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We study a class of quantum spin systems that include the S = 1
2 Heisenberg and

XY-models and prove that two-point correlations exhibit exponential decay in the
presence of a transverse magnetic field. The field is not necessarily constant, it may
be random, and it points in the same direction. Our proof is entirely probabilistic
and it relies on a random loop representations of the correlation functions, on sto-
chastic domination and on first-passage percolation. C 2015 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4918675]

I. SETTING AND RESULTS

It has been known since the work of Tóth18 and Aizenman and Nachtergaele1 that certain
quantum spin systems may be represented in terms of a collection of random loops. The two repre-
sentations were recently combined so as to be included in a larger family of models.19 We study
this family with the addition of positive transverse fields and use the loop representation to prove
that two-point correlations decay exponentially. Some results can alternatively be obtained as a
consequence of the Lee–Yang theorem (as we remark below). However, our method of proof, which
uses techniques from modern probability theory, is new and interesting in itself.

This work is one of the growing number of contributions to the understanding of quantum
spin systems using probabilistic graphical representations. This includes the recent work by Craw-
ford, Ng, and Starr7 on emptiness formation in the XXZ model as well as work on the transverse
field Ising model.3–6 We note, in particular, that Crawford and Ioffe6 establish exponential decay
of truncated correlations in the presence of an external field, using an argument which has some
similarities with our method.

We consider the following class of quantum spin systems. Let L be an even integer and
Λ = {− 1

2 L, . . . , 1
2 L}d ⊂ Zd. Write EΛ for the set of nearest neighbors in Λ. The Hilbert space is

HΛ = ⊗x∈ΛC
2 and the Hamiltonian is

HΛ,h = −2


xy∈EΛ

�
S1
xS1

y + (2u − 1)S2
xS2

y + S3
xS3

y − 1
4

�
−

x∈Λ

hxS3
x. (1.1)

Here, Si
x are the usual spin operators that satisfy the commutation relations [S1

x,S
2
y] = iδx, yS3

x

and further relations obtained by cyclic permutation of the indices 1, 2, and 3. The parameters
h = (hx)x∈Λ represent external magnetic fields; we assume that they take values in [0,∞). The
parameter u belongs to [0,1] and well-known models are obtained for certain values. The main
examples are the S = 1

2 Heisenberg and XY models in transverse fields, obtained by taking u = 1 for
the Heisenberg ferromagnet, u = 0 for the Heisenberg anti-ferromagnet (up to unitary equivalence),
and u = 1

2 for the XY model.
We actually discuss a more general setting allowing S ∈ 1

2N that is compatible with the
loop representation (the case S = 1

2 is physically the most relevant). Let S ∈ 1
2N, and let us consider
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the Hilbert spaceHΛ = ⊗x∈ΛC
2S+1 and the Hamiltonian

HΛ,h = −


xy∈EΛ

�
uTxy + (1 − u)Qxy − 1

�
−

x∈Λ

hxS3
x. (1.2)

In order to define the operators T and Q that appear above, let |a⟩, a = −S,−S + 1, . . . ,S denote a
basis of C2S+1 of eigenvectors for S3

x. Then S3
x |a⟩x = a|a⟩x. The transposition operator Txy acts on

C2S+1 ⊗ C2S+1 as follows:

Txy |a⟩x ⊗ |b⟩y = |b⟩x ⊗ |a⟩y, (1.3)

and the operator Qxy has matrix elements

⟨a|x ⊗ ⟨b|yQxy |c⟩x ⊗ |d⟩y = δa,bδc,d. (1.4)

In the case S = 1
2 , one can check that the Hamiltonian of (1.2) is equal to that of (1.1).

For suitable observables M , the finite-volume states are defined by

⟨M⟩Λ,h = Tr Me−βHΛ,h

Z(β,Λ,h) , where Z(β,Λ,h) = Tr e−βHΛ,h,

and where β > 0 denotes the inverse temperature.
Our results consist of two theorems. In Theorem 1.1, we assume a uniform lower bound on all

hxs, and we obtain a bound for the transverse correlations that is uniform in the size of the system
and in β.

Theorem 1.1. Assume that hx ≥ α, for all x ∈ Λ and some α > 0. Then there exist constants
C,c > 0 (they depend on S,d,α, but not on L, β) such that

0 < ⟨S1
0S1

x⟩Λ,h < Ce−c∥x∥

for all x ∈ Λ.

Let us remark that similar results follow from the Lee–Yang theorem, as observed by Lebowitz
and Penrose.14 Let sh = (shx)x∈Λ with s ∈ C. It can be shown that the two point function ⟨S1

0S1
x⟩Λ,sh

is analytic in s, when Re s , 0. Assume that h is such that the thermodynamic limit ⟨S1
0S1

x⟩sh exists.
The inverse correlation length

ξ−1(s) = − lim sup
∥x∥→∞

1
∥x∥ log

�⟨S1
0S1

x⟩sh
�

(1.5)

is therefore subharmonic. A cluster expansion shows that ξ−1(s) > 0, when Re s is large; then it
never vanishes in the domain of analyticity. We refer to Refs. 8, 14, and 16 for more information.

Our proof of Theorem 1.1 is new and very different. We use the random loop representation
of Refs. 1, 18, and 19 in order to obtain a suitable expression for the two-point function. It can
be bounded by the two-point function of a model of dependent percolation. Stochastic domination
allows to remove dependence, and our theorem follows from results about first-passage percolation.
This method of proof seems more robust.

The second result deals with a quenched disordered system, where the hxs are independent and
identically distributed (i.i.d.) random variables taking values in [0,∞). Let E denote expectation
with respect to the magnetic fields h. The transverse two-point function is defined as

⟨⟨ S1
0S1

x ⟩⟩Λ = E
( 1

Z(β,Λ,h)Tr S1
0S1

xe−βHΛ,h
)
. (1.6)

We allow a small fraction of magnetic fields to be zero. The Lee–Yang method does not seem
to apply any more. Our result is not uniform in β; the situation of the ground state remains to be
clarified.

Theorem 1.2. For every S,d, β, there exists ε > 0 such that, if P(hx < α) < ε for some α > 0,
there exist C,c > 0 (they depend on S,d, β,α, but not on L) such that

0 < ⟨⟨S1
0S1

x⟩⟩Λ ≤ Ce−c∥x∥ ,
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for all x ∈ Λ.

Straightforward modifications of our argument also give the same result for the Schwinger
functions ⟨S1

0e−(β−t)HΛ,hS1
xe−tHΛ,h⟩Λ,h and ⟨⟨S1

0e−(β−t)HΛ,hS1
xe−tHΛ,h⟩⟩Λ. Under the assumptions of The-

orem 1.1, we can show that for all t ∈ [0, β],
⟨S1

0e−(β−t)HΛS1
xe−tHΛ,h⟩Λ,h < Ce−c(∥x∥+t) . (1.7)

The constants C,c are positive and they do not depend on L, β, t, x. Under the assumptions of Theo-
rem 1.2, we obtain a similar upper bound on ⟨⟨S1

0e−(β−t)HΛS1
xe−tHΛ,h⟩⟩Λ (in this case, the constants are

not uniform in β).
We explain the random loop representation in Sec. II and use it to prove Theorems 1.1 and 1.2

in Sec. III.

II. RANDOM LOOPS

We now describe an ensemble of random loops. Its relevance for the spin system is explained in
Theorem 2.1.

The loops live in Λ × [0, β), and we regard the interval [0, β) as a circle of length β. Points in
Λ × {0} are identified with the corresponding elements of Λ and denoted 0, x, etc. We consider two
independent Poisson processes in the set EΛ × [0, β). The first process has intensity u and is called
the process of crosses; the second process has intensity 1 − u and is called the process of double
bars (or bars for short). The joint realization of bars and crosses is denoted by ω and its distribution
is denoted by ρ. Note that ω, taken as a whole, is a realization of a Poisson process of intensity 1.

The realization ω decomposes Λ × [0, β) into a collection of disjoint loops. Informally, these
loops are obtained as follows. One starts at a point (x, t) ∈ Λ × [0, β) and proceeds “upwards” (or
“downwards”) until hitting the endpoint of a bar or a cross. One then moves to the other endpoint
and proceeds in the same direction if it was a cross, alternatively changes direction if it was a bar.
The loop is completed when one returns to the starting point (x, t). We write L(ω) for the collection
of loops defined by ω. For more details, and illustrations, see Refs. 10 and 19.

Let us define the relevant loop activities. Given γ ∈ L(ω), let ℓy(γ) denote the vertical length of
γ at the site y (that is, the length of γ ∩ ({y} × [0, β))). Notice the following identity that holds for
all realizations ω: 

γ∈L(ω)


y∈Λ

ℓy(γ) = β |Λ|. (2.1)

If there is a loop γ0,x ∈ L(ω) that contains both 0 and x, we let ℓ+y(γ0,x) denote the vertical length
at y of the component of the loop that links (0,0+) with (x,0±); that is, the component obtained
by starting in the “upwards” direction at (0,0) and continuing until the first visit to (x,0). We also
let ℓ−y(γ0,x) denote the length at y of the other component that links (0,0−) with (x,0±); note that
ℓy(γ0,x) = ℓ+y(γ0,x) + ℓ−y(γ0,x). Define

zh(γ) =
S

a=−S
exp
(
a

y

hyℓy(γ)
)
,

z̃h(γ0,x) = 1
4

S−1
a=−S

�
S(S + 1) − a(a + 1)�


exp
((a + 1)


y

hyℓ
+
y(γ0,x) + a


y

hyℓ
−
y(γ0,x)

)
+ exp

(
a

y

hyℓ
+
y(γ0,x) + (a + 1)


y

hyℓ
−
y(γ0,x)

)
.

(2.2)

(Here, and in all similar sums, the index a increases in steps of size 1.) We write 10↔x(ω) for the
indicator that 0 and x belong to the same loop γ0,x ∈ L(ω).

Theorem 2.1. The partition function and the two-point function have the following representa-
tions:
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(a) Z(β,Λ,h) =


ρ(dω)


γ∈L(ω)
zh(γ),

(b) ⟨S1
0S1

x⟩Λ,h = 1
Z(β,Λ,h)


ρ(dω) 10↔x(ω) z̃h(γ0x)


γ∈L(ω)\{γ0x}

zh(γ).

This theorem builds on Ref. 19, Theorems 3.2 and 3.3, and is proved at the end of this section.
Notice that (b) shows that the two-point function is positive.

The following corollary “essentially” shows exponential decay—but it takes a surprising effort
in order to turn it into a rigorous proof. We write Eh for expectation with respect to the probability
measure with density proportional to


γ∈L(ω) zh(γ) with respect to ρ.

Corollary 2.2. We have the estimate

⟨S1
0S1

x⟩Λ,h ≤ 1
3 S(S + 1)(2S + 1) Eh

(
10↔x(ω) e−


y hyℓ

+
y(γ0,x)

)
.

Proof. By Theorem 2.1, we have ⟨S1
0S1

x⟩Λ,h = Eh
�
10↔x(ω)z̃h(γ0,x)/zh(γ0,x)�. The loop activity

zh satisfies the lower bound

zh(γ) ≥ eS


y hyℓy(γ) . (2.3)

As for z̃h, we have the upper bound

z̃h(γ0,x) ≤ 1
4

(
e


y hy(Sℓ+y(γ0,x)+(S−1)ℓ−y(γ0,x)) + e


y hy((S−1)ℓ+y(γ0,x)+Sℓ−y(γ0,x))
)

·
S−1
a=−S

((S(S + 1) − a(a + 1)). (2.4)

One can check that the latter sum is equal to 2
3 S(S + 1)(2S + 1). Thus,

z̃h(γ0,x) ≤ 1
6 S(S + 1)(2S + 1)eSy hyℓy(γ0,x)

(
e−


y hyℓ
+
y(γ0,x) + e−


y hyℓ

−
y(γ0,x)

)
. (2.5)

The corollary follows. �

Proof of Theorem 2.1. By the Trotter product formula, with ρ the Poisson point process described
above, we have

e−βHΛ,h = lim
N→∞

(
1 − 1

N
|E | + 1

N


xy∈E

�
uTxy + (1 − u)Qxy

�)
e

1
N


x hxS

3
x

 βN

=


ρ(dω)e(β−tn)x hxS

3
x Rxnyne(tn−tn−1)x hxS

3
x . . . e(t2−t1)


x hxS

3
x Rx1y1e

t1


x hxS
3
x .

(2.6)

Here, (ti; xi, yi) are the times and locations of the outcomes of the realization ω, ordered so that
0 < t1 < · · · < tn < β. The operator Rxiyi is equal to Txiyi if the outcome (ti; xi, yi) is a cross; it is
equal to Qxiyi if the outcome is a double bar.

Inserting the expansion of unity 1l =


(σx) ⊗x |σx⟩⟨σx |, with σx ∈ {−S, . . . ,S}, one obtains

Z(β,Λ,h) = Tr e−βHΛ,h =


ρ(dω)


σ∈Σ(ω)
exp

 β

0
dt

x

hxσx(t)

. (2.7)

The last sum is over “space-time spin configurations” σ = (σx : x ∈ Λ) that are compatible with ω.
That is, σ is a (periodic) function [0, β) → {−S,−S + 1, . . . ,S}Λ and satisfies

• σ(t) is constant except possibly at times t1, . . . , tn and
• at those times, we have ⟨σ(ti+)|Rxiyi |σ(ti−)⟩ = 1.

It is not hard to check that σ ∈ Σ(ω) if and only if the spin values are constant on each loop of L(ω).
The sum over space-time spin configurations factorizes according to the loops, and we get the claim
(a) of Theorem 2.1.
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For the correlation function, let Σ0,x(ω) be the set of space-time configurations [0, β) →
{−S, . . . ,S}Λ that satisfy

• σ(t) is constant except possibly at times 0, t1, . . . , tn;
• at times t1, . . . , tn, we have ⟨σ(ti+)|Rxiyi |σ(ti−)⟩ = 1; and
• at time 0, we have

σy(0+) =



σy(0−), if y , 0, x
σy(0−) ± 1, if y = 0 or x

. (2.8)

Since ⟨a|S1|b⟩ = 1
2


S(S + 1) − ab if a = b ± 1, and 0 otherwise, we have

Tr S1
0S1

xe−βHΛ,h = 1
4


ρ(dω)10↔x(ω)


σ∈Σ0.x(ω)

�
S(S + 1) − σ0(0−)σ0(0+)�e

 β
0 dt


y hyσy(t) .

(2.9)

Extracting the contribution of the loop γ0,x and using the definition of z̃h(γ0,x), one obtains Theo-
rem 2.1 (b). �

The step from Corollary 2.2 to Theorems 1.1 and 1.2 is intuitively clear: on the event 0↔ x,
we expect γ0,x to have length proportional to ∥x∥, so the right-hand-side in Corollary 2.2 should
decay exponentially in ∥x∥. The difficulty is that ℓ+y(γ0,x) denotes vertical length. For any ε > 0,
it is possible for a loop to reach from 0 to x, yet still has total vertical length at most ε. This
seems unlikely when ε is small, but obtaining a quantitative statement requires dealing with the
dependencies under Eh.

III. PROOFS

We begin by noting that both ⟨S1
0S1

x⟩Λ,h and ⟨⟨S1
0S1

x⟩⟩Λ can be written in the general form
E(⟨S1

0S1
x⟩Λ,h), where now E is a measure governing the vector h under which the hx are independent

(but not necessarily identically distributed). Indeed, ⟨⟨S1
0S1

x⟩⟩Λ is obtained by letting the hx be identi-
cally distributed, whereas ⟨S1

0S1
x⟩Λ,h is obtained when E is the degenerate measure under which the

hx are almost surely constant. In either case, by Corollary 2.2, the two-point function is bounded by
the constant times

E
(
Eh
(

10↔x(ω) e−


y hyℓ
+
y(γ0,x)

))
. (3.1)

We focus on bounding quantity (3.1), and at the end, deduce Theorem 1.1 and 1.2 by specializing to
the specific choices for E.

Let δ > 0 be such that N = β/δ is an integer. In what follows, we no longer need to distinguish
between bars and crosses and we use the term bridges to refer collectively to the two. We write
Γ = Γ(Λ, β, δ) for the collection of intervals of the form,

I = {x} × [kδ, (k + 1)δ), for x ∈ Λ and 0 ≤ k ≤ N − 1.

We view Γ as a graph, where intervals {x} × [kδ, (k + 1)δ) and {y} × [ℓδ, (ℓ + 1)δ) are said to be
adjacent if either

1. x y ∈ EΛ and k = ℓ or
2. x = y and k = ℓ ± 1 (viewed modulo N).

A path π in Γ is as usual a sequence of elements of Γ which are consecutively adjacent in this sense,
and any such path thus corresponds to a sequence of “neighbouring” intervals.

Fix α > 0, to be chosen later, and let I = {x} × [kδ, (k + 1)δ) ∈ Γ. Based on the random out-
comes h and ω (i.e., the collection of bridges), we will declare the interval I to be

• h-good if hx ≥ α,
• ω-good if there is no bridge with an endpoint in I, and
• good if it is both h-good and ω-good.
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An interval which is not declared good is declared bad. We encode the collection of good and bad
intervals as an element η = (η(i) : i ∈ Γ) of {0,1}Γ, where 0 denotes bad and 1 denotes good. This
classification may be seen as a (dependent) percolation process in Γ.

It is convenient to use the fact that Zd is bipartite: we may write Zd = A ∪ B, where

A = {(x1, . . . , xd) ∈ Zd : x1 + · · · + xd ≡ 0 (mod 2)}
and B = Zd \ A. We refer to A and B as the even and odd sublattices, respectively. Bipartite-
ness refers to the fact that a vertex in A is only adjacent to vertices in B, and vice versa. If
I = {x} × [kδ, (k + 1)δ) is an interval belonging to Γ, we commit a small abuse of notation and
write I ∈ A if x ∈ A. We also simply write x for the unique interval {x} × [0, δ) of Γ containing
(x,0).

We define the passage time TΛ(x) from 0 to x in Λ as

TΛ(x) = min
π:0→ x


i∈π∩A

η(i), (3.2)

where the minimum is over all paths π in Γ from {0} × [0, δ) to {x} × [0, δ). Thus, TΛ(x) is the
minimal number of good intervals, indexed by the even sublattice, on a path from 0 to x. This is a
slight variation of the standard definition of a (point-to-point) passage time, where the sum would
usually go over all points on π. Summing over the even sublattice A only is a convenient way to
avoid dependencies, as will be explained below.

Let ϕ > 0 be arbitrary, and assume that the event 0↔ x occurs (so γ0,x is well-defined). If, in
addition, TΛ(x) ≥ ϕ∥x∥, then any path in Γ from 0 to x contains at least ϕ∥x∥ good intervals. In
particular, it follows that


y ℓ
+
y(γ0,x) ≥ αδ(ϕ∥x∥ − 1). (We subtract 1 for the last interval, which

may contribute less than αδ even if it is good.) Thus, we have that

E
(
Eh
(

10↔x(ω) e−


y hyℓ
+
y(γ0,x)

))
≤ e−αδ(ϕ∥x∥−1) + E[Ph(TΛ(x) < ϕ∥x∥)]. (3.3)

The theorems follow if we show that the last term is exponentially small in ∥x∥.
To establish this, we first simplify the probability measure by using the theory of stochastic

domination. We begin by defining a partial ordering. We say that ω ≤ ω̃ if one may obtain ω from
ω̃ by removing some bridges (in other words, the support of ω is a subset of the support of ω̃).
For any fixed h, the event A = {TΛ(x) < ϕ∥x∥} is increasing in the ordering on ω, i.e., if ω ≤ ω̃
and ω ∈ A then necessarily ω̃ ∈ A. This allows us to use results on stochastic domination for point
processes9,17 to bound Ph(A).

The following result lets us get rid of the complicated density


γ∈L(ω) zh(γ) at the cost of
increasing the intensity of bridges. Write θ = 2S + 1.

Lemma 3.1. Let P′ denote the probability measure under which the bridges form a Poisson
process of intensity θ. Then for any realization of h, we have that

Ph(TΛ(x) < ϕ∥x∥) ≤ P′(TΛ(x) < ϕ∥x∥).
Before turning to the proof, we note that P′may alternatively be described as follows. For each

pair x y ∈ EΛ, the process of bridges on {x y} × [0, β) is (under P′) a Poisson process with intensity
θ. For all other pairs x ′y ′ ∈ EΛ, the processes of bridges on {x y} × [0, β) and on {x ′y ′} × [0, β) are
independent.

Proof. If γ1, γ2 are disjoint, measurable subsets of Λ × [0, β), a calculation shows that

1
θ
≤ zh(γ1 ∪ γ2)

zh(γ1)zh(γ2) ≤ 1 ≤ θ. (3.4)

If ω̃ is obtained from ω by adding a bridge, then either some loop γ ∈ L(ω) decomposes into two
loops γ1, γ2, or two loops γ1, γ2 ∈ L(ω) are joined to form a larger loop γ, or the loops stay the
same. In either case, (3.4) shows that

γ̃∈L(ω̃) zh(γ̃)
γ∈L(ω) zh(γ) ≤ θ =

θ |ω̃ |

θ |ω | .
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It follows from Theorem 1.1 in Ref. 9 that, for any event A which is increasing in the ordering
on ω, the probability Ph(A) is dominated by the probability of A under the measure with density
proportional to θ |ω | with respect to ρ. The latter measure is precisely P′, so the result follows. �

In (3.3), we need to bound

E[Ph(TΛ(x) < ϕ∥x∥)] ≤ E[P′(TΛ(x) < ϕ∥x∥)] = E′[P(TΛ(x) < ϕ∥x∥)]. (3.5)

Let P′ (or E′) denote the measure under which the classification of the intervals I = {x} × [kδ, (k +
1)δ) ∈ Γ into h-good and h-bad is done independently over all such intervals, with probability
P(hx < α)1/N for h-bad. Then a straightforward coupling shows that, for any fixed ω,

P(TΛ(x) < ϕ∥x∥) ≤ P′(TΛ(x) < ϕ∥x∥). (3.6)

(For any x the P′-probability that all intervals I = {x} × [kδ, (k + 1)δ) are h-bad is exactly the
same as under P, and for all other outcomes, the P′-realization has more bad intervals than the
P-realization.) It follows that

E[Ph(TΛ(x) < ϕ∥x∥)] ≤ E′[P′(TΛ(x) < ϕ∥x∥)]. (3.7)

Under P′, the labels ω-good and ω-bad assigned to the intervals in Γ are almost independent. In
fact, they are independent if the intervals are at vertical distance at least 1, or at horizontal distance
at least 2. This is because the labels assigned to such intervals are functions of the realization of the
Poisson process ω in disjoint intervals and are therefore independent. Thus, since we look only at
the even sublattice A, under E′ × P′, the labels η(i) assigned to the vertices in the sum in (3.2) are
independent.

At this point, we comment on differences between the two theorems and on the choice of α.
Each i ∈ Γ is “good” with probability at least p B (1 − P(hx < α)1/N)e−2dθδ. In the case of Theo-
rem 1.1, we take α as in the statement of the result, so that all the hx are uniformly bounded from
below by α. Then p = e−2dθδ, which first does not depend on x and second approaches 1 uniformly
in β as δ → 0. In the case of Theorem 1.2, the hx are identically distributed, so again p does not
depend on x (for any α). In this case, we need to pick δ > 0 small enough and then α > 0 small
enough to make p close to 1.

The next step will be to use a general result from the theory of first-passage percolation. Recall
thatA is the even sublattice of Zd, and let

Ξ = A × {0, . . . ,N − 1}.
We view Ξ as a graph as follows. If x, y ∈ A and k, ℓ ∈ {0, . . . ,N − 1} then (x, k) and (y,ℓ) are
adjacent in Ξ if either x = y and k = ℓ ± 1 (mod N) or if k = ℓ and x and y are next-nearest
neighbours in Zd. Thus Ξ inherits the natural adjacency relation in A for the first coordinate and is
also “periodic” in the last coordinate.

For convenience, we introduce the probability measure P̃ which assigns values 0 or 1 to
the elements of Ξ independently, with probability p (defined above) for 1. We also define the
infinite-volume passage time T(x) in the same way as in (3.2), except that we replace the minimum
by an infimum taken over all paths in Ξ. Note that T(x) ≤ TΛ(x), so by the reasoning above, we have
in (3.3) that

E[P(TΛ(x) < ϕ∥x∥)] ≤ P̃(T(x) < ϕ∥x∥). (3.8)

The theorems will follow by applying the following lemma.

Lemma 3.2. There is κ > 0, depending only on d, such that if p > 1 − κ then there are con-
stants ϕ > 0 and c1,c2 > 0, depending only on p and d, such that

P̃(T(x) < ϕ∥x∥) ≤ c1e−c2∥x∥. (3.9)

In fact, here, it suffices if κ ≤ (2d)−2. (The relevance of the number (2d)−2 is that it is a lower
bound on the critical probability for site percolation on Ξ, as can easily be proved using standard
path-counting arguments, see, e.g., Ref. 12, Theorem 1.10.) Theorem 1.1 follows on taking δ > 0
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sufficiently small: as noted above, p is then close to 1 uniformly in β so all the constants in (3.9)
are uniform in both Λ and β. For Theorem 1.2, we first take δ > 0 small and find that there is
ε > 0 such that if P(hx < α) < ε then p > 1 − κ, but ε will now depend on N and hence, β. (For an
explicit bound, ε ≤ (1 − (1 − κ)e2dθδ)N suffices.)

Sketch proof of Lemma 3.2. This can be proved by adapting Ref. 13, Proposition 5.8 (see
also Ref. 11). That result deals with bond-first-passage-percolation on Zd, and our situation is
slightly different since we are dealing with site-percolation on the sublattice A with the next-
nearest-neighbour adjacency relation, and also the underlying graph is periodic in one direction. We
give a rough outline of the main ideas.

Write n = ∥x∥. On the event that T(x) < αn, there must be a self-avoiding walk w in Ξ which
starts at the origin and contains at least n steps, such that the passage time along w satisfies

i∈w
η(i) < αn.

One may decompose w into a finite sequence w1, w2, . . . of sub-walks, each of which traverses
distance m for some fixed m, and the sum of whose passage times is “small.” Since these paths
are disjoint, we obtain an upper bound if we assume that the corresponding passage times are
independent, by the -inequality.2 Since 1 − p is subcritical for site-percolation in Ξ, the set of
vertices with passage time 0 from the origin does not percolate, meaning that for suitable m, the
passage times for distance m are very unlikely to be small, and exponential decay follows from a
large deviations type estimate. �

For extension (1.7) to Schwinger functions, we note that small modifications of Theorem 2.1
and Corollary 2.2 give that

⟨S1
0e−(β−t)HΛ,hS1

xe−tHΛ,h⟩Λ,h ≤ 1
3 S(S + 1)(2S + 1)Eh�10↔(x, t)e−


y hyℓ

+
y(γ0,x) �.

Here, 0↔ (x, t) denotes the event that (0,0) and (x, t) lie in the same loop, γ0,x is the loop, and
ℓ+y(γ0,x) is defined as before except that it concerns the part of the loop up to (x, t) rather than to
(x,0). The result then follows from straightforward adjustments of definition (3.2) of the passage
time TΛ as well as of the remaining arguments in this section.

Remark. Key inequality (3.8) can also be obtained by an appeal to the main result of Ref. 15.
Indeed, as remarked after Lemma 3.1, the good/bad labelling η forms a 1-dependent random field
under E′ × P′, with marginal density at least p (using the terminology of Ref. 15). Hence, there is
q > 0, satisfying q → 1 as p → 1, such that η stochastically dominates an i.i.d. field with marginal
density q. (A result of this form can alternatively be obtained by “hands-on” methods.)

With this approach, it is no longer necessary to restrict the sum in (3.2) to the even sublatticeA.
Together with straightforward adaptations of the remaining arguments, this allows us to extend the
results of this paper to arbitrary translation-invariant lattices with uniformly bounded degrees (even
if they are not bipartite).
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