proved having sufficient knowledge about the code should be able/allowed to
commit code to the project2. For all commits there should also be metrics, regarding
where they came from, available.

Finally, an ”upstream first” policy for contributions should be employed so that any
changes benefit upstream and downstream projects adequately.

Derivatives

An increasing trend for open source projects is the adoption of compliance frame-
works. This is a measure employed to reduce fragmentation between versions and guar-
antee that applications are transferable across platforms and Operating System (OS)
distributions.

In order to avoid the compliance process being deliberately tampered with by a de-
veloper or organization it should be kept as independent and transparent as possible.

2A concept known as ”Meritocracy”

8

CHAPTER 2. BACKGROUND

Community Structure

The community structure of an open source project can have a big impact on its
openness. A non-profit model often provide independence, in the sense that control of
the product is not in the hands of any one organization.

A formal association with the Linux Foundation also strengthens the open source
credibility of a project.

How authority is exercised within the community is another aspect worth considering,
as it many times is rather centralized and does not create an environment where it is
easy for others to permeate the decision making process [27].

9

3
Method

The project started with a planning phase followed by on-line and literature studies. This
provided sufficient background information within the given area to lay a foundation for
the subsequent study and initial prototype design-direction. The project in itself has
relied on extensive, continuous on-line studies of various In-Vehicle Infotainment (IVI)
systems, coupled with interviews of people in the industry.

Evaluations regarding the results of the study and design of the prototype were held
continuously throughout the project to ensure both internal and external requirements
were met. A detailed description of the study method and prototype development is
presented below.

3.1 Study method

The study can be divided into two principal analysis stages. First, a general analysis
which considers the different initiatives with respect to their objectives, backers, technol-
ogy, openness, licensing, maturity, etc. In the second stage the initiative’s similarities and
differences are analysed, as well as some of their associated advantages/disadvantages.
Both analyses aim to facilitate the identification of a suitable platform for IVI develop-
ment.

On-line and literature reviews have played an integral role in our information gath-
ering efforts and have been used extensively throughout the project. Results from these
studies have contributed to many of our initial questions being answered and provided
us with a general understanding of each initiative. To further expand on this, we con-
ducted interviews with people having insight and/or experience in IVI and open source
development. These sessions were extremely valuable in the sense that they provided us
with information that would otherwise have been difficult to procure.

10

CHAPTER 3. METHOD

3.2 Prototype method

In the final stage of the study, practical work commenced on the development of an IVI
prototype aimed at demonstrating functionality of one investigated initiative. In order
to minimize the risk of falling behind schedule, different software and hardware platforms
were considered early. As such, partial results from the study were of help in deciding
what hardware would be suitable for which software.

Since our main focus was the software, the open source IVI platform was selected
prior to that of the hardware. For this, several parameters were considered, such as
which initiative had the largest numbers of backers, if there was an active community,
the level of maturity and which had the most comprehensive solution. See Section 5.1
for additional information.

Regarding the selection of hardware, a few requirements had to be fulfilled, namely
the availability of a Board Support Package (BSP), community support channels and
having compatibility with the selected open source platform. The former was a high
priority as it is needed in order to get software up and running on hardware.

After having selected an appropriate hardware platform for implementation of the
chosen open source platform, the following steps were taken in order to integrate them.

To begin with, it is important to have a suitable build environment running on the
host system in order to effectively build the software for the target. This includes having
the right operating system version, support packages and software build tools. This was
set up in collaboration with our supervisors at ÅF.

For the actual build, a number of different building blocks in form of software layers
were imported via Git1 and a number of build parameters set, specifying which layers
should be included for which target. A successful build resulted in an image of the
software ready to be run on the specified target.

In order to facilitate development, we decided to first try to build the software for an
emulated machine using QEMU2. This allowed us to get an idea of how the build envi-
ronment and software worked before targeting the hardware platform with its associated
BSP.

3.3 Tools and resources

The project, including the study and subsequent prototype development was aided by
both physical tools and software resources. These are presented below.

3.3.1 Software

In the following list, the main software utilities used during the project are briefly pre-
sented.

1A distributed revision control system for software development [28]
2QEMU is an open source machine emulator and virtualizer [29]

11

CHAPTER 3. METHOD

• GENIVI Demo Platform (GDP)

Used for the prototype as a technology demonstrator of the GENIVI software and
design.

• Yocto Project

The Yocto Project was used by GENIVI and consequently also by us to create a
custom Linux-based system of the GENIVI Demo Platform.

• Freescale Board Support Package

Used for customization of the GENIVI Demo Platform to the Freescale i.MX53
Quick Start Board.

3.3.2 Hardware

The hardware utilities utilized in the project are stated in the list below.

• 2 Windows PC:s

Mainly used for literature studies and documentation.

• Windows PC running Ubuntu 14.04 LTS in Oracle VM VirtualBox

Used for building the GENIVI Demo Platform together with the Yocto Project.

• Freescale i.MX53 Quick Start Board

The development board used for the prototype.

3.3.3 Resources

Throughout the project, we have had access to ÅF’s office and their development facilities
at Lindholmen Science Park in Gothenburg, as well as continuous supervision from
employees at ÅF. Furthermore, economical resources for purchasing of needed hardware
has also been covered and provided by ÅF.

12

4
IVI initiatives

In this chapter, we carry out an investigative study on three open source initiatives;
GENIVI, Automotive Grade Linux (AGL) and Automotive Grade Android (AGA).

4.1 GENIVI

”GENIVI Alliance is a non-profit consortium of over 180 automotive industry companies
promoting the collaboration and deployment of open source software in the automotive
electronics business, specifically infotainment.” [30]

The GENIVI Alliance was formed in the beginning of 2009 [23] in an effort to counter
the increasingly complex and expensive process of developing, testing, deploying and sup-
porting In-Vehicle Infotainment (IVI) products and services [31]. Its founding members
consisted of eight companies from the automotive sector and included manufacturers,
first tier suppliers, silicon vendors and operating system vendors. Since then a multi-
tude of Independent Software Vendors (ISV), middleware vendors and software services
companies have joined the ranks, making the total number number of members reach
more than 180 [23].

There is a paradigm shift in the development of IVI systems and up until recently,
automotive manufacturers relied exclusively on suppliers to build and provide each sys-
tem independently for a given list of requirements, resulting in long development cycles
and costly licensing fees. GENIVI is a driving force in the shift to a non-proprietary
platform, where community-developed open source software lays the foundation [32].
Figure 4.1 offers an illustration of some of the different components phased out of the
proprietary domain with GENIVI or an equivalent open source solution.

13

CHAPTER 4. IVI INITIATIVES

Figure 4.1: Proprietary vs open source [33]

One of GENIVI’s more outstanding goal is to provide a platform consisting of only
about 5 % self developed code created from scratch, the rest would be adopted or adapted
from existing Open Source Software (OSS) projects [33].

4.1.1 Objectives

While the GENIVI alliance is engaged in software development, they are not trying to
solve a technical problem as much as a business one [23]. Driven by today’s high repeated
effort and cost associated with the development and maintenance of infotainment in
vehicles [3], GENIVI is working for an industry wide adoption of OSS and aims at
delivering a specification of a reusable, open source platform consisting of Linux-based
core services, middleware and open application layer interfaces [31].

With the objective to offer the industry an environment for faster innovation and
lower software development costs, the alliance also organizes technical work groups
and composes recommendations designed to minimize differences between implemen-
tations [30].

More than simply focusing on pushing Linux to the automotive domain, GENIVI’s
main goal is to define a standardized common software platform to be used for devel-
oping IVI systems. By identifying and implementing non-differentiating functionalities
1 that all IVI systems require, the GENIVI platform is a packaging of operating system
and middleware components, not a complete IVI environment. For manufacturers, this
solution enables resources to be focused on development of higher level components,
such as the application layer and Human Machine Interface (HMI) instead of the base
system [23].

1Basic functionality not subject to variation between implementations

14

CHAPTER 4. IVI INITIATIVES

Their strategic initiatives (as specified by GENIVI) are as follows [12]:

1. Accelerate the development and implementation of the fully connected vehicle for
infotainment applications

2. Deliver a platform consisting of standardized middleware, application layer inter-
faces and frameworks

3. Extend Open Source community innovations to support the automotive domain

4. Engage developers to deliver compliant implementations

5. Sponsor technical, marketing, and compliance programs

In order to reach the above, the alliance produces three principal outputs; a com-
pliance specification, code projects and baseline software releases. The objective of the
former is to ensure that the integration process of third-party software components is
alleviated by GENIVI compliant products (as opposed to providing full Application
Program Interface (API) or Application Binary Interface (ABI) compatibility across
implementations) [23].

The specification, which provides a clear definition of middleware components needed
to be included to achieve GENIVI compliance, is a document derived from the collabo-
rate work of Expert Groups (EG) and subsequently reviewed by a System Architecture
Team (SAT). For every new iteration of this compliance specification, there is also a
software baseline release. This is essentially a packaging of components, as required by
the specification, on top of a Linux distribution, designed to reflect a GENIVI compliant
platform. The code projects hosted by GENIVI make out some of the content of these
baselines and is an effort by the alliance to implement IVI functionality that does not
already exist in upstream projects [34].

4.1.2 Backers and Organizational Structure

As mentioned above, the GENIVI alliance is a consortium of over 180 companies consti-
tuting Original Equipment Manufacturers (OEM’s), Operating System Vendors (OSV)’s
and various suppliers. Its charter members are the BMW Group, Jaguar/Land Rover,
Magneti Marelli, PSA Peugeot Citroën and XSe Automotive2. Additional major backers
include Intel, ARM, Hyundai and Volvo Cars, to name a few. A complete list of members
can be found in Appendix B. While any organization interested in the success of IVI
systems and related products can join the alliance, it is governed by a board of directors
comprised of top-tier members and a selected number of lower-tier members. Supporting
members and teams that, in collaboration with the board, oversee strategical, technical
and commercial components are presented in Figure 4.2 [12].

2Now part of Mentor Graphics

15

CHAPTER 4. IVI INITIATIVES

Figure 4.2: Functional Organization [12]

The operations subcommittee (OPS) has a supportive function to the Board of Direc-
tors by assisting on operational issues and is in close contact with the rest of the groups
and teams. Its primary role is to streamline the alliance in terms of resources used to meet
stakeholder expectations. Requirement collection, specification development, adherence
to Intellectual Property Rights (IPR) policies and processes, testing and release of refer-
ence implementations, and adoption and compliance activities are activities undertaken
by the Program Management Office (PMO) in its work to develop and monitor the
technical working plan of the alliance [12]. There are six principal expert groups (EG),
whose main area of responsibility is adapting available open source code from upstream
projects to meet requirements imposed by Original Equipment Manufacturer (OEM)’s
and tier one suppliers. Occasionally, GENIVI also acts as a sponsor and launches new
projects to develop software (code) for which it currently does not exist any viable base
candidates [30]. The System Architecture Team (SAT) works closely with the different
expert groups and defines the overall GENIVI platform and its boundaries. Part of SAT
is also the Compliance Team, who is responsible for the compliance statement. The
processes, policies, and tools for the development of GENIVI software is overseen by the
Baseline Integration Team (BIT). Finally, the License Review Team (LRT) ensures the
technical work of the alliance uses a legally viable approach, by managing all licenses
and legal activities [12].

16

CHAPTER 4. IVI INITIATIVES

4.1.3 Technology

From the Linux kernel up to the middleware, GENIVI specifies a common software in-
frastructure by implementing essential and non-differentiating functionality of an overall
IVI system, which allows developers to focus on the customization of upper layers, such
as the HMI.

In essence, it provides an entire spectrum of manufacturers and their suppliers with
an underlying framework upon which they can then add their proprietary, differentiating
software products and services, as illustrated in Figure 4.3 [30].

Figure 4.3: GENIVI Domain [12]

Leveraging the potential from its open source origin (Linux), a great deal of GENIVI’s
work takes place in existing open source software projects located upstream3.

Additional projects are initiated by GENIVI for which no suitable alternative already
exists in the open source community. The components of these projects then make
up so called baselines, which are released with each new iteration of the compliance
specification [32].

4.1.3.1 Compliance Specification

GENIVI’s main deliverable is its compliance specification which aligns IVI software re-
quirements from multiple automakers, OEM’s, suppliers and other members [32]. It
is a detailed documentation which defines the core services, middleware and open ap-
plication layer interfaces required by an IVI software stack to achieve compliance with
GENIVI. The underlying idea is that if a level of standardization can be introduced to
the software stack, both the development costs and cycle times can be reduced. This is
primarily achieved by identification and specification of non-differentiating components
and features [3].

3Direction toward the original authors or maintainers of software

17

CHAPTER 4. IVI INITIATIVES

Although limited to members only, OEM’s, integrators and software suppliers may
register their products to be certified against all functionality described by the specifi-
cation in so called compliance programs. This is either a platform compliance, which
relates to the middleware and kernel or a component compliance, which relates to addi-
tional functionality located in the HMI and application layers. Updates to the compli-
ance specification, which is created and maintained by the expert groups, are released
bi-annually [12].

Figure 4.4: GENIVI Component/Platform compliance [12]

Figure 4.4 illustrates the two compliance programs currently run by GENIVI. These
programs offer enough standardization to allow developers to deliver implementations
that will run on all compliant distributions and many OEM’s have now made GENIVI
compliance a requirement in their requests for proposals for new IVI systems [33]. To
extend the platform compliance to include the HMI and applications, the ”Works with
GENIVI” label enables developers to register their software applications for compliance.

With every new version of the compliance specification, GENIVI also release public
software baselines which constitute GENIVI middleware, a Linux kernel and various
open source projects. Such a collection of components is presented in Figure 4.5 for the
GENIVI 5.0 ”Gemini” release [35].

18

CHAPTER 4. IVI INITIATIVES

Figure 4.5: GENIVI component cluster [35]

19

CHAPTER 4. IVI INITIATIVES

The compliance specification distinguishes between three basic component types;
Placeholder, Abstract and Specific (owned/adopted) components.

Placeholder Abstract Specific

P1 A B C Mandatory

P2 D E F Optional

Table 4.1: Component compliance

The former represents components that are currently unimplemented and are defined
only by a set of requirements that their specific implementations has to fulfil. An example
would be the browser component which has requirements on rendering, caching, etc.

The abstract components too do not refer to specific implementations, instead they
are defined by their provided and required interfaces as well as behaviour. As such, the
above two component types offer freedom as to how the capability is implemented, pro-
vided it meets all imposed implementation or functionality and interface requirements.
An example of an abstract component would be the SensorsService component which
requires an API to access vehicle sensor data.

Specific components on the other hand are owned or adopted components, defined
by their implementation available in the form of source code. An example would be
the Linux Kernel or the GENIVI hosted Automotive Diagnostic Log and Trace (DLT)
component.

Furthermore, all components are assigned a priority level; P1 or P2. The first level
means the component is mandatory, whereas the second level signifies that it is optional
but desired. In order to reach compliance, all mandatory components must be included.

In table 4.1 above, the component marked ”A” is a component that is specified by
its imposed requirements and must be included, however, since it is a placeholder, a
developer may chose whichever component it wants, as long as the component fulfils
the requirements. At the other end of the spectrum is the component marked ”F”.
This is optional to implement, however, if a developer choose to include it, a specific
component must be used (you are not free to use whichever component you want). As
such, even though GENIVI is completely open source, there is room for adopters to
include proprietary solutions into the build and still reach compliance [35].

4.1.3.2 Projects

GENIVI’s approach to software development follows an ”upstream first” policy, meaning
that prior to creating a solution of their own, any viable component already available in
the FOSS community will first be adopted or adapted to their needs. However, suitable
software which meet the defined requirements for their IVI platform does not always exist
in upstream projects. As such, additional project hosting is necessary to facilitate some
of the development of the sought-after functionality. Even so, only around 5 percent
of the platforms code base consists of automotive specific code produced by GENIVI

20

CHAPTER 4. IVI INITIATIVES

themselves [32].

Figure 4.6: Code distribution for the GENIVI platform [12]

In order to make the features and functions of the IVI software platform acceptable to
a broad range of automotive companies, imposed software requirements are contributed,
discussed and aligned in the previously mentioned expert groups. These requirements
are then made available to developers within GENIVI hosted projects.

Projects listed in the compliance specification are considered ”core” projects and are
assigned a ”topic expert” dedicated to manage the communication between the project
maintainer and the sponsoring expert group. The maintainer leads the project and is
responsible for considering new features, accepting and committing patches and respond-
ing to questions related to the project. As such, any project participant is free to submit
a patch, but it is ultimately up to the maintainer to commit it to the code repository.

Although not part of the compliance specification, additional project hosting is com-
mon. These projects are called ”incubator” projects and generally constitute tools,
utilities or proof-of-concept solutions which implement functionality not yet defined by
GENIVI. As they may eventually be added to the compliance specification, these projects
are just as important as ”core” projects, but do not have a ”topic expert” assigned to
them.

The alliance currently hosts more than 20 projects, including an audio manager, a
graphical layer manager and a diagnostics log-and-trace component [32]. For the full list
of projects, see Appendix C.

4.1.3.3 Baselines and Demo platform

Another major deliverable for the GENIVI alliance is the release of baseline software
meant to provide a minimal software platform aligned with the GENIVI compliance. A
selected work group of the alliance, the Baseline Integration Team (BIT), congregates
software components specified in the GENIVI compliance specification and builds so
called ”Baselines” [30]. These are assemblages of GENIVI middleware on top of a Linux

21

CHAPTER 4. IVI INITIATIVES

kernel together with various open source resources [34]. The aim is that these baselines
will verify that the compliance specification is working and that it is possible to integrate
and assemble the software components to provide the expected functionality.

As the baseline releases follows that of the compliance specification, the content of
a baseline will always match a version of the compliance specification (they are always
GENIVI compliant). Furthermore all baseline releases come with a Platform Develop-
ment Kit (PDK), which means they are open to customization at Kernel and middleware
level.

There are currently two publicly available GENIVI Baseline incarnations, the Yocto
and the Baserock baselines, each composed of approximately 150 different components [30].
Not only do they provide the build tools that enable the build-capability for the base-
lines, but also the means to add additional components to the project (i.e. add software
components to a GENIVI baseline).

These are released with every new version of the compliance specification and are
designed to reflect a GENIVI compliant software platform. OEM’s and tier one suppliers
then add their own software (usually a combination of open and closed code) to meet
additional OEM system requirements [34].

The Yocto GENIVI Baseline

Hosted by the Linux Foundation, the Yocto Project is an open source project that
provides tools and processes to allow developers to create their own custom Linux dis-
tributions [36].

The Yocto GENIVI Baseline is based on a software layer called ”meta-ivi”. This
meta-data layer aligns the Yocto Project’s reference system ”Poky” with the GENIVI
compliance specification and contains information that defines build tasks for the Base-
line. Meta-ivi is fully Yocto compatible which means it can be mixed with other Yocto
compatible layers, including BSP layers [37]. With Poky, the meta-ivi layer provides
the recipes to build free OSS, and to combine the results into binary images. It is also
possible to generate an installable Software Development Kit (SDK), optimized for that
particular binary image [37].

Both meta-ivi and Poky source code is available in git-repositories hosted by the
Yocto Project.

The Baserock GENIVI Baseline

Baserock is maintained by Codethink, an associate member of GENIVI and similar
to the Yocto Project, Baserock is an open source project aimed at delivering custom soft-
ware systems by providing tools to build open source software components into complete
operating systems. The Baserock GENIVI Baseline uses these build tools to assemble
an optimized GENIVI software stack [32].

22

CHAPTER 4. IVI INITIATIVES

GENIVI Demo Platform (GDP)

Launched by the BIT is also a GENIVI demo platform meant to offer a higher
experience of the GENIVI software. This builds on the baselines by adding an HMI and
some proof-of-concept applications. It is not meant to represent a complete IVI solution,
rather show off how a GENIVI IVI may look like [34].

Figure 4.7: High-level block diagram for the GENIVI Demo Platform [34]

Figure 4.7 illustrates the hardware and software blocks in the GENIVI demo platform.
The only thing differentiating this from the baselines is the top block, as the baselines
do not offer any HMI or application implementations [34].

4.1.4 Openness and Licensing

So is GENIVI open? Predominantly so. The majority of the previously closed projects
hosted by the alliance have now been pushed into the open source domain, with compo-
nent source code available in GENIVI git-repositories. The default license for GENIVI
hosted code artifacts is Mozilla Public License 2.0 (MPL 2.0) [38] and access is non
restrictive; anyone can download the code and start developing, and GENIVI provides
open support mechanisms in the form of mailing lists, bug-tracking databases, docu-
mentation servers and wiki-pages [32]. The same applies for the public Yocto GENIVI
baseline which is based on meta-ivi, the Yocto layer for IVI. Additionally, access to the
project plan is here provided [39].

As such, GENIVI follows up on its commitment to utilize software available under
open source licenses, and what has been made public and pushed to the open source
domain conforms with the practices of OSS. However, not all software is available to
non-members and some of its work is conducted behind closed doors. Access to software
test tools and the compliance specification are two important things that remains out of

23

CHAPTER 4. IVI INITIATIVES

reach for non-members.
Although any membership level grants you access to all the above, the alliance em-

ploys a three-tiered membership system where all tiers are accompanied by an annual
fee [38].

4.1.4.1 Licenses

GENIVI has requirements on the licenses used for their projects;

• The license shall allow combining the GENIVI hosted code with proprietary soft-
ware and GPLv2 software alternatively.

• The GENIVI Alliance prefers a copyleft license to avoid privatization of the GENIVI
hosted code.

• The GENIVI Alliance would like to use a license with a clear scope of the patent
license regime.

• Where possible, the GENIVI Alliance would prefer a single license for all GENIVI
hosted code instead of several licenses for different components.

• The GENIVI Alliance wants to avoid an uncommon license.

• The license should be valid worldwide.

• A GENIVI member must be able to sell products based on this to non-members.

As such, GENIVI has green-lit4 the use of a number of OSS licenses for code and
document artifacts. In the public policy for GENIVI licensing and copyright version 1.6
are specified the default licenses for code and document artifacts respectively, together
with some additional exception licenses [38].

Code artifacts

• Mozilla Public License, Version 2.0: Weak copyleft. Preferred OSS license,
default for GENIVI hosted code.

• Apache 2.0 License: Default permissive license for GENIVI hosted code. In-
compatible with GPLv2.

• MIT/X11 License: Permissive license that is GPL compatible. Used for software
components that need to be permissively licensed and combinable with GPL li-
censed software.

4Reviewed and accepted as suitable, without restrictions

24

CHAPTER 4. IVI INITIATIVES

• GPLv2 and LGPLv2.1: Strong copyleft. Acceptable when there is a risk for poten-
tial privatization. The former may only be used for programs and the latter only
for software libraries.

Document Artifacts

• Creative Commons Attribution-ShareAlike 4.0 License (CC-BY-SA): Copy-
left. Disallows proprietary forks. GENIVI’s preferred and default license for doc-
umentation artifacts.

• Creative Commons Attribution 4.0 License (CC-BY): Permissive. Used for
informative material.

• Creative Commons Attribution-NoDerivatives 4.0 License (CC BY-ND): Ac-
cepts no derivatives. Used for documentation that GENIVI wants to ensure re-
mains unaltered unless changed by GENIVI themselves. Applied to public parts
of compliance specifications.

These are the principal licenses used by GENIVI. The MPL 2.0 and CC-BY-SA are
the default licenses for code and document artifacts respectively, and must be used un-
less there is significant technical or business reasons to use a different license.

In terms of copyright for code hosted by GENIVI, it remains with the original author
so long as it was not developed under a contract that requires ownership rights to be
granted to GENIVI [38].

4.1.5 Maturity

In the context of open source GENIVI has come a long way since it first set out in
2009. Even though the lions share of GENIVI’s members are companies in the automo-
tive sector, with deep roots in proprietary software development, significant progress to
openness has been made. Moreover, since its inception the GENIVI alliance has grown to
include more than 180 companies ranging from OEM’s to first tier suppliers and silicon
vendors.

With a platform building on Linux, GENIVI has not only positioned itself in line with
other organizations/alliances/work-groups (most notably AGL), but can also benefit
from some of the perks that come with a mature, engaged and experienced community.
In effect, everything they choose to adopt and/or adapt will build on prior advances made
by a strong OSS community. As the evolution of IVI systems and their development
goes forward, a community-based development model, where you give a little but get a
lot, may prove to be the right way.

Additionally, in late 2013, as first automaker, BMW began production of vehicles
containing GENIVI-based head units, proving that this new approach to IVI develop-
ment is adequate in terms of functionality and quality [3].

25

CHAPTER 4. IVI INITIATIVES

With more and more companies taking interest in a Linux-based IVI system GENIVI’s
future is looking bright. While it is hard to say for sure if GENIVI is the solution to
all things in IVI, the transition to the open source domain is undoubtedly a step in
the right direction as the problems associated with an ever increasing amount of soft-
ware, recurring costs of each program and long development cycles are not likely to solve
themselves.

4.2 Automotive Grade Linux (AGL)

Automotive Grade Linux (AGL) was launched by The Linux foundation in 2012 as an
open source project for the development and delivery of a common Linux-based software
platform for the automotive industry. As such, its scope goes beyond IVI and in the
long run the project aspires to include telematics and instrument clusters as well. The
idea is that the platform should work as a reference platform that OEM’s and suppliers
can contribute to and utilize to produce their own commercial product by implementing
additional technologies and creating a customized branded user interface on top of it [40].

Since its inception AGL has had the support of a wide range of companies, including
automotive manufacturers, tier 1 suppliers and electronics and silicon vendors. The
first automotive manufacturers to receive membership were Jaguar Land Rover, Nissan
and Toyota. Additional members include Renesas, Fujitsu, Samsung, Intel and Texas
Instruments. Today the AGL workgroup has over 50 participating members [41].

4.2.1 Objectives

The aim of AGL is to speed up the development and adoption of an entirely open
source IVI software platform for vehicles. To accomplish this, AGL is striving to unite
automotive manufacturers and technology companies to develop and maintain a com-
mon platform with Linux at its core that provides OEM’s with full control of the user
interface [40].

Much like GENIVI’s approach, this would offer OEM’s a base platform, on top of
which they can focus their innovative efforts, rather than spending resources on devel-
opment of separate, individual solutions [42].

Their goals, as described by themselves, are [13];

• Provide an automotive open source Linux platform that fulfils joint and shared
requirements of the automotive industry.

• Become an upstream distribution intended to be adapted and optimized into com-
mercial products.

• Provide a reference distribution to show and emphasize the benefits and abilities
of the technology.

26

CHAPTER 4. IVI INITIATIVES

• Provide a development distribution aimed to enable a quick getting started expe-
rience for engineering projects as well as rapid prototyping.

• Offer a wide community of support composed of individual developers, academic
associations and companies.

4.2.2 Backers and Organizational Structure

As mentioned above, an excess of 50 companies are today participating in the AGL work-
group. This includes four major automotive manufacturers and a variety of suppliers,
namely Jaguar Land Rover, Nissan, Toyota and Hyundai, and Intel, Samsung, Fujitsu,
Renesas and Texas Instruments respectively [43]. For a complete list of participants, see
Appendix D.

The organizational structure of the AGL project is depicted in Figure 4.8. The
Linux Foundation is hosting the project, essentially a workgroup consisting of a steering
committee, its coordinator and a number of expert groups. The latter are responsible
for carrying out development work, whereas the steering committee sets the project
direction. The development process follows an ”upstream first” policy and anyone can
become a contributor to the project, whether it be individuals, companies or academic
associations [13].

27

CHAPTER 4. IVI INITIATIVES

Figure 4.8: The structure of the AGL project [13]

The Linux Foundation’s principal role in the project is to promote the vision of AGL
by providing a neutral environment for collaboration and encouragement of working
relationships between OSS communities and the automotive industry. In addition to
this, the foundation is also offering training in technical, legal, open source and Software
Package Data Exchange (SPDX) areas.

The steering committee is represented by a mix of companies and actively drives
the day-to-day activities of the project. It promotes the overall adoption and technical
success of AGL by providing supportive resources including code, specifications, tests
and documentations.

The development work of AGL is managed by expert groups who provide technical
expertise and leadership by designing, implementing, testing and documenting specific
features of AGL. These are generally formed by the steering committee and are either
responsible for a specific function (i.e. integration, quality assurance, management,
etc.) or a specific part of the software (i.e. system maintainers for a particular code
base). The expert groups are also responsible for collaborating with other open source
projects linked to AGL and to integrate appropriate solutions, as well as specification
and evaluation of suitable hardware for the platform [13].

28

CHAPTER 4. IVI INITIATIVES

4.2.3 Technology

In all development, economization of resources is of great importance and reuse of ex-
isting work is common. This is true also for open source software development, where
improving and working upstream first often provides a more stable and well-tested plat-
form, something that AGL reflects in how it is built [13].

As such, the initiative chose the Tizen IVI profile, see Section 4.2.3.1, as the base
for their AGL IVI distribution. For other applications (e.g. Telematics, instrument
clusters, etc.) AGL may work off a different platform, or it will start development from
scratch [44].

The basic building blocks of the AGL platform is quite similar to other embedded
Linux platforms, as it is possible to use the same kernel and a lot of the same middleware
and open source components. However, AGL has a higher interest in fast boot-time,
security and getting access to vehicle-specific buses such as the Controller Area Network
(CAN). The AGL platform supports a variety of different hardware architectures and is
to some extent compliant with the GENIVI compliance specification (likely to be fully
compliant in the near future) [45].

Since the AGL IVI platform is based on Tizen IVI, which is an IVI layer/profile
for the Tizen OS originally created for mobile and embedded devices, it builds on an
extensively tested and successful OS platform by adding additional user interface and
middleware components to it. Furthermore, the majority of what is developed by AGL
is submitted back upstream to Tizen [13].

The demarcation line between AGL and Tizen resides somewhere at the middleware
layer [45], see Figure 4.9.

AGL’s software architecture can be described with four layers, starting with an ap-
plication and HMI layer on top, followed by a framework layer that houses API’s for
creating and communicating with applications. Underneath it is a services layer that
contains user-space services accessible by all applications. At the bottom is an oper-
ating system layer which provides the kernel, various device drivers and common OS
utilities [46].

29

CHAPTER 4. IVI INITIATIVES

Figure 4.9: AGL Architecture Block Diagram [46]

The AGL platform’s user interface and features are completely made in JavaScript
and HTML5, and to allow applications to transmit data to and from the vehicle, the
platform communicates with the vehicle via an Automotive Message Broker (AMB) with
the use of Tizen IVI web runtime. This is in turn based on Crosswalk, an HTML5 appli-
cation runtime which extends the web platform to enable the deployment of applications
with dedicated runtimes. Some of the features currently included in the user experience
for AGL are presented in the list below [47].

• Home Screen

• Dashboard

• Heating Ventilation and Air Condi-
tioning (HVAC)

• Google Maps

• Media & News Service

• Bluetooth Support

• Media Oriented System Transport

30

CHAPTER 4. IVI INITIATIVES

(MOST) Audio Controls

• Smart Device Link5

• Near Field Communication (NFC)

• Browser

• Wi-Fi

• Fingerprint Recognition

• Voiceprint Recognition

• Weather information

• Email Service

4.2.3.1 Tizen

Tizen is a flexible open source Operating System (OS) aimed at many different device
areas. It is built with a bottom-up approach and tries to address stakeholder needs in
the mobile and connected devices ecosystem. As such, it is available in several tailor-
made profiles; Tizen IVI, Tizen Mobile, Tizen TV and Tizen Wearable. These profiles
all share the same bottom infrastructure, called Tizen Common, on top of which they
employ custom features to meet the needs of the given business sector.

The Tizen IVI profile is driving the evolution of IVI systems by offering a free and
open source development platform. As IVI solution it is designed to provide modern
portable applications the ability to deliver rich multimedia and internet experiences in
the vehicle. The latest version of the platform is Tizen IVI 3.0 and is used by AGL [49].

Tizen IVI 3.0

Tizen IVI 3.0 is based on Linux and is one of the most advanced open source plat-
forms available to the automotive industry. It is a platform that can be used to build
commercial automotive IVI solutions, and can be extended and modified by OEM’s to
meet any specific requirements. Tizen IVI is compliant with the GENIVI 7.0 specifi-
cation on two hardware platforms; the Minnowboard MAX [50] and the Nexcom VTC
1010-IVI [51], and has been chosen by AGL as upstream reference OS platform.

To ensure device compatibility Tizen IVI 3.0 has been equipped with a compliance
specification and an equivalent/corresponding test suite. There is also an SDK available
for web application development called Tizen IVI SDK, which can give access to vehicle
Web API’s that are compliant with the W3C Web API standard. As a supplement,
support for the Yocto build tool has been added and can be used to adapt and enhance
the Tizen IVI 3.0 images to meet specific requirements [52].

Tizen IVI 3.0 supports various hardware architectures and platforms. It has a good
build-up structure, with a quite extensive middleware layer and an HTML5 application
development framework. It also includes many essential and practical features like multi-
media using GStreamer, support for multiple display windows using Wayland, fast boot
using SystemD, connectivity and telephony stacks [53].

5A GENIVI project that standardizes in-vehicle interfaces to provide a framework for integration of
brought-in applications [48]

31

CHAPTER 4. IVI INITIATIVES

4.2.4 Openness and Licensing

In terms of licensing, the AGL project has a policy of allowing contributing projects to
be free to choose their own OSS license. Each individual package thus contain its own
license information. At the moment, the most commonly employed license is Apache 2.0,
but many packages make use of MPL 2.0 to allow others to build proprietary extensions
to the core system without having to open source them. As such, the release in its
entirety does not have an overall license, but is governed by the licenses of the individual
components.

The majority of the projects hosted by the Linux Foundation follow this policy of
offering flexibility to which license a code is submitted under, as long as it fits the
project (compatible to other code’s licenses) and the contribution adheres to the overall
compliance requirement [54].

For code contributed to or taken from upstream projects, the license is usually re-
tained under the upstream project’s license. All licenses used by AGL are approved
by the OSI and newly developed code is increasingly licensed under MPL 2.0, whereas
documentation artifacts use Creative Commons Attribution International 4.0 license.

When it comes to openness, the AGL project is aligned with the best practices,
described in Section 2.2.1. It has an open community of developers, manufacturers and
vendors, where anyone is welcome to participate and contribute. As such, code and
documentation artifacts are free for anyone to access and use. Furthermore, open source
mechanisms such as, mailing lists, documentation and wiki-pages are provided, although
not all are publicly available. One example is the steering committee mailing list, which
is only accessible to members of the committee.

The AGL project employs a three-tiered membership system, where members are
listed as gold, silver or bronze depending on their level of engagement in the project [13].

4.2.5 Maturity

AGL was launched in 2012 with the aim of delivering a continuously maintained common
Linux-based software platform for automotive purposes, primarily IVI. With the Tizen
IVI profile as upstream distribution, the AGL workgroup are successfully introducing
open source Linux to the automotive domain and has enjoyed a steady growth of members
since it set of. Minimizing replication of development efforts where possible and working
upstream is a mentality that aligns itself not only with other initiatives (e.g. GENIVI),
but the industry as a whole. There is also a high degree of open collaboration within the
AGL community and the majority of the work is taking place in an open environment.

Furthermore, as AGL is based on Linux, automakers will have access to a continu-
ously growing software stack with support for multiple hardware architectures and an
ability to create an explicit, unique user experience. Being a Linux Foundation project
also adds merit to the overall credibility of the project. A first version of AGL was
released in late June 2014 and some of the goals for 2015 include; completing and pub-
lishing the AGL specification, create a distribution for the entire industry, and complete

32

CHAPTER 4. IVI INITIATIVES

a prototype with reference applications [55].

4.3 Automotive Grade Android (AGA)

Automotive Grade Android (AGA) is an open source project hosted by Vehicle ICT
Arena, which is operated by Lindholmen Science Park in Gothenburg. Vehicle ICT
Arena currently has over 30 partners and a couple of financiers, who in collaboration
with the AGA project, strives to enable the integration of Android applications to the
IVI domain. The project is especially geared towards developers who want to build
applications for the automotive industry, but also system builders for building complete
IVI systems [56].

The idea behind AGA is to enable input/output of data to/from the vehicle, so
that both new and existing applications can extend their capabilities to those of the
vehicle. In addition, AGA has developed supplementary design principles for safe use
of applications in vehicles (driver distraction), following the already present Android
principles. As such, AGA opens up possibilities for creation of custom applications that
take advantage of the vehicle data and ensures these interact with the driver in a safe
manner [14].

4.3.1 Objectives

AGA aims at leveraging Android’s large and dynamic ecosystem by managing and evolv-
ing the use of Android as an IVI platform. The goal is to create and foster an open-
innovation environment for in-vehicle software by providing resources and services for
developing IVI solutions based on Android.

Additionally, AGA has put a lot of effort on the implementation of guidelines for
how applications could safely interact with the driver in order to minimize driver dis-
traction [14].

With the main target audiences for AGA being application developers and system
builders, the services and utilities provided are as follows [57];

Application Developers

• Developer Zone

An open community and portal that enables downloads of artifacts and information

• Software Development Kit (SDK)

Software libraries and interfaces enabling infotainment application development for
vehicles

• Developer Guidelines

A collection of guidelines that eases the write-process for safe and automotive
adapted applications

33

CHAPTER 4. IVI INITIATIVES

• Simulation environment

Tools for developers enabling test without having access to a real target environ-
ment

• Reference Platform

AGA is deployable on hardware

System Builders

• Software Stack/Framework

A stack/framework that is maintained and further developed by a community

• Large and Dynamic ecosystem

Compatibility with a large set of applications developed for AGA

• Hardware Integration

Well-defined interface for easy integration with hardware

• Security/policy Enforcement

Comprises security mechanisms to ensure only safe operations are permitted

• Reference implementation

Reference implementation of AGA on some specific hardware

4.3.2 Backers and Organizational Structure

As mentioned above, Lindholmen Science Park in Gothenburg operates Vehicle ICT
Arena, which in turn is the host of the AGA project. The Vehicle ICT arena has 34
partners, including the core members; AB Volvo and Volvo Car Corporation. Other
partners consists of other companies, universities and organizations. The principal fi-
nanciers of the Vehicle ICT arena are Västra Götalands Regionen, Business Region
Göteborg and Vinnova. The main code contributors to the AGA project are Combitech
and Swedspot [58]. For a complete list of participants, see Appendix E.

The organizational structure of the AGA project is based on a governance model
inspired by the Apache Software Foundation (ASF). It is steered by the Vehicle ICT
arena board in collaboration with a Project Management Committee (PMC), where
the former supervises and manages the sponsorship, and the latter governs the project’s
progress. In essence, board members are involved in decisions regarding vision, objectives
and financing, and committee members are involved in decisions regarding direction and
progress of the project [14].

4.3.3 Technology

The AGA project is an Android-based solution that extends the OS and its API’s to be
automotive tailored, by including access to vehicle data and driver distraction informa-
tion.

34

CHAPTER 4. IVI INITIATIVES

The AGA API makes it possible for applications to both read and to inject data to
the vehicle, and includes support for a large set of Fleet Management System (FMS)6

signals.
As opposed to for example GENIVI, AGA uses a top-down approach to software

development and focuses primarily on application developers. As such, apart from the
stack itself, there is an SDK available for developers. The SDK and the stack covers func-
tions and features such as; access to vehicle signals, hardware buttons, driver distraction
and policy management.

Intended to ease the development of AGA applications, the SDK allows developers
to try out their application using simulated data, rather than having to connect it to a
real vehicle. It is currently available on both Linux and Windows.

Figure 4.10 illustrates of how the AGA stack is integrated with the rest of the IVI
system layers. The Northbound interface borders the applications layer and manages
reading/writing from/to the vehicle, and reacts on driver distraction changes. In the
other end is the Southbound interface, which borders the OEM integration layer. This
interface integrates vehicle data and hardware buttons, sets access policies, and change
the driver distraction level [14].

Figure 4.10: An overview of the integration of AGA into the residual IVI system [57]

A technical overview of the AGA stack is presented in Figure 4.11 and its specific
components are described below [14].

6A standard interface to vehicle data [59]

35

CHAPTER 4. IVI INITIATIVES

Figure 4.11: An overview of the AGA’s architecture [14]

Automotive Service
The automotive service component initiates all the Vehicle Interface Layers (VIL) and
manages the applications requests to obtain a new tube interface. The tube interface is
provided by an automotive manager, which works like an interface between the applica-
tion and the created tube. All Android specific code in the AGA stack is encapsulated
in this component.

Tubes
Applications use separate tubes in order to ensure that the policy is followed by the
different applications. Applications are dropped if they do not follow the policy. The
tubes have access to and uses the AGA API and the policy manager.

Policy decision point
The policy decision point component is used to set the policies for the tubes. OEM’s
have the possibility to implement their own policy settings, as these can often differ for
different OEM’s.

Hardware button controller
The hardware button controller component is launched by the automotive service and
has a pre-defined interface that makes it possible for an OEM to integrate and map hard-
ware buttons in the vehicle, e.g. steering wheel buttons, to standard Android key-presses.

36

CHAPTER 4. IVI INITIATIVES

Proxy
The proxy component enables the actual vehicle signal integration by providing a node
that vehicle signals can connect to. Furthermore, the proxy component handles the
communication between the tubes and the vehicle through various functions, which are
called from the individual tubes.

Signal Configuration
The signal configuration component is used to configure available vehicle signals. If
desired, OEM specific signals can be added to the already existing Fleet Management
System (FMS) signals.

Driver distraction
The driver distraction component manages the driver distraction information. The dis-
traction state of the driver is evaluated according to defined levels of distraction. The
computation of this level is performed by OEM’s and the AGA stack enforces the level
up to the applications.

Vehicle Interface Layer (VIL)
The VIL is located between the AGA stack and its Android automotive services, and
the vehicle bus hardware. The VIL can be divided into two components, a VIL Daemon
and a Vendor VIL. The VIL Daemon is responsible for initializing the Vendor VIL as
well as processing communication from the Android automotive services to the Vendor
VIL by solicited commands. The Vendor VIL is vehicle-specific and is responsible for
process communication from the vehicle bus hardware to the VIL Daemon by unsolicited
commands [14].

The internal communication in the AGA stack is realized in several different ways,
as shown in Figure 4.12. In order to send and receive signals between the applications
and the automotive service, Inter-Process Communication (IPC) with Binder is used.
Subsequently, standard Java method calls are used both between the automotive service
and the automotive API and between the automotive API and the policy manager. The
policy manager uses System Data Protocol (SDP) to communicate with the proxy, which
in turn externally provides connectivity to the OEM in form of a SDP node to enable
the actual vehicle signal integration. In addition, Android broadcast signaling is used
between the driver distraction component and the applications to enable communication
regarding state changes [14].

37

CHAPTER 4. IVI INITIATIVES

Figure 4.12: An overview of the internal communication within the AGA stack [14]

4.3.4 Openness and Licensing

As mentioned in Section 2.2, how open an open source project/platform is depends
not only on the license that is used, but also on how the project is governed in terms of
decision making being open, transparent and accessible to all users. Thus, it is of interest
to evaluate the project’s governance model in addition to the licenses that are used. The
OGI introduces governance of a project as a measure of openness by targeting and
evaluating four areas; access, development, derivatives and community structure [27].

The AGA project’s model of governance is inspired by the ASF and it aims to ad-
dress and meet the OGI criteria of each area to as great extent as possible. In access,
AGA show positive characteristics for openness, such as free source code available to all
developers at the same time, under a permissive OSI approved license. There is also
transparency in the decision mechanisms in the form of publicly available meeting pro-
tocols/discussions, project mailing lists, source code repositories, forums and developer
documentation.

When it comes to the development area, there are many properties that contribute
to greater openness provided. Identification of all project committers and the possibility
for any developer to become one, source code contributions can be tracked back to the
original committer, and progress updates of the code and the acceptance process carried
out by the maintainer are also available.

For the derivatives area, the general attitude is to not control and constrain the use
of the platform or the go-to market channels for application derivatives. Finally, the
AGA project employs a flat community structure, which means that different member-

38

CHAPTER 4. IVI INITIATIVES

ship statuses do not entail tiered rights [14].

Licenses
The source code of AGA is released under Apache License 2.0 [14], which is a permissive
free software license from the ASF. The Apache License allows a user to freely use,
modify and distribute the software, under the terms of the license, without having to
worry about royalties. Furthermore, the Apache License 2.0 is compatible with GNU
General Public License (GPL) version 3. This allows code released under Apache License
2.0 and GNU GPL version 3 to be combined, as long as the GNU GPL version 3 is used
for the resulting software [60]. The default license for AGA documentation artifacts is
Creative Commons Attribution International 4.0 License [14].

4.3.5 Maturity

The AGA project is attempting to fill a void by introducing an open Android platform
to the vehicle integrated device domain, similar to what AGL is doing with Linux.
Despite having the lowest number of backers of the three initiatives in this study, the
project maintainers have managed to release a first version of AGA containing simulation
tools, documentation, SDK and ROM build scripts for selected platforms. The main
contributors and maintainers are Combitech and Swedspot, who are also partners of the
AGA host, Vehicle ICT arena. Even though the arena has over 30 partners, there is
currently only one car manufacturer (Volvo Cars) aboard. This may not be critical in
the short run, but for a broad adoption of any initiative, manufacturer support is likely
to be key (after all, they are making the vehicles for which the technology is developed).
In terms of openness, AGA has aligned itself with the best practices of FOSS and use a
permissive license for all source code. The first official (and current) release of the AGA
stack was in the autumn of 2014 [14].

39

CHAPTER 4. IVI INITIATIVES

4.4 Evaluation

The performed study shows that open source software solutions are on the advance, with
members of the industry joining ranks to develop the next generation of IVI systems.
In a study commissioned by GENIVI in 2010, a number of companies (both members
and non-members) were asked to identify the major market factors that will drive the
future of IVI architecture. Disclosed therein was that the average royalty price per unit
for proprietary IVI stacks ranged from $5 to $15 and the total cost for development
ranged between $20 million and $50 million on average. Assuming a mature and stable
platform, the participants felt that a 50% cost reduction could be achieved by utilizing
open source as opposed to proprietary solutions. Even though the royalty price model
was likely to persist, it too was expected to be driven down (-25-30%) [61].

However, while the automotive industry has a lot to gain from stepping into the open
source domain, one should realize that such a shift would not render proprietary solutions
obsolete or unwanted. The previously mentioned differentiating features constitute an
area where these solutions will offer manufacturers the means to create and tailor highly
competitive custom, branded user experiences.

4.4.1 Initiatives

Despite the different approaches between the initiatives described above, they are at-
tempting to solve a common problem faced by the entire industry - an increasing repeated
effort and cost of development and maintenance of software for automotive IVI purposes.
The solution is spelled open source and while it at first glance may seem as AGL and
GENIVI are competing for the same price, the truth is they are closer to complementary
entities than anything else. Where GENIVI is focusing on middleware standardization,
API specification, and supply chain management, AGL goes further, all the way up to
the HMI and focuses more on actual integration and providing a technology platform
for people to use.

As such, the GENIVI compliance specification points out certain Linux components,
their versions and which API’s that needs exposure to reach compliance. This corre-
sponds to about 80% of the software stack, which for an OEM means that they can then
add their differentiating features on top, reducing the overall development cost. AGL,
which will eventually be GENIVI compliant, will be a distribution that people can use
and derive their product development from. Rudolf Streif, the Linux Foundation’s direc-
tor of embedded solutions informs Rory MacDonald of Linux User & Developer magazine
that, ”We see AGL as the Debian or the Fedora of automotive... cutting-edge developer
distributions” [44]. In other words, a technologically advanced platform that you work
off of to develop your end product, not something you put directly in production.

Both GENIVI and AGL have Linux in their cores and employ an upstreams first
policy to software development. However, the GENIVI compliance specification stops
short of the upper software layers and focuses on defining non-differentiating features,
i.e. features that all IVI systems are expected to have, regardless of make or brand. As
such, where GENIVI uses a bottom-up approach aimed at describing middleware and

40

CHAPTER 4. IVI INITIATIVES

specifying API’s, AGL offers a solution with a higher focus on features located in the
HMI and application layers.

With AGL aiming to get GENIVI compliant, their target audience is largely the same,
in fact, many companies/backers are equally involved in both projects, however, as their
scopes are not the same, the projects’ objectives differ somewhat. Where GENIVI’s
objectives in broad strokes can be described as defining a standardized base-platform for
IVI solutions, those of AGL would be the development and maintenance of a common
IVI platform based on Linux.

The AGA initiative on the other hand, is as much of a response to the increased
cost of developing IVI systems, as it is a product of the successful mobile device appli-
cation market and the interest in a similar system for automotive applications. With
an objective that aims at evolving the Android platform to integrate with the automo-
tive domain, AGA provides resources and services for developing IVI solutions based on
Android. Even though no initiative investigated in this study offer a complete, ”off-the-
shelf” IVI system solution, the AGA project is seen as being furthest away from this
with its extension of the Android operating system. However, Android have a large
applications development community and potential to become a complimentary OS for
application support. At the very least, AGA can prove that the Android platform can
be extended to the automotive domain.

4.4.2 Future

As automotive manufacturers, OEM’s and suppliers are developing a new generation of
head units, an increasing amount of work that previously took place in a strictly closed
environment is being pushed into an open domain.

The notion that a collaborative transition to open source software will offer a lot
in the field of automotive software systems is now widely accepted. However, as many
companies are likely to struggle with this transition, GENIVI is identified as a suitable
intermediate as it does not exclude proprietary components altogether. In fact, the
development of the compliance specification has been made with proprietary components
in mind, which is why the abstract and placeholder components may offer a lot in terms
of customization.

While future IVI systems are likely to be open source, or at the very least use a mix
of open and closed code, it is not entirely sure which initiative will gain the most ground
in the battle for the next generation automotive head unit. We identify the involvement
of manufacturers in the development process as a key ingredient to a successful adoption
of any automotive system and initiatives that lack a consortium (in the style of GENIVI)
may loose ground with nothing to drive the adoption.

However, the initiatives based on Linux are identified as having the best conditions
for success, as a study by IHS Automotive concludes that Linux will push past both
QNX and Microsoft Embedded Windows and take the lead with 41.3 % of the market
shares by 2020 [62].

41

5
Design and Implementation

This chapter describes the implementation of the prototype, starting with the selection
of software and hardware, including how and why these were chosen. The hardware
setup and initialization of software are also steps that are explained here together with
an evaluation of the prototype.

5.1 Software

The knowledge gained from the above study formed the basis for the selection of software
platform for the prototype and was made prior to that of the hardware. We were first
and foremost interested in a platform that was stable enough to satisfy our need for a
relatively simple implementation process, while at the same time being advanced enough
to offer additional customization options and demonstrative functions. A mature solution
was as such preferable.

After having considering the different alternatives we ultimately decided to base
our prototype on the GENIVI Demo Platform (GDP). One of the major factors that
influenced this choice was the fact that the GDP is aligned with the Yocto Project and
uses its templates, tools and methods for creating a custom Linux-based distribution.
This meant we would be able to use a stable build system with broad support that offers
many possible configuration options for a range of different software layers. As GENIVI’s
baseline software also offers additional freedom to certain component implementations,
it was seen as an appropriate platform also in terms of software versatility. Furthermore,
the software specification proposed by the GENIVI Alliance is already adopted into some
head units today (BMW), and with the large number of backers and activity showed by
the initiative this adoption is likely to increase in the coming years.

The combination of these factors together with the fact that our supervisors had
some prior experience with the Yocto Project and that the GDP was specified to run on
commercially available hardware made it our choice as IVI demonstrator.

42

CHAPTER 5. DESIGN AND IMPLEMENTATION

The platform is based on the Yocto GENIVI Baseline and adds an HMI and a few
Proof of Concept (PoC) applications together with P1 middleware components of the
compliance specification [12]. The current version is based on the Intrepid release of the
Yocto GENIVI Baseline and is aligned with both the GENIVI compliance specification
(v7.0) and the Yocto Project 1.7 (dizzy) [34].

5.2 Hardware

Since the GDP was compatible with the Yocto Project 1.7 (Dizzy), the hardware would
require an associated Board Support Package (BSP) equally compatible with the same
release version. We also wanted to be able to utilize the Human Machine Interface (HMI)
that comes with the GDP together with some kind of touch-interface.

Initially, there were several possible candidates, but a limited budget narrowed it
down somewhat. Out of two hardware boards recommended by GENIVI as suitable for
use with the GDP, one was out of stock and the second not available for the general
public.

As a result we looked at a third alternative, the Freescale i.MX53 Quick Start Board
(QSB), which, although it was listed as generally suitable for GENIVI applications, was
not specifically recommended for the GDP. However, we decided to go with said hardware
since it had an associated BSP compatible with the Yocto Project 1.7 (Dizzy). The board
itself is specifically aimed at infotainment solutions and uses an ARM architecture, has
a display controller, hardware accelerated graphics, 720p video encoder, 1080p video
decoder and several different connectivity options. In addition to the board we also
purchased a compatible LCD touchscreen [12]. For additional information about the
Freescale i.MX53 QSB, see Appendix F.

5.3 Hardware setup and software integration

Connecting the board to the host machine and setting up its peripherals was a fairly
straight-forward process that enabled us access to power, internet, terminal and display.
The host system was running Ubuntu 14.04 LTS in an Oracle VM VirtualBox on a
Windows PC.

As mentioned above, the GDP is based on the Yocto GENIVI Baseline which utilizes
the Yocto Project’s tools and aligns its reference system ”Poky”with the GENIVI compli-
ance specification. The Yocto Project, providing the essentials for building customized
embedded Linux distributions, imports and adds meta-data layers to build-recipes in
order to create bootable images for a desired target platform [36].

The layers and an outline of their dependencies are for our build presented in
Figure 5.1.

43

CHAPTER 5. DESIGN AND IMPLEMENTATION

Figure 5.1: Dependency Tree

Starting at the bottom of this illustration, Poky constitutes a collection of tools and
meta-data layers that form a cross-compiling integration layer. Included in this is a BSP
layer that is used when building for a virtual target (QEMU). As such, the meta-fsl-arm
is only ever used when building for the actual hardware (Freescale i.MX53 QSB). The
next layer, meta-openembedded, essentially contains additional shared Open Embedded
meta-data resources required by openembedded-core.

Meta-qt5 contains recipes for qt5 modules, which are commonly used in application
software with graphical user interfaces, and meta-ivi constitute the Yocto GENIVI Base-
line which adds In-Vehicle Infotainment (IVI) support when used with Poky. At the top
is the meta-genivi-demo which adds an HMI and PoC applications to the baseline. As
such, the GDP-build effectively uses all layers depicted in the figure when built for the
hardware target, whereas the baseline-build only uses meta-ivi and down.

These layers together with supportive peripheral software were cloned from Git repos-

44

CHAPTER 5. DESIGN AND IMPLEMENTATION

itories down to our host system. One such supportive software was the Yocto project’s
build-engine ”BitBake” which was used for all image builds. Separate directories for each
build and target were also created to facilitate debugging and decrease execution times.
All build parameters were in these directories set by two configuration files, local.conf
and bblayers.conf. These contained information relating to which target the build was for
(QEMU/Hardware) and which layers should be included (GDP/Baseline). Some more
detail about the build configurations can be found in Appendix G.

Provided a successful build, a bootable image would be created for the specified tar-
get composed of all included software layers comprising the custom Linux kernel and
root file system.

During the software setup and integration of the GDP for the hardware board, we
had numerous issues with the meta-genivi-demo layer, which turned out to be somewhat
unstable, and encountered compatibility conflicts between the baseline’s meta-ivi and the
BSP’s meta-fsl-arm layer. The former issues, albeit time-consuming, were all resolved
either by GENIVI or by our selves, but the compatibility conflicts remained unsolved
despite extensive debugging and repetitive attempts to solve it. As a result, neither the
GDP or Baseline could be built for the hardware board.

However, the builds for the QEMU target proved more successful, enabling us to run
both the GDP and the baseline. This shows that the GENIVI-specific meta layers work
fine with the Yocto project in general and Poky in particular. The baseline, lacking a
proper HMI solely offered a shell, whereas the GDP offered a richer experience with its
User Interface (UI) and proof-of-concept applications. Unfortunately, these were quite
slow since the QEMU environment did not offer hardware accelerated graphics.

Additionally, a couple of test images provided by the Yocto project were built for
the hardware target, with the BSP’s meta-fsl-arm layer. This was to exclude the risk
of a mismatch between Yocto/Poky and the BSP. As these builds were successful and
no mismatches were found, it was determined that the compatibility conflicts mentioned
above reside in between the baseline’s meta-ivi layer and the BSP’s meta-fsl-arm layer.

The root-cause of these compatibility conflicts has been traced back to an open source
graphics-package, the Mesa 3D graphics library. This is a library used for rendering
interactive 3D graphics and the issue relates to the EGL components therein [63]. EGL,
which is enabled by the meta-ivi layer, is an interface between rendering Application
Programming Interface’s (API) (e.g. OpenGL) and the native windowing system (e.g.
Wayland). However, the meta-fsl-arm of the BSP effectively disables EGL, manifesting
a conflict of interest.

All attempts to modify the BSP and/or baseline to either include Mesa EGL or
strictly exclude it, have so far been unsuccessful, resulting in a number of consequential
errors. These errors seemed to be more severe than the one they originated from and
with little additional time, no further resources were spent on solving them.

45

CHAPTER 5. DESIGN AND IMPLEMENTATION

5.4 Evaluation

For the prototype, the design and implementation choices, including the selection of
software and hardware, all had an impact on the final result.

Regarding the selection of software, the GDP with the Yocto GENIVI Baseline was
selected. According to us, the GDP is a good complement to the Yocto GENIVI Baseline
and a suitable platform for demonstration purposes of the GENIVI software and design,
while the Yocto GENIVI Baseline serves as a proof of concept of the GENIVI compliance
specification and could also be useful as a jump start for IVI developers who want to
develop their own GENIVI compliant IVI system. However, since GENIVI’s work on
these platforms is an ongoing process they were not completely stable and we encoun-
tered numerous bugs which lead to a not so straight forward build process. This was
alleviated somewhat by the good supportive efforts showed by its members in mailing
lists concerning the GDP and Yocto GENIVI Baseline.

In our work with the prototype we also got acquainted with the Yocto Project, some-
thing we value highly, as its build tools and methods are used in many similar software
systems today and are likely to be in the future as well.

As for the selection of hardware, we can in retrospect be somewhat critical of our
choice since the associated BSP was not fully compatible with the GDP without ad-
justments, something we did not succeed in doing. Regardless, the hardware by itself is
aimed at IVI implementations and has a lot of useful features with extensive documen-
tation and community support channels. The issue is rather related to that this specific
board + BSP combination was not tried and tested for this specific software.

However, at the time of writing, no suitable alternative could be acquired since these
were either out of stock or, as was the case for the most promising option, only distributed
to close partners (for a considerable amount of money).

The lesson we have taken with us from the choice of hardware is that it is often
important and sometimes absolutely crucial to use tried and tested hardware for a specific
software target and not to underestimate the value of having access to adequate support
channels for help/feedback.

Regarding the results from the prototype development with the GDP (and the Yocto
GENIVI Baseline), the QEMU implementation does indeed serve as a demonstrator
for the GENIVI software platform and design. Despite our aspiration to implement it
on hardware and evaluate its potential to input and process additional sensor data we
believe the QEMU implementation offers ÅF valuable information about the GENIVI
initiative’s software implementations and current limitations.

46

6
Conclusion

Within the scope of this project we have investigated three open source initiatives for
In-Vehicle Infotainment (IVI) software platforms. Additionally, the GENIVI Demo Plat-
form was chosen for further practical prototyping. Given that the studied initiatives are
all relatively new, this report aims at facilitating the evaluation process for developers
interested in open source IVI software platforms.

Since our prior knowledge on the subjects of open source and IVI was rather limited,
a great deal of resources was in the early stages of the project spent on online studies
of these topics. However, shortly after having begun collecting information about the
initiatives it was clear that it in some cases was rather sparse. As such, additional in-
terviews were held with people who were either directly involved in these initiatives, or
familiar with automotive software in general. These sources of information constitute
the bulk of data collected during the course of this project. Apart from describing the
three initiatives based on their objectives, backers, technology, openness, licensing and
maturity, the report also provides background information related to IVI and open source
software by briefly describing a common IVI architecture, and concepts associated with
openness of software.

Out of the three initiatives investigated in this study, we believe the GENIVI Alliance
has the best prospects for success in the near future. It has a large number of backers, a
relatively high level of maturity and very active support channels. In combination with
a detailed compliance specification that was made with proprietary software solutions in
mind, the alliance aligns its work in the open source domain with that of its proprietary
origin in a way that offers OEM’s and suppliers freedom as to how certain software com-
ponents are implemented, leaving room for highly competitive and customized solutions.
The approach taken by GENIVI, to work towards a standardization of middleware com-
ponents and API’s, seems like the right way to go and the fact that BMW in 2013, as
first automaker, shipped one of their models with a GENIVI-based head unit further

47

CHAPTER 6. CONCLUSION

strengthens the validity of the specification in terms of functionality and possible cost
reduction.

Automotive Grade Linux (AGL) is similar to GENIVI in the sense that they both are
working for an industry-wide adoption of an open source Linux IVI solution. However,
their focus lies on the development of an automotive grade Linux stack, not a compliance
specification. Based on Tizen IVI, it concerns all software layers associated with IVI,
including the Human Machine Interface (HMI) and application layers. With a sizeable
number of backers and a desire to become GENIVI compliant, AGL now have the po-
tential to become the Linux stack for automotive applications and IVI. However, it does
not seem to be as active as GENIVI and, open source recycling aside, it is unclear how
much they have actually developed themselves.

When it comes to Automotive Grade Android (AGA), its role in the automotive
domain is different. By providing the API’s and Software Development Kit’s (SDK)’s
to extend Android to vehicles and enable the development of associated applications,
AGA by itself does not offer an IVI solution. Rather, it offers an interface to access
vehicle signals and the tools to create vehicle grade android applications. As such, we
believe the success of AGA relies more on providing special purpose applications (in the
style of fleet management systems for trucks) than infotainment as we know it. The fact
that Google, with its Android Auto software have moved into the automotive domain
brings additional uncertainty regarding the future availability of Google-specific apps
(Play Store, Maps etc.) for other Android-based automotive solutions.

Regarding the practical work on a demonstrator of the GENIVI Demo Platform, we
had the aspiration to both demonstrate basic functionality and evaluate its adaptability
to additional hardware (sensor data). Even though we only managed to get a prototype
up and running in a QEMU environment we believe it offers a good demonstration
of a GENIVI-based IVI platform and that the components included in the compliance
specification work as intended.

48

Bibliography

[1] Artifact (Software Development). Wikipedia. Accessed: 2015-03-19. [Online].
Available: http://en.wikipedia.org/wiki/Artifact %28software development%29

[2] Copyleft. Wikipedia. Accessed: 2015-03-18. [Online]. Available: http://en.
wikipedia.org/wiki/Copyleft

[3] BMW Case Study. GENIVI Alliance. Accessed: 2015-02-19. [On-
line]. Available: http://www.genivi.org/sites/default/files/BMW Case Study
Download 040914.pdf

[4] Open Source Initiative. Open Source Initiative. Accessed: 2015-03-05. [Online].
Available: http://opensource.org

[5] Runtime System. Wikipedia. Accessed: 2015-03-23. [Online]. Available: http:
//en.wikipedia.org/wiki/Runtime system

[6] GStreamer. Wikipedia. Accessed: 2015-04-13. [Online]. Available: http:
//en.wikipedia.org/wiki/GStreamer

[7] Wayland (display server protocol). Wikipedia. Accessed: 2015-04-13. [Online].
Available: http://en.wikipedia.org/wiki/Wayland (display server protocol)

[8] Systemd. Wikipedia. Accessed: 2015-04-13. [Online]. Available: http://en.
wikipedia.org/wiki/Systemd

[9] Autosar development partnership. Autosar. Accessed: 2015-01-17. [Online].
Available: http://www.autosar.org/about/basics

[10] Clark Libby. 5 Reasons Infotainment is the First Target for
Open Source Software in Cars. Accessed: 2015-01-17. [Online].
Available: http://www.linux.com/news/featured-blogs/200-libby-clark/719560-5-
reasons-infotainment-is-the-first-target-for-open-source-software-in-cars/

49

http://en.wikipedia.org/wiki/Artifact_%28software_development%29
http://en.wikipedia.org/wiki/Copyleft
http://en.wikipedia.org/wiki/Copyleft
http://www.genivi.org/sites/default/files/BMW_Case_Study_Download_040914.pdf
http://www.genivi.org/sites/default/files/BMW_Case_Study_Download_040914.pdf
http://opensource.org
http://en.wikipedia.org/wiki/Runtime_system
http://en.wikipedia.org/wiki/Runtime_system
http://en.wikipedia.org/wiki/GStreamer
http://en.wikipedia.org/wiki/GStreamer
http://en.wikipedia.org/wiki/Wayland_(display_server_protocol)
http://en.wikipedia.org/wiki/Systemd
http://en.wikipedia.org/wiki/Systemd
http://www.autosar.org/about/basics
http://www.linux.com/news/featured-blogs/200-libby-clark/719560-5-reasons-infotainment-is-the-first-target-for-open-source-software-in-cars/
http://www.linux.com/news/featured-blogs/200-libby-clark/719560-5-reasons-infotainment-is-the-first-target-for-open-source-software-in-cars/

BIBLIOGRAPHY

[11] Lucas Mearian. Your car is about to go open source. Accessed: 2015-01-17.
[Online]. Available: http://www.computerworld.com/article/2485817/emerging-
technology/your-car-is-about-to-go-open-source.html

[12] GENIVI. GENIVI Alliance. Accessed: 2015-02-11. [Online]. Available: http:
//www.genivi.org

[13] AGL. Automotive Grade Linux (AGL). Accessed: 2015-02-20. [Online]. Available:
https://www.automotivelinux.org/

[14] AGA Wiki. Automotive Grade Android (AGA). Accessed: 2015-03-15. [Online].
Available: https://developer.lindholmen.se/redmine/projects/aga/wiki

[15] In-Vehicle Infotainment (IVI). Techopedia. Accessed: 2015-03-22. [Online].
Available: http://www.techopedia.com/definition/27778/in-vehicle-infotainment-
ivi

[16] An Architecture for In-Vehicle Infotainment Systems. Dr. Dobb’s. Accessed:
2015-03-23. [Online]. Available: http://www.drdobbs.com/embedded-systems/an-
architecture-for-in-vehicle-infotainm/222600438

[17] Application software. Wikipedia. Accessed: 2015-03-23. [Online]. Available:
http://en.wikipedia.org/wiki/Application software

[18] Middleware. Wikipedia. Accessed: 2015-03-23. [Online]. Available: http:
//en.wikipedia.org/wiki/Middleware

[19] Operating system. Wikipedia. Accessed: 2015-03-23. [Online]. Available:
http://en.wikipedia.org/wiki/Operating system

[20] Board support package. Wikipedia. Accessed: 2015-03-23. [Online]. Available:
http://en.wikipedia.org/wiki/Board support package

[21] Device driver. Wikipedia. Accessed: 2015-03-23. [Online]. Available: http:
//en.wikipedia.org/wiki/Device driver

[22] Andrew Patterson. Automotive infotainment systems: Open source drives
innovation. Embedded Computing. Accessed: 2015-03-12. [Online]. Available:
http://embedded-computing.com/articles/automotive-source-drives-innovation/

[23] Michael Kerrisk (2012-08-8). GENIVI: Moving an indus-
try to open source. Accessed: 2015-02-11. [Online].
Available: http://www.genivi.org/sites/default/files/in-the-news/2012 08 08
GENIVI%20Moving%20to%20Open%20Source%20-%20Michael%20Kerrisk.pdf

[24] Doug Newcomb. The next big OS war is in your dashboard. Wired. Accessed:
2015-03-12. [Online]. Available: http://www.wired.com/2012/12/automotive-os-
war/all/

50

http://www.computerworld.com/article/2485817/emerging-technology/your-car-is-about-to-go-open-source.html
http://www.computerworld.com/article/2485817/emerging-technology/your-car-is-about-to-go-open-source.html
http://www.genivi.org
http://www.genivi.org
https://www.automotivelinux.org/
https://developer.lindholmen.se/redmine/projects/aga/wiki
http://www.techopedia.com/definition/27778/in-vehicle-infotainment-ivi
http://www.techopedia.com/definition/27778/in-vehicle-infotainment-ivi
http://www.drdobbs.com/embedded-systems/an-architecture-for-in-vehicle-infotainm/222600438
http://www.drdobbs.com/embedded-systems/an-architecture-for-in-vehicle-infotainm/222600438
http://en.wikipedia.org/wiki/Application_software
http://en.wikipedia.org/wiki/Middleware
http://en.wikipedia.org/wiki/Middleware
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Board_support_package
http://en.wikipedia.org/wiki/Device_driver
http://en.wikipedia.org/wiki/Device_driver
http://embedded-computing.com/articles/automotive-source-drives-innovation/
http://www.genivi.org/sites/default/files/in-the-news/2012_08_08_GENIVI%20Moving%20to%20Open%20Source%20-%20Michael%20Kerrisk.pdf
http://www.genivi.org/sites/default/files/in-the-news/2012_08_08_GENIVI%20Moving%20to%20Open%20Source%20-%20Michael%20Kerrisk.pdf
http://www.wired.com/2012/12/automotive-os-war/all/
http://www.wired.com/2012/12/automotive-os-war/all/

BIBLIOGRAPHY

[25] Proprietary Software Definition. The Linux Information Project. Accessed:
2015-03-09. [Online]. Available: http://www.linfo.org/proprietary.html

[26] Open Source Definition. The Linux Information Project. Accessed: 2015-03-09.
[Online]. Available: http://www.linfo.org/open source.html

[27] Open Governance Index. VisionMobile Ltd. Accessed: 2015-03-05. [Online].
Available: http://www.visionmobile.com/product/open-governance-index/

[28] Git (software). Wikipedia. Accessed: 2015-05-20. [Online]. Available: http:
//en.wikipedia.org/wiki/Git %28software%29

[29] Qemu. Wikipedia. Accessed: 2015-05-20. [Online]. Available: http://en.wikipedia.
org/wiki/QEMU

[30] GENIVI FAQ. GENIVI Alliance. Accessed: 2015-02-11. [Online]. Available:
http://www.genivi.org/sites/default/files/GENIVI%20FAQ%2012202013.pdf

[31] About GENIVI. GENIVI Alliance. Accessed: 2015-02-11. [Online]. Available:
http://genivi.org/about-genivi

[32] GENIVI Open Source Projects. GENIVI Alliance. Accessed: 2015-02-11. [Online].
Available: http://projects.genivi.org

[33] Joel Hoffmann. The road ahead, Open Source IVI. GENIVI. Accessed: 2015-03-12.
[Online]. Available: http://www.omaevents.org/wp-content/uploads/2014/04/05-
Joel-Hoffmann.pdf

[34] GENIVI Wiki. GENIVI Alliance. Accessed: 2015-02-11. [Online]. Available:
http://wiki.projects.genivi.org/index.php/Main Page

[35] John Lehmann and Pavel Konopelko. The road ahead, Open Source IVI. GENIVI.
Accessed: 2015-03-16. [Online]. Available: http://www.genivi.org/sites/default/
files/GENIVI Korea Summit Compliance And WwG.pdf

[36] Yocto. Yocto Project. Accessed: 2015-03-18. [Online]. Available: https:
//www.yoctoproject.org

[37] Webinar - The GENIVI Baseline. Video. The Linux Foundation. Accessed: 2015-03-
18. [Online]. Available: https://www.automotivelinux.org/webinar-genivi-baselines

[38] Public Policy for GENIVI Licensing and Copyright Version 1.6. GENIVI Alliance.
Accessed: 2015-03-10. [Online]. Available: http://docs.projects.genivi.org/License/
Public Policy for GENIVI Licensing and Copyright v1.6.pdf

[39] Meta-IVI the Yocto layer for In-Vehicle Infotainment. Yocto Project. Accessed:
2015-03-10. [Online]. Available: http://git.yoctoproject.org/cgit/cgit.cgi/meta-
ivi/about/

51

http://www.linfo.org/proprietary.html
http://www.linfo.org/open_source.html
http://www.visionmobile.com/product/open-governance-index/
http://en.wikipedia.org/wiki/Git_%28software%29
http://en.wikipedia.org/wiki/Git_%28software%29
http://en.wikipedia.org/wiki/QEMU
http://en.wikipedia.org/wiki/QEMU
http://www.genivi.org/sites/default/files/GENIVI%20FAQ%2012202013.pdf
http://genivi.org/about-genivi
http://projects.genivi.org
http://www.omaevents.org/wp-content/uploads/2014/04/05-Joel-Hoffmann.pdf
http://www.omaevents.org/wp-content/uploads/2014/04/05-Joel-Hoffmann.pdf
http://wiki.projects.genivi.org/index.php/Main_Page
http://www.genivi.org/sites/default/files/GENIVI_Korea_Summit_Compliance_And_WwG.pdf
http://www.genivi.org/sites/default/files/GENIVI_Korea_Summit_Compliance_And_WwG.pdf
https://www.yoctoproject.org
https://www.yoctoproject.org
https://www.automotivelinux.org/webinar-genivi-baselines
http://docs.projects.genivi.org/License/Public_Policy_for_GENIVI_Licensing_and_Copyright_v1.6.pdf
http://docs.projects.genivi.org/License/Public_Policy_for_GENIVI_Licensing_and_Copyright_v1.6.pdf
http://git.yoctoproject.org/cgit/cgit.cgi/meta-ivi/about/
http://git.yoctoproject.org/cgit/cgit.cgi/meta-ivi/about/

BIBLIOGRAPHY

[40] Melissa Logan. JVC Kenwood, Linaro, and Opensynergy Join Automotive
Grade Linux. Automotive Grade Linux (AGL). Accessed: 2015-02-19. [Online].
Available: https://www.automotivelinux.org/news/announcement/2014/11/jvc-
kenwood-linaro-and-opensynergy-join-automotive-grade-linux

[41] The Linux Foundation Announces Automotive Grade Linux Work-
group. Linux Foundation. Accessed: 2015-02-19. [Online]. Avail-
able: http://www.linuxfoundation.org/news-media/announcements/2012/09/
linux-foundation-announces-automotive-grade-linux-workgroup

[42] The Linux Foundation explains the benefits of open-source collaboration with
Automotive Grade Linux. TelematicsWire. Accessed: 2015-02-22. [Online].
Available: http://telematicswire.net/the-linux-foundation-explains-the-benefits-
of-open-source-collaboration-with-automotive-grade-linux/

[43] Nathan Willis. ALS: Automotive Grade Linux. LWN.net. Accessed: 2015-02-22.
[Online]. Available: http://lwn.net/Articles/517424/

[44] Rory MacDonald. Automotive Grade Linux. Accessed: 2015-04-08. [Online].
Available: http://www.linuxuser.co.uk/news/automotive-grade-linux

[45] Eric Brown. An Interview with Dan Cauchy. Linux.com. Accessed: 2015-02-
28. [Online]. Available: http://www.linux.com/news/embedded-mobile/mobile-
linux/780030-automotive-grade-linux-released-an-interview-with-dan-cauchy

[46] Automotive Grade Linux Requirements Definition. Automotive Grade Linux
(AGL). Accessed: 2015-03-21. [Online]. Available: https://download.
automotivelinux.org/POC/PoC Spec/MASTER COPY AGL Spec v0.82.pdf

[47] AGL Wiki. Automotive Grade Linux (AGL). Accessed: 2015-02-21. [Online].
Available: https://wiki.automotivelinux.org/

[48] Smart Device Link. GENIVI. Accessed: 2015-04-13. [Online]. Available:
http://projects.genivi.org/smartdevicelink/home

[49] Tizen. Tizen. Accessed: 2015-03-17. [Online]. Available: https://www.tizen.org/

[50] Meet MinnowBoard MAX. minnowboard.org. Accessed: 2015-05-25. [Online].
Available: http://www.minnowboard.org/meet-minnowboard-max/

[51] NEXCOM VTC 1010-IVI. NEXCOM. Accessed: 2015-05-25. [Online]. Avail-
able: http://www.nexcom.com/Products/mobile-computing-solutions/tizen-ivi-
platform/tizen-ivi-platform/vtc-1010-ivi

[52] Tizen Wiki. Tizen. Accessed: 2015-03-17. [Online]. Available: https://wiki.tizen.
org/wiki/Main Page

[53] GENIVI Compliant Products. GENIVI Alliance. Accessed: 2015-03-18. [Online].
Available: http://www.genivi.org/compliant-products

52

https://www.automotivelinux.org/news/announcement/2014/11/jvc-kenwood-linaro-and-opensynergy-join-automotive-grade-linux
https://www.automotivelinux.org/news/announcement/2014/11/jvc-kenwood-linaro-and-opensynergy-join-automotive-grade-linux
http://www.linuxfoundation.org/news-media/announcements/2012/09/linux-foundation-announces-automotive-grade-linux-workgroup
http://www.linuxfoundation.org/news-media/announcements/2012/09/linux-foundation-announces-automotive-grade-linux-workgroup
http://telematicswire.net/the-linux-foundation-explains-the-benefits-of-open-source-collaboration-with-automotive-grade-linux/
http://telematicswire.net/the-linux-foundation-explains-the-benefits-of-open-source-collaboration-with-automotive-grade-linux/
http://lwn.net/Articles/517424/
http://www.linuxuser.co.uk/news/automotive-grade-linux
http://www.linux.com/news/embedded-mobile/mobile-linux/780030-automotive-grade-linux-released-an-interview-with-dan-cauchy
http://www.linux.com/news/embedded-mobile/mobile-linux/780030-automotive-grade-linux-released-an-interview-with-dan-cauchy
https://download.automotivelinux.org/POC/PoC_Spec/MASTER_COPY_AGL_Spec_v0.82.pdf
https://download.automotivelinux.org/POC/PoC_Spec/MASTER_COPY_AGL_Spec_v0.82.pdf
https://wiki.automotivelinux.org/
http://projects.genivi.org/smartdevicelink/home
https://www.tizen.org/
http://www.minnowboard.org/meet-minnowboard-max/
http://www.nexcom.com/Products/mobile-computing-solutions/tizen-ivi-platform/tizen-ivi-platform/vtc-1010-ivi
http://www.nexcom.com/Products/mobile-computing-solutions/tizen-ivi-platform/tizen-ivi-platform/vtc-1010-ivi
https://wiki.tizen.org/wiki/Main_Page
https://wiki.tizen.org/wiki/Main_Page
http://www.genivi.org/compliant-products

BIBLIOGRAPHY

[54] “AGL License Specification,” E-mail conversation, Automotive Grade Linux, ac-
cessed: 2015-03-27.

[55] Webinar - On the road with FOSS. Video. The Linux Foundation. Accessed:
2015-04-08. [Online]. Available: https://www.automotivelinux.org/webinar-road-
foss-will-gpl-v3-make-it-board

[56] Automotive Grade Android. Swedspot. Accessed: 2015-03-15. [Online]. Available:
http://www.swedspot.com/newave portfolio/automotive-grade-android/

[57] Automotive Grade Android (AGA). Swedspot. Accessed: 2015-03-16. [On-
line]. Available: http://vehicle.lindholmen.se/sites/default/files/content/PDF/
Innovation bazaar 4sep2014/3. automotive grade android developers zone niclas
lindmark innovation bazaar 2014-09-04.pdf

[58] Öppen plattform förenklar för apputvecklare inom fordonsindustrin. Combitech.
Accessed: 2015-03-16. [Online]. Available: http://www.combitech.se/Om-
Combitech/Nyheter-press-och-media/Nyheter-och-pressmeddelanden/2014---
9/Oppen-plattform-forenklar-for-apputvecklare-inom-fordonsindustrin/

[59] Fleet Management System. Wikipedia. Accessed: 2015-05-20. [Online]. Available:
http://en.wikipedia.org/wiki/Fleet Management System

[60] Apache License. Wikipedia. Accessed: 2015-03-20. [Online]. Available: http:
//en.wikipedia.org/wiki/Apache License

[61] Automotive Infotainment Software Architecture Report. GENIVI. Accessed:
2015-04-10. [Online]. Available: http://genivi.org/sites/default/files/GENIVI IVI
Software Architecture Report.pdf

[62] Linux to be top IVI platform by 2020, says study. Linux Gizmos. Accessed: 2015-
05-07. [Online]. Available: http://linuxgizmos.com/linux-to-be-top-ivi-platform-
by-2020-says-study/

[63] Mesa (computer graphics). Wikipedia. Accessed: 2015-05-25. [Online]. Available:
http://en.wikipedia.org/wiki/Mesa %28computer graphics%29

[64] i.MX53 Quick Start Development Board. Freescale. Accessed: 2015-05-
25. [Online]. Available: http://cache.freescale.com/files/32bit/doc/fact sheet/
IMX53RQKSTRTFS.pdf

53

https://www.automotivelinux.org/webinar-road-foss-will-gpl-v3-make-it-board
https://www.automotivelinux.org/webinar-road-foss-will-gpl-v3-make-it-board
http://www.swedspot.com/newave_portfolio/automotive-grade-android/
http://vehicle.lindholmen.se/sites/default/files/content/PDF/Innovation_bazaar_4sep2014/3._automotive_grade_android_developers_zone_niclas_lindmark_innovation_bazaar_2014-09-04.pdf
http://vehicle.lindholmen.se/sites/default/files/content/PDF/Innovation_bazaar_4sep2014/3._automotive_grade_android_developers_zone_niclas_lindmark_innovation_bazaar_2014-09-04.pdf
http://vehicle.lindholmen.se/sites/default/files/content/PDF/Innovation_bazaar_4sep2014/3._automotive_grade_android_developers_zone_niclas_lindmark_innovation_bazaar_2014-09-04.pdf
http://www.combitech.se/Om-Combitech/Nyheter-press-och-media/Nyheter-och-pressmeddelanden/2014---9/Oppen-plattform-forenklar-for-apputvecklare-inom-fordonsindustrin/
http://www.combitech.se/Om-Combitech/Nyheter-press-och-media/Nyheter-och-pressmeddelanden/2014---9/Oppen-plattform-forenklar-for-apputvecklare-inom-fordonsindustrin/
http://www.combitech.se/Om-Combitech/Nyheter-press-och-media/Nyheter-och-pressmeddelanden/2014---9/Oppen-plattform-forenklar-for-apputvecklare-inom-fordonsindustrin/
http://en.wikipedia.org/wiki/Fleet_Management_System
http://en.wikipedia.org/wiki/Apache_License
http://en.wikipedia.org/wiki/Apache_License
http://genivi.org/sites/default/files/GENIVI_IVI_Software_Architecture_Report.pdf
http://genivi.org/sites/default/files/GENIVI_IVI_Software_Architecture_Report.pdf
http://linuxgizmos.com/linux-to-be-top-ivi-platform-by-2020-says-study/
http://linuxgizmos.com/linux-to-be-top-ivi-platform-by-2020-says-study/
http://en.wikipedia.org/wiki/Mesa_%28computer_graphics%29
http://cache.freescale.com/files/32bit/doc/fact_sheet/IMX53RQKSTRTFS.pdf
http://cache.freescale.com/files/32bit/doc/fact_sheet/IMX53RQKSTRTFS.pdf

A
The Open Source Definition

Open source doesn’t just mean access to the source code. The distribution terms of
open-source software must comply with the following criteria:

1. Free Redistribution

The license shall not restrict any party from selling or giving away the software as a
component of an aggregate software distribution containing programs from several dif-
ferent sources. The license shall not require a royalty or other fee for such sale.

2. Source Code

The program must include source code, and must allow distribution in source code
as well as compiled form. Where some form of a product is not distributed with source
code, there must be a well-publicized means of obtaining the source code for no more
than a reasonable reproduction cost preferably, downloading via the Internet without
charge. The source code must be the preferred form in which a programmer would mod-
ify the program. Deliberately obfuscated source code is not allowed. Intermediate forms
such as the output of a preprocessor or translator are not allowed.

3. Derived Works

The license must allow modifications and derived works, and must allow them to be
distributed under the same terms as the license of the original software.

4. Integrity of The Author’s Source Code

The license may restrict source-code from being distributed in modified form only if

54

APPENDIX A. THE OPEN SOURCE DEFINITION

the license allows the distribution of ”patch files” with the source code for the purpose
of modifying the program at build time. The license must explicitly permit distribution
of software built from modified source code. The license may require derived works to
carry a different name or version number from the original software.

5. No Discrimination Against Persons or Groups

The license must not discriminate against any person or group of persons.

6. No Discrimination Against Fields of Endeavor

The license must not restrict anyone from making use of the program in a specific
field of endeavor. For example, it may not restrict the program from being used in a
business, or from being used for genetic research.

7. Distribution of License

The rights attached to the program must apply to all to whom the program is redis-
tributed without the need for execution of an additional license by those parties.

8. License Must Not Be Specific to a Product

The rights attached to the program must not depend on the program’s being part
of a particular software distribution. If the program is extracted from that distribution
and used or distributed within the terms of the program’s license, all parties to whom
the program is redistributed should have the same rights as those that are granted in
conjunction with the original software distribution.

9. License Must Not Restrict Other Software

The license must not place restrictions on other software that is distributed along
with the licensed software. For example, the license must not insist that all other pro-
grams distributed on the same medium must be open-source software.

10. License Must Be Technology-Neutral

No provision of the license may be predicated on any individual technology or style
of interface.

Source: Open Source Initiative [4]

55

B
GENIVI Members List

Original Equipment Manufacturers

• BMW Group

• China FAW Group Corporation R&D
Center

• China Motor Corporation

• Honda

• Hyundai Motor Group

• Jaguar/Land Rover

• John Deere

• Daimler (Mercedes-Benz Research &
Development)

• Nissan Motor Co. Ltd.

• PSA Peugeot Citroen

• Renault SAS

• SAIC Motor Passenger Vehicle Co.

• Volvo Car Corporation

First Tiers

• AISIN AW Co. Ltd.

• Alpine Electronics R&D Europe
GmbH

• ALPS Electric Europe

• Clarion Co. Ltd.

• Continental Automotive GmbH

• Delphi

• Denso Corporation

• Harman International Industries Inc.

• Huizhou Desay SV Automotive Co.
Ltd.

• Hyundai Mobis Co. Ltd.

• Lear Corporation GmbH

• LG Electronics Inc.

• Magneti Marelli

• Mitsubishi Electric Corporation

56

APPENDIX B. GENIVI MEMBERS LIST

• Peiker Acustic GmbH & Co. KG

• Pioneer Corporation

• Robert Bosch Car Multimedia GmbH

• Valeo Interior Controls

• Visteon Corporation

OSV, Middleware, Hardware, and Service Suppliers

• A-Key S.r.L.

• Abinsula

• Accenture

• Access Europe GmbH

• Advanced Driver Information Tech-
nology

• Aicas Realtime GmbH

• Airbiquity Inc.

• Allgo Embedded Systems Pvt. Ltd.

• Alten SA

• Altera Corp.

• Aricent Group

• Arkamys

• Arynga Inc.

• ATP Electronics Inc.

• ATS Advanced Telematic Systems
GmbH

• AutoNavi Software Co. Ltd.

• BearingPoint GmbH

• Black Duck Software

• BrightONE GmbH

• Cinemo GmbH

• Codethink Ltd.

• Cogent Embedded Inc.

• Collabora Limited

• Comarch SA

• CTAG

• Cybercom

• Digia USA Inc.

• DTS Inc.

• Electronics and Telecommunications
Research Institute

• Elektrobit Automotive GmbH

• Ericpol Telecom

• Ericsson AB

• FPT Software Co. Ltd.

• Franuhofer ESk

• Fujitsu Semiconductor Europe
GmbH

• Garmin Switzerland GmbH

• GlobalLogic

• GNSD Co. Ltd.

• Green Hills Software Inc.

• HCL Technologies Limited

• HiQ Gothenburg AB

• Hitec Micro System Inc.

• Hortonworks Inc.

57

APPENDIX B. GENIVI MEMBERS LIST

• Huizhou Foryou General Electronics
Co. Ltd.

• IAV GmbH

• IBM

• Igalia S.L.

• iGATE Patni

• Infobank Corporation

• Integrated Computer Solutions

• Itemis AG

• Ittiam Systems Private Ltd.

• IVIS Co. Ltd.

• Klocwork

• KPIT Technologies

• Lixar IT

• Luxoft

• Magellan

• Mobica Limited

• MTA SpA

• Myine Electronics Inc. (dba Livio)

• Navis Automotive Systems Inc.

• Neusoft Technology Solutions GmbH

• Nexcom

• Nielsen

• NNG Kft.

• NTT Data MSE Corporation

• OBIGO Inc.

• Open Car Inc.

• OpenMobile World Wide Inc.

• OpenSynergy GmbH

• Palamida Inc.

• Pathpartner Technology Consulting
Pvt. Ltd.

• Pelagicore AB

• QuEST Global Engineering Services
Pvt. Ltd.

• Red Bend Software

• Research & Engineering Center LLC

• S1nn GmbH Co. KG

• Sasken Communication Technologies
Ltd.

• Shenyang MXNavi Co. Ltd.

• Sirius XM

• SMART Modular Technologies Inc.

• SmartPlay Technologies India Pvt.
Ltd.

• Suntec Software (Shanghai) Co. Ltd.

• Suresoft Technologies Inc.

• Symbio

• Symphony Teleca Corp.

• T-Systems International GmbH

• Tata Consultancy Services

• TechniSat Digital GmbH

• Telechips Inc.

• Telemotive AG

• Tom Tom International B.V.

• Tuxera Inc.

58

APPENDIX B. GENIVI MEMBERS LIST

• UIEvolution Inc.

• Videon Central Inc.

• Wind River

• Wipro Technologies

• WiseThan

• XSe (Mentor Graphics)

• ZENRIN DataCom Co. Ltd.

Silicon

• Analog Devices

• ARM

• Broadcom Corporation

• CSR Technology Inc.

• Freescale Semiconductor Inc.

• Intel

• ISSI

• Marvell International Ltd.

• MediaTek Inc.

• Micrel Inc.

• Micron Technology Inc.

• NVIDIA

• NXP Semiconductors Netherlands
B.V.

• Qualcomm Incorporated

• Renesas Electronics

• ROHM Co. Ltd.

• Texas Instruments Incorporated

• Vivante Corporation

Other

• Battelle Memorial Institute • Murata Manufacturing Co. Ltd.

Source: GENIVI Alliance [12]

59

C
GENIVI Open Source Projects

and Baselines

Open Source Projects

• AF DBUS D-Bus Optimization

• Audio Manager

• Browser Proof-of-Concept

• Diagnostic Log and Trace (DLT)

• Diagnostic Log and Trace - Transport
(DLT-T)

• GENIVI Demo Platform

• IPC CommonAPI C++

• IVI Layer Management

• IVI Navigation

• IVI Radio

• LXCBENCH

• Lifecycle Management: Node Startup
Controller (NSC)

• Lifecycle Management: Node State
Manager (NSM)

• Media Manager

• Persistent Client Library

• SmartDeviceLink

• Wayland IVI Extention

• Web API Vehicle

• YAMAICA

• Pop-Up Manager

• Driver Workload Assessor

Baselines

• Yocto GENIVI Baseline • Baserock GENIVI Baseline

Source: GENIVI Alliance [32]

60

D
Automotive Grade Linux

Members List

Gold Members

• Intel

• Jaguar/Land Rover

• Panasonic

• Renesas

• Symphony Teleca

• Toyota

Silver Members

• Aisin AW Co. Ltd.

• Denso

• Fujitsu Ten

• GlobalLogic

• Nissan

• Pioneer

Bronze Members

• Advanced Driver Information Tech-
nology

• Advanced Telematic Systems

• AllGo Embedded

• BearingPoint

• China Mobile

• Cinemo

• Componentality

• Electronics and Telecommunications
Research Institute

• Eureka Inc.

• Feuerlabs

61

APPENDIX D. AUTOMOTIVE GRADE LINUX MEMBERS LIST

• Harman

• Hitachi

• Host Concepts

• Hyundai

• Igalia

• JVC Kenwood

• LG Electronics

• Linaro

• Mcloudware

• Microchip

• Micware

• Miracle

• Mitsubishi Electric

• Moscow Design Bureau Compas

• NEC

• NTT Data MSE Corporation

• Nvidia

• OS Systems

• Obigo

• Open Synergy

• Reaktor

• ROSA

• Samsung

• Suntec

• Symbio

• Systena

• Texas Instruments

• Tieto

• Wind River

Source: Automotive Grade Linux [13]

62

E
Automotive Grade Android

(Vehicle ICT Arena) Members
List

Core Partners/Members

• Volvo Cars • Volvo Group

Premium Partners/Members

• ArcCore

• Altran

• Autoliv

• Chalmers tekniska högskola

• Combitech (Main code contributor to
the AGA project)

• Cybercom

• Delphi

• HiQ

• Högskolan i Halmstad

• Interaktionsbyr̊an

• Netgroup Engineering AB

• Pelagicore

• Prevas

• Semcon

• SMSC Sweden

• SP

• Vector Informatik

• Viktoria Swedish ICT

• VTI

• ÅF

63

APPENDIX E. AUTOMOTIVE GRADE ANDROID (VEHICLE ICT ARENA)
MEMBERS LIST

Associate Partners/Members

• Actia

• Alpine

• Denso

• Fengco

• Fraunhofer-Chalmers

• Högskolan i Skövde

• Mitsubishi Electric

• Modelon

• NIRA Dynamics

• Qamcon

• QRtech

• Sentient

• Smart Eye

• Swedspot (Main code contributor to
the AGA project)

• Time Critical Networks

• Yazaki

Source: Automotive Grade Android [57]

64

F
Brief Fact Sheet of the Freescale

i.MX53 QSB

65

APPENDIX F. BRIEF FACT SHEET OF THE FREESCALE I.MX53 QSB

i.MX

i.MX Applications Processors for Multimedia

i.MX53 Quick Start
Development Board
Cost-effective, multipurpose platform

Overview
Freescale delivers a cost-effective, easy-to-use platform designed to simplify product evaluation

and speed time to market with Quick Start development boards based on the i.MX family of

multimedia applications processors.

The first in the series, the i.MX53 Quick Start board is a $149 open-source, multipurpose

embedded development platform. The i.MX53 comes with a power-efficient ARM® Cortex®-A8

core-based 1 GHz processor with peripherals and hardware accelerated graphics to support

applications like human-machine interface (HMI) and support for HD multimedia functions.

Also integrated in this platform is the MC34708 power management integrated circuit (PMIC)

solution. Complete with highly optimized drivers and software, the i.MX53 enables broad-based

applications for the embedded consumer, industrial and medical markets. Supported by a

rich ecosystem and a community of developers at imxcommunity.org, the Quick Start board

simplifies your out-of-box experience so you can get started quickly.

i.MX53 Quick Start board
with HDMI module

i.MX53 Quick Start board with touchscreen LCD module

i.MX53 Quick Start
board with touch
screen LCD module

66

APPENDIX F. BRIEF FACT SHEET OF THE FREESCALE I.MX53 QSB

Benefits

First-Step Evaluation Platform

At $149, the i.MX53 Quick Start board is

priced to attract a broad base of users,

including professional developers and

hobbyists. The Quick Start board is designed

as an entry-level platform allowing you to

begin writing code and experimenting before

committing to additional development efforts.

Comprehensive, Yet Easy to Use

With an array of peripherals and a breadth

of optimized software, the i.MX53 Quick

Start board eases system design and allows

for a full demonstration of features, such as

the fully integrated LCD controller, Ethernet

controller and multimedia functionality.

Rich Ecosystem,
Vibrant Community

Build on the expertise of Freescale’s

ecosystem partners to do everything

from customizing your application’s user

interface to using low-cost debuggers and

development tools optimized to work with

the Quick Start board. Join your fellow i.MX

developers online at imxcommunity.org, an

active community of open source developers.

Software and Tools

The i.MX53 Quick Start board comes pre-

installed with the Linux® OS-, Android™ and

Windows® Embedded Compact 7 board

support packages (BSPs) are also available

through third parties. In addition to optimized

BSPs, Freescale also provides a large

portfolio of optimized video, speech and

audio codecs.

A variety of cost-effective debugging tools and

complete development suites from partners

like SEGGER Microcontroller, Macgraigor and

IAR Systems are optimized to work with the

Quick Start board. Also included is a VMware®

player image running ready-to-go Linux,

allowing those with Windows PCs to bypass

the typical setup of a standard Linux-based

development system.

Processor • Freescale i.MX53 1 GHz Cortex-A8 Processor

• Freescale MC34708 power management integrated circuit (PMIC)

• 1 GB DDR3 memory

Display • LVDS connector

• VGA connector

• Parallel LCD add-on card (via expansion connector)

• HDMI add-on card (via expansion connector)

Audio • SPDIF output via HDMI add-on card

• Freescale SGTL5000 audio codec

• Microphone jack

• Headphone jack

Expansion Connector • Enables parallel LCD or HDMI output

• Camera CSI port signals

• I2C, SSI, SPI signals

Connectivity • Full-size SD/MMC card slot

• microSD card slot

• 7-pin SATA data connector

• 10/100 Base-T Ethernet port

• Two High-Speed USB host ports

• Micro USB device por

Debug • JTAG connector

• DB-9 UART port

Miscellaneous • 3" x 3" 8-layer PCB

• Freescale MMA8450QT 3-axis accelerometer

• 2-amp, 5 V power supply

Hardware Features

i.MX53 Quick Start Development
Board Kit Contents
• i.MX53 1 GHz Cortex-A8 processor

• MC34708 PMIC

• 4 GB microSD card with Linux image

• 5 V power supply with worldwide adapters

• Micro USB cable

• Quick Start Guide

• DVD with VMware player, getting started
video, demos and other documents

Part Number Description MSRP (USD)

MCIMX53-START-R i.MX53 Quick Start development board $149

MCIMXHDMICARD 24-bit HDMI output port $49

MCIMX28LCD 4.3" 800 x 480 WVGA with 4-wire touchscreen $199

MCIMX-LVDS1 10.1" 1024 x 768 XGA display with capacitive multi-touch $499

Ordering Information

For more information, including a list of Quick Start ecosystem
partners, visit freescale.com/iMXQuickStart
Freescale, the Freescale logo, the Energy Efficient Solutions logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. &
Tm. Off. All other product or service names are the property of their respective owners. ARM and Cortex are registered trademarks of
ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. © 2012, 2014 Freescale Semiconductor, Inc.

Document Number: IMX53RQKSTRTFS REV 3

67

APPENDIX F. BRIEF FACT SHEET OF THE FREESCALE I.MX53 QSB

Source: Freescale [64]

68

G
Build Configurations for the

GENIVI Demo Platform

Figure G.1: GDP for QEMU

69

APPENDIX G. BUILD CONFIGURATIONS FOR THE GENIVI DEMO
PLATFORM

Figure G.2: GDP for Freescale i.MX53 QSB

70

	Introduction
	Background
	ÅF

	Purpose
	Problem description and Scope
	Limitations
	Report layout

	Background
	In-Vehicle Infotainment (IVI)
	Open source software
	Governance

	Method
	Study method
	Prototype method
	Tools and resources
	Software
	Hardware
	Resources

	IVI initiatives
	GENIVI
	Objectives
	Backers and Organizational Structure
	Technology
	Compliance Specification
	Projects
	Baselines and Demo platform

	Openness and Licensing
	Licenses

	Maturity

	Automotive Grade Linux (AGL)
	Objectives
	Backers and Organizational Structure
	Technology
	Tizen

	Openness and Licensing
	Maturity

	Automotive Grade Android (AGA)
	Objectives
	Backers and Organizational Structure
	Technology
	Openness and Licensing
	Maturity

	Evaluation
	Initiatives
	Future

	Design and Implementation
	Software
	Hardware
	Hardware setup and software integration
	Evaluation

	Conclusion
	 Bibliography
	The Open Source Definition
	GENIVI Members List
	GENIVI Open Source Projects and Baselines
	Automotive Grade Linux Members List
	Automotive Grade Android (Vehicle ICT Arena) Members List
	Brief Fact Sheet of the Freescale i.MX53 QSB
	Build Configurations for the GENIVI Demo Platform

