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Propagation of acoustic edge waves in graphene under quantum Hall effect

A. Vikstr€oma)

Department of Applied Physics, Chalmers University of Technology, Kemigården 1, 412 96 G€oteborg, Sweden
(Submitted September 23, 2014)

Fiz. Nizk. Temp. 41, 381–388 (April 2015)

We consider a graphene sheet with a zigzag edge subject to a perpendicular magnetic field and

investigate the propagation of in-plane acoustic edge waves. In particular it is shown that

propagation is significantly blocked for certain frequencies defined by the resonant absorption due

to electronic-acoustic interaction. We study absorption of acoustic energy as a function of magnetic

field and find that, for a finite gate voltage and fixed acoustic frequency, tuning the magnetic field

may bring the system through a number of electronic resonances. We suggest that the strong

interaction between the acoustic and electronic edge states in graphene may generate significant

nonlinear effects leading to the existence of acoustic solitons in such systems. VC 2015
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4916074]

The discovery of grapheme,1 an ultra-pure 2D crystal

membrane of remarkable promise,2 has in just the past few

years led to the rapid growth of a new field of research, unit-

ing and challenging scientists from research backgrounds as

diverse as the capabilities of the material itself. In addition to

its astounding material properties, the very existence of a true

2D crystal both requires and inspires new ways of thinking.

It is well known that a 3D continuous medium supports

acoustic waves localized to the surface.3 Such surface waves

have been used to probe the electronic properties of samples,4

e.g., the fractional quantum Hall effect of 2D electron gasses

in semiconductor heterostructures,5,6 topological insulators7,8

and, more recently, graphene.9 In past schemes the surface

wave direction of localization was normal to the 2D electron

gas plane so that the electrons experienced no localization of

acoustic energy. However, the isolation of single-layer gra-

phene,1 a flexible 2D membrane, suggests the existence of

acoustic edge waves, a 2D analog of the 3D surface waves.

Recent studies have shown such edge-localized vibrational

motion in graphene to consist of both in-plane and flexural

modes, both decaying into the 2D “bulk.”10 At the same

time, a magnetic field applied perpendicularily to the sheet

would induce current-carrying electronic states localized to

the same graphene edge on the order of the magnetic length,

lB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�h=jeBj

p
� 26 nm =

ffiffiffiffiffiffiffiffiffi
B½T�

p
ðB½T� is the dimensionless

field strength in Tesla).11–17 In this paper we investigate the

interaction between electronic quantum Hall effect edge

states and localized acoustic edge waves, specifically low-

amplitude in-plane Rayleigh waves,3 while flexural modes

will be neglected.

To be concrete, we consider a 2D graphene sheet with a

stress-free zigzag edge at y ¼ 0, directed along the x axis,

see Fig. 1. A transverse magnetic field, B ¼ –jBjez, is then

applied to the sheet (ex;y;z are unit vectors), bringing the sam-

ple into the quantum Hall effect regime. The sheet is treated

as a continuous medium and the width of the sample is taken

to be large enough for the electronic and acoustic edge states

to decay completely across the sample; it is then enough to

consider only one edge. The sample length L is assumed to

be long enough to allow for acoustic wave propagation in

the x direction.

Since the graphene edge, which is normal to –e and

located at y ¼ 0, is stress-free, the elastic boundary condi-

tions are

rjyðx; 0Þ ¼ 0; j ¼ x; y; (1)

where rij (x,y) is the usual 2D stress tensor.3 Since the

Rayleigh waves are pseudo-1D, they can be specified by the

wave vector x-component q alone, which will be referred to

as the wave number. Standard techniques3 give the two-

component displacement field uðqÞðx; yÞ for an in-plane

Rayleigh wave as

uðqÞðx; y; tÞ ¼ 2u0
f ðqÞx ðyÞ cosðqx� xtÞ

sgnðqÞf ðqÞx ðyÞ sinðqx� xtÞ

� �
; (2)

where

f ðqÞx ðyÞ ¼ e�kljqjy � Cxe�kljqjy (3)

and

f ðqÞy ðyÞ ¼ �kle
�kljqjy þ Cye�ktjqjy: (4)

The scalar prefactor u0 is the amplitude, and the dimension-

less constants are

FIG. 1. A schematic picture of a continuous (graphene) sheet with an edge

along the x axis and an applied perpendicular magnetic field (purple). The

electronic states (red) may be either localized Landau orbits in the bulk or

dispersive states near the edge. Along the edge there are propagating acous-

tic (Rayleigh) edge waves given by a 2D displacement field (blue, amplitude

exaggerated).
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kl ¼ 0:81; kt ¼ 0:46;

Cx ¼ 0:61; Cy ¼ 1:3; (5)

and depend only on the ratio of the transverse and longitudi-

nal sound velocities in graphene, St=Sl, or, equivalently, on

the Poisson ratio. The sound velocities are taken to be st

¼1.4 � 104m/s and sl ¼ 2:1� 104 m/s.18,19 The dispersion

relation is linear

xðqÞ ¼ sRjqj; (6)

with Rayleigh-wave sound velocity sR ¼ 1:2� 104 m/s.

The electronic subsystem is described by the standard

effective-model grapheme Hamiltonian

Hel ¼ vFðrxp̂x þ sryp̂yÞ; (7)

where vF¼ 1.0 � 106 m/s is the Fermi velocity of graphene,

valley index s¼ þ1 (–1) for the spectral valley around the

K-point (K0-point), the rs are the sublattice-space Pauli mat-

rices16,17,20 and the sublattice pseudospinor upon which the

Hamiltonian acts is defined by ws ðx; yÞðws
Aðx; yÞ;

sws
Bðx; yÞÞ

T
. The transverse magnetic field is represented by

a vector potential in the Landau gauge, AB ¼ ðBy; 0ÞT , and

then included in the Hamiltonian of Eq. (7) through the mini-

mal coupling p! pþ aA (the electron charge is –e < 0).

In an infinite bulk system the electronic energies form

Landau levels21–23

En ¼ sgnðnÞE1

ffiffiffiffiffiffi
jnj

p
; n ¼ 0;61;62; :::

E1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�hvFl�1

B /
ffiffiffiffiffiffi
jBj

p
;

q
(8)

and the electronic wave functions are localized and centered

around yc ¼ �kl2Bðk ¼ px= �h being the electron wave num-

ber), corresponding to closed Landau orbits, see Fig. 1. This

simple picture is modified by the introduction of an edge.

In the considered system the edge at y ¼ 0 is a zigzag

edge of B-atoms, leading to the electronic boundary

condition24

ws
Aðx; 0Þ ¼ 0: (9)

Since the zigzag boundary condition does not mix valleys

the K- and K0� points can be considered separately.

The edge induces a positive (negative) dispersion in the

electron-like (hole-like) Landau levels as k increases and the

wave function center yc/� k moves toward and over the

edge,11 pressing the oscillator wave functions against the edge

and turning them into edge-localized current-carrying states.

For a classical, intuitive picture of this effect, see Fig. 1.

The dispersion can be calculated by generalizing the

Landau-level index n to a continuous analogue, � ¼ ðE=E1Þ2,

and describing the wave functions with (Whittaker’s) parabolic

cylinder functions D�ðzÞ, which reduce to the wave functions

for the bulk electronic states for integer � but allow for non-

integer � solutions between the bulk Landau levels. The

spectrum is then calculated from the boundary condition of

Eq. (9).12–15 The dimensionless energy E=E1 � ~E is schemati-

cally plotted against the dimensionless wave number klB � k̂
in Fig. 2 for both the K- and K0-points. The energy band

stemming from Landau level n will be referred to as “edge

band n”. When k̂ ¼ klB ¼ 0; yc ¼ 0 and the wave function is

centered on the edge.

As seen in Fig. 2, the zeroth Landau level remains dis-

persionless for all ~k in the K0 -point spectrum, whereas it is

seemingly split in two edge bands, one electron-like and one

hole-like, in the K-point spectrum. This can be explained by

extra degeneracies introduced by topological edge states; the

peculiar nature of the n ¼ 0 Landau level have been studied

in other papers;14,15,25,26 for the purpose of this paper, the

schematic spectra in Fig. 2 will suffice.

The electronic pseudospinor wave functions are given in

Appendix A for reference. There, scaled physical coordi-

nates ~xð~yÞ � x=lBðy=lBÞ are introduced, which will be

employed below when considering the absorption.

The standard first-order-in-strain Hamiltonian for the

electron-strain interaction in graphene is given by27

Hs
intðuðx; y; tÞÞ ¼ g1ðuxx þ uyyÞI

þ g2ð�sðuxx � uyyÞrx þ 2uxyryÞ; (10)

where uij is the standard strain tensor. The diagonal elements

are the scalar deformation potential, with coupling constant

g1�10 eV, and the off-diagonal elements are usually imag-

ined as a strain-induced pseudo-vector-potential, and their

coupling constant is g2�10 eV. Since the valley separation

is jK�K0j � a�1, with a being the lattice constant, interac-

tion with the acoustic Rayleigh waves will not mix K and K0

if the acoustic wave number q� a�1, which must hold for

the continuous-media model to be valid. Therefore all

FIG. 2. A schematic picture of the electronic spectrum around the points K
(a) and K0 (b). The scaled energy ~E ¼ E=E1 is plotted against the scaled

wave number ~k ¼ klB (energy bands in red). The leftmost low-~k states are

bulk states and their spectrum consists of discrete Landau levels. The disper-

sive states are edge states and here share the label n with their bulk

counterparts.
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electronic transitions induced by the acoustic waves are

intravalley and the K- and K0-point spectra can still be con-

sidered separately using s ¼ 61.

Inserting Eqs. (2), (3), and (4) into Eq. (10) yields the

Hamiltonian for an the electronic interaction with the acous-

tic Rayleigh waves as

Hs
intðuðqÞðx; y; tÞÞ ¼ u0eiqx�ixtðiqÞfg1ðT1Ie�kljqjy

þ g2ð½�sTx;l
2 rx þ i sgn ðqÞTy

2ry�e�kljqjy

þ ½sTx;t
2 rx � sgnðqÞTy

2ry�e�ktjqjyÞg þ H:c:;

(11)

where the constants are

T1 ¼ 0:34; Ty
2 ¼ 1:6; Tx;l

2 ¼ 1:7; Tx;t
2 ¼ 1:2: (12)

Considering the scaled spectra for the K- and K0-points

in Fig. 2, we have, for a finite gate voltage VG, that the scaled

Fermi energy is

~E
F � EF

E1

¼ a
VG V½ �ffiffiffiffiffiffiffiffiffi

B T½ �
p ; (13)

where VG [V] is the gate voltage in volts and the proportion-

ality factor is

a ¼
ffiffiffi
e
p

vF
ffiffiffiffiffi
2�h
p V=T1=2 � 1:4: (14)

This means the effect of tuning VG and/or B is to simply

shift the scaled Fermi level in the scaled spectrum. Doing so

alters the number of dispersive energy bands crossing the

Fermi level. If

j ~En�1j < j ~E
Fj < j ~Enj; (15)

where ~En refers to the scaled energy of bulk Landau level n
(see Eq. (8)), there will be n edge bands (n� 1 edge bands)

crossing the Fermi level in the K-spectrum (K0-spectrum).

These crossings are the quantized conduction channels of the

quantum Hall effect theory and the absolute values in

Eq. (15) correspond to the electron–hole symmetry of the

spectrum. The dispersionless level in the K0-spectrum never

crosses the Fermi level and is therefore assumed never to be

involved in transitions.

To analyze the possible electronic transitions we neglect

back-scattering due to the assumed low amplitude of the

acoustic wave and consider the transition rate between

levels, thereby introducing conservation laws. The transition

rate Wm n, for an electronic jump from edge band n to edge

band m due to interaction with an acoustic wave with scaled

wave number qlB � ~q is given by the Fermi golden rule

Wm;n ¼
2p
�h

X
~kn

ð
d ~Emd ~En þ ~ER � ~Em

� �
d~knþ~q;~km

� q Emð ÞjKs
~km;~q;~kn

j2fFD Enð Þ 1� fFD Emð Þð Þ: (16)

Here, d~knþ~q;~km
Ks

~km;q;~kn
is the matrix element of a transition

from ~kn to ~km, induced by an acoustic wave with wave num-

ber ~q. It is defined by

d~knþ~q;~km
Ks

~km;~q;~kn
¼ l2

B

ð ð
ws;~km

†

v Hs
intðuðqÞÞws;~kn

v d~xd~y; (17)

where the interaction is given by Eq. (11) (the harmonic time

dependence is accounted for by the energy conservation), the

electronic wave functions are given in Appendix A and the

integration surface is the whole sheet in terms of ð~x; ~yÞ. The

continuous level index is � ¼ ðE=E1Þ2 as before, fFDðEðkÞÞ is

the Fermi–Dirac distribution function, qðEmÞ is the density of

final states, ~kn is the scaled wave number for an electronic

state in edge band n corresponding to energy ~En, and the

scaled acoustic dispersion is given by, using Eq. (6)

~ERð~qÞ ¼ ~sRj~qj; (18)

with dimensionless speed of sound

~sR �
sRffiffiffiffiffiffiffi
2vF
p : (19)

The energy conservation and the Fermi–Dirac factors

confine the energy region of absorption to the vicinity of the

Fermi energy, En � EF � Em, and thus imply that the ener-

gies and wave numbers may be taken at the Fermi level, e.g.,
~kn ! ~k

F

n . Armed with this knowledge, the picture can be

simplified by linearizing the spectrum, swapping each

curved edge band n for a linear band n with velocity equal to

the Fermi velocity vn of the band, see Fig. 3. Then the linear-

ized dimensionless dispersion of band n is

~Enð~knÞ ¼ ~vnð~kn � kF
n Þ þ ~E

F
; (20)

FIG. 3. In the K-point spectrum of Fig. 2 the Fermi energy ~E
F
(horizontal

grey line) is set by a gate voltage to lie between, say, bulk Landau level 1

and Landau level 2, thus giving the spectrum two Fermi crossing points

(green circles), at ~k
F

1 and ~k
F

0 , for edge band 1 and 0, respectively. Since tran-

sitions occur only near the Fermi level, the spectrum can be linearized, result-

ing in an effective model with two linear bands crossing the Fermi level at

points ~k
F

1 and ~k
F

0 (see magnified inset). The resonant frequency is then given

by the wave number separation at the Fermi level D~k
F

0;1 ¼ j~k
F

0 � ~k
F

1 j. The

picture is schematic.
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where the dimensionless velocity of the band is defined anal-

ogously to Eq. (19)

~vn �
vnffiffiffiffiffiffiffi
2vF
p ; (21)

and ~sR � ~vn:
The above arguments together with energy and momen-

tum conservation restrict the number of allowed transitions

by imposing the requirement that

~q � ~k
F

m � ~k
F

n � D~k
F

m;n; (22)

i.e., the acoustic wave number ~q must roughly match the
~k-separation of the two Fermi crossing points. Transitions

occur in the vicinity of the Fermi level, so for the purpose of

this calculation it is sufficient to take ~q ¼ D~k
F

m;n. The same

above arguments also imply that there are no allowed intra-

level transitions, n 6¼ m.

The number of band-to-band transitions NtðnÞ for n
Fermi level crossings is then

Nt nð Þ ¼
n!

2 n� 2ð Þ!
if n 	 2

0 if n < 2;

8><
>: (23)

and it must be remembered that transitions can occur in both

the K- and K0-spectra.

Since the spacing D~k
F

nþ1;n between neighboring Fermi

crossings is approximately equal for the same energy, i.e.,

D~k
F

n;nþj � jD~k
F

m;mþ1, it is potentially useful to group the tran-

sitions in terms of how many bands they jump, i.e., a jump

from band n to band n – j is a j-jump (the minus sign is due

to Fermi crossings of higher-n bands having lower k). For

the situation with n Fermi crossings in one of the valley

spectra, the number of j-jumps is

Nt;jðnÞ ¼
n� j if n > 2;

0 if n 
 2:

�
(24)

Summing Nt,j for all j < n yields the total number of transi-

tions in the spectrum, Nt. Since all j-jumps have approxi-

mately equal D~k
F

m;n, i.e., absorbed acoustic frequency, they

might appear as a multi-peak in the absorption spectrum: Nt,j

peaks close together.

The absorbed acoustic frequencies sl�1
B

~k
F

m;n can be found

by using the electronic boundary conditions to find the Fermi

level crossings ~k
F

n , see Appendix B. These frequencies are on

the order of sl�1
B �

ffiffiffiffiffiffiffiffiffi
B½T�

p
� 1011s�1 and depend only on the

scaled Fermi energy ~E
F. The periods of these acoustic fre-

quencies must be much shorter than the acoustic decay time

due to interaction with the electronic subsystem for the Fermi

golden rule to remain valid. For the linearized spectrum, Eq.

(20), standard periodic boundary conditions in the x direction

yields the density of final states per unit length qðEmÞ as

q Emð Þ ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p�hvF~vm

p : (25)

As seen in Fig. 2, the density of states decreases with edge

localization, i.e., increasing ~k increases ~vn. This effect

decreases the strength of the absorption, but is not sufficient

to counter the interaction since for Fermi levels in the range

of the single-digit Landau levels, the edge bands typically

have ~vn < 1.

Since transitions occur near the Fermi level, the matrix

element of transition in Eq. (17) is evaluated for ~q ¼ D~km;n

and ~En ¼ ~Em ¼ ~E
F

and is then

Ks
~k

F

m;~k
F

n

¼ iD~k
F

m;n

u0

lB

� �
g1F1 þ g2F2ð Þ; (26)

where the dimensionless transition-dependent integrals have

been separated into a scalar potential contribution F1 and

pseudo-vector-potential contribution F2; both given in

Appendix C. Normalization of the electronic wave functions

causes these integrals to be at the most unity.

Inserting the above into Eq. (16), the final expression for

the absorption rate per unit length is

Wm;n ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

2�h2vF
p
� � D~k

F

m;n

� 	2

j~vm–~vnj
u0

lB

� �2

jg1F1 þ g2F2j2: (27)

The first factor �1.6 � 1024 eV 2s�1m�1 and consists of

general constants, and the second factor consists of parame-

ters specific to the transition in question. The third is the am-

plitude dependence, with the amplitude scaled by the

magnetic length. By assumption, the amplitude is low, caus-

ing this factor to be very small. The final factor is the coupling

coefficients and the transition integrals, which are less than

one by normalization, meaning that the order of magnitude is

set by the coupling. Inserting the definition of the magnetic

length yields Wm;n / B. This direct proportionality to the field

comes from the x-derivatives in the strain tensor yielding a

factor ðiqÞ and the fact that absorption occurs only for the

acoustic wave numbers q which match the electro-magnetic

spectrum and thus are of the order of inverse magnetic length.

The total energy of the acoustic wave is28

Eac ¼ qgrxðqÞ2
ð ð

s

juðqÞðx; y; 0Þj2dxdy; (28)

where qgr¼7.6 � 10�7 kg/m2 is the surface mass density of

graphene.19 In this case

ð ð
s

ju qð Þ x; y; 0ð Þj2dxdy ¼ 2Lu2
0

jqjN2
ac

; (29)

and integration yields

Nac ¼ 1:2; (30)

whereas the energy lost to each electronic transition is sim-

ply �hxðqÞ. The inverse acoustic decay time sD due to inter-

action with the electronic subsystem is then given by

1

sD
¼

N2
ac D~k

F

m;n

� 	2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�hvFj~vm–~vjqgrl

2
BsR

q
0
B@

1
CAjg1F1 þ g2F2j2

¼
2:0 � 107B T½ � D~k

F

m;n

� 	2

s � eV2½ �j~vm–~vnj
jg1F1 þ g2F2j2: (31)
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As an example, consider the simplest case. The gate

voltage is adjusted in relation the magnetic field so that

~E
F ¼

~E1 þ ~E2

2
; (32)

i.e., the Fermi level is now in the middle of the gap between

Landau level 1 and 2. According to Eq. (15), there will be 2

bands crossing the Fermi level in the K-point spectrum (1 in

the K0-spectrum) and by Eq. (23) there will, trivially, be 1

possible transition (0 possible transitions). Equation (24)

specifies that this one transition will be between neighboring

edge bands. Solving Eq. (B1) numerically returns ~k
F

1 ¼
�1:29 and ~k

F

0¼ 0.36, the points where the bands intersect

the Fermi level. This leads to D~k
F

0;1 ¼ 1.65, which will be

the acoustic wave number absorbed in the transition from

edge band 1 to edge band 0. The fixed ~E
F

means that the

generalized level index is, according to Eq. (B3), �F ¼
ðð1þ

ffiffiffi
2
p
Þ=2Þ2 � 1:4571 and the band velocities are esti-

mated to ~v0 � 0.6 and ~v1 � 0:3. Using the wave functions of

Eq. (A2) with parameters �F and ~k
F

1 ð~k
F

0 Þ for edge band 1 (0)

as well as the acoustic wave number D~k
F

0;1 allows for numer-

ical evaluation of the integrals in Appendix C. The interac-

tion integrals in Eqs. (C1) and (C2) yield F1 ¼ –0.0546 and

F2
s ¼ –0.0918. Inserting all known values into Eq. (31) the

resulting inverse decay time is

1

sD
¼ 1:8 � 108B T½ �

s � eV2½ � j0:0546g1 þ 0:0918g2j2: (33)

With the standard values27 of g1� 20 eV and g2� 2 eV, the

decay time becomes g2 � 3:4 ns=B½T�, which corresponds to

a characteristic decay length of 41 lm /B [T]. For reasonable

magnetic fields, the decay time is much longer than the

acoustic period �
ffiffiffiffiffiffiffiffiffi
B½T�

p
10�11 s, thus validating our use of

the Fermi golden rule. The prerequisite for this transition, Eq.

(32), together with Eqs. (13) and (14), means that the transi-

tion requires –VG [V]/
ffiffiffiffiffiffiffiffiffi
B½T�

p
� 1. In addition, the acoustic

frequency must be such that its scaled wave-number, which

is dependent on the magnetic field, fulfills ~q � D~k
F ¼ 1:65.

In order to study the electronic absorption as a function

of magnetic field, we performed a numerical simulation and

plotted the inverse acoustic decay time of Eq. (31) vs

1=
ffiffiffiffiffiffiffiffiffi
B½T�

p
with a fixed gate voltage VG¼–50 mV for different

acoustic frequencies x ¼ 2pfac. By decreasing the magnetic

field, the effective Fermi level is shifted upward in the scaled

spectrum of Fig. 2; simultaneously, the acoustic wave num-

ber is continuously being rescaled according to ~q ¼ qlB.

Valleys K and K0 are treated separately, but both contribute

to the total absorption. In the numerical model we introduced

a finite electronic relaxation time sel � 10–10 s and a small

temperature T ¼ 5 K.

The resulting absorption plots are shown in Fig. 4 and

the corresponding resonant transitions are plotted in the

scaled electronic spectrum in Fig. 5. As shown, for a given

acoustic frequency propagation may be blocked for several

values of the magnetic field due to multiple resonant transi-

tions, but for a given pair of edge bands n and m, resonance

occurs only for a certain continuous interval of B. Generally,

it can be shown that transitions n to m occur when

D~k
F

mn < ~q <
~vm

~vn
D~k

F

mn: (34)

FIG. 4. Inverse acoustic decay time in seconds sD½s��1
vs inverse square

root of magnetic field in Tesla 1=
ffiffiffi
B
p
½T� for gate voltage VG ¼ –50 mV and

temperature T ¼ 5 K, calculated for acoustic ordinary frequencies (a) fac

¼ 0.85� 1011 s–1, (b) fac ¼ 1:25� 1011s�1, (c) fac ¼ 1:65� 1011s�1, (d)

fac ¼ 2:20� 1011s�1. Absorption due to electronic transitions in the

K-valley (K0-valley) is given by the solid green (dashed red) line. The total

absorption, summed over both valleys, is given by the dotted black line

(partially obscured).
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In conclusion, we have demonstrated that a stress-free

graphene edge supports propagating vibrational in-plane

edge modes in the form of 2D Rayleigh waves, and that

interaction with such waves can cause electronic transitions

between the electronic edge states induced by a perpendicu-

lar magnetic field. Since momentum conservation requires

the wavelength of the acoustic waves to be on the scale of

the magnetic length for transitions to occur, the magnetic

field strength enters into the matrix element as a simple pro-

portionality through the strain tensor. Finally we studied the

acoustic decay time as a function of magnetic field strength

for several acoustic frequencies, and found that for a given

acoustic frequency the medium can become non-transparent

for several values of the magnetic field, corresponding to dif-

ferent resonant transitions. The results could be verified by,

e.g., tuning the magnetic field for a fixed gate voltage while

measuring the decay of propagating acoustic edge waves.

We suggest, based on comparison with similar systems,29

that this edge-localized interaction could result in nonlinear

phenomena such as acoustic solitons propagating along the

edge. Such solitons will be the subject of a future paper.

We would like to thank L. Gorelik for valuable

discussion, E. Cojocaru,30 J. Schwizer,31 and B. Shoel-son32

for their Matlab scripts and the Swedish Research Council

(VR) for funding.

APPENDIX A: ELECTRONIC WAVE FUNCTIONS

The electronic pseudospinor wave functions, labeled by

valley index s, wave number ~k, and continuous level index

�, are12–15

ws;~k
� x; yð Þ ¼

Ns;~k
�ffiffiffiffiffiffiffi
LlB

p ei~k~x/s;~k
� ~yð Þ; (A1)

where s labels the valley (K or K0) as before. The y-

dependent factor is

/þ1;~k
� ð~yÞ ¼

D�ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð~k þ ~yÞ

q
Þ

ffiffiffi
�
p

D��1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð~k þ ~y

q
ÞÞ

0
B@

1
CA; (A2)

for the K-point and

/�1;~k
� ð~yÞ ¼

ffiffiffi
�
p

D��1ð
ffiffiffi
2
p
ð~k þ ~yÞÞ

D�ð
ffiffiffi
2
p
ð~k þ ~yÞÞ

� �
; (A3)

for the K0-point. The factors Ns;k
� =

ffiffiffiffiffiffiffi
LlB

p
are normalization

constants, see Eq. (C3).

APPENDIX B: FERMI LEVEL CROSSINGS

The edge boundary condition of Eq. (9) ultimately gives

an equation for the electronic spectrum. At the Fermi energy

EF this equation reads for the K-point

D�Fð
ffiffiffi
2
p

~k
FÞ ¼ 0; (B1)

and for the K0-point

D�F�1ð
ffiffiffi
2
p

~k
FÞ ¼ 0 (B2)

where

�F ¼ ð ~EFÞ2: (B3)

Solving Eqs. (B1) and (B2) for ~k
F

gives the Fermi cross-

ing points ~k
F

n for the given ~E
F
. Identifying them with the dif-

ferent bands allows for calculation of D~k
F

m;n and thus the

absorbed acoustic frequencies. In general D~k
F

m;n � 1.

FIG. 5. The transitions corresponding to the absorption peaks in Fig. 4

shown as black lines in the scaled energy spectrum. The K-valley (K0-valley)

spectrum is given by the solid green (dashed red) lines and the transition

line opacity is proportional to the (relative) inverse decay time of the associ-

ated transition. The figures are for the acoustic ordinary frequencies (a)

fac ¼ 0:85� 1011s�1 (b) fac ¼ 1:25� 1011s�1, (c) fac ¼ 1:65� 1011s�1 and

(d) fac ¼ 2:20� 1011s�1, with gate voltage VG ¼ –50 mV and temperature

T¼ 5 K.
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APPENDIX C: ABSORPTION INTEGRALS

Here the dimensionless transition integrals that enter

into the transition matrix element are given. Since the inte-

grands decay into the bulk, they are easily evaluated using a

cutoff. The integral giving the scalar-potential contribution

to the absorption is (normalization constants have been

moved to the left hand side for brevity)

F1

N
s;~k

F

m�
�F N

s;~k
F

n

�F

¼ T1

ð1

0

/s;~k
F

m†

�F ~yð Þ/s;~k
F

n

�F ~yð Þe�kljD~k
F

m;nj~yd~y; (C1)

and the pseudo-vector-potential contribution integral is

F2

N
s;~k

F

m�
�F N

s;~k
F

n

�F

¼s
ð1

0

/s;~k
F

m†

�F ~yð Þrx/
s;~k

F

n

�F ~yð Þ

� �Tx;l
2 e�kljD~k

F

m;nj~y þ Tx;t
2 e�ktjD~k

F

m;nj~y
� 	

d~y

þ i sgn D~k
F

m;n

� 	
Ty

2

ð1

0

/s;~k
F

m†

�F ~yð Þry/
s;~k

F

n

�F ~yð Þ

� e�kljD~k
F

m;nj~y � e�ktjD~k
F

m;nj~y
� 	

d~y: (C2)

The numerical normalization constants are given by




Ns;~k
F

n

�F




2 ¼ 1ð1

0




/s;~k
F

n

�F ~yð Þ



2d~y

: (C3)
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