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Localized surface plasmon resonance in silver nanoparticles: Atomistic first-principles
time-dependent density-functional theory calculations
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We observe using ab initio methods that localized surface plasmon resonances in icosahedral silver
nanoparticles enter the asymptotic region already between diameters of 1 and 2 nm, converging close to the
classical quasistatic limit around 3.4 eV. We base the observation on time-dependent density-functional theory
simulations of the icosahedral silver clusters Ag55 (1.06 nm), Ag147 (1.60 nm), Ag309 (2.14 nm), and Ag561

(2.68 nm). The simulation method combines the adiabatic GLLB–SC exchange-correlation functional with real
time propagation in an atomic orbital basis set using the projector-augmented wave method. The method has been
implemented for the electron structure code GPAW within the scope of this work. We obtain good agreement
with experimental data and modeled results, including photoemission and plasmon resonance. Moreover, we can
extrapolate the ab initio results to the classical quasistatically modeled icosahedral clusters.
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I. INTRODUCTION

Localized surface plasmon resonances (LSPRs) of silver
nanoparticles (AgNPs) exhibit strong UV-visible absorption.
The LSPRs can be tuned by fabrication techniques [1],
or by functionalization [2], and they are sensitive to the
nanoparticles’ environment [3]. The sensitivity and tunability
of AgNPs can be utilized in sensing [4], surface-enhanced
spectroscopies [5], plasmon-enhanced chemistry [6], and
photovoltaic applications [7]. Much of the wide interest
in AgNPs originates from their role as building blocks of
nanophotonic devices, such as optical nanoantennas [8].
The ability to predict the relation between their structure
and operation is crucial for the applications. The optical
characteristics of large noble-metal NPs (>10 nm) are well
known, and their LSPRs can be simulated using classical
electromagnetic theory. For example, large spherical AgNPs
have a LSPR at 355 nm (3.5 eV), whereas icosahedral particles
are slightly redshifted and have broader absorption arising
from several LSPR modes that overlap closely in energy [9,10].
However, as the diameter of the NPs decreases, the LSPR
blueshifts with the frequency being inversely proportional
to the diameter [11] and, finally, the absorption spectrum
changes to a typical cluster spectrum characterized by several
individual transitions between quantized energy levels [12,13].
For diameters smaller than 10 nm, the sensitivity of the LSPRs
to the shape and surroundings of the AgNP becomes
important, as is reflected in the difficulty of interpretation of
experiments.

Previous theoretical studies on the LSPRs in AgNPs are lim-
ited to quantum mechanical calculations of small clusters [14]
and jellium models [15], or to classical electromagnetic theory
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for large NPs [9]. Between diameters of 1 and 5 nm, the
classical electromagnetic theory does not provide an adequate
description of the possible quantum effects as it is scale
invariant and therefore predicts no size dependence. Jellium
models ignore—or at best approximate [16]—the effects of
d electrons and atomic structure which are crucial to the
proper description of AgNPs. Ab initio methods are limited to
small clusters: Time-dependent [17] (TD) density-functional
theory [18,19] (DFT) has been used to model Ag55 and
Ag147 [14], as well as nanoshells up to Ag272 [20].

Typically in such studies one uses the adiabatic local density
approximation (ALDA) or the adiabatic generalized gradient
approximation (AGGA) as exchange-correlation (XC) func-
tionals, even though the LDA and GGA are known to predict a
too-high-lying d-electron band and therefore to severely over-
estimate the d-band screening [21]. This results in decreased
oscillator strength and lowered plasmonic frequency compared
to experimental results. Both experimental [22] and theoreti-
cal [23] works have confirmed that the position of the d band
strongly influences the plasmonic properties. Quantitative the-
ory must be based on a more accurate description of the d band.

A recent experimental study of Scholl et al. found quantum
effects influencing the optical properties of AgNPs with diame-
ters as large as 10 nm [24]. In particular, their electron-energy-
loss spectroscopic (EELS) measurements on NPs showed a
significant (0.5 eV) blueshift of the LSPR when the diameter
decreased from 7 nm to 2 nm. This disagrees with previous
experimental results for free-standing clusters [11,25], and
Haberland has suggested that the blueshift is not due to the
quantum effects but due either to the interaction of the LSPR
with the substrate or the residual ligand molecules [26]. This
controversy exemplifies that without tools that can simulate
the optical properties of NPs from molecular size up to the
classical limit, it is difficult to separate the quantum effects
from other factors.
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In this work, we present an ab initio theoretical analysis of
freestanding AgNPs up to a diameter of 2 nm, and show that it
is unlikely that the results of Scholl et al. correspond to free-
standing AgNPs. Using atomistic first-principles calculations
in the TDDFT framework, we are able to obtain macroscopic
LSPRs already at a diameter of 2 nm. Our calculations show
that the resonance shifts only by 0.2 eV above that. Our
results agree with the experimental cluster data for both
the smallest and the largest structures. Concurrently with
explaining the experimental findings, we show that accurate
treatment of interband (d-electron) excitations is crucial
for a reliable description of AgNP plasmonics. Therefore,
we recommend the adiabatic Gritsenko-van Leeuwen–van
Lenthe–Baerends—solid-correlation potential (GLLB-SC)
[27] for approximating the exchange and correlation effects
for the optical properties of noble metal NPs. The potential is
a modification of the GLLB-potential [28] to be better suited
for solids and surfaces and with added correlation.

In Sec. II we describe the details of our implementation
of linear combinations of atomic orbitals with time-dependent
density-functional theory (LCAO TDDFT), and elaborate the
relevance of the GLLBSC potential for the proper description
of plasmonics. In Sec. III we give basic background informa-
tion about the quantum mechanical and the electrodynamical
models. In Sec. IV we analyze the results obtained, and
compare them to experimental EELS and photoemission data.
In Sec. V we carefully benchmark the accuracy of our method.
In Sec. VI we summarize the results and discuss the relevance
of a proper Kohn-Sham eigenvalue description for accurate
absorption spectra in AgNPs.

II. METHODS

The main computational challenges in simulating the
photoabsorption spectrum of nanoplasmonic structures using
TDDFT are (1) the quality of the XC functional, especially
for the description of the silver d band, (2) the numerical
discretization scheme for the wave functions and the density,
which must be flexible enough to describe the LSPRs, and (3)
the method for optical properties, which must be fast, able to be
parallelized, and scale well with respect to system size. Each
of the challenges will be addressed in the following sections.

A. Time-dependent density-functional theory

Time-dependent density-functional theory is a well-
established tool for calculating electronic excitations. As in
DFT, the most crucial aspect of TDDFT is the exchange-
correlation potential, which is time dependent in this case. The
time-dependent Kohn-Sham (KS) equations for the electronic
orbitals �i are(−i∂t − 1

2∇2 + vKS[n(r,t)](r,t)
)
�i(r,t) = 0, (1)

where vKS is the Kohn-Sham potential, the time-dependent
density is given by

n(r,t) =
∑

i

fi |�i(r,t)|2, (2)

and fi are the occupation numbers of the orbitals.

In the general formalism, the exchange-correlation part
of the Kohn-Sham potential vXC depends causally on all
previous densities. In a practical and widely used adiabatic
approximation, the potential depends only on the instantaneous
density. We will use this approximation also in the case of the
GLLBSC potential, with one further modification, as discussed
in the next section.

B. Adiabatic GLLBSC potential

Adiabatic (semi)local-density approximations, such as the
ALDA and the AGGA, are applicable for nearly-free-electron
metals, but for noble metals the situation is different because
they overestimate the polarizability of d electrons. This is
due to their Kohn-Sham spectrum, since they predict a too
delocalized d band in addition to its being too shallow [21,29].
To overcome this problem we employ the adiabatic GLLBSC
potential [27,28] that includes the exchange-hole and cor-
relation potential of the Perdew-Burke-Ernzerhof functional
for solids and surfaces (PBEsol) [30], and is additionally
supplemented by a computationally efficient approximation
of the hole response part (see, e.g., Ref. [31]) of the exact-
exchange optimized effective potential [32].

The GLLBSC functional introduces an orbital-energy-
dependent localization of the exchange hole which reduces
self-interaction and yields better asymptotic behavior than
the LDA or GGA [27]. So far the GLLBSC functional
has been mostly applied for predicting semiconductor band
gaps [27,33], but recently Yan et al. showed that it also yields
good results for Ag surface plasmons because of the improved
d-band description [21]. We employ this finding, but extend it
further by applying the GLLBSC method also for the dynamic
response (in Ref. [21], the GLLBSC functional was used only
for the ground state whereas the linear response calculation
employed the ALDA).

We obtain an adiabatic GLLBSC approximation by
replacing the time-dependent response coefficients wi(t)
with their time-independent ground-state values wi(t = 0) =
Kg

√
εf − εi in the GLLBSC potential [see Eqs. (16) and (22)

of Ref. [27]]:

vGLLBSC(r) = vxhole(r) +
∑

i

wi(t = 0)
|ψi(r)|2

n(r)
+ vc(r),

(3)

where vxhole(r) is the Coulomb potential due to the ex-
change hole obtained from the exchange hole of PBEsol
evaluated at the instantaneous density, vc(r) is the semilocal
PBEsol correlation potential, and the remaining term is an
approximation to the response of the Coulomb potential
of the exchange-correlation hole to density perturbations.
We choose wi(t) = wi(t = 0), since it is the simplest ob-
tainable approximation and computationally attractive. It is
plausible that this approximation is accurate in our simulations
because we apply a small perturbation which will not signifi-
cantly change the density, and thus not induce large oscillations
of wi(t). In addition, our preliminary adiabatic time-dependent
Krieger-Li Iafrate (TDKLI) [34] calculations indicate that
the effect of wi(t) compared to wi(t = 0) in the systems
considered here is negligible in the linear response regime.
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It is difficult to estimate the effect of this approximation,
or the effect of nonadiabatic exchange-correlation effects
exactly. However, there is much evidence from historical work
that already the random phase approximation (pure Coulomb
kernel) without any XC kernel is sufficient to describe plas-
monics [35]. Therefore, the adiabatic GLLBSC approximation
should be a sufficient description for AgNP plasmonics.

C. Real time propagation with basis sets

The wave functions are represented as linear combinations
of atomic orbitals together with the projector-augmented
wave method [36] (PAW) as implemented in the GPAW pack-
age [37,38]. The smooth pseudo-wave-functions are written as
a linear combination

�̃i(r,t) =
∑

μ

Cμi(t)φ̃μ(r − Rμ) (4)

of atom-centered orbitals φ̃μ(r − Rμ) with expansion coeffi-
cients Cμi(t). The PAW projection operator [36] T̂ can be
used to reconstruct the all-electron functions as �i(r,t) =
T̂ �̃i(r,t). The PAW form of the time-dependent Kohn-Sham
equations (1) is[

T̂ †
(

−i
∂

∂t

)
T̂ + T̂ †ĤKS(t)T̂

]
�̃i(r,t) = 0, (5)

where ĤKS(t) is the Kohn-Sham Hamiltonian for noninteract-
ing electrons.

Substituting Eq. (4) into Eq. (5) and multiplying with∫
drφ̃μ(r) from the left, the equation can be cast into a matrix

form

iS
dC(t)

dt
= H(t)C(t), (6)

with the overlap matrix Sμν = 〈φ̃μ|T̂ †T̂ |φ̃ν〉 and the Hamilto-
nian matrix Hμν(t) = 〈φ̃μ|T̂ †ĤKS(t)T̂ |φ̃ν〉. C(t) is the matrix
of LCAO expansion coefficients {Cμi(t)} defined in Eq. (4).
The overlaps Sμν and the projection operator T̂ are constant
because the nuclei are assumed to be stationary.

In this approach, the time-dependent density and potential
are expressed on a uniform grid, and the matrix elements of
the potential are evaluated on this grid [38]. The smoothness
of these quantities allows for a very coarse grid spacing, and
the LCAO-PAW pseudo-wave-functions form a small, local,
and efficient representation suitable for systems with hundreds
of atoms [39].

We calculate the optical absorption spectrum of AgNPs
using the time-propagation (TP) approach to TDDFT [40,41].
The greatest advantage of TP-TDDFT is the scaling of
the computational requirements with respect to system size
compared to other methods, such as Casida’s approach [42].
Despite its better scaling, the large prefactor has so far limited
the applicability of the TP-TDDFT approach.

Following the TP-TDDFT procedure for the optical re-
sponse [43], we here excite the system by an instantaneous
electric field E(r,t) = E0êttδ(t), where the field strength E0 =
0.0001 a.u. is sufficiently small to avoid nonlinear effects,
and the direction êtt of the electric field is chosen to be
from tip to tip, i.e., along the fivefold symmetry axis of the
icosahedron. The optical absorption spectrum is obtained by

TABLE I. Performance of the LCAO-TDDFT code for time
propagation of AgNPs for 1000 time steps of duration 10 as.

System Cores Wall hours CPU hours Electrons Basis functions

Ag55 64 4.5 288 605 990
Ag147 64 18.0 1152 1617 2646
Ag309 256 28.5 7296 3399 5562
Ag561 512 42.0 21504 6171 10098

Fourier-transforming the induced dipole moment along the
excitation axis [40].

After the initial kick, the propagation is performed with a
reliable and numerically stable semi-implicit Crank-Nicolson
method. In brief, the method can be described as follows. In
the prediction step, we solve(

S + i
dt

2
H(t)

)
C′(t + dt) =

(
S − i

dt

2
H(t)

)
C(t), (7)

for C′(t + dt), where S and H(t) are the basis set repre-
sentations of the PAW overlap and Hamiltonian operator,
respectively. The operations are parallel with matrices be-
ing distributed using the SCALAPACK [44] and BLACS [45]
packages. After obtaining the initial approximation for the
wave functions, the predict-correct method is applied. We then
obtain an estimate for the Kohn-Sham Hamiltonian (including
the XC potential) at the middle of the time step,

H(t + dt/2) ≈ [H(t) + H′(t + dt)]/2, (8)

where H′(t + dt) is evaluated from C′(t + dt), and then
propagate the wave function to t + dt in the correction step,
which solves (

S + i
dt

2
H(t + dt/2)

)
C(t + dt)

=
(

S − i
dt

2
H(t + dt/2)

)
C(t), (9)

for C(t + dt). This results in O(N3) scaling with respect to
the number of electrons in the system, to be compared to the
GPAW’s Casida implementation of O(N5) or the real-space
time propagations O(N2). However, the constant factor in the
grid propagation is so large that our scheme performs one to
three orders of magnitude faster on systems of several thousand
electrons. The timings for propagation are indicated in Table I.

III. MODEL

Both classical and quantum mechanical models are em-
ployed in this work. The quantum mechanical model is
atomistic and ab initio, relying only on DFT and TDDFT
calculations. The plasmonic peak in our quantum mechanical
model depends on both shape and size effects. The clas-
sical model is based on empirical dielectric functions and
can model only shape effects. However, in the large-particle
limit, the two methods should agree. Therefore, we can test the
performance of our computational model also by extrapolating
to the macroscopic Mie scattering limit.

In both models we consider icosahedral clusters. Charged
Ag55 has been experimentally identified as icosahedral [46],
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and we choose to keep the icosahedral geometry to avoid shape
effects even though the minimum-energy structure is expected
to change for larger clusters [47]. The difference between
icosahedron and sphere in the macroscopic limit is well
understood [9,10] and does not influence our conclusions. The
atomic structure of icosahedral Ag55 used in our calculations
includes a central atom with two icosahedral Mackay layers.
We create clusters up to Ag561 by adding Mackay layers one
by one, using a bond length of 3.0 Å. The ideal icosahedral
clusters are then relaxed with the LDA functional. In these
calculations the grid spacing is 0.2 Å, and the size of the cubic
cell is chosen so that all atoms are at least 5.0 Å away from the
cell boundary. We use the default double-ζ polarized (DZP)
basis set provided with GPAW for the geometry relaxations [38].

TDDFT simulations are performed for 30 fs using time
steps of 10 as. These calculations use a coarse grid spacing
of 0.3 Å and an expanded atomic basis set; we will further
discuss these parameters in Sec. V. All spectra are calculated
using a Gaussian broadening of 0.16 eV FWHM.

In the following we consider classical electrodynamic
approximations. First, the photoabsorption of a spherical NP
of volume V is given by the quasistatic limit of Mie theory:

S(ω) = 3V ω

2π2
Im

[
ε(ω) − 1

ε(ω) + 2

]
. (10)

By using the experimentally determined permittivity ε(ω) for
silver presented in Ref. [48], Eq. (10) yields a strong LSPR at
3.5 eV. For more complicated shapes, such as icosahedra, one
has to employ computational electrodynamics. In this work we
use a quasistatic (QS) version [49] of the widely used finite-
difference time-domain (FDTD) method, as implemented in
GPAW [50]. As in photoabsorption calculations with TDDFT,
in the QSFDTD method one perturbs the system by an
external field and analyses the time-dependent dipole moment.
The frequency-dependent dielectric permittivity of classical
material is approximated using a set of Lorentzians. To obtain
an accurate representation of the dielectric function of Ag
especially near the LSPR, we start from the parametrization
presented in Ref. [49] which uses nine Lorentzians, add
one extra Lorentzian, and refit the dielectric function against
the experimental data [48] with weight function w(ω) =
exp[−(ω/eV − 3.5)2].

The QSFDTD calculations are performed using a regular
grid of 96 × 96 × 96 points. Since this method is size invariant,
only a particle shape needs to be specified. We thus specify
the shape as an icosahedron with a length of 40 points
along its axis, securing adequate surrounding vacuum. The
material is represented by a mask which assigns a value of
either 1 (material) or 0 (vacuum) to each point. To ensure
high numerical accuracy of the finite-difference operators, we
smooth the edge of the icosahedron artificially over two to
three grid points along the faces so that points along the faces
are effectively a mixture of vacuum and silver.

IV. RESULTS

Figure 1(a) shows the GLLB-SC TDDFT absorption
spectra of icosahedral Ag55, Ag147, Ag309, and Ag561 clusters
divided by the number of atoms in the system. For comparison,
we present classical QSFDTD results for icosahedral (dashed
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FIG. 1. (Color online) (a) Photoabsorption spectra for AgNPs
normalized by the number of atoms. The spectra for icosahedral
Ag55, Ag147, Ag309, and Ag561 are calculated with adiabatic GLLB-SC
TDDFT. For comparison, the PBE-calculated spectrum of Ag147 is
also shown. Classical QSFDTD spectra are shown for spherical (QS
Sph) and icosahedral (QS Ico) AgNPs, calculated with the empirical
dielectric function. These spectra are normalized using the empirical
silver density and thus the peak strengths are directly comparable. (b)
LSPR energy (circles) of icosahedral AgNPs as a function of inverse
particle diameter calculated with GLLB-SC TDDFT. Solid black and
red lines correspond to the experimental data for spherical NPs [11]
and a linear fit to our results, respectively. Dashed horizontal lines
represent classical limits (QSFDTD) for spherical (QS Sph) (3.52 eV)
and icosahedral (QS Ico) (3.43 eV) NPs.

red) and spherical (dashed black) shapes. These correspond
to the limit of large clusters as given by the quasistatic
approximation. Figure 1(b) shows excitation energies of
absorption peaks with respect to the inverse diameter of the
cluster. For NPs larger than Ag55, the excitation energies of
the most intense peak as a function of inverse diameter lie
on a line (solid red) which extrapolates to 3.35 eV in the
large-particle limit, very close to the mesoscopic limit for
icosahedral AgNPs at 3.43 eV (dashed red) obtained from
the QSFDTD calculation. The agreement of the quasistatic
mesoscopic limit with the quantum mechanical asymptotic
limit suggests that the quantum mechanical model correctly
describes the shape effect. For comparison, a linear fit to
experimental data (solid black) is shown for spherical AgNPs
in an argon matrix [11] and also the mesoscopic limit for
spherical NPs from the QSFDTD calculation (dashed black).
The experimental values are shifted to the vacuum LSPR
value of 3.5 eV to account for the Ar matrix as suggested by
Haberland [26]. The experimental and the simulated data show
remarkable agreement, both in the asymptotic limit and in the
size dispersion. The differences can be attributed to slightly
different AgNP shape and structure. These observations
suggest that the quantum mechanical model describes the
finite-size effect in the AgNP plasmonics well.

In Fig. 1(a), in addition to the LSPR energy, the area of
the plasmon peak per particle (oscillator strength) also agrees
well with the classical electrodynamics simulation (dashed
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FIG. 2. (Color online) Calculated induced electron densities of
LSPRs for (a) Ag55, (b) Ag147, (c) Ag309, and (d) Ag561. The Ag sp

band forms a localized surface plasmon on the surface of the cluster,
whereas the d electrons polarize in the opposite direction.

red). These observations strongly indicate that (i) the adiabatic
GLLB-SC method provides realistic d-band screening in Ag
nanostructures, and (ii) the macroscopic size range is reached
for AgNPs of diameter ∼2 nm. In Fig. 1, for comparison, we
have included the spectrum of Ag147 calculated with the PBE
functional [51]. It is important that the previous conclusions
cannot be drawn from adiabatic PBE calculations because
they underestimate the LSPR energy by ∼0.5 eV, and greatly
underestimate the intensity, as seen on Fig. 1(a).

Previous works [52,53] have demonstrated the importance
of visual interpretation for characterizing the LSPRs in
molecules and NPs. The induced electron densities of LSPRs
in Ag55, Ag147, Ag309, and Ag561 are shown in Fig. 2. The
exact quantity shown is the transition density at the plasmon
frequency ω of each AgNP, i.e., a sine transform

ñ(r,ω) =
∫ ∞

0
dt [n(r,t) − n(r,0)]e−σ 2t2/2 sin ωt (11)

of the charge-density fluctuation. The damping is given by
σFWHM = 2

√
2 ln 2 σ = 0.16 eV. We observe that the Ag sp

band near the Fermi energy forms a localized surface plasmon
mainly at the two opposing sides of the icosahedron, whereas
d electrons polarize in the opposite direction and thus create
a counteracting screening field at the central region. This
screening is overestimated by the PBE functional, causing the
drop in plasmon energy and intensity. The figure corresponds
to the classical picture of plasmons as a charge cloud oscillating
between the opposite sides of the AgNP. The visual inspection
thus supports our finding that a macroscopic plasmon forms in
clusters of this size range.

Figure 3 shows the experimental photoemission data from
two sources [54,55] on Ag55 compared to sp- and d-band
projected local densities of states of the quantum mechanical
clusters. The d-band position of GLLB-SC matches well with
the experimental data, as has also been observed earlier [21].
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FIG. 3. (Color online) Density of states of icosahedral AgNPs
calculated with the GLLB-SC functional, projected separately for the
d band (red) and sp band (blue). The black curves are experimental
data [54,55], shifted to align the Fermi levels. The charge state of
Ag55 has an insignificant effect on the quantitative agreement.

In addition, the superatom shell description is in quantitative
agreement with photoemission data [54].

V. ACCURACY OF THE METHOD

The PAW data set used to represent Ag includes the 5s

and 4d orbitals as valence states, and is based on the default
parameters of GPAW for the 11-electron Ag setup (e.g., the PBE
Ag setup from GPAW setups v0.8.7929) but generated with the
GLLB-SC functional.

In GPAW, one commonly uses a DZP numerical basis set
to represent the wave functions [38]. This basis set includes
the atomic Kohn-Sham orbital for each occupied valence state,
one extra radial function for each atomic KS orbital generated
using the standard “split-valence” scheme in GPAW, plus a
polarization function which for transition metals is p type. For
the details of the construction of the basis sets, see Ref. [38].
This basis set is designed for ground-state calculations and
would not be expected to (and indeed does not) accurately
predict properties that depend on unoccupied states. To better
represent the effect of the unoccupied 5p orbitals, we replace
the standard p-type polarization function with the actual
Kohn-Sham orbital of the 5p state plus its usual split-valence
function.

Outside of this, we use the specific generation param-
eters [38] of 0.07 eV confinement energy to localize the
KS orbitals and a tail norm of 0.2 to define the range of
the split-valence functions. These latter parameters we have
optimized to provide an accurate density of states (DOS) in
Ag55 as compared to an accurate real-space grid calculation,
but this optimization has very little effect compared to the
inclusion of the diffuse 5p valence orbital. A comparison of
DOSs is presented in Fig. 4. We observe that without the
diffuse 5p valence orbital the basis set is not able to reproduce
the correct DOSs accurately, particularly for high energies.

115431-5



M. KUISMA et al. PHYSICAL REVIEW B 91, 115431 (2015)
D

O
S 

/ a
to

m

(a) Ag55

GRID LCAO optimized LCAO def. DZP LCAO def. DZ

−4 −3 −2 −1 0 1 2 3 4
Energy (eV)

(b) Ag147

FIG. 4. (Color online) The density of states of (a) the Ag55 cluster
and (b) the Ag147 cluster calculated with different LCAO basis sets
as well as the grid mode.

Figure 5 presents the photoabsorption spectrum of the
Ag147 cluster calculated with different basis sets and on a
real-space grid. As in the DOS comparison, we note that
the enhanced basis yields significantly better agreement with
the grid mode than the default basis sets. In comparison to the
real-space calculation, the enhanced LCAO basis reproduces
the spectrum within ∼0.1 eV and ∼5% accuracy for peak
energy and intensity, respectively. This approach yields a
transferable basis set that can be expected to describe both
the DOS and the optical response of larger clusters with good
accuracy. To obtain further improvement in accuracy, more
elaborate approaches can be used to enhance the basis set [56].

To obtain good convergence with respect to the vacuum
size, it is essential not to use zero boundary conditions for
solving the Hartree potential of the Poisson equation. In the
current work, we employ a multipole moment expansion [57]
in order to obtain the correct boundary values of the Hartree
potential. This allows us to scale down the required amount of
vacuum from 15 Å to 5 Å and obtain significant speedup.
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FIG. 5. (Color online) The photoabsorption spectrum of the
Ag147 cluster calculated with different LCAO basis sets and the grid
mode.

As indicated by Table I, our method achieves good parallel
scaling in the weak sense, i.e., the computational time can be
kept within reasonable limits by increasing the number of CPU
cores as the system size increases.

VI. CONCLUSIONS

We have established and carefully benchmarked a real-
time propagation method using atomic basis sets to obtain
accurate plasmonics as demonstrated here for icosahedral
silver clusters. The implementation is part of the free open-
source GPAW package. We have shown that the eigenvalue
spectrum of the GLLB-SC potential matches the available
experimental photoemission data for icosahedral silver clusters
and that the method provides an accurate description of the
plasmonic response in TDDFT calculations.

The observation that only the LSPR of Ag55 does not fit the
asymptotic line in Fig. 1(b) suggests that the macroscopic
regime is reached already at Ag147. However, comparison
of the spectrum of Ag147 with the larger clusters shows
that the shape of the LSPR peak deviates from that of the
larger clusters. These quantum effects disappear for Ag309
and larger clusters. This threshold size for asymptotic LSPR
behavior is remarkably small and agrees with experimental
observations [11,26] as well as with simulations of monolayer-
protected Au clusters [53].

The impact of this study is threefold. First, we show
using ab initio simulations that the LSPR frequencies and
intensities in icosahedral AgNPs enter an asymptotic region
already around the diameter of 2 nm. The optical response
converges close to the classical limit of 3.43 eV for icosahedral
AgNPs. Our simulations are in good agreement with the
experimental data, and the conclusion is further supported by
visual examination and analysis of the DOSs. The presented
results thus set a benchmark for the plasmonics of AgNPs,
and explain the disparity between the recent EELS results
and previous cluster experiments [24,26]. Second, the results
show that the adiabatic GLLB-SC functional provides an
accurate description of d-band screening in Ag nanostructures
with computational effort that is comparable to that of the
ALDA and AGGA. The final point of the study—with
probably the greatest impact in the long run—is the efficiency
of the combination of TP TDDFT, LCAO, and the PAW
method. The method is not limited to pure Ag nanostructures.
Our preliminary results show that it is also applicable to
intermetallic nanostructures, such as Au-Ag core-shell NPs,
as well as to nanostructures with molecular parts, e.g., ligand-
protected AuNPs [53] and metallic nanoantennas connected
by molecular tunnel junctions [2].

Altogether the combination of the adiabatic GLLB-SC, the
LCAO-PAW with extended basis, and the time-propagation
methods allows for accurate simulations of LSPRs in noble-
metal nanostructures towards macroscopic sizes.
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