
Chalmers Publication Library

Linear Precoder Design for Simultaneous Information and Energy Transfer over
Two-User MIMO Interference Channels

This document has been downloaded from Chalmers Publication Library (CPL). It is the author´s

version of a work that was accepted for publication in:

IEEE Transactions on Wireless Communications (ISSN: 1536-1276)

Citation for the published paper:
Ozcelikkale, A. ; Duman, T. (2015) "Linear Precoder Design for Simultaneous Information
and Energy Transfer over Two-User MIMO Interference Channels". IEEE Transactions on
Wireless Communications, vol. 14(10),  pp. 5836-5847.

http://dx.doi.org/10.1109/TWC.2015.2443099

Downloaded from: http://publications.lib.chalmers.se/publication/218413

Notice: Changes introduced as a result of publishing processes such as copy-editing and

formatting may not be reflected in this document. For a definitive version of this work, please refer

to the published source. Please note that access to the published version might require a

subscription.

Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers
University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses,
conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that
Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted.
The CPL service is administrated and maintained by Chalmers Library.

(article starts on next page)

http://dx.doi.org/10.1109/TWC.2015.2443099
http://publications.lib.chalmers.se/publication/218413


1

Linear Precoder Design for Simultaneous

Information and Energy Transfer over Two-User

MIMO Interference Channels
Ayça Özçelikkale and Tolga M. Duman

Abstract—Communication strategies that utilize wireless media
for simultaneous information and power transfer offer a promis-
ing perspective for efficient usage of energy resources. With this
motivation, we focus on the design of optimal linear precoders
for interference channels utilizing such strategies. We formulate
the problem of minimizing the total minimum mean-square error
while keeping the energy harvested at the energy receivers above
given levels. Our framework leads to a non-convex problem
formulation. For point-to-point multiple-input multiple-output
channels, we provide a characterization of the optimal solutions
under a constraint on the number of transmit antennas. For
the general interference scenario, we propose two numerical
approaches, one for the single antenna information receivers case,
and the other for the general case. We also investigate a hybrid
signalling scheme, where the transmitter sends a superposition of
two signals: a deterministic signal optimized for energy transfer
and an information carrying signal optimized for information
and energy transfer. It is illustrated that if hybrid signalling is
not incorporated into the transmission scheme, interference can
be detrimental to the system performance when the number of
antennas at the receivers is low.

I. INTRODUCTION

Efficient usage of energy resources is a growing concern

in today’s communication systems. Solutions that consider

energy harvesting (EH) from radio-frequency signals instead

of completely relying on batteries or the power from the grid

offer a promising perspective. In these scenarios, wireless

media is used for simultaneous information transmission and

power transfer in contrast to performing each of these tasks

separately. In this paper, we study transmission strategies

to accomplish this as efficiently as possible. We focus on

the design of optimal linear precoders under the criterion of

minimum mean-square error (MMSE).

Much of the existing research on simultaneous wireless

information and power transfer (SWIPT) is conducted with

rate as the performance metric. Fundamental trade-offs be-

tween the rate and the energy for a single-input single-output

point-to-point (P2P) additive white Gaussian noise (AWGN)

channel is studied [1]. This framework is extended to AWGN

channels with frequency selective fading [2]. Optimal trans-

mission strategies are investigated for broadcast channels [3],
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[4], relay channels [5], [6] and interference channels [7–10].

Optimal power control problems are considered under rate

considerations for various single-user and multi-user scenarios

[11]. Practical code design solutions are investigated in [12].

Here we adopt an alternative approach and focus on linear

precoding at the transmitters and linear filtering at the re-

ceivers. Proper design of precoders and filters have been shown

to provide significant performance improvements in many

different communication scenarios, see for instance [13–17]

for a limited sample. It is noted that mean-square error filters

provide a practical, but still reasonably accurate alternative

for estimation of coded data symbols in contrast to maxi-

mum likelihood decoding [14]. Investigated scenarios cover

a wide range of models, including point-to point channels

[13], multiple-access channels [14] relay channels [15] and

applications to robust designs [16], [17].

In linear precoder design, mean-square error or signal-to-

noise ratio (SNR) based metrics are utilized as the typical

performance criteria. Despite the above vast usage of these

metrics for various communication scenarios, relatively small

number of works that consider such metrics have appeared

in the framework of energy harvesting. Most of these works

focus on the scenarios where energy is harvested from pos-

sibly unreliable resources, but not necessarily from man-

made wireless signals [18–20]. Contrary to these approaches

focusing on the unreliable nature of the energy supply, here

we consider another energy harvesting problem and focus on

simultaneous transfer of energy and information. There have

been a number of works focusing on SNR-based constraints

for SWIPT systems, such as single-output multicast channel

[21], interference channel [22], [23], and downlink scenario

[24]. Unfortunately, these works typically focus single antenna

receivers which limits the applicability of the results.

In this paper, we focus on multiple-input multiple-output

(MIMO) interference channels. As an expository work, we

first study the point-to-point channel with one information

receiver (IR) and one energy receiver (ER). For this set-

up, we formulate the problem of finding the optimal linear

precoding strategy in order to minimize the MMSE at the

information receiver while keeping the energy harvested at the

energy receiver above a certain level. This formulation leads

to a non-convex problem formulation. Nevertheless, under

a constraint on the number of antennas at the transmitter,

we provide a characterization of the optimal strategies that

reveals the relationship between the channel matrices and

the optimal transmission strategies. We also discuss the re-
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lationship between the rate maximization problem and the

MMSE minimization problem. For the interference channel,

we investigate the scenario illustrated in Fig. 1, where the

transmitters aim to convey information as reliably as possible

to their corresponding IRs while keeping the transferred power

to the ERs above given levels. Here the transmitters have

two possibly conflicting goals. One of these is keeping the

interference at the non-designated IRs as low as possible to

be able to transmit information reliably to the designated

IRs. The other goal is to send as much power as possible

to the ERs (which may be co-located with the IRs) in order

to satisfy the EH constraints. We consider weighted sum

MMSE as the performance criterion which leads to a non-

convex optimization problem formulation. We propose two

approaches for joint precoder design, where one of these

approaches is developed solely for the single antenna IR case.

We also investigate a power splitting scheme at the trans-

mitter, where the transmitted signal is the superposition of

two signals where one of them is chosen to be deterministic

and its sole purpose is to transfer power. We show that this

scheme allows us to obtain smaller error values especially

when the number of receive antennas is low. Contrary to the

power splitting strategies for the receivers proposed in [3],

here our aim is not to offer a feasible solution for the problem

of practical EH receiver design problem. Instead, we illustrate

that it is not always optimal to use a sole Gaussian signalling

approach at the transmitter, see also [9] for similar discussions

in the framework of rate maximization. This observation is

important for understanding the fundamental limits of simul-

taneous information and power transfer. It shows that, even

under the assumption of availability of ideal receivers that can

simultaneously decode information and power, the signalling

framework should be restructured to go beyond what Gaussian

signalling offers.

We compare the performance of our designs with those

of a time-division multiple-access (TDMA) approach and a

time-division mode switching (TDMS) approach. These com-

parisons are motivated by the fact that schemes that depend

on such mode separations have been considered as practical

benchmarks in the interference channel in the context of rate

maximization [7–10]. We illustrate that our proposed designs

outperform the TDMA and TDMS approaches in low to

moderate interference scenarios. Nevertheless, we note that

in the case of co-located IR and ERs, our designs are based

on an ideal receiver structure, i.e., the receiver can harvest

energy and decode information simultaneously. It is not clear

whether this receiver structure can be realized [3], hence in

these scenarios our transmission schemes should be interpreted

as designs for baseline performance.

The rest of the paper is organized as follows. The system

model for the interference channel and the joint linear precoder

design problem are presented in Section II and Section III,

respectively. In Section IV, we present the special case that

focuses on the point-to-point channel. In Section V and in

Section VI, our joint linear precoder design approach for the

interference channel is presented for the single antenna IR

case and the general case, respectively. We discuss the hybrid

signalling approach in Section VII. The performance of our
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Energy

Receiver 2
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Fig. 1: Simultaneous information and energy transfer in two-

user interference channel.

designs are illustrated in Section VIII. We conclude the paper

in Section IX.

The following notation is used throughout the paper. Up-

percase and lowercase letters denote matrices, and column/row

vectors respectively. The complex conjugate transpose of a ma-

trix A is denoted by A†. The operators E[.], and tr[.] denote the

expectation, and trace operators respectively. diag(a) denotes

the diagonal matrix formed with a as the diagonal elements.

I denotes the identity matrix with the suitable dimensions.

Positive semi-definite ordering is denoted by �, where A � 0
denotes a Hermitian positive semi-definite matrix. An optimal

value of an optimization variable A is denoted by A∗.

II. SYSTEM MODEL

A. Interference Channel

The multi-antenna transmitters transfer information to in-

formation receivers as well as power to energy harvesting

receivers according to the following model

yIi = HI
i1x1 +HI

i2x2 + wI
i , (1)

yEi = HE
i1x1 +HE

i2x2 + wE
i , (2)

where i = 1, 2. Here HI
ik ∈ Cnr×nt and HE

ik ∈ Cne×nt

represent the channel gains from the transmitter k to informa-

tion receiver i (IRi) and energy receiver i (ERi), respectively

i, k = 1, 2. This system is illustrated in Fig. 1. Zero-mean

complex proper Gaussian wI
i ∈ Cnr×1 ∼ CN (0,KwI

i
),

KwI

i

= E[wI
i (w

I
i )

†] = σ2
w,I,iI and wE

i ∈ Cne×1 ∼

CN (0, ,KwE

i

), KwE

i

= E[wE
i (w

E
i )

†] = σ2
w,E,iI denote the

noise at IR’s and ER’s channels, respectively.

The channel input xi is formed as xi = Aisi, where the zero

mean complex proper Gaussian si ∈ Cn×1, si ∼ CN (0,Ksi)
Ksi = I , denotes the data, Ai ∈ Cnt×n denotes the precoding

matrix at the ith transmitter. All signals, wI
i , wE

i , and si are

assumed to be statistically independent. All channel gains are

fixed throughout the transmission.
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B. MMSE Estimation

The designated information receiver for transmitter i is the

receiver i. Hence upon receiving yIi , IRi forms an estimate of

si. We assume that IRs employ MMSE estimation. Hence the

estimate of si at IRi can be expressed as follows [25, Ch2]:

E[si|y
I
i ] = KsiyI

i

KyI

i

−1yIi , (3)

where KsiyI

i

= E[siy
I
i
†
] = KsiA

†
iH

I
ii
†
, and KyI

i

=

E[yIi y
I
i
†
] = HI

iiAiA
†
iH

I
ii
†
+HI

ijAjA
†
jH

I
ij
†
+σ2

w,I,iI . We note

that since σ2
w,I,iI ≻ 0, we have Kyi

≻ 0, and hence K−1
yi

exists. The MMSE at IRi can be expressed as follows

(4a)εi(A1, A2) = E[||si − E[si|y
I
i ]||

2]

(4b)= tr[Ksi −KsiyI

i

K−1

yI

i

K†

siyI

i

]

(4c)= n− tr[A†
iH

I
ii

†
(Ti + σ2

w,I,iI)
−1

HI
iiAi],

where Ti=HI
iiAiA

†
iH

I
ii
†
+HI

ijAjA
†
jH

I
ij

†
, i, j=1, 2, i 6= j.

C. Energy Harvesting

The energy harvested at the ERi can be expressed as [3]

(5)Ji(A1, A2)=β(tr[HE
i1A1A

†
1
HE

i1

†
]+tr[HE

i2A2A
†
2
HE

i2

†
]),

where 0 ≤ β ≤ 1 accounts for the possible loss in the energy

conversion process. Without loss of generality, we assume that

this loss is accounted for while setting desired energy levels

and hence we use β = 1 in our formulations.

III. LINEAR PRECODER DESIGN

We consider the following joint linear precoder design

problem which seeks the optimal linear precoders in order to

minimize the weighted MMSE at the information receivers

while satisfying the energy requirements at the energy re-

ceivers:

(P1) min
A1,A2

α1 ε1(A1, A2) + α2 ε2(A1, A2) (6a)

s.t. J1(A1, A2) ≥ γ1, J2(A1, A2) ≥ γ2, (6b)

tr[A1A
†
1
] ≤ P1, tr[A2A

†
2
] ≤ P2. (6c)

Here (6c) represents the power constraints at the transmitters.

The scalars α1 and α2 represent the error weights for different

users. These weights can be used to prioritize one of the IRs

in the system, for instance a large α1/α2 ratio will give a

large penalty to the estimation error at IR1, hence will result

in strategies that favor IR1. Alternative formulations for priori-

tizing different users can be also adopted, see for instance [26]

where energy efficiency in an interference channel scenario is

studied.

We now discuss the convexity properties of the formulation

in Problem P1. Using the property tr[AB] = tr[BA], the

energy harvesting constraints can be equivalently written as

(7)Ji(A1, A2) = tr[A†
1H

E
i1

†
HE

i1A1] + tr[A†
2H

E
i2

†
HE

i2A2],

which is a quadratic function in (A1, A2). Moreover, since

HE
ij

†
HE

ij , i, j = 1, 2, are positive semi-definite, Ji(A1, A2) is

a convex quadratic function. Hence the EH constraints form

non-convex constraints since they bound convex functions

from below. It is worth mentioning that the objective function

is also not a convex function of (A1, A2), which is true even

for the scalar case.

We now illustrate that even when the traditional semi-

definite rank relaxations are introduced, the resulting optimiza-

tion problem is still non-convex. We introduce the following

new variables of optimization: Ki = AiA
†
i , i = 1, 2. Hence

the energy harvested at the ERs can be expressed as linear

functions of (K1,K2)

(8)JK
i (K1,K2) = tr[HE

i1K1H
E
i1

†
] + tr[HE

i2K2H
E
i2

†
].

Furthermore, it is possible to write the objective function

in terms of (K1,K2), for instance by using the property

tr[AB] = tr[BA] on (4c) as follows

(9)εKi (K1,K2) = n− tr[HI
iiK

†
iH

I
ii

†
(TK

i + σ2
w,I,iI)

−1
],

where TK
i = HI

iiKiH
I
ii
†
+HI

ijKjH
I
ij
†

and i, j = 1, 2, i 6= j.

We note that now Ki should have a decomposition such that

Ki = AiA
†
i , Ai ∈ Cnt×n, i.e., we have rank constraints on

the variables Ki, rank(Ki) ≤ n. By lifting these constraints,

one may form the following relaxed optimization problem

(P̄1) min
K1�0,K2�0

α1 ε
K
1 (K1,K2) + α2 ε

K
2 (K1,K2)

(10a)

s.t. JK
1 (K1,K2) ≥ γ1, JK

2 (K1,K2) ≥ γ2, (10b)

tr[K1] ≤ P1, tr[K2] ≤ P2. (10c)

Hence Problem P̄1 forms a semi-definite programming (SDP)

relaxation of Problem P1. Further information about such rank

relaxations can be found in [27–29]. Although now all the

constraints form convex constraints, this formulation is still

non-convex, since the objective function in (10a) is a not

a convex function of (K1,K2) for the general interference

channel scenario. An exception is the case of point-to-point

channel, where there is only one user (but the channel may

still be a MIMO channel). For this case, by using convexity,

we provide a semi-explicit analytic characterization of the

solutions in Section IV for the case nt ≤ n. Starting with

Section V, we focus on the interference channel.

IV. POINT-TO-POINT CHANNEL

In this section, we consider the scenario where there is only

transmitter with one designated IR and one designated ER.

We assume that x2 = 0 without loss of generality. Hence

transmitter 1 sends data to IR1 as well as power to ER1

yI1 = HI
11 x1 + wI

1 (11)

yE1 = HE
11 x1 + wE

1 (12)

where HI
11, H

E
11, wI

1 , w
E
1 and x1 are as defined in Section II-A.

We focus on the case nt ≤ n. The MMSE at IR1 can be

expressed as

ε1(A1, 0) = tr[I −A†
1
HI

11

†
(HI

11A1A
†
1
HI

11

†

+ σ2
w,I,1I)

−1HI
11A1]

(13)= tr[(I +
1

σ2
w,I,1

A†
1H

I
11

†
HI

11A1)
−1],
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where (13) follows from Sherman-Morrison-Woodbury iden-

tity [30]. The energy harvested at the ER can be expressed

as

J1(A1, 0) = tr[HE
11A1A

†
1H

E
11

†
]. (14)

We consider the problem of minimization of the MMSE at

the IR1 while satisfying the EH constraint at the ER1

(P2) min
A1

ε(A1, 0) (15a)

s.t. J1(A1, 0) ≥ γ1, tr[A1A
†
1
] ≤ P1. (15b)

This formulation is non-convex. Nevertheless, for nt ≤ n,

it is possible to characterize the optimal solutions for (15)

by introducing an equivalent formulation that is convex and

whose solutions in fact provide optimal solutions for (15).

Utilizing [31, Lem. 2], we express the problem of min-

imizing (13) equivalently as the problem of minimizing

tr[(I + (1/σ2
w,I,1)H

I
11A1A

†
1H

I
11

†
)−1]. Hence we arrive at the

following optimization problem by introducing K1 = A1A
†
1

(P3) min
K1�0

tr[(I +
1

σ2
w,I,1

HI
11K1H

I
11

†
)−1] (16a)

s.t. tr[HE
11K1H

E
11

†
] ≥ γ1, tr[K1] ≤ P1. (16b)

This is a convex optimization problem whose convexity can

be established as follows: i) The objective function is a convex

function of K1 since f(X) = tr[X−1] is convex over X ≻ 0
[32]; ii) The inequality constraints are linear, hence convex.

Since this is a convex SDP problem, an optimal solution

can be found numerically by using off-the-shelf numerical

optimization tools such as SeDuMi, SDPT3 and CVX [33–

35]. Instead, here we utilize the solutions of Problem P3 to

arrive at a characterization of the solutions of Problem P2.

Theorem 4.1: Let nt ≤ n. Assume that there exists a strictly

feasible A1 for Problem P2. Then an optimal solution has the

following form:

A∗
1 = R−1/2VH̄Λ1/2, (17)

where Λ = diag(λi) with λi given by the following water-

filling type solution

λi =

[√

1

λH̄,i

−
1

λH̄,i

]+

, (18)

where [x]+ = max(0, x). Here R = µpI − µeH
E
11

†
HE

11,

µp, µe ≥ 0 and H̄ = R−1/2HI
11

†
HI

11R
−1/2 = VH̄ΛH̄V †

H̄
is the singular value decomposition of H̄ , where ΛH̄ =
diag(λH̄,i), λH̄,1 ≥ λH̄,2, . . . , λH̄,m, m = rank[H̄ ].

The proof relies on the solution of the dual problem for

Problem P3 and the fact that it is always possible to find an

optimal Ai from an optimal Ki due to nt ≤ n. This line of

arguments has been successfully adopted to reveal structures

of the optimal solutions in a number of scenarios [3], [32],

[36]. In particular, we refer the reader to [3] for the solution

of rate maximization under EH constraints. Here we omit the

proof for the MMSE case for the sake of brevity.

The result reveals that optimal solutions lie in the span

of the right singular vectors of the modified channel matrix

HI
11R

−1/2. This result also illustrates the relationship between

the rate maximization problem investigated in [3] and the

MMSE minimization problem investigated here: the general

structure of the solutions are similar where the eigenvectors

of the optimal transmit covariance matrix K1 lie in the span

of the singular vectors of a matrix in the form HI
11R

−1/2,

R = µpI−µeH
E
11

†
HE

11 where µp, µe may take possibly differ-

ent values for the MMSE minimization and rate maximization.

Another related issue is the use of weighted MMSE criterion as

an intermediate step in rate maximization problem, as explored

in [37] without the EH constraints. Our result here can be

utilized while formulating a similar relationship for SWIPT

systems.

As discussed earlier, the linear precoder design problem

with MMSE minimization, in general, has a rank constraint:

K1 should have a decomposition such that K1 = A1A
†
1, A1 ∈

Cnt×n. On the other hand, in the case of rate maximization,

there is no such constraint, the transmit covariance matrix K1

is the sole variable of interest [3, Problem P2]. Although a

solution for an optimal A1 satisfying rank constraints can be

always found without putting any restrictions on the number of

transmit antennas in the case of MMSE minimization without

the EH constraints [13], [16], whether this is the case under

EH constraints is not clear. We note that, even in the case

with nt ≤ n, the designs optimized for these two metrics

(rate and MMSE) lead to different MMSE performance (with

the exception of the case nr = 1, where these metrics lead

to equivalent objective functions). This performance gap is

illustrated in Section VIII.

V. INTERFERENCE SCENARIO: MISO INFORMATION

CHANNEL

We now consider the interference scenario with multiple-

input single-output (MISO) information channel, i.e. Problem

P1 with nr=1. As discussed in Section III, neither the general

problem with multiple antenna IRs nor the single antenna

scenario result in convex formulations. Nevertheless, here we

propose a method to solve Problem P1 for the MISO case

using a sequence of convex problems.

In the following we will first consider the relaxed problem,

Problem P̄1 in (10), and ignore the constraints Ki = AiA
†
i ,

i = 1, 2. We will first focus on finding optimal Ki’s, then

we will discuss how to find optimal Ai’s for Problem P1 in

Lemma 5.1. Under MISO information channel scenario, the

MMSE at IRi can be specialized to the following expression

εKi (K1,K2) = n−
hI
iiKih

I
ii
†

hI
iiKihI

ii
†
+ hI

ijKjhI
ij

†
+ σ2

w,I,i

(19)

Here we have used lower case letters for the channel matrices

to emphasize that they can now be represented as row vectors.

Energy harvested at the ERs are given as in (8).

We now consider Problem P̄1. We recall that although the

EH and power constraints form convex constraints, Problem

P̄1 is not convex. As seen in (19), the individual terms

εKi (K1,K2), i = 1, 2 in the objective function are linear

fractional functions in (K1,K2), hence they are not convex.

In order to solve this non-convex optimization problem, we
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propose the following approach which utilizes the additional

variable κ

(P̄1SO) min
κL≤κ≤κU

min
K1�0,K2�0

α1ε
K
1 (K1,K2) + α2κ

(20a)

s.t. εK2 (K1,K2) ≤ κ, (20b)

subject to (10b) and (10c). Here κL = n − 1 and κU = n,

which are the lower and upper bounds on the MMSE for a

single-output antenna system with signal power tr(Ks2) = n.

We note that (P̄1SO) with the additional variable κ is equiv-

alent to the Problem P̄1; further discussions on this type of

transformations can be found in [32, Ch.4]. Here (20b) can be

equivalently written as a linear inequality constraint

−hI
22K2h

I
22

†
+ κ̄(hI

21K1h
I
21

†
+ σ2

w,I,2) ≤ 0 (21)

where κ̄
.
= (n− κ)/(1− n+ κ).

Let us now consider the inner minimization problem in

Problem P̄1SO. After straightforward algebraic manipulations,

it can be expresssed as follows for a given κ

max
K1,K2

hI
11K1h

I
11

†

hI
12
K2hI

12

†
+ σ2

w,I,1

(22)

subject to (10b), (10c) and (21). The objective function is still

in linear fractional form, hence the problem is not convex.

To obtain a convex formulation, we utilize Charnes-Cooper

transform [38] and define the following new variables:

t = (hI
12K2h

I
12

†
+ σ2

w,I,1)
−1, (23)

K̄1 = tK1, K̄2 = tK2. (24)

Rewriting the optimization problem in (22) in terms of these

variables, we arrive at the following formulation

max
K1�0,K2�0, t≥0

hI
11K̄1h

I
11

†
(25)

s.t. hI
12K̄2h

I
12

†
+ tσ2

w,I,1 = 1,

− hI
22K̄2h

I
22

†
+ κ̄(hI

21K̄1h
I
21

†
+ tσ2

w,I,2) ≤ 0,

J1(K̄1, K̄2) ≥ tγ1, J2(K̄1, K̄2) ≥ tγ2,

tr[K̄1] ≤ tP1, tr[K̄2] ≤ tP2.

We observe that under mild conditions it is possible

to construct optimal precoders (A∗
1, A

∗
2) from an optimal

(K̄1

∗
, K̄2

∗
):

Lemma 5.1: Let n ≥ 2. Assume that the optimization

problem in (25) and its dual are solvable. Then an optimal

solution in terms of (A∗
1, A

∗
2, t

∗) can be always formed from

an optimal solution (K̄1

∗
, K̄2

∗
, t∗).

The proof is given in Appendix A. Now a solution to

Problem P1 under the MISO scenario can be found by

solving Problem P̄1SO . The solution to Problem P̄1SO will

be found using a line search over κ and the solution of

inner optimization problem, i.e., (22) or equivalently (25). By

Lemma 5.1, optimal precoders (A∗
1, A

∗
2) can be found from

an optimal solution of (25). The optimization problem in (25)

is convex in (K̄1, K̄2, t), hence it can be solved by using

available solvers, such as [33–35]. We note that the inner

optimization problem formulates a scenario which may be of

independent interest. Here the error performance for one of

the users is optimized under a performance guarantee for the

other user.

VI. INTERFERENCE SCENARIO: MIMO INFORMATION

CHANNEL

We now consider the general MIMO information channel

scenario. We propose an alternating minimization technique

for the solution of Problem P1. We first consider the fixed

receiver estimator case in Section VI-A. In Section VI-B, we

utilize this scenario to provide linear precoder designs for the

MMSE receiver case.

A. Fixed Estimator at the Receiver

Let Bi be the estimator at IRi. Hence the mean-square error

at IRi can be expressed as follows:

εFi = E[||si −Biy
I
i ||

2],

= tr[Ksi ]− tr[KsiyI

i

B†
i ]− tr[BiK

†

siyI

i

] + tr[BiKyI

i

B†
i ],

=n−tr[A†
iH

I
ii

†
B†

i ]−tr[BiH
I
iiAi]+tr[BiH

I
iiAiA

†
iH

I
ii

†
B†

i ]

+ tr[BiH
I
ijAjA

†
jH

I
ij

†
B†

i ] + σ2
w,I,i tr[BiB

†
i ].

where i, j = 1, 2, i 6= j. Hence, for fixed receiver filters,

the problem of finding the optimal linear precoders in order

to minimize weighted sum of the estimation errors can be

formulated as follows

min
A1,A2

α1 ε
F
1 + α2 ε

F
2 (26)

subject to (6b) and (6c). We note that the objective and the

constraint functions are quadratic functions in (A1, A2), hence

this is a quadratically constrained quadratic programming

(QCQP) problem. In general, QCQP problems are known to be

NP hard even for the formulations in which objective function

is convex and there is only one vector optimization variable

[39] as opposed to the more involved case of two matrix

variables here.

As discussed earlier, the EH constraints are not convex in

(A1, A2). To deal with these constraints, we introduce new

variables Zi = AiA
†
i , i = 1, 2. (Here we refrain from using

the notation Ki = AiA
†
i to avoid confusion with the previous

formulations in Section IV and Section V where it is possible

to write the whole optimization problem in terms of Ki.)

Ignoring the constant terms, we rewrite the part of the error

that depends on (A1, A2, Z1, Z2) as follows

εzi (A1, A2, Z1, Z2) = tr[BiH
I
iiZiH

I
ii

†
B†

i ]

+ tr[BiH
I
ijZjH

I
ij

†
B†

i ]

− 2Re(tr[A†
iH

I
ii

†
B†

i ]),
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where Re[z] denotes the real part of z ∈ C. Hence the

optimization problem in (26) can be reformulated as follows:

min
A1,A2,
Z1,Z2

α1 ε
z
1(A1, A2, Z1, Z2) + α2 ε

z
2(A1, A2, Z1, Z2)

(27a)

s.t. JK
1 (Z1, Z2) ≥ γ1, JK

2 (Z1, Z2) ≥ γ2, (27b)

tr[Z1] ≤ P1, tr[Z2] ≤ P2, (27c)

Z1 = A1A
†
1
, Z2 = A2A

†
2
. (27d)

The constraints in (27d) are not convex, since they represent

equality constraints involving a convex function of the vari-

ables. Except the constraints in (27d), all constraints are now

linear functions of the variables (A1, A2, Z1, Z2), hence this

formulation would constitute a convex problem if the equality

constraints in (27d) were not there. We relax these as follows:

Zi � A1A
†
1, Z2 � A2A

†
2. (28)

By using Schur complement [32, A.5.5], one can equivalently

write the expressions in (28) as linear matrix inequalities

S1 =

[

I A†
1

A1 Z1

]

� 0, S2 =

[

I A†
2

A2 Z2

]

� 0. (29)

Hence the relaxed version of the problem in (27) can be

expressed as

min
A1,A2,

Z1�0,Z2�0

α1 ε
z
1(A1, A2, Z1, Z2) + α2 ε

z
2(A1, A2, Z1, Z2)

(30)

s.t. (27b), (27c), (29).

This is a convex optimization problem, hence it can be

solved efficiently by standard numerical optimization tools.

We observe that since the optimization in the formulation in

(30) is done over a larger set than the formulation in (27),

solution of (30) provides a lower bound for the solution of

(27). The next theorem shows that a stronger result is true.

Theorem 6.1: Let n ≥ 2 where si ∈ Cn×1, i = 1, 2. Let

(30) be solvable. Then the optimum error values for (26) and

the relaxed problem in (30) are equal and can be attained.

Moreover, an optimal solution for (26) can be constructed

from an optimal solution of (30).

The proof is given in Appendix B. This result shows that one

can guarantee to find the optimal value for (27) (equivalently

(26)) using (30) under solvability of the relaxed problem.

Furthermore, a solution to the original problem (a solution sat-

isfying (27d)) can be constructed from an optimal solution for

the relaxed problem. Hence although fixed receivers problem

is non-convex, Thm. 6.1 guarantees that it can be efficiently

solved using a convex problem.

To find a solution for (27) from an optimal solution for (30),

following approach is adopted. Let V ∗ = (A∗
1, A

∗
2, Z

∗
1 , Z

∗
2 )

denote an optimal solution to (30). We output A∗
1, A

∗
2 as a

solution to (27) if the following condition is satisfied,

Ji(A
∗
1, A

∗
2) ≥ γi, i = 1, 2. (31)

We note that it is guaranteed that the transmit power conditions

are satisfied, and the error values are non-increasing if Z∗
i

is replaced with A∗
iA

∗
i
†, due to the conditions Zi � AiA

†
i ,

i = 1, 2. Together with the optimality of V ∗ for (30), (A∗
1, A

∗
2)

is optimal for (27). If (31) is violated, a rank constrained

solution for (27) is generated using [27, Algorithm RED],

[28, Algorithm 1]. Details can be found in Appendix B.

B. MMSE Estimator at the Receiver

We now consider the case where MMSE estimators are

employed at the receivers. In order to solve the resulting

non-convex problem, i.e. Problem P1, we propose a block

coordinate-descent method where we take turns in fixing the

precoder matrices and the estimators.

For fixed linear precoders (A1, A2), the problem of find-

ing the MMSE estimators is the classical MMSE estimation

problem, and the optimal Bi’s are given by (3), [25, Ch2],

Bi = KsiyI

i

KyI

i

−1, (32)

= A†
iH

I
ii

†
(Ti + σ2

w,I,iI)
−1, (33)

where Ti = HI
iiAiA

†
iH

I
ii
†
+HI

ijAjA
†
jH

I
ij
†
, and i, j = 1, 2, i 6=

j as before. To find linear precoders for fixed receivers, we

solve the problem in (30). To initialize the algorithm, we solve

the following problem which maximizes the energy harvested

max
A1,A2

J1(A1, A2) + J2(A1, A2) (34)

s.t. (6b), (6c).

The resulting method is summarized in Algorithm 1.

We now discuss the convergence of this method. At each

fixed (A1, A2) step, the estimators are found optimally ac-

cording to (33). As shown in Theorem 6.1, at each step

where the receiver filters (B1, B2) are fixed, the problem can

be optimally solved using a convex problem whenever the

original problem is feasible. Hence the objective function is

guaranteed to decrease under each iteration. Since the error

is bounded from below, Algorithm 1 is guaranteed to con-

verge. We note that due to non-convexity of Problem P1, the

optimality of the proposed solutions obtained by Algorithm 1

cannot be guaranteed. Hence they give achievable, but possibly

sub-optimal solutions. Nevertheless, for the MISO case, our

numerical experiments illustrate that the optimal error values

provided by Algorithm 1 coincides with the values provided

by the approach discussed in Section V, which is designed

specifically for the MISO case and reduces the problem to a

line search. Hence with its consistent results in the MISO case,

and the general convergence guarantee, Algorithm 1 offers

a promising design framework for the joint linear precoder

design problem.

We note that each step in the algorithm can be done in

polynomial complexity, which includes the solution of the

SDP [29], [40], finding a rank constrained solution whose

complexity is dominated by the complexity of the solution

of a system of linear equations [27, Algorithm RED-step

(c)] and finding the estimators through (33) or by solving the

corresponding system of linear equations. Required number of

iterations is discussed in more detail in Section VIII.
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Algorithm 1 Algorithm for Problem P1

Initialize:
Solve (34) for (A0

1, A
0

2)
if ((34) is infeasible) then

// Problem P1 is infeasible.
Set ε1 = tr[Ks1 ], ε2 = tr[Ks2 ].
Quit Algorithm 1.

end if
Using (A0

1, A
0

2) , solve (33) for (B0

1 , B
0

2).
Set i = 1.

repeat
Using (Bi−1

1
, Bi−1

2
), solve (30) for (Ai

1, A
i
2, Z

i
1, Z

i
2).

if (31) is not satisfied then
Generate new (Ai

1, A
i
2) using [27, Algorithm RED].

end if
Using (Ai

1, A
i
2), solve (33) for (Bi

1, B
i
2).

Using (Ai
1, A

i
2) and (4c), find (εi1, ε

i
2).

until (α1ε
i−1

1
+ α2ε

i−1

2
− (α1ε

i
1 + α2ε

i
2) ≤ ǫ) // The stopping

criterion is met.
Output: (A1, A2), (ε

i
1, ε

i
2).

VII. HYBRID TRANSMISSION STRATEGIES

Here we propose a power splitting scheme at the transmitter,

where the transmitted signal is the superposition of two signals

one of which is chosen to be a deterministic signal. In

Section VIII, we illustrate that this hybrid scheme allows us to

obtain significant improvements over sole Gaussian signalling,

see also [9] for similar discussions for rate maximization.

These results suggest that, even under the assumption of

receivers that can simultaneously decode information and

harvest energy, transmission strategies should be restructured

in order to go beyond what Gaussian signalling offers.

We consider the following scheme as the transmission

strategy

xi = Aisi + gi, (35)

where gi ∈ Cnt×1 is a deterministic signal that is known

at the transmitters and the receivers. The sole purpose of

gi is to transfer energy, whereas the purpose of Aisi is to

transfer information and also possibly energy. The IRs will

be able to perform the MMSE estimation after removing the

known interference gi’s. Hence here gi’s do not degrade the

performance of the unintended IRs as opposed to the case of

using all the power for sending information signal. On the

other hand, gi uses some of the power that could have been

allocated to the information signal at the transmitter i, which

may degrade the error performance at IRi.

To find the optimal power allocation trade-off between the

energy components (gi) and information carrying components

(Aisi), along with the optimal waveforms (g1, g2) and the

precoders (A1, A2), we formulate an optimization problem

similar to Problem P1. The power constraint at transmitter

i takes the following form

tr[gig
†
i ] + tr[AiA

†
i ] ≤ Pi, i = 1, 2. (36)

The energy harvesting constraints can be expressed as follows

Ji(A1, A2) + Ji(g1, g2) ≥ γi i = 1, 2. (37)

The resulting optimal precoder design problem is the following

(P1GD) min
g1,g2,A1,A2 ,

α1 ε1(A1, A2) + α2 ε2(A1, A2) (38)

s.t. (36), (37).

We note that Problem P1 can be considered as a special case

of Problem P1GD with g1 = 0, g2 = 0. Here the MMSE

estimators are again given by (33) since the estimation is done

after removing the known interference gi. We note that gi’s can

be calculated by the IRs using the channel state information of

the nodes in the system, which is also used for implementing

the MMSE estimation.

We adopt the two step approach in Section VI to solve Prob-

lem P1GD. For the fixed estimator step where the receivers use

fixed filters Bi, i = 1, 2, the following problem is considered

min
A1,A2,g1,g2

α1 ε
F
1 + α2 ε

F
2 (39)

subject to (36) and (37). Introducing the variables Gi = gig
†
i ,

Zi = AiA
†
i , (36) can be expressed as follows

tr[Gi] + tr[Zi] ≤ Pi, i = 1, 2. (40)

The energy harvesting constraints can be written as follows

JK
i (Z1, Z2) + JK

i (G1, G2) ≥ γi, i = 1, 2. (41)

Hence (39) can be expressed as follows

min
A1,A2,Z1,Z2,
g1,g2,G1,G2

α1 ε
F
1 + α2 ε

F
2 (42)

s.t. (40), (41)

Gi = gig
†
i , Zi = AiA

†
i , i = 1, 2.

Using the relaxation in (28), (or equivalently (29)) and lifting

the rank constraint on Gi’s, we relax this problem as follows

min
A1,A2,

Z1�0,Z2�0,
G1�0,G2�0

α1 ε
z
1(A1, A2, Z1, Z2)+α2 ε

z
2(A1, A2, Z1, Z2)

(43)

subject to (29), (40), (41). The following relationship holds

between the solutions of the original fixed estimator problem

(39) and the relaxed problem (43):

Theorem 7.1: Let n ≥ 2. Let (43) be solvable. Then (39)

has the same optimal value with (43). An optimal solution for

(39) can be constructed from a solution of (43).

The proof is given in Appendix C. The above result shows

that one can effectively solve (43) instead of (39) for the

fixed estimator problem. Now the two step procedure in

Algorithm 1 can be modified by replacing the step that solves

(30) with a step that solves (43) to find designs for the MMSE

receiver problem with hybrid signalling in (38). Similar to the

sole Gaussian signalling case, the error is non-increasing at

each iteration, hence the modified algorithm is guaranteed to

converge.

VIII. NUMERICAL RESULTS

We now illustrate the performance of our designs and the

trade-off between the error and the energy harvested through
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Fig. 2: MMSE versus energy harvesting requirements, com-

parison of the MMSE performance of the rate maximization

and the MMSE minimization schemes.

numerical results. The error performance is reported as the

weighted sum of normalized MMSEs as follows:

ε̄ =
α1ε1 + α2ε2

ε0
, (44)

where ε0 = tr[Ks1 ] = tr[Ks2 ] = n. We choose α1 = α2 = 1.

When the problem is not feasible, i.e. the EH constraints

cannot be satisfied under the given power constraints, the

transmission does not occur; hence the error values are set

to ε1 = ε2 = ε0. We assume that the energy and information

receivers are co-located, HI
ij=HE

ij =Hij , i, j=1, 2. We gen-

erate the channel matrices independently with i.i.d. complex

proper zero-mean Gaussian components with variance σ2
H =1.

We report the average results for 100 channel realizations. We

set ǫ = 10−5ε0 and SNR= 10 dB, where SNR is defined

as σ2
H/σ2

w with σ2
w,I,i = σ2

w,E,i = σ2
w, i = 1, 2. The EH

constraints are set as γ1 = γ2 = γ (Watts). We assume that

the system parameters, including the power constraints and the

EH constraints, are scaled to the proper ranges. Discussions

on the admissible values can be found in [3], [8]. The convex

optimization problems including (30), (34) and (43) are solved

using [33–35]. Convergence behavior of Algorithm 1 is further

discussed at the end of this section.

We label the transmission strategies as follows: TXG is

the proposed design for Problem P1 (Gaussian signalling)

found by the approach in Section VI. TXGD is for the

hybrid signalling framework in Problem P1GD (Gaussian +

deterministic signalling) found by the approach in Section VII.

We also compare the performance of our joint design strategy

with that of individual design where transmitters decide on

their transmission strategies independently without any coop-

eration (TXIND). Here each transmitter assumes there is no

interference and aims to minimize the MMSE at its designated

IR under the EH constraint at its designated ER.

We also compare the performance of our designs with that

of TDMA and TDMS of [7]. In both schemes, transmis-

sion interval is divided into two time slots. In TDMA, for

0 ≤ ta ≤ 1 fraction of the time, the system operates in (I, E)
mode: Receiver 1 operates in the information decoding (ID)

mode whereas Receiver 2 operates in the EH mode. In the

remaining 1 − ta fraction of the time, the operating mode

is (E, I) where the roles of the receivers are swapped. In

TDMS, for 0 ≤ ts ≤ 1 fraction of time, both receivers

operate in the EH mode (E,E). In the remaining 1 − ts
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Fig. 3: MMSE versus energy harvesting requirements, n = 2,

nt = 4, nr=ne=1, (P1, P2) = (10, 10).
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Fig. 4: MMSE versus energy harvesting requirements, n = 2,

nt = 4, nr=ne=1, (P1, P2) = (2, 18).

fraction of time, both receivers operate in the ID mode (I, I).
As previously mentioned, these comparisons are motivated by

the fact that schemes that depend on such mode separations

have been considered as practical benchmarks in the context of

rate maximization [7–10]. Here we adopt these schemes to the

MMSE minimization problem. For TDMA, transmitters adopt

deterministic signalling when their intended receiver operates

in the EH mode. For optimization over the parameter ta, we

adopt a line search over the set Sta = {0.05k : k = 0, . . . , 20}.

We note that Algorithm 1 can be used to find the transmission

strategy for the transmitter serving to both IR and ER receiver,

for instance transmitter 1 in (I, E) mode. Nevertheless, for the

sake of reduced computation time, we have preferred to solve

the relaxed problem in (16). Hence TDMA curves we present

here are lower bounds on TDMA performance on Sta . For

TDMS, optimum time-sharing parameter ts is found using a

convex optimization approach similar to [7, Sec.IV-A].

We first study the MMSE performance difference between

the rate maximization and the mean-square error minimization

problems. Our aim is to illustrate that these two metrics, (rate

and the MMSE) are although closely related, lead to different

MMSE performance trade-offs. Without the EH constraints, it

is known that the MMSE minimization and rate maximization

problems have different optimal solutions, see for instance [28,

Table 3.1]. The difference in the form of optimal solutions

under EH constraints can be seen by comparing Thm. 4.1 here

and [3, Thm. 3.1]. Here we present a numerical qualification of

the resulting performance difference. We focus on the P2P case

with nt ≤ n so that the results can be fully attributed to the

difference between the optimal solutions without any reference

to possibly sub-optimal approaches we will have to refer to

in the case of interference channel and the rank constrained

scenarios. Hence, for the MMSE minimization, we consider

the formulation in (15). For the rate maximization problem,
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Fig. 5: MMSE versus energy harvesting requirements, n = 2,

nt = 4, nr=ne=4, (P1, P2) = (10, 10).
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Fig. 6: MMSE versus energy harvesting requirements, n = 2,

nt = 4, nr=ne=4, (P1, P2) = (2, 18).

we consider the following problem

max
K1�0

log[(I +
1

σ2
w,I,1

HI
11K1H

I
11

†
)] (45)

under the conditions tr[HE
11K1H

E
11

†
] ≥ γ1 and tr[K1] ≤ P1.

This problem is studied in [3]. Both of these problems are

convex and are solved using [33–35]. The MMSE performance

of the transmission schemes using the resulting optimum

transmit covariance matrices K1 are presented in Fig. 2 aver-

aged over different channel realizations. Here TXE and TXR

correspond to the performance of the solution of (16) and (45),

respectively. We have nt = ni =ne = n=4. We observe that

the relative difference is substantial under small and moderate

EH constraints. To quantify this, let us define the relative

performance difference ratio r = 100(εTXR
− εTXE

)/εTXE
,

where εTXS
is the error associated with transmission strategy

S ∈ {R,E}. For instance, for the EH constraint γ = 8, the

relative performance difference is r ≈ 20% and r ≈ 58% for

P1 = 2 and P1 = 5, respectively. With more demanding EH

constraints there is little room for error minimization or rate

maximization, hence the performance gap gets smaller.

We now consider the MISO interference scenario with

n = 2, nt = 4, nr = ne = 1. Fig. 3 and Fig. 4 show the

error versus the EH constraint curves for (P1, P2) = (10, 10)
and (P1, P2) = (2, 18), respectively. We observe that as

expected, for all power budget pairs, error increases as the

EH requirements become more demanding. TDMA and TDMS

approaches exhibit significantly weak performance compared

to TXG and TXGD, especially for low to moderate EH

values. This effect is particularly prominent for the unbalanced

power budget case (Fig. 4). These observations confirm the

need for the design of novel transmission strategies. The

plots also illustrate that the joint design schemes TXG and
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Fig. 7: MMSE versus energy harvesting requirements. High

interference scenario.

TXGD perform substantially better than the independent de-

sign scheme TXIND. Comparing the performance of TXG

and TXGD for fixed transmission power budget, we observe

that significant gains can be obtained by adopting the hybrid

scheme. Comparing the results in Fig. 3 and Fig. 4 we observe

that it is possible to obtain lower error values when the power

budget pairs are more balanced, i.e. both of the users have

equal or close transmission power budgets. This is consistent

with the fact that channel conditions are symmetric and the

EH demands are equal.

We now consider the MIMO channel case with n =
2, nt = 4, nr = ne = 4. Fig. 5 and Fig. 6 show the error

versus the EH constraint curves for (P1, P2) = (10, 10) and

(P1, P2) = (2, 18), respectively. Compared to the previous

MISO scenarios, for all transmission strategies, it is observed

that it is possible to obtain lower values of error for a given

EH constraint. This performance improvement is consistent

with the higher number of degrees of freedom offered by

the multiple antennas at the receivers. Due to these extra

degrees of freedom, the transmitters can better shape their

transmissions so that the interference to the unintended infor-

mation receivers can be kept low. This also contributes to the

decreasing performance difference between TXG and TXGD

as the number of antennas increases; TXGD does not offer any

significant gains over TXG for nr = 4. The extra antennas at

the ERs also allow the receivers to harvest the energy in the

signals that can arrive at the receiver through these extra paths,

so higher values of energy can be harvested.

We study the effect of the level of cross-interference on

the trade-offs in Fig. 7. To quantify the level of cross-

interference, a scaling parameter µ is used where the cross-

channel matrices are scaled as µH12 and µH21. We set n = 2,

nt = 2, nr = ne = 1, (P1, P2) = (10, 10) and µ = 4. We

observe that TDMA can outperform both TXG and TXGD

and TDMS can outperform TXG. (Since there are no rank

constraints, here TDMA performance is the true performance

on the set Sta rather than a lower bound.) We note that the

superior performance of TDMA is not a characteristics specific

to the energy harvesting problem. Under heavy interference,

better MMSE values can be obtained by the TDMA approach

compared to the optimized signalling, even when there are no

EH constraints. This can be seen, for instance, by considering

the scalar channel case and letting the cross-link powers go to

infinity. On the other hand, TDMS cannot outperform TXGD.

This is an analytical property of TDMS and TXGD: Let
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Fig. 8: Convergence behavior of Algorithm 1.

TABLE I:

Average Number of Iterations for Algorithm 1

TXG TXGD

nr=ne=1, (P1, P2) = (10, 10) 5.14 15.45

nr=ne=1, (P1, P2) = (2, 18) 5.89 15.44

nr=ne=4, (P1, P2) = (10, 10) 74.92 75.58

nr=ne=4, (P1, P2) = (2, 18) 105.59 109.37

0 ≤ ts ≤ 1 be the fraction of time spent in energy transfer

in TDMS. Then any error value that is achievable by TDMS

using ts will be also achievable by TXGD by using ts fraction

of the power available for energy transfer with deterministic

signalling.

The convergence behavior of Algorithm 1 is illustrated in

Fig. 8. The MMSE versus iteration index curves are presented

for P1 = P2 = 10 for n = 2, nt = 4, nr = ne for TXG and

TXGD for γ = 50 and γ = 100, for nr = 1 and nr = 4,

respectively. For each case, curves for three different channel

realizations are plotted. In Table I, we also give the average

number of iterations for the scenarios presented in Fig. 3 –

Fig. 6, where the stopping tolerance is ǫ = 10−5ε0. The

convergence is observed to be pretty rapid, especially in the

nr = 1 scenario. In general, the EH constraints also affect the

number of iterations. For nr = 1, P1 =P2 = 10, TXG shows

no significant dependence on γ, whereas the average number

of iterations increases as γ increases for TXGD. For instance,

for TXGD approximately 8 and 17 iterations are needed on

average for γ = 20 and γ = 60. For nr=4, P1=P2=10, the

general behaviour of both schemes are the same; the average

number of iterations decreases as γ increases. For instance,

approximately 90 and 60 iterations are needed on average for

γ = 40 and γ = 160.

IX. CONCLUSIONS

We have considered the problem of linear precoder design

with the aim of minimizing the sum MMSE in MIMO

interference channels with energy harvesting constraints. In

the case where there is only one user, i.e. for the P2P

channel, the problem reduces to a convex problem under a

constraint on the transmit antennas. For this case, we have

provided a characterization of the optimum solutions. For the

general interference scenario, the problem leads to a non-

convex formulation for the solution of which we have proposed

an efficient numerical approach. We have also investigated a

hybrid signalling scheme, where the transmitters send super-

position of two signals: a deterministic signal optimized for

energy transfer and an information carrying signal optimized

for information and energy transfer. It is illustrated that hybrid

signalling offers significant gains over sole Gaussian signalling

when the number of antennas at the receivers are relatively

small.

APPENDIX A

PROOF OF LEMMA 5.1

Let us consider the inner optimization problem in (25)

obtained by fixing t, which is a SDP problem with six

constraints (other than positive semi-definiteness constraints).

By [28, Thm. 3.2], there exists an optimal solution which

satisfies rank(K̄∗
1 )

2 + rank(K̄∗
2 )

2 ≤ 6. Hence rank(K̄∗
i ) =

rank(K∗
i ) ≤ 2. Hence under the condition n ≥ 2, an

A∗
i ∈ C

nt×n satisfying Ki = A∗
iA

∗
i
† can be always formed.

(We note that the condition n ≥ 2 is merely a sufficient

condition that guarantees existence of an admissible Ai.) Such

a solution can be constructed using [27, Algorithm RED], [28,

Algorithm 1]. We finish the proof by noting that since this

above argument is true for an arbitrary t, it is also true for

an optimal t∗. We note that if the optimal solutions have rank

smaller than n, during linear precoding only rank(Ki) of the

data streams will be sent. This is similar to water-filling type

solutions for MMSE minimization under sole transmission

power constraints, see for instance [16] for further discussions.

APPENDIX B

PROOF OF THM. 6.1

The proof relies on considering the individual optimization

problems in (26) obtained by fixing A1 or A2, and the results

on semi-definite programming relaxations of QCQP problems

with one matrix variable. Let (A∗
1, A

∗
2, Z

∗
1 , Z

∗
2 ) be an optimal

solution of (30). Let us consider (26) with fixed A∗
2, Z

∗
2

min
A1

f1(A1) (46)

s.t. tr[A†
1H

E
i1

†
HE

i1A1] ≥ γ̄i, i = 1, 2

tr[A1A
†
1] ≤ P1,

where

f1(A1) = tr[A†
1C1A1]− 2α1Re[tr[A

†
1H

I
11

†
B†

1]],

C1 = α1H
I
11

†
B†

1B1H
I
11 + α2H

I
21

†
B†

2B2H
I
21

and γ̄i = γi − tr[HE
i2

†
HE

i2Z
∗
2 ], i = 1, 2. Hence for fixed A2,

(26) is a QCQP problem with a matrix variable and three

constraints.

We observe that (30) for fixed A∗
2, Z∗

2 can be alternatively

written in terms of the positive semi-definite variable S1

instead of A1, Z1. Hence (30) for fixed A2, Z2 is in fact

the SDP relaxation of (46). (One may refer to [27, 2.7] for

the general form of the SDP relaxation of a QCQP problem

with matrix variables.) By [27, Thm 2.2], (46) and its SDP

relaxation have the same optimal value if the relaxation is

solvable and the number of constraints is equal to or smaller

than 2n. Here the SDP relaxation of (46) is guaranteed to be

solvable, since the bi-variate relaxation (30) is assumed to be

solvable, and A∗
2, Z

∗
2 is an optimal solution. We observe that
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the dual of (30) (for fixed A∗
2) is strictly feasible since the

regularity condition in [27, 2.10] holds. (This is due to the fact

that the matrix associated with the power constraints, identity,

is positive definite.) Hence together with the feasibility of (46),

this implies solvability of SDP relaxation [27, Cor. 2.1].

One can utilize the same arguments for the optimization

over A2 for fixed A∗
1 and its relaxation. We also note that

the optimum value for (26) can be found by first optimizing

over one variable, and treating the other one fixed, and then

optimizing over the second variable. First part of Thm. 6.1

follows from these observations and the above arguments. For

the second part, we observe the following: An optimal solution

for (26) can be constructed from a solution of (30) using [27,

Algorithm RED] (or similarly [28, Algorithm 1]) on S1 and

S2 and by considering the sub-problems for fixed (A2, Z2)
and (A1, Z1). Due to [27, Lemma 2.1], desired solution for

Ai is given by the lower left nt × n matrix of the rank-

constrained Si. We note that by construction these algorithms

guarantee these sub-matrices satisfy the constraints of the

original problem and do not degrade the objective function.

APPENDIX C

PROOF OF THM. 7.1

The proof adopts the same arguments in the proof

of Thm. 6.1 in Appendix B. Here we highlight the

main differences. Let (30) be solvable, and V ∗ =
{A∗

1, A
∗
2, Z

∗
1 , Z

∗
2 , G

∗
1, G

∗
2} be an optimal solution. We consider

the following feasibility problem over G1 when the other

variables are kept fixed

min
G1�0

0 (47)

subject to tr[G†
1] ≤ P̄1 and JK

i (G1, 0) ≥ γ̄i, i = 1, 2. Here

γ̄1, γ̄2, and P̄1 are the modified values of the constraints found

by using the optimum values of the variables other than G∗
1,

i.e., V ∗\{G∗
1}. This is a homogeneous QCQP problem with

three constraints. We note that (47) is solvable, since (43)

is solvable. Hence by [28, Thm 3.2], [27, Thm 2.1], there

exists a solution for which rank(G1) ≤ 1. This solution can

be constructed by [27, Algorithm RED], [28, Algorithm 1].

By considering the sub-problems obtained by fixing the other

variables and utilizing Theorem 6.1, the result follows.
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