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New valid inequalities for a time-indexed formulation of
the flexible job shop scheduling problem

David Yong-min Leffler

Department of Mathematical Sciences
Chalmers University of Technology

Abstract

In this thesis a family of valid inequalities originally formulated for single- and parallel
machine scheduling problems are extended to a time-indexed, mixed integer linear pro-
gramming formulation of the flexible job shop scheduling problem. The model of the
flexible job shop scheduling problem that is used for this purpose was originally formu-
lated in the licentiate thesis [22], and is based on the practical case of scheduling the
production of aircraft engine components at a multitask production cell in Trollhättan,
Sweden. The strength of the valid inequalities when applied to this model is assessed by
means of computational testing. This has been performed using a cutting-plane method
on Fattahi test instances, both with the objective of minimizing makespan as well as
minimizing tardiness. For both objectives the new valid inequalities have yielded im-
proved lower bounds, however with varying effect. Computational results are reported
along with suggestions for implementation of the valid inequalities that are likely to
grant the best results.

Keywords: multipurpose machine, flexible job shop scheduling problem, MILP, mathe-
matical optimization, time-indexed decision variables, valid inequalities, polyhedral meth-
ods, cutting-plane methods, makespan-tardiness
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1
Introduction

Polyhedral methods have yielded substantial results with regards to finding the solution
to many important NP-hard optimization problems. The development of polyhedral
methods for machine scheduling problems, however, is still in its early stages. The
flexible job shop scheduling problem (FJSP), that is studied in this thesis, is a general-
ization of the so-called job shop scheduling problem (JSP), one of the most thoroughly
researched classes of machine scheduling problems. Due to the inherent complexity of
the JSP, the majority of existing research has been on the JSP in its simplest form; the
single-machine scheduling problem (SMSP). The idea behind this approach is to hope-
fully extend knowledge of the structural properties for this simpler group of problems to
more complex, multi-machine formulations.

In this thesis a family of valid inequalities originally derived for a time-indexed mixed
integer linear programming (MILP) model of the SMSP (see [21]) is extended to a time-
indexed MILP model of the FJSP. This model of the FJSP has its roots in application,
stemming from the problem of finding more efficient schedules at a multitask production
cell for aircraft engine components in Trollhättan, Sweden (more on this in the following
section). The planning and control of such a multitask cell can be formulated as a FJSP,
which was the research topic of a licentiate thesis [22] in which three MILP models for
solving the FJSP were implemented and compared. Of the three models tested, a time-
indexed formulation performed exceptionally well, showing promise both with regards
to the quality of the solution found, as well as solving the FJSP within an amount of
time that allowed for practical use. It is this time-indexed formulation that we hope to
strengthen with the aforementioned family of valid inequalities.
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1.1. BACKGROUND INTRODUCTION

1.1 Background

GKN Aerospace (previously Volvo Aero and purchased by GKN in 2012) has invested
in a multitask production cell consisting of a set of ten production resources, five of
which are multipurpose machines. The purpose of this multitask cell is to, relative to
an ordinary job shop at the production site, perform a larger variety of jobs with an
increased degree of machine utilization. Furthermore, the aim is to shorten lead times,
decrease product costs, and increase delivery precision [23].

Figure 1.1: Overview of the multitask cell

A built-in scheduling algorithm based on a simple priority function was delivered with
the multitask cell, to aid in the planning of the cell’s resources when it was first bought.
As the topic of a master’s thesis in 2006 (see [13]), the schedules produced using this
default function were evaluated, revealing that use of the default function may not be
well adapted to the production of complex components (e.g., aero engine compressor rear
frames in the case of GKN Aerospace), and would often result in a great deal of unused
potential. This result is one of the reasons why the scheduling of the multitask cell is
currently performed manually (for a more detailed description on the current planning
of the multitask cell see [25]). An additional conclusion from the thesis [13] was that
implementing a more refined scheduling algorithm had great potential in improving the
efficiency of production.

The results of the aforementioned master’s thesis inspired the topic of a licentiate thesis
(see [22]), where mathematical optimization was proposed as a method to improve the
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1.1. BACKGROUND INTRODUCTION

scheduling of the multitask cell. Optimizing the scheduling of jobs in a set of multi-
purpose machines (such as the multitask production cell at GKN Aerospace) is known
to be a complex combinatorial optimization problem that is identified within the field
of operations research as a flexible job shop scheduling problem (FJSP) (see section 2.1
for more on theoretical scheduling problems) and in the licentiate thesis [22], a number
of different mathematical formulations of the FJSP were implemented and compared.
One formulation of the FJSP in this study, modeled as a time-indexed MILP, performed
exceptionally well with regards to both computation time and sizes of instances. To our
knowledge there are no other existing implementations of such a model to date.

The main advantage of using a time-indexed formulation is that they often provide very
strong lower bounds (via the solution to their LP relaxation) relative to other MILP
formulations (see [26]). Sadly, the trade-off to this is that time-indexed formulations
also tend to be very large in size, where even relatively small instances can result in an
intractable number of constraints and variables (for more on time-indexed formulations
see section 2.1.3). The memory required to store an instance, as well as the time required
to solve the LP relaxation of even a smaller time-indexed model, can thus become too
large for practical purposes. As a result, time-indexed models have historically only been
applicable to simpler scheduling problems, and smaller instances. Although prospects
for solving larger models are continously improving with advancements in the compu-
tational capabilities of computers, it is still important to find ways to reduce memory
requirements, as well as the solution time of the LP relaxation, if time-indexed MILP for-
mulations are to have significant impact on the solution of machine scheduling problems.

In polyhedral theory, it is well-known that valid inequalities (in particular so-called facet-
inducing valid inequalities) can be used to improve the lower bounds provided by the LP
relaxation and in so doing potentially improve the time to solve the unrelaxed problem
as well (for more information on polyhedral theory see sections 2.2.2 and 2.3). In a Ph.D.
thesis (see [2]), three classes of valid inequalities (VIs) were developed for a time-indexed
MILP formulation of yet another category of machine scheduling problems: the parallel-
machine scheduling problem (PMSP). The strength of the new classes of VIs was tested
via a cutting-plane method, resulting in improved lower bounds when applying the VIs
both individually and in combination. One of the three classes of VIs tested is based on a
family of VIs that were previously formulated for a time-indexed model of the most basic
type of machine scheduling problem, the single-machine scheduling problem (SMSP) (see
[21]). Sousa and Wolsey also established that, if the time horizon is large enough, the
VIs are facet-inducing for their time-indexed model of the SMSP [21]. Since the SMSP is
a sub-problem of the FJSP (if one reduces the number of machines in the FJSP to one),
it is possible that this family of VIs can be extended to the time-indexed FJSP model
formulated in [22] as well. With this in mind, as well as the success in strengthening the
model of the PMSP in [2] using an extension of these VIs, we are motivated to test the
validity and effects of implementing this class of VIs to the time-indexed model of the
FJSP developed in [22].
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1.1. BACKGROUND INTRODUCTION

Interface between cutting-plane and an iterative solution procedure

As previously mentioned, the main drawback of using a time-indexed model is that the
number of decision variables and constraints grows quickly with problem size. Since the
number of variables and constraints is highly dependent on the number of time steps
chosen to discretize the total planning period, one approach to circumventing the issue
of model size is to try and find a solution using as few time steps as possible. This is the
basic idea behind a new solution procedure developed in [23], where the time-indexed
model that is used in this thesis is solved for iteratively smaller time steps. Here, the
best schedule found in one iteration is transformed into a feasible starting solution for
the next iteration. The resulting makespan is also used to choose a suitable size for the
planning period in the next iteration. The aim is thus to keep the number of time steps
as small as possible while progressively increasing the accuracy of the solution with each
iteration (for a more detailed description of this solution procedure see [23] or [24]).

A potential application of the new VIs (and partly what inspired the subject of this
thesis) is to run a cutting-plane algorithm parallell to the aforementioned iterative so-
lution method. One of the termination criterion of the iterative solution procedure is
that, at the end of each iteration, the mipgap1 is sufficiently small. By ’sufficiently
small’ we mean that the mipgap is smaller than some predefined number and is hence
either optimal (if LB = z) for the current iteration, or is close enough to optimality for
practical purposes. In other words, the mipgap is used to measure the quality of the
solution found so far and the algorithm terminates if the mipgap check at the end of
each iteration qualifies the solution as optimal or near optimal within some predefined
margin.

1In CPLEX version 12, the following definition of the mipgap is used: mipgap = z−LB
10−10+z

· 100%,
where z denotes the objective value of the best solution to the unrelaxed problem found so far, and LB
denotes the best lower bound found so far.
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1.2. PURPOSE INTRODUCTION
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mipgap check after each iteration

Figure 1.2: Narrowing the mipgap by running a cutting-plane algorithm parallel to the
iterative solution procedure in [23]. The highlighted yellow region marked ”Optimality mar-
gin” denotes a predifined margin in which the objective value of a solution is considered
optimal or near optimal. Note that this figure is only a visualization of this concept, and is
not based on real data.

By raising the LB using a cutting-plane algorithm with the new VIs, for use in the mipgap
check at the end of each iteration of the iterative solution procedure, one can potentially
qualify the optimality (or near optimality) of a solution at an earlier iteration. The
potential time saved, however, must of course be weighed against the extra computation
time required to calculate the LBs with the new VIs included.

1.2 Purpose

The purpose of this thesis is to further develop the time-indexed MILP model of the
FJSP developed in [22], with the goal of producing a stronger formulation with improved
computation times, and in so doing further the search for strong MILP descriptions of
the FJSP. This will also be done with the potential of applying this model to a real
production in mind. To do this a class of valid inequalities originally formulated for the
SMSP will be extended to the FJSP. Since this class of valid inequalities is quite large
they will be evaluated via a cutting-plane method. Hopefully this will also provide some
further insight into extending knowledge from single- to multiple machine scheduling.
On a more general level, the aim of this study is also to improve on tools for finding
optimal, or near-optimal, schedules for multitask cells similar to that of GKN Aerospace.

1.3 Research questions

In this thesis we aim to answer the following research questions:

• What are the effects of implementing the aforementioned class of valid inqualities

5



1.4. LIMITATIONS INTRODUCTION

originally formulated for a time-indexed model of the SMSP [21], and previously
extended to a time-indexed model of the PMSP [2], to the time-indexed MILP
model of the FJSP developed in [22]?

– What are the effects on the initial optimality gap for different types of problem
instances?

– What are the effects on the time to solve the LP-relaxation?

• Can a cutting-plane algorithm using these valid inequalities improve the perfor-
mance of the iterative solution procedure developed in [23]?

1.4 Limitations

To evaluate the efficacy of the new VIs, a generic MILP solver (CPLEX) will be used to
obtain solutions to the LP relaxation of our model in each iteration of our cutting-plane
algorithm. The choices that the software makes when solving the LP relaxation will not
be discussed (for details on this we refer to the CPLEX manual [11]).

In most literature the FJSP consists of a sequence of operations to be processed in a
given order, just as in the original JSP. For FJSPs appearing in industry, however, it is
fairly common that jobs will have operations that have other precedence conditions. For
example: ’assembly’ sequences where two mutually independent sequences eventually
merge into one, ’disassembly’ sequences where a single sequence splits into two mutual
independent sequences etc.. The extension of the model that we are working with to
include these other types of precedence relations will not be included in this thesis (see
[3] for an example of a FJSP formulation that includes these conditions). However, these
other types of precedence conditions can be handled by formulating them as precedence
relations between jobs (see [22]). The test instances that will be used will also be limited
to the 10 largest Fattahi instances (for more on the choice of these test instances see
section 4.1).

Another potentially interesting topic of study is to determine the dimension of the poly-
hedra associated with the time-indexed model that we will be using. Doing so can help
determine whether or not the VIs tested are so-called facet inducing (for theory on this
see section 2.2.2). This will be left as a topic for future research, and we will have to be
content with testing the strength of the new VIs empirically.

The majority of research on the FJSP has previously been focused on heuristics, due to
the computational complexity of the problem. Many of these heuristics could potentially
be used to complement the model that we are using, since by providing a good feasible
starting solution one can potentially cut down on the number of nodes in the branch-
and-bound tree and thus speed up the solution process. This will also be left as a topic
of future research.

6



1.5. OUTLINE INTRODUCTION

1.5 Outline

In chapter 2 we will introduce the subjects and preceding research that make up the con-
text of this study. This will consist of an introduction to theoretical scheduling problems
in section 2.1 with a particular focus on the FJSP and the use of mathematical program-
ming to solve this class of problems. Furthermore, we will introduce some basic notation
and theory related to mixed integer linear programming in section 2.2, and polyhedral
theory in section 2.2.2. The notation and concepts introduced in these sections will then
be used to introduce the reader to the theory of valid inequalities in section 2.3 as well as
cutting-plane algorithms in section 2.4. In chapter 3 we will introduce the time-indexed
MILP model of the FJSP that will be used in this thesis. To simplify implementation
some small alterations have been made to the original model that was developed in [22],
which will be the topic of section 3.2.3. A brief description of the original models de-
velopment along with a discussion regarding the choice of objective function will be the
topic of section 3.1. In the final section of chapter 3 (section 3.3), we will present the
family of VIs in their original form for the SMSP followed by their extension to the FJSP.
Chapter 4 will be dedicated to presenting our cutting-plane algorithm implementation
along with computational results. The Fattahi test instances that are used as input
data are also described in this chapter, under section 4.1. Finally, in chapter 5, we will
present our conclusions, a discussion on our study in retrospect as well ideas for future
research.

7



2
Subject orientation

The following chapter consists of a basic review of the concepts required to interpret
the results of this thesis, as well as a summary of some of the preceding research within
related fields of study. An introduction to theoretical scheduling problems with a par-
ticular focus on the job-shop scheduling problem (JSP) and its extension to the FJSP is
given in section 2.1. To frame this section to fit within the scope of this thesis, we will be
focusing on the solution of scheduling problems by means of mathematical optimization,
in particular through use of time-indexed mathematical models such as the one used in
this thesis (for an overview of various approaches to solving the JSP or the FJSP see
[12] and [7]). Next, relevant theory on mixed integer linear programming is presented
in section 2.2 as well as a brief description of the main motivation underlying the appli-
cation of this methodology to the solution of scheduling problems. The assessment of
MILP formulations also requires some basic results and concepts from polyhedral theory
which will be presented in section 2.2.2 and 2.3. Finally, an introduction to cutting-plane
methods is given in section 2.4.

2.1 Scheduling theory

The flexible job shop problem (FJSP), single-machine scheduling problem (SMSP) and
parallell-machine scheduling problem (PMSP) that were mentioned in chapter 1 are just
a few classes among a broad range of theoretical scheduling problems that are studied
in a field of research known as scheduling theory. The first scheduling algorithms were
formulated for solving models of industrial production processes in the mid-fifties, and
in the seventies computer scientists found these to be a useful tool for improving the
performance of computer systems. Over time scheduling theory has grown into a mul-
tidisciplinary, cross-disciplinary field (e.g., manufacturing, computer design, logistics,
communication etc.) with techniques ranging from simple dispatching rules to highly
sophisticated algorithms and heuristics [6, 12].

8



2.1. SCHEDULING THEORY SUBJECT ORIENTATION

A general scheduling problem consists of finding optimal processing sequences (with
respect to some performance measuring function, commonly referred to as the objective
function or cost function) of a given set of jobs on a designated set of resources (machines
in the case of GKN aerospace). In the simplest case, the SMSP, the number of resources
is one, and we are simply left with the problem of finding the optimal order in which to
process the jobs on a single resource. Due to the inherent complexity of most scheduling
problems, research in scheduling theory often starts with the SMSP with the intention
of extending results to more complex problems. The vast majority of published results
within scheduling theory are therefore related to the SMSP.

2.1.1 Job Shop Scheduling Problem

One of the most extensively studied models within scheduling theory is the job shop
scheduling problem (JSP). The JSP belongs to a branch of scheduling problems referred
to as shop scheduling problems along with two other classes: the flow shop- and open
shop scheduling problems (for more information on what distinguishes these problem
classes see [6]). The popularity of the JSP as a topic of study is due to that it is gen-
erally considered to be a good representation of the overall field, as well as a useful
umbrella term encompassing a class of problems in computational complexity theory
that are notoriously difficult to solve.

The JSP belongs to a class of problems known as NP-hard [10], meaning it is impossible
to solve an arbitrary instance of the JSP to optimality in polynomial time (see [6, 9]
for more on complexity theory). There are a wide spectrum of strategies for attacking
the JSP (see [12] for a review of many of these), however, these approaches can be di-
vided into two general categories: exact/optimizing methods and approximative methods.
Exact/optimizing methods are, as their name suggests, methods that aim to find an op-
timal solution exactly. Due to the NP-hardness of the problem, the time requirement for
solving the JSP using exact methods increases exponentially with problem size. Conse-
quently, most traditional optimization methods for finding an exact solution can only be
used for smaller scale instances if one is to find a solution within a reasonable amount of
time. Approximative methods consist of finding a near optimal solution instead within
a moderate amount of time. The bulk of research for solving larger, more complex,
instances of the JSP has therefore been focused on approximative methods.

What characterizes the class of shop problems is that they are multi-operation models,
meaning that associated with each job to be scheduled are a set of operations that each
need to be completed to complete the job. Moreover, each operation is also associated
with a single resource that can process it (dedicated machine). In the case of the JSP
the sequence of operations for each job must also be processed in a specific order. The
constraints indicating that one operation must precede another are called precedence
constraints. Furthermore, the problem is subject to capacity constraints (or disjunctive
constraints), that enforce that the resources are only able to process one operation

9



2.1. SCHEDULING THEORY SUBJECT ORIENTATION

at a time, and that each operation can only be processed by one resource at a time.
Unless otherwise stated, preemption is also not allowed meaning each operation must
be processed uninterrupted until completion once it has started. To formulate the JSP
more precisely we will start by introducing the following notation:

J the set of n jobs; j ∈ J := {1, . . . ,n},
Nj the set of nj operations of job j; i ∈ Nj := {1, . . . ,nj},
K the set of m resources; k ∈ K := {1, . . . ,m},
µij resource that can process operation i of job j, (µij ∈ K),

along with precedence relations of the form:

O1j → O2j → · · · → Onjj , for j ∈ J ,

where Oij = operation i of job j, for j ∈ J , i ∈ Nj .

The JSP can now be expressed as finding an optimal processing sequence, with respect to
a chosen objective function, of jobs j ∈ J (consisting of operations i ∈ Nj) on resources
µij ∈ K. This processing sequence must also satisfy the aforementioned precedence
constraints. The processing time of an operation i of job j is denoted pij . Depending on
the problem, release dates rj (i.e., the earliest point at which a job j can be processed)
as well as due dates dj (i.e., a desired completion time for a job j), may also be defined.

2.1.2 Flexible Job Shop Scheduling Problem

The FJSP (also referred to as the multipurpose machine problem) is a generalization
of the JSP in the sense that a given operation may be processed not only by a single
resource, but on any one of a given set of, not necessarily identical, available resources.
For each operation in the FJSP we thus replace the µij (as defined for the JSP above)
with a given set of resources on which that operation can be processed:

Mij the set of resources that can process operation i of job j, (Mij ⊆ K).

The size of the set Mij models the varying degree of flexibility of operations i of job j
for a problem instance. If Mij ⊂ K for an operation in an instance of the FJSP, then
this operation is said to have partial flexibility. If Mij = K for an operation then it is
said to have total flexibility. Since the processing time of an operation can now vary
depending on which resource that it is being processed on we will need an additional
index to keep track of this. For the FJSP the processing time of operation i of job j on
resource k is therefore denoted pijk. The FJSP is at least as difficult to solve as the JSP
since in addition to finding an optimal sequence of operations on resources, it is also
necessary to choose which resource will process each operation [14]. Since the FJSP is a
generalization of the JSP, it also belongs to the class of NP-hard problems.

10



2.1. SCHEDULING THEORY SUBJECT ORIENTATION

2.1.3 Decision variables

Although exact mathematical optimization models of scheduling problems have been
formulated since the late 1950s, the computational strength of computers has histori-
cally only allowed for the solution of simpler problems and smaller instances, which are
often not relevant for real application. Like the JSP, the NP-hard structure of the FJSP
has caused the majority of research on this problem to primarily focus on approximative
methods (see for example [5, 18, 27]), as opposed to methods in which an optimal so-
lution is calculated exactly. Approximative methods generally do not provide solutions
that, with respect to their objective function, provide values that have a guaranteed
distance from the optimum. They can, however, be sufficiently effective for many prob-
lem instances, or for specific applications, and may also serve as a complement to exact
methods by providing good feasible starting solutions.

What distinguishes one mathematical formulation of a scheduling problem from another
typically stems from the type of binary decision variables that are chosen to represent
the sequencing of operations on resources. This choice effects not only the structure of
the solution polyhedron (more on this in section 2.2.2) but also how objective functions
and additional constraints can be modeled by means of linear equations and inequalities.
In the case of modeling the FJSP, the choice of decision variables has much to do with
how one chooses to model the dimension of time, i.e., how one keeps track of when
operations start and finish. For example, in the papers [3, 8, 17] different forms of
MILPs are proposed for solving the FJSP. The decision variables used in these models
are based on those originally formulated by Manne in 1960 (see [15]), for an integer
programming model of the SMSP. In [15] the decision variables are defined as:

yjq =

{
1, if job j precedes job q

0, otherwise.

The basic idea with this type of decision variable is that by keeping track of the ordering
of jobs (or operations) in an optimal schedule one can deduce the start and finish times
of the jobs by combining their ordering and processing times. Models using this type of
decision variable are referred to as Manne family models and are widespread within the
field of operations research.

The model of the FJSP that is used in this thesis handles the dimension of time in a
different way. In this case the planning period is divided into an integer number of time
periods of equal length. The decision variables are then defined as:

xijku =

{
1, if operation i of job j is processed on resource k at time u

0, otherwise.
(2.1)

Models that make use of this type of decision variable, that are indexed by both job and
time period, are commonly referred to as time-indexed (TI) models. TI models have
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long been used both in exact methods as well as approximative algorithms for a variety
of scheduling problems. The first TI integer programming model of a JSP can be at-
tributed to Bowman in 1959 (see [4], referred to in this paper as the schedule-sequencing
problem). In Chapter 1 we also mentioned a TI formulation of the SMSP (see [21]), from
which the family of VIs that are being adapted to the TI model in this paper originate.
In the Ph.D. thesis [2] a TI formulation also outperformed three other MILP models
for the PMSP. TI formulations for solving the FJSP exactly seem to be less common
however. The model of the FJSP (originally developed in [22]) that is used in this thesis
is, to our knowledge, the first of its kind.

To compare different models arising from different choices of variables one often compares
the quality of the lower bounds obtained from their corresponding LP relaxations, as
well as the number of variables and constraints that they require [20]. The most common
reason for using a TI model is that they tend to provide very strong lower bounds relative
to other MILP formulations. Their main drawback, however, is that they also tend to
induce very large models [20, 21]. Even relatively small instances can generate a huge
number of constraints and variables. We can see this just by observing the indices of
(2.1) above, where the number of decision variables adds up to (operations) × (jobs) ×
(resources)×(time periods). The resulting number of constraints also becomes very large
(more on this in chapter 3). As a result, the memory required to store a problem instance
as well as the time required to solve even the LP relaxation of a problem may become
intractably large. A large portion of research on time-indexed models has therefore
been dedicated to finding ways to cut down on their size, as well as methods for solving
them faster. Since the number of variables and constraints tend to depend heavily on the
number of time periods chosen in the discretization of the planning period, one approach
to reducing memory and time requirements is to try and keep this number as small as
possible while still attempting to maintain a quality solution. This is, for example, the
purpose of the iterative solution procedure developed in [24] (also briefly described in
section 1.1). Another approach is to search for VIs, in particular facet-inducing VIs,
that strengthen a given TI model in the sense that they improve the LBs provided by
the TI model’s LP relaxation. This can potentially improve the time to solve the model
as well. We will go into more detail on this approach in section 2.2.2.

2.1.4 Objective functions

As previously mentioned, the optimality of a feasible solution to a scheduling problem is
determined by whether or not it minimizes (or maximizes) a chosen objective function.
The most commonly used objective in research is the minimization of so-called makespan,
i.e., the time difference between the starting time of the earliest scheduled job and the
time in which all jobs have been completed. According to the survey [12], the main
reason why the makespan objective is so popular is that it is easily modelled and was
also one of the first objectives used to study scheduling problems in the 1950s. To
formulate the makespan objective more precisely, let Cj denote the completion time of
job j and assume that the starting time of the earliest scheduled job is 0. Then the
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makespan (Cmax) is defined as:

Cmax := max{Ci : i = 1, . . . ,n}.

Other frequently used objectives are related to the earliness/tardiness of jobs, where the
goal is for example to minimize some cost (or maximize profit) associated with processing
a job to completion earlier then, or after, its due date (i.e., desired completion time). To
clarify, if we have due date dj of job j, the earliness (Ej) of job j can be defined as:

Ej := max{0,dj − Cj},

and tardiness (Tj) of job j as:

Tj := max{0,Cj − dj}.

A job j is thus early (respectively, tardy) if Ej > 0 (respectively, Tj > 0). There are
several other types of objectives that are used depending on the purpose of the model.
The objective function may also be comprised of both single or multiple optimality
criteria. For a more comprehensive introduction to standard objective functions see [6].
A discussion regarding the choice of objectives that are used in this thesis can be found
in section 3.1.

2.2 Mixed Integer Linear Programming

In this paper the FJSP is formulated as a mathematical optimization problem called a
mixed integer linear program (MILP). To model a scheduling problem in this way some
basic concepts and definitions are required. A brief introduction to these is provided in
the following section. For a more in-depth treatment of the topics presented here we
refer to [16], the main resource that we will be using for this section.

2.2.1 Integer and combinatorial optimization

Integer and combinatorial optimization refers to the problem of maximizing or mini-
mizing an objective function consisting of one or several variables. These variables are
subject to inequality and equality constraints, as well as integrality restrictions on some
or all of the variables. In the case of a MILP, the objective function as well as the
inequality and equality constraints are all linear. Furthermore, some, but not all, of
the decision variables of a MILP are also restricted to integer values. These integrality
restrictions are what allow MILPs to capture the discrete nature of some decisions. For
example, many models utilize binary decision variables, whose values are restricted to 0
or 1, to represent whether or not an action is taken. In the case of a scheduling prob-
lem for instance, a binary decision variable may represent the choice of whether or not
one allocates a machine to a job at a given time period. A MILP can be defined more
formally as finding z where:

z = max{cx+ hy : Ax+Gy ≤ b, x ∈ Zn+, y ∈ Rp+}. (2.2)
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The z ∈ R1 in this definition is commonly referred to as the objective value (of a solution
(x,y)) that we wish to maximize given an objective function cx+hy. Note that minimiz-
ing the objective function is equivalent to maximizing the negative of the same function,
so this definition encompasses both minimization as well as maximization problems. It is
also common to assume that the variables are non-negative, which can also be observed in
this definition. To include the aforementioned binary decision variables one can, for ex-
ample, replace x ∈ Zn+ with x ∈ Bn, where Bn is the set of n-dimensional binary vectors.

From the definition of a MILP (2.2) we can see that a MILP instance is specified by data
(c,h,A,G,b) where c is a 1 × n vector, h is a 1 × p vector, A an m × n matrix, G is an
m × p matrix, and b an m × 1 vector. The set of all viable solutions S = {x ∈ Zn+, y ∈
Rp+ : Ax+Gy ≤ b} is often referred to as the feasible region of an instance of (2.2) and
a problem instance is said to be feasible if S 6= ∅. A feasible point (x0,y0) is called an
optimal solution if it maximizes the objective function, that is, if

cx0 + hy0 ≥ cx+ hy for all (x,y) ∈ S.

Not all feasible problem instances have optimal solutions however. For example if the
objective function of a feasible maximization instance can be increased infinitely (i.e.,
∃(x,y) ∈ S such that cx + hy > ω, ∀ω ∈ R1) then the instance is called unbounded. If
the data set of a MILP instance is rational (which it is for most practical cases), and is
also feasible, then the MILP will either have an optimal solution or is unbounded (see
[16] for a proof of this). Consequently, solving a rational MILP equates to either find-
ing an optimal solution to the problem, or showing that it is unbounded or infeasible.
Throughout this thesis we will, unless otherwise stated, assume that our data is rational.

A linear integer program (IP) can be described as a special case of a MILP for which all
of the variables are restricted to be integer instead of just some. For an IP we instead
have

z = max{cx : Ax ≤ b, x ∈ Zn+},

with feasible region S = {x ∈ Zn+ : Ax ≤ b}. If there are instead no integrality restrictions
on any of the variables then the resulting model is called a linear program (LP). The LP
can thus be defined as finding z where

z = max{hy : Gy ≤ b, y ∈ Rp+},

with feasible region P = {y ∈ Rp+ : Gy ≤ b}. The LP subproblem resulting from relaxing
all integrality constraints of a MILP or IP is known as the LP relaxation of the MILP
or IP. For example, the LP relaxation of the IP as defined above has feasible region
SLP = {x ∈ Rn+ : Ax ≤ b}.

2.2.2 Polyhedral theory

It is often useful to regard the set of feasible solutions to a LP as a polyhedron defined by
the linear relations between the continuous variables. In the following subsection we will
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provide a brief summary of the polyhedral theory associated with optimization problems
that make up part of the research context of this thesis. We will start by introducing
some basic definitions that will then lead us into some of the more fundamental results
on this topic. Just as in the previous section we will be using notation from [16]. For
omitted proofs and more elaborate descriptions of the topics in this section we refer to
[16, 19]. For a paper on how polyhedral theory is applied to machine scheduling problems
see [20].

Definition of outer representation, polytope, dimension and implicit equality

One of the most common ways of defining a polyhedron P ⊆ Rn is as the intersection
between the solution sets of a finite number of linear inequalities (such as the feasible
region of a LP):

P = {x ∈ Rn : Ax ≤ b}, where (A,b) is a m× (n+ 1) matrix.

This way of defining a polyhedron P is referred to as the outer representation of P . A
polyhedron is said to be rational if (A,b) is a rational matrix, i.e., that P is the solution
set to the rational linear system Ax ≤ b. In this thesis we will only be considering
rational polyhedra and will thus assume that this is the case throughout this section.
Furthermore, a polyhedron P is called bounded if

∃ ω ∈ R1
+ s.t. P ⊆ {x ∈ Rn : −ω ≤ xj ≤ ω for j = 1, . . . ,n}.

A bounded polyhedron is also called a polytope.

A key property of a polyhedron P is its dimension, denoted dim(P ), which is defined
as the number of affinely independent points in P minus one (i.e., dim(P ) = k if the
number of affinely independent points in P is k+1). A polyhedron P in Rn is called full-
dimensional if dim(P ) = n. If we let I = {1, . . . ,m} be the index set of the inequalities
Ax ≤ b, we can express Ax ≤ b as aix ≤ bi for i ∈ I. An inequality aix ≤ bi in a linear
system of inequalities Ax ≤ b is called an implicit equality if any solution x of Ax ≤ b
also satisfies aix = bi. Note that if a polyhedron P contains an implicit equality in its
description, then P lies in the hyperplane that is defined by this implicit equality and
hence cannot be full-dimensional.

Definition of valid inequality, face, facet and vertex

Given a polyhedron P = {x ∈ Rn : Ax ≤ b}, an important question to adress is
whether or not any of the inequalities aix ≤ bi of Ax ≤ b can be dropped, and which are
necessary in the description of P . An inequality that can be dropped without changing
the feasible region of P is called redundant. An inequality πx ≤ π0, or (π,π0), is called
a valid inequality (VI) for P if it is satisfied by all points x ∈ P . If (π,π0) is a VI
for polyhedron P and F = {x ∈ P : πx = π0}, then F is called a face of P that is
represented by (π,π0). A face F is said to be trivial if F = ∅ or F = P . All other faces
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are called proper. Moreover, when a face F of P represented by (π,π0) is nonempty (i.e.,
max{πx : x ∈ P} = π0) we say that (π,π0) supports P . Note that any inequalities
aix ≤ bi that are not supports of P are redundant and can hence be discarded.

A face F of a polyhedron P is itself a polyhedron with dim(F ) ≤ dim(P ). If F is not
empty or the whole of P (i.e., proper), then 0 ≤ dim(F ) < dim(P ). Often, within
mathematical programming, the most interesting faces to find are those of the highest
and lowest dimensions. A proper face F of P of the highest dimension (i.e., dim(F ) =
dim(P ) − 1) is called a facet of P . A proper face F of P of the lowest dimension (i.e.,
dim(F ) = 0) is called a vertex of P .

Facet inducing valid inequalities

Using the definitions stated above the following important theorem will be stated without
proof (see [16]).

Theorem 2.2.1. A full-dimensional polyhedron P has a unique (to within scalar multi-
plication) minimal representation by a finite set of linear inequalities. In particular, for
each facet Fi of P there is an inequality aix ≤ bi (unique to within scalar multiplication)
representing Fi and P = {x ∈ Rn : aix ≤ bi for i = 1, . . . , t, t ∈ N}.

In other words, if Ax ≤ b is a minimal representation of a full-dimensional polyhedron
P (in the sense that no inequality of Ax ≤ b is redundant), then each inequality of
Ax ≤ b induces a facet of P and each facet of P is induced by exactly one of these
inequalities. This means that the facets of a polyhedron are both sufficient and necessary
for its description and hence the best type of inequality we can look for if we wish
to describe a polyhedron minimally in terms of linear inequalities are those that are
facet inducing. If the polyhedron P is, however, not full-dimensional then its minimal
representation will also contain implicit equations, i.e., Bx = d ∀ x ∈ P . In this case
P = {x ∈ Rn : Ax ≤ b, Bx = d}, where each inequality of A still corresponds to a facet
inducing inequality and no equation in Bx = d is implied by any of the other equations
in Ax ≤ b or Bx = d.

Definition of inner representation, extreme points and extreme rays

Equivalent to the outer representation of a polyhedron as stated above (i.e., as the in-
tersection of a finite number of closed halfspaces), a polyhedron may also be defined in
terms of its extreme points and extreme rays. This way of defining a polyhedron P is
commonly known as the inner representation of a P . Although both the outer- and inner
definitions of polyhedra are equivalent, they both have their own advantages and provide
alternative ways of describing the feasible sets of MILP formulations. To describe the
inner representation of a polyhedron more formally we will need to introduce additional
definitions and notation.
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We call x ∈ P an extreme point of P if there do not exist any x1, x2 ∈ P with x1 6= x2

such that x = 1
2x

1+1
2x

2. Note that all vertices of a convex polyhedron are extreme points.

Let P 0 = {r ∈ Rn : Ar ≤ 0}. If P = {x ∈ Rn : Ax ≤ b} 6= ∅, then r ∈ P 0 \ {0} is
called a ray of P . The P 0 in this definition is also called the recession cone (or char-
acteristic cone) of P and can be described as the set of the directions of P that go to
”infinity”. A point r ∈ Rn is a ray of P if and only if for any point x ∈ P the set
{y ∈ Rn : y = x+ λr, λ ∈ R1

+} ⊆ P . Note that a nonempty polytope contains no rays.
We call a ray r of P an extreme ray if there do not exist rays r1, r2 ∈ P 0 where r1 6= λr2

for any λ ∈ R1
+ such that r = 1

2r
1 + 1

2r
2. Moreover, if P 6= ∅ a ray r is an extreme ray

of P if and only if {λr : λ ∈ R1
+} is a one-dimensional face of P 0.

The convex hull of a set of points V ⊆ Rn, denoted conv(V ), is defined as the intersection
of all convex sets containing the set of points V . Similarly, the conical hull of a set of rays
R ⊆ Rn, denoted cone(R), is the intersection of all convex cones containing the rays in R.

We will now state the following theorem on the inner representation of polyhedra without
proof (see [16]).

Theorem 2.2.2. (Minkowski’s Theorem). If P 6= ∅ and rank(A) = n then

P =

x ∈ Rn : x =
∑
k∈K

λkx
k +

∑
j∈J

µjr
j ;
∑
k∈K

λk = 1;λk ≥ 0, k ∈ K;µj ≥ 0, j ∈ J

 ,

where {xk}k∈K is the set of extreme points of P and {rj}j∈J is the set of extreme rays
of P .

A polyhedron can in other words be defined by the sum of the convex combination
of its extreme points and the conic combination of its extreme rays. An important
converse to this theorem (see Weyl’s theorem in [16]) is that an arbitrary sum of a convex
combination of points and a conic combination of points in Rn is also a polyhedron.

2.2.3 Integral polyhedra

MILPs and IPs are most often much more difficult to solve than LPs. One reason for
this is that an optimal solution to a LP, if it exists, is always found at an extreme point
of its feasible region. For the LP relaxation of a MILP or IP, however, an extreme point
may contain infeasible, fractional variable values. Consider a general IP:

max{cx : Ax ≤ b, x ∈ Zn+}.

The feasible region S of this problem can be defined as S = {x ∈ Zn+ : Ax ≤ b} = P∩Zn+
where P = {x ∈ Rn+ : Ax ≤ b}. As a consequence of the reverse of Minkowski’s theorem
it can be shown that conv(S), i.e., the convex hull of integer points in P , is a rational
polyhedron. Thus, there exists a rational linear system Āx ≤ b̄ that constitutes an
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outer representation of conv(S), i.e., conv(S) = {x ∈ Rn+ : Āx ≤ b̄}. A similar result
holds true for MILPs as well. This is important since the extreme points of conv(S) are
integers (i.e., conv(S) is an integral polyhedron) and hence, since the optimal solutions
to a LP are found at its extreme points, the original IP (or MILP) can theoretically be
”reduced” to the LP:

max{cx : Āx ≤ b̄, x ∈ Rn+}.

The LP of maximizing (or minimizing) the objective function over conv(S) that is equiv-
alent to solving the IP or MILP is sometimes referred to as the polyhedral approach to
solving the IP or MILP.
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Figure 2.1: Two-dimensional example of an IP with polytope P defined by constraints
Ax ≤ b and x ∈ Rn

+ (light-blue outer-polytope), feasible integer points in S = P ∩Zn
+ (black

dots), and polytope conv(S) defined by constraints Āx ≤ b̄ (green inner-polytope). Example
taken from [16], p.206.

This means that we can, in principle, use LP techniques to solve IPs or MILPs. Unfor-
tunately however, the linear system of inequalities Āx ≤ b̄ in the outer representation of
conv(S) may be (and in fact often are) much larger than the original system of inequal-
ities Ax ≤ b which can make the resulting LP ”reduction” difficult or even impossible
to solve. An even more basic problem when attempting to ”reduce” an IP or MILP in
this way is how to construct the inequalities Āx ≤ b̄, both in theory and in practice (see
section (2.3) for more on this). Even if one cannot find a complete outer description of
conv(S), a partial description may sometimes still produce better lower bounds on the

18



2.2. MIXED INTEGER LINEAR PROGRAMMING SUBJECT ORIENTATION

optimal value which can in turn be useful in obtaining good approximate solutions, or
proving the optimality of a solution found. A partial description of conv(S) may even
be sufficient to find a feasible optimal value. More on this in the following subsection.

2.2.4 Strong and weak formulations

A commonly adopted strategy in algorithms for solving MILPs and IPs is to first solve
their LP relaxation and then use the information obtained from this solution to reduce
the size of the feasible region to the unrelaxed problem, (more on this in section 2.4) or
divide the original problem into simpler subproblems (e.g., branch-and-bound). The LP
relaxation is most often solved using some variant of the well-known simplex algorithm.
The simplex algorithm basically searches for an optimal solution at the extreme points
of the LP’s feasible region and, although requiring an exponential amount of time to
terminate in the worst case, is for the most part quite efficient for the majority of LPs
as well as highly optimized due to its popularity (for a walkthrough of the simplex al-
gorithm see [16]). Via the solution to the LP relaxation one obtains (assuming that we
are minimizing) a lower bound (LB) on the objective value of the optimal MILP or IP
solution. This LB is also known as the LP relaxation bound. The constraints that form
the feasible region of a MILP or IP model are called strong if the LB obtained by the
corresponding LP relaxation is close to the optimal objective value. If instead the LP
relaxation yields a LB that is far from the optimal objective value then the constraints
describing the feasible region of the MILP or IP model are called weak.

To clarify, a 2D example of a weak and a strong formulation of the same feasible set of
a MILP is presented in figure 2.2. In this figure the feasible points of the MILP model
are represented by small, filled circles. The small, non-filled circles are points outside
of the MILPs feasible region. We have two variables (along the vertical and horizontal
axis) that are subject to non-negativity constraints, as well as two sets of constraints
corresponding to a weak and a strong formulation. The solid lines, marked with (1) and
(2), represent the constraints of the weak formulation. The constraints of the strong
formulation are represented by blue dashed lines. The arrow at the origin indicates the
direction of decreasing objective function values (again, assuming we are minimizing).
The LP relaxation of the weak formulation yields a fractional optimal solution, marked
by the non-filled circle at the intersection of the solid lines marked (1) and (2). The
optimal solution to the MILP model equals to that of the LP relaxation of the strong
formulation, which is marked by the filled circle at the intersection of the two dashed
lines.
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Figure 2.2: Weak and strong formulations of the same feasible set of a MILP model.
The LP relaxation of the weaker formulation, whose constraints are indicated by solid lines,
yields a solution with fractional variable values. The LP relaxation of the strong formulation
however, whose constraints are indicated by dashed lines, yields a solution that is also
optimal for the MILP.

By adding stronger constraints (represented by linear inequalities) it is thus possible to
cut off fractional solutions from the feasible region. The gap between the optimal value
of the MILP and the optimal value of its corresponding LP relaxation is then reduced,
and if the constraints represent the feasible region strongly enough, the optimal solution
to the MILP can even be found at an extreme point of its LP relaxation.

2.3 Theory of valid inequalities

In subsection 2.2.3 we established that solving an IP or MILP can theoretically be re-
duced to solving a LP over polyhedra. Furthermore we discussed facet inducing VIs that
are both sufficient and necessary in any minimal outer representation of a polyhedron.
In figure 2.2 of subsection 2.2.4 we saw an example of this, where adding stronger, facet-
inducing VIs reduced the feasible region of a MILP to the point where it was solvable as
a LP. This is an example of an ideal scenario however, since finding facet-inducing VIs
that support the convex hull of feasible integer points to a MILP or IP has in practice
often proven to be very difficult. If we let S again denote the feasible region of an ar-
bitrary MILP or IP problem, and P denote the feasible region of its corresponding LP
relaxation, then it is clear that any VIs that are valid for P are also valid for S, since
S ⊆ P . Furthermore, unless conv(S) = P , there are VIs for S that are not valid for P .
Even if such a VI of S, that is not valid for P , is not enough to define conv(S), it can still
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be useful in the sense that by reducing the set of feasible solutions to the LP relaxation
of P one can potentially close some of the gap between the LP relaxation bound and
the solution to the original MILP, if the VI is active in the optimal solution of the LP
relaxation.

2.4 Cutting-plane algorithms

In the following section we will discuss cutting-plane algorithms, a general approach to
solving, or approximately solving, IP and MILP problems. Within the realm of math-
ematical optimization, a cutting-plane algorithm refers to an algorithm that iteratively
refines a feasible set or objective function using VIs. VIs that refine the problem are
called cuts or cutting-planes.

An early version of a cutting-plane algorithm for solving MILPs was proposed by Go-
mory in the late 50s (see [16] for a walkthrough of this work as well as references to the
original paper). However, due to the numerical instability as well as the poor conver-
gence speed of Gomory’s algorithm it was considered to be impractical for solving larger
problems. It was not until decades later, after the discovery of the ellipsoid method in
the 70s, that new interest in cutting-plane methods arose. With some adjustments to the
algorithm, cutting-plane methods have become one of the most important contributors
to the solving of IP and MILP problems over recent decades.

The theory of cutting-planes is quite extensive and much is beyond the scope of this
thesis. Generally speaking however, todays cutting-plane algorithms consist of first
finding a theoretically strong class of VIs to a target IP or MILP (before computations
have started) and then testing to see whether some current solution to the corresponding
LP relaxation violates any one or several of the inequalities in this class. Let Q denote
the IP problem min{cx : x ∈ P, x ∈ Zn+}, where P = {x ∈ Rn+ : Ax ≤ b}. Let
S = P ∩ Zn+ denote the feasible region of Q. One way of visualizing the cutting-plane
method is by considering the polyhedron P k ∈ Rn+ that is generated in each iteration
k. One can think of P k as the current approximation of the target polyhedron conv(S).
These polyhedra are thus nested in the sense that

conv(S) ⊆ · · · ⊂ P k+1 ⊂ P k ⊂ · · · ⊂ P 0 = P.

Let Π denote a finite class of theoretically strong VIs for conv(S) that are known. In an
ideal scenario this class gives a complete description of conv(S) although more frequently
it will only yield a partial description. Even if Π completely describes conv(S), however,
the total number of inequalities in Π will often be too large for a LP solver to handle.
A general cutting-plane algorithm can be formulated as follows:
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Cutting-plane algorithm

1. (initialization) Take a set of VIs (A0,b0) ⊂ Π small enough to be handled
by a LP solver. Let k := 0.

2. (optimization) Solve the corresponding LP: max{cx : Akx ≤ bk} to obtain
optimal LP solution xk.

3. (optimality check) If xk is feasible to conv(S) then xk is optimal in which case
we terminate the algorithm.

4. (separation) If xk is not optimal, check if it violates one or several of the
remaining VIs in Π. If not then stop.

5. (enhance) If one or more VIs in Π are violated, append violated VIs to
(Ak,bk) and denote this new set (Ak+1,bk+1). Let k := k+ 1
and return to step 2.

Note that if the class of VIs Π is very large then nothing will stop this algorithm from
adding VIs to a degree that a LP solver cannot handle, if one of the termination criteria
is not reached. Furthermore, if Π is only a partial description of conv(S) then we are
not guaranteed to find an optimal solution using this algorithm.

In each iteration k of the cutting-plane algorithm the objective value zk = cxk of the
optimal LP solution xk gives us a lower bound on the optimal objective value of conv(S).
If we let z∗ denote the optimal objective value of conv(S) then a natural theoretical
measure of the cutting-plane algorithm’s success for a given problem instance is the so-
called optimality gap: zk − z∗. This is, in other words, the difference between the best
lower bound found so far via the cutting-plane algorithm and the optimal objective value
of the unrelaxed problem. If the optimal objective value z∗ is not known (since this is
often what one wishes to find), the objective value of the best solution found so far is
used instead.
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3
Mathematical model

In this chapter the MILP formulation of the FJSP that is used in our cutting-plane
algorithm is introduced. We will start by briefly describing the background to the MILP
model’s development, to clarify the underlying motivation to some of the modeling de-
cisions that have been made. This will later also relate to a discussion on our choice of
objective functions. The model in its original form (as it is found in [22]) will be stated
in section 3.2. To simplify implementation of the cutting-plane algorithm an adjusted
but equivalent version of this model has been formulated. This adjusted model will be
the topic of section 3.2.3. In section 3.3 we will describe the new VIs first in the form
from which they originate, for the SMSP, followed by their extension to the FJSP and
an intuitive description of how they work.

3.1 Model formulation

As mentioned in section 1.1, the mathematical model used in this thesis was originally
formulated to model a real-life scenario: the scheduling of ten resources in a multitask
production cell, five of which are multipurpose machines. In the licenciate thesis [22]
the first model that was implemented and tested was a Manne family model referred to
as the engineer’s model. Preliminary computational testing found the engineer’s model
to be too slow for larger, more realistically sized instances which motivated the decom-
position of the full scheduling problem (i.e., the scheduling of all ten resources of the
multitask cell) into two subproblems.

The workload on the multipurpose machines is much higher then that of the other five
resources. Therefore, the first subproblem (referred to as the machining problem) consists
of constructing an optimal schedule for only the multipurpose machines; a FJSP. After
the machining problem has been solved, the optimal scheduling of the multipurpose
machines is then used to create a feasible schedule for the remaining five resources in
what is referred to as the feasibility problem.
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Figure 3.1: An example of a schedule based on real data. The work load on the five multi-
purpose machines (MC1–5) is much higher than that of the other resources. The machining
problem consists of finding an optimal schedule for the five multipurpose machines. The
route of job 3 is indicated by dotted lines.

Dividing the full scheduling problem in this way resulted in significantly reduced com-
putation time, but was still not considered fast enough for real applications. Since the
vast majority of computation time was being spent on the machining portion (i.e., the
FJSP portion) of the two subproblems, it was decided that the Manne family model of
the machining problem would be reformulated as a time-indexed model instead, to see
if this would operate faster. Two versions of a time-indexed model were formulated, one
making use of so-called plateau decision variables (see [22] for more on this model) and
the other utilizing so-called nail decision variables. The time-indexed model using nail
variables outperformed all others tested, which is why this model was chosen to be used
in this thesis.

Choice of objective function

Within the framework of a MILP model, any linear objective that can be formulated in
terms of the variables used in the model can be utilized. Choosing a suitable objective
function for a model of a scheduling problem is no trivial task however, and depends
greatly on the scheduling problem’s context and consequent priorities. The choice of
objective function can also have significant impact on the performance of a scheduling
method and will affect which VIs are added in our cutting-plane algorithm and their
subsequent effect on the solution space. As stated in section 2.1.4, the most common
objective function used for research within scheduling theory is the minimization of
makespan. To maintain comparability between the results from the model used in this
thesis and other research done on solving the same test instances, we will also be in-
cluding makespan as one of our objectives. Use of the makespan objective can, however,
sometimes be ill-suited to problems where not all jobs are available for processing at
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the same time, but are instead expected to arrive at given release dates (as in the case
of the multitask cell at GKN Aerospace). For example, if the release date of one job
is much later than all others, such that the corresponding job must be scheduled far
later in the planning period, then use of the makespan objective will allow all other jobs
with far earlier release dates to be scheduled arbitrarily without having an effect on the
objective value. If, for example, the reliability of the due dates is a priority (such as in
a production with a just-in-time objective) then use of the makespan objective will thus
sometimes result in unsatisfactory scheduling. An objective that strives to minimize
the tardiness of jobs can help maintain that due dates are met, and aid in keeping a
reliable pace of production. Prioritizing tardiness on its own, however, can instead lead
to arbitrary scheduling for instances with no tardy jobs.

According to the managers of the multitask cell, the main priorities when scheduling
production are maximizing utilization of the multitask cell and minimizing tardiness of
jobs. To reflect these priorities and with the goal of achieving realistic schedules in mind,
an objective function that takes into account both the minimization of total completion
times as well as total tardiness was also included as a topic of study in the Ph.D. thesis
[23]. For the same reasons we will also be including this objective in this thesis. For
instances in which there are no tardy jobs, the objective equals the minimization of the
sum of completion times, and will hence strive to shorten production lead times. If the
scheduling procedure consistently produces schedules with no tardy jobs the manager
of the production has the opportunity to set more challenging due dates, which will
in turn shorten planned production lead times. Since the corresponding costs of tardy
jobs vary depending on the job and current situation, weights linked to the tardiness
of individual jobs are also included in the objective function. Let Cj again denote the
completion time of job j from the set J of all jobs to be scheduled, and assume that the
starting time of the earliest scheduled job is 0. The makespan Cmax is then defined as
Cmax := max{Cj : j = 1, . . . ,n}. If we have due date dj of job j, the tardiness (Tj) of job
j can be defined as: Tj := max{0,Cj−dj}. Furthermore let βj denote the associated cost
of job j being tardy. An objective function including the minimization of completion
times and weighted total tardiness can thus be expressed as:

minimize
∑
j∈J

(Cj + βjTj). (3.1)

Although it is not desirable to complete jobs too early either (as this can cause choking
in the system and increased lead times), minimizing job earliness is not included in the
objective function. The reason for this choice is partly because minimizing earliness was
simply not as highly prioritized as maximizing utilization and minimizing tardiness. In
addition to this, however, allowing for a degree of earliness of jobs can compensate for
the uncertainty of everyday reality in the multitask cell (e.g., operators getting sick,
machine break-downs etc.), and in other words yield more robust schedules that have a
margin of flexibility in the case of such events.
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3.2 Time-indexed model

In the following section the time-indexed model of the FJSP, using nail variables, is
presented as is found in [24].

3.2.1 Indices, sets, and parameters

Sets

J set of jobs; j ∈ J := {1, . . . ,n}
Nj set of operations of job j; i ∈ Nj := {1, . . . ,nj}
K set of resources; k ∈ K := {1, . . . ,m}
Mij set of resources that are allowed to process operation i of job j, (Mij ⊆ K)

H set of time periods; u ∈ H := {0,1, . . . ,Hmax}

Parameters

rij release date of operation i of job j

pijk processing time of operation i of job j on resource k

δij shortest possible remaining processing time from the starting time of
operation i of job j to the completion of job j

To remind the reader, the FJSP can be stated as the problem of finding an optimal pro-
cessing sequence, with respect to the chosen objective function, of jobs j ∈ J (consisting
of operations i ∈ Nj) on resources Mij ⊆ K within a given planning horizon [0, Hmax].
In the time-indexed formulation of the FJSP the planning horizon is discretized into
Hmax + 1 intervals of equal length. In this thesis the index u ∈ H = {0,1, . . . ,Hmax}
refers to the time interval [u, u+ 1] that begins at time u and ends at u+ 1.

Let Oij denote operation i of job j for j ∈ J and i ∈ Nj . There are precedence
relations between operations of the form O1j → O2j → · · · → Onjj , for j ∈ J , meaning
no operation within a job j may be scheduled before the previous operation has been
completed. In all test instances that are used in this thesis, all jobs are available to
be processed from the beginning of time period 0 (i.e., r1j = 0 ∀ j ∈ J ). Due to
the precedence relations between operations and since the processing times are resource
dependent, the release dates of operations following the initial operation are defined
as rij := ri−1,j + mink∈Mi−1,j

{pi−1,j,k} for i = 2, . . . ,nj , j ∈ J . Similarly, δij :=
δi+1,j + mink∈Mij

{pijk} for i = nj − 1, . . . , 1, j ∈ J , and δnjj := mink∈Mnjj
{pnjjk}. To

simplify future writing we will use the release dates rij and δij to define the following set
of time intervals in which it is possible for operation i of job j to begin and be processed
to completion:

Hij := {rij , . . . ,Hmax − δij}, the time window of operation i of job j.
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3.2.2 Original model

For each operation i ∈ Nj of job j ∈ J , resource k ∈ K and time interval u ∈ H we
define the binary decision variables:

xijku =

{
1, if operation i of job j starts in the beginning of time period u on resource k

0, otherwise.

We will now present the model with the objective of minimizing the makespan, Cmax,
of the schedule. This model will henceforth be referred to as TI-make. Throughout the
remainder of this thesis define the operator ()+ such that (z)+ := max{z,0} for any
z ∈ R.

TI-make

minimize Cmax (3.2a)

subject to
∑

k∈Mij

∑
u∈H

xijku = 1, i ∈ Nj , j ∈ J , (3.2b)

∑
k∈K\Mij

∑
u∈H

xijku = 0, i ∈ Nj , j ∈ J , (3.2c)

∑
j∈J

∑
i∈Nj

u∑
µ=(u−pijk+1)+

xijkµ ≤ 1, k ∈ K, u ∈ H, (3.2d)

∑
k∈Mij

u−pijk∑
µ=rij

xijkµ−
∑

l∈Mi+1,j

u∑
ν=ri+1,j

xi+1,jlν ≥ 0, u∈Hi+1,j , (3.2e)

i = 1, . . . , nj−1, j∈J ,∑
k∈Mnjj

∑
u∈H

(u+ pnjjk)xnjjku ≤ Cmax, j ∈ J , (3.2f)

xijku = 0, u ∈ H \ Hij , (3.2g)

k ∈Mij , i ∈ Nj , j ∈ J ,

xijku ∈ {0,1}, i ∈ Nj , j ∈ J , k ∈ K, (3.2h)

u ∈ H.

The constraints (3.2b) ensure that each operation i of job j is scheduled exactly once
on the resources that are allowed to process it. Constraints (3.2c) set all variables
corresponding to an operation to zero for the set of resources for which the operation is
not allowed to be processed. Note that the constraints (3.2c) are redundant. However, in
[23] it was discovered that their inclusion enabled the solver (AMPL-CPLEX12 (Fourer
et al., 2002; IBM Corp., 2009) to parallelize computations leading to faster solution time
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(w.r.t. clocktime). For this reason these constraints are included anyways. The capacity
constraints (3.2d) make sure that at most one operation at a time can be processed
on each resource. The precedence constraints (3.2e) ensure that no operation can be
scheduled to start processing before the preceding operation of the same job has been
completed. The makespan of the schedule is defined by constraints (3.2f). Constraints
(3.2g) ensure that operation i of job j cannot be scheduled outside of its time window
Hij . The integrality constraints (3.2h) ensure that the decision variables xijku can only
attain values 0 or 1.

3.2.3 Operations and jobs → tasks

A slight change to the indices used in the TI-make model (3.2) has been made to simplify
the extension of the new class of VIs to the FJSP, as well as the implementation of the
cutting-plane algorithm. The adjustment that has been made is that the pairs of indices
used to indicate an operation i of job j have been replaced with a single index t denoting
what will henceforce be referred to as tasks. To show how this is done, first let (i,j) denote
operation i of job j. All operations (i,j) for i ∈ Nj := {1, . . . ,nj} and j ∈ J := {1, . . . ,n}
are then enumerated according to the following procedure:

(i,j) → t

(1,1) → 1

(2,1) → 2
...

(n1,1) → n1

(1,2) → n1 + 1
...

(nn,n) →
∑

j∈J nj

Using this enumeration we can now define the following set:

T set of tasks; t ∈ T := {1, . . . ,
∑

j∈J nj}.

To use the set of tasks T as a replacement for the set of operations Nj and jobs J , we
will also need to keep track of which operations correspond to which job. To do this an
additional set containing all of the final operations (henceforth referred to as terminal
tasks) of each job is defined as follows:

T̃ set of terminal tasks; t ∈ T̃ := {n1, (n1 + n2), . . . , (
∑

j∈J nj)}
(i.e. tasks corresponding to the final operation of each job).

Using the sets T and T̃ we can now replace the pairs of indices (i,j) in the model TI-
make with the single index t. The adjusted version of TI-make using the task index t
will henceforth be referred to as TI-make-task. The index k used for resources, as well
as index u used for time steps will remain the same as before.
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TI-make-task

minimize Cmax (3.3a)

subject to
∑
k∈Mt

∑
u∈H

xtku = 1, t ∈ T , (3.3b)

∑
k∈K\Mt

∑
u∈H

xtku = 0, t ∈ T , (3.3c)

∑
t∈T

u∑
µ=(u−ptk+1)+

xtkµ ≤ 1, k ∈ K, u ∈ H, (3.3d)

∑
k∈Mt

u−ptk∑
µ=rt

xtkµ−
∑

l∈Mt+1

u∑
ν=rt+1

xt+1,lν ≥ 0, u ∈ Ht+1, (3.3e)

t ∈ T \ T̃ ,∑
k∈Mt

∑
u∈H

(u+ ptk)xtku ≤ Cmax, t ∈ T̃ , (3.3f)

xtku = 0, u ∈ H \ Ht, (3.3g)

k ∈Mt, t ∈ T ,

xtku ∈ {0,1}, t ∈ T , k ∈ K, (3.3h)

u ∈ H.

The models TI-make and TI-make-task are equivalent but it has been noted that use
of TI-make-task leads to a slightly longer computation time, which was unexpected. A
possible explanation to this could be related to the use of the terminal tasks set that
keeps track of which operations correspond to which job. The solver may find it harder
to recognize useful patterns to parallelize computation when using this set instead of the
sets of operations and jobs.

3.2.4 Alternative precedence constraints

To obtain the model of the LP relaxation of TI-make-task, the integrality constraints
(3.3h) are simply replaced with 0 ≤ xtku ≤ 1. The number of precedence constraints
(3.3e) is in the order of (tasks) × (time steps) and can thus become very large with in-
creasing problem size. If a problem instance causes the model TI-make-task to become
too large, to the degree that the memory requirements or time to solve the LP relax-
ation is too long for practical purposes, then the following alternative set of precedence
constraints will be used:∑

k∈Mt

∑
µ∈Ht

(µ+ ptk)xtkµ ≤
∑

l∈Mt+1

∑
ν∈Ht+1

νxt+1,lν , t ∈ T \ T̃ . (3.4)
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Note that the number of constraints (3.4) are dependent only on the number of tasks.
Provided that the integrality constraints (3.3h) are fulfilled, the constraints (3.4) are
equivalent to (3.3e). The use of these alternative constraints, however, do not yield
as tight of a LP relaxation bound. The model (3.3a)–(3.3d), (3.4), (3.3f)–(3.3h), that
makes use of the alternative precedence constraints, will henceforth be referred to as
TI-make-task-prec.

3.2.5 Tardiness objective

Modifying TI-make-task to make use of the objective (3.1) (i.e., minimizing the sum of
completion times and total tardiness) is not difficult. Using the same sets, parameters
and variables as in TI-make-task the completion times Ct of terminal tasks can be written
as:

Ct =
∑
k∈Mt

∑
u∈H

(u+ ptk)xtku, t ∈ T̃ .

Let dt, for t ∈ T̃ , denote the due dates (i.e., desired completion times) of each corre-
sponding job. The objective (3.1) of minimizing the sum of completion times and total
tardiness can thus be expressed as to

minimize
∑
t∈T̃

∑
k∈Mt

∑
u∈H

((u+ ptk) + βt(u+ ptk − dt)+)xtku. (3.5)

Note that the ()+ operator in this objective applies only to parameters, hence the objec-
tive function remains linear. To alter the model TI-make-task to consider the objective
(3.5) instead of makespan, the only change needed is to remove the constraints (3.3f)
that define the makespan, and to replace the objective function (3.3a) with (3.5). The
model (3.5), (3.3b)–(3.3e), (3.3g)–(3.3h), utilizing the tardiness objective, will hence-
forth be referred to as TI-tard-task. The model making use of the tardiness objective
and alternative precedence constraints, i.e. (3.5), (3.3b)–(3.3d), (3.4), (3.3g)–(3.3h), will
be referred to as TI-tard-task-prec.

Due dates

The Fattahi benchmark test instances that are used as input data in this thesis (more on
this in section 4.1) do not include due dates. Thus, to utilize the tardiness objective in
our study, we will be using the same due dates and tardiness weights as in [23] (where the
model used in this thesis is solved using the aforementioned iterative solution procedure).
These due dates were generated to reflect experience from a real flexible job shop and
the extension of the Fattahi instances to include these due dates are soon to be made
publicly available. The tardiness weights are defined as a non-increasing function of the
due dates of the respective job (or terminal task), as is described below.1

1For the due dates and tardiness weights used in this thesis contact Karin Thörnblad at
karin.thornblad@gknaerospace.com
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Tardiness weights

In real flexible job shops, jobs will sometimes already be tardy when first available to be
processed (i.e., jobs can sometimes have due dates before their respective release dates).
To represent this in models like the one used in this thesis, jobs may sometimes possess
negative due dates and will thus always have positive tardiness. To create a distinction
in the objective function between jobs that are late and very late, and prioritize jobs
that are most delayed, the tardiness weights (βt) used in [23] are defined as follows:

βt := B

(
1− dt

max
t∈T̃ {|dt|}

)
+

, t ∈ T̃ .

Using the definition for βt above, the weight B > 0 is utilized for all jobs such that
0 ≤ βt ≤ 2B hold for all t ∈ T̃ . In this way the jobs with earlier due dates will recieve
higher tardiness weights than those with later due dates. In this thesis, the due dates
that are used are all positive (i.e., dt ≥ 0 ∀ t ∈ T̃ ). Note that, using the same definition
for βt with only positive due dates, we will instead generate tardiness weights that satisfy
0 ≤ βt ≤ B.

3.3 New valid inequalities

The class of VIs used in our cutting-plane algorithm are an extension of a class of VIs
that were originally derived by Sousa and Wolsey (1992) (see [21]) for a time-indexed
model of the SMSP. This class of VIs are known to be facet-inducing for this model of
the SMSP and have also previously been extended to a time-indexed model of a PMSP
in [2], resulting in tighter LP relaxation bounds. As a reminder to the reader, the SMSP
can be stated as the problem of scheduling n jobs j ∈ J on a single machine within a
given time horizon [0,Hmax]. For each job j ∈ J , and time interval u ∈ H the model of
the SMSP makes use of the following binary decision variables:

xju =

{
1, if job j starts in time period u

0, otherwise.

Using the same notation for sets and parameters as before, the time-indexed formulation
of the SMSP in [21] can be stated as follows:

minimize
∑
j∈J

∑
u∈H

cjuxju (3.6a)

subject to
∑
u∈H

xju = 1, j ∈ J , (3.6b)

∑
j∈J

u∑
s=(u−pj+1)+

xjs ≤ 1, u ∈ H, (3.6c)

xju ∈ {0,1}, j ∈ J , u ∈ H. (3.6d)
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In this formulation the objective (3.6a) is the minimization of the costs cju associated
with scheduling job j at time u. Just as in TI-make-task/TI-tard-task, the constraints
(3.6b) ensure that each job is scheduled exactly once, and the capacity constraints (3.6c)
make sure that only one job at a time can be processed on the single resource. The
integrality constraints (3.6d), as before, enforce that the decision variables xju can only
attain values of 0 and 1.

The family of VIs to the SMSP formulation above can be stated as follows. Consider a
job j ∈ J , time period u ∈ H and ∆ ∈ {1, . . . ,pj − 1} where pj = maxl 6=j{pl} denotes
the largest processing time among jobs l 6= j. Then

u+∆−1∑
s=u−pj

xjs +
∑
l 6=j

u−1∑
ν=u−pl+∆

xlν ≤ 1 (3.7)

is a VI for the feasible region of (3.6).

3.3.1 Extension of VIs to the FJSP

The FJSP is a multi-operation model, meaning that each job consists of a set of oper-
ations that are to be completed in order to complete the job. Furthermore, associated
with each operation is a set of resources on which they are allowed to be processed. To
extend the family of VIs (3.7) to the models TI-make-task and TI-tard-task, we will need
to introduce the following notation:

Tk set of tasks allowed to be processed on resource k, (Tk ⊆ T ),

ptk = max
s∈Tk\{t}

{psk}, largest processing time among tasks Tk \ {t}

competing with task t for resource k.

Using this notation, the extension of the family of VIs (3.7) to TI-make-task and TI-
tard-task can be expressed as:

u+∆−1∑
s=u−ptk

xtks +
∑

l∈Tk\{t}

u−1∑
ν=u−plk+∆

xlkν ≤ 1, t ∈ T , u ∈ H, (3.8)

k ∈Mt, ∆ ∈ {1, . . . , ptk − 1}.

Note that the number of VIs in this family is in the order of (tasks) × (time steps) ×
(resources) × (ptk) and hence grows extremely large with problem size. It is for this
reason a cutting-plane method was considered suitable for testing their strength.

3.3.2 Proof of validity

The family of inequalities (3.8) can be constructed from constraints in (3.3) using integer
rounding: Consider one constraint (3.3b) for some chosen task t ∈ T . Furthermore, con-
sider two of the constraints (3.3d), one for period u− 1 and arbitrary machine m ∈Mt,
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and one for period u+ ∆− 1 (where ∆ ∈ {1, . . . , ptk − 1}) and the same machine m. By
summing these three constraints with coefficients 1

2 we obtain a new constraint that is
valid for the LP relaxation of the FJSP. By first rounding down the LHS (in effect ”loos-
ening” the new constraint) and then rounding down the RHS (by reimposing integrality
constraints) we obtain our new VIs (3.8) that are valid for the original FJSP. To clarify,
this procedure is demonstrated below.

One constraint (3.3b) for arbitrary task t:∑
k∈Mt

∑
u∈H

xtku = 1, for some t ∈ T .

Two constraints (3.3d):∑
t∈Tm

u−1∑
µ=u−ptm

xtmµ ≤ 1, for some m ∈Mt, and period u− 1 ∈ H,

∑
t∈Tm

u+∆−1∑
µ=u−ptm+∆

xtmµ ≤ 1, for the same machine m, and period u+ ∆− 1 ∈ H.

Adding these together with coefficients 1
2 yields:

(Note that u− ptk < u− ptk + ∆ and u− 1 < u+ ∆− 1, ∀ ∆ ∈ {1, . . . , ptk − 1}.)

∑
w∈Tm

1

2

u−1∑
µ=u−pwm

xwmµ +
1

2

u+∆−1∑
µ=u−pwm+∆

xwmµ


︸ ︷︷ ︸

(3.3d)

+
1

2

∑
k∈Mt

∑
s∈H

xtks︸ ︷︷ ︸
(3.3b)

=
∑
w∈Tm

 u−1∑
µ=u−pwm+∆

xwmµ +
1

2

u−pwm+∆−1∑
µ=u−pwm

xwmµ +
1

2

u+∆−1∑
µ=u

xwmµ

+
1

2

∑
k∈Mt

∑
s∈H

xtks

=

u+∆−1∑
s=u−ptm

xtms +
1

2

(
u−ptm−1∑
s=0

xtms +

Hmax∑
s=u+∆

xtms

)
+

1

2

u−1∑
µ=u−ptm+∆

xtmµ

+
∑

w∈Tm\{t}

 u−1∑
µ=u−pwm+∆

xwmµ +
1

2

u−pwm+∆−1∑
µ=u−pwm

xwmµ +
1

2

u+∆−1∑
µ=u

xwmµ


+

1

2

∑
k∈Mt\{m}

∑
s∈H

xtks ≤ 1 +
1

2
.

Rounding down the LHS yields

u+∆−1∑
s=u−ptm

xtms +
∑

w∈Tm\{t}

u−1∑
µ=u−pwm+∆

xwmµ ≤ 1 +
1

2
.
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Reimposing integrality constraints implies that the LHS is integral; hence the RHS can
be rounded down to the nearest integer. We obtain the valid inequality

u+∆−1∑
s=u−ptm

xtms +
∑

w∈Tm\{t}

u−1∑
µ=u−pwm+∆

xwmµ ≤ 1.

which is, in fact, the inequality (3.8) for arbitrary t ∈ T , m ∈ Mt, u ∈ H, and ∆ ∈
{1, . . . , ptk − 1}.

3.3.3 Intuitive description of new VIs

The validity of inequalities (3.8) can also be understood more intuitively by observing
the time intervals in each inequality that are being used. Denote these time intervals
Qtk and Qlk, where

Qtk = [u− ptk, u+ ∆− 1], for task t ∈ T and k ∈Mt,

Qlk =

{
[u− plk + ∆, u− 1], if plk > ∆

∅, otherwise
for all tasks l ∈ Tk \ {t} and same k.

To aid in the description of the inequalities we will use the following diagram as a visual
aid, similar to those used in [26] and [2]. For each individual machine k we have a
diagram that contains one line for each task. The blocks on each line associated with a
task t indicate the time periods u for which xtku occurs in the inequality. The inequalities
(3.8) are thus represented by the following diagram, for some machine k:

Let us first take note of the earliest possible completion times of tasks scheduled to begin
within these intervals. A task t that is scheduled to begin at some point within time
interval Qtk will, at the earliest, be completed at time u (since the earliest starting time
within this interval is u− ptk). Likewise, any task l ∈ Tk \ {t} that is scheduled to begin
at some point within time interval Qlk will, at the earliest, be completed at time u+ ∆
(since the earliest starting time within this interval is u− plk + ∆).

Let some task l′ ∈ Tk \ {t} be scheduled to begin within time interval Ql′k. Task l′ is, by
construction of Ql′k, guaranteed to occupy machine k at time u and time u − 1 (since
task l′ completes at the earliest at time u+ ∆ and is scheduled to begin at u− 1 at the
latest). This implies that no other task l ∈ Tk \ {t} can be scheduled within its respec-
tive time interval Qlk (since these are also guaranteed to occupy machine k at time u).
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Furthermore, this also implies that task t cannot begin at any point within Qtk before or
after the starting time of l′. Task t cannot begin before since (if it is scheduled to begin
within Qtk) it will be completed, at the earliest, at time u (and again l′ is guaranteed
to occupy machine k at time u− 1). Task t cannot be scheduled after l′ has completed
either, since within Qtk it can at the latest begin at u + ∆ − 1, which is one time step
before the earliest completion time of l′.

Now instead let task t be scheduled to begin at some point within time interval Qtk.
This implies that no task l ∈ Tk \ {t} can be scheduled to begin within Qlk before the
starting time of t, since t will begin at time u + ∆ − 1 at the latest, and the earliest
completion time for l ∈ Tk \ {t} scheduled to begin in Qlk is u+ ∆. Also, no l ∈ Tk \ {t}
can be scheduled to begin, at some point within Qlk, after the starting time of t either,
since it can begin at the latest at time u − 1 < u (the earliest completion time of t).
This implies the validity of (3.8).
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4
Implementation and results

In this chapter we will describe our cutting-plane implementation, followed by computa-
tional results. We will start by describing the test instances that have been used as input
data in section 4.1. In section 4.2 we will present our implementation of a cutting-plane
algorithm. Finally, tables and graphs containing computational results will be presented
in section 4.3.

4.1 Test instances

Among data instances used in various approaches to the FJSP, the ones introduced by
Fattahi et al. (2007) (see [8]) are one of the most frequently used for computational ex-
perimentation. The comparatively small size of these instances relative to other sets of
standard benchmark instances also make them a preferable choice to test mathematical
programming approaches to solving the FJSP (see [1] for a survey of common bench-
mark instances for the FJSP). The Fattahi instances are divided into ten small-sized test
instances labeled ”sfjs1–sfjs10 ”, and ten medium-sized instances labeled ”mfjs1–mfjs10 ”.
In this thesis the twelve largest Fattahi instances (i.e., sfjs9–mfjs10 ) have been cho-
sen as input data for our model. The eight smallest instances (sfjs1–sfjs8 ) are solved
in a matter of a few seconds, and are therefore not considered interesting for comparison.

Included in the Fattahi instances are: the number of resources m, jobs n and operations
nj for each job j, along with corresponding processing times. All processing times are
integral. The precedence relations between operations along with their degree of flexibil-
ity (i.e., which resources can process them) are also included. As previously mentioned,
when utilizing the tardiness objective we will be using due dates and tardiness weights
from [23]. Release dates, and tardiness weights are calculated as described in section
3.2.1 and 3.2.5 respectively. The size of the chosen instances range from n = 3,m = 3,
and nj ≤ 3 for the smallest instance sfjs9 to n = 12,m = 8, and nj ≤ 4 for the largest
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instance mfjs10.

In order for our MILP formulation of the FJSP to be feasible, the size of the planning
horizon (Hmax) must of course be large enough to contain at least one optimal schedule.
However, as we remember from section 3.2, one of the main weaknesses of using a time-
indexed formulation is that they tend to grow quickly with the size of the problem. It
is therefore also preferable to try and keep Hmax as small as possible, to reduce memory
requirements and computation time. Initially, to ensure that the planning horizon was
long enough to contain an optimal schedule, the size of Hmax was calculated simply by
summing together all of the longest possible processing times of each operation i of job
j, i.e., Hmax =

∑
j∈J

∑
i∈Nj

maxk∈Mij
(pijk). This is essentially the makespan of the

longest possible schedule. The use of this Hmax, however, induces a very large model,
causing the time to solve the LP relaxation of even the smallest test instance (sfjs9 ) to
be too long for practical purposes. In addition to this, the size of the family of new VIs
also increases with the size of the planning horizon. To reduce memory requirements,
we have instead used the final planning horizon resulting from the last iteration of the
aforementioned iterative solution procedure (described in [23, 24]), when applied to the
model utilizing the tardiness objective. This has been done to enable us to add as
many of the new VIs as possible to the base model, in order to best test their collective
potential effect. The sizes of the planning horizon that were used, along with the sizes
of each test instance, are displayed in table 4.1 below.

Problem instance

(maxops, jobs, resources)
Hmax

sfjs9 (3,3,3) 992

sfjs10 (3,4,5) 843

mfjs1 (3,5,6) 763

mfjs2 (3,5,7) 677

mfjs3 (3,6,7) 721

mfjs4 (3,7,7) 877

mfjs5 (3,7,7) 902

mfjs6 (3,8,7) 1026

mfjs7 (4,8,7) 1332

mfjs8 (4,9,8) 1243

mfjs9 (4,11,8) 1503

mfjs10 (4,12,8) 2001

Table 4.1: Sizes of test instances and planning horizon
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4.2 Implementation

The basic outline of the cutting-plane implementation used in this thesis is illustrated
in figure 4.1 below.

Figure 4.1: The cutting-plane algorithm

To obtain the LP solution in each iteration of the cutting-plane algorithm we have
used IBM’s mathematical programming solver CPLEX. During the separation stage of
the cutting-plane algorithm, the LP solution of the current iteration k, denoted xk, is
checked to see whether or not it violates any of the new family of VIs (3.8). This is basi-
cally done by enumerating all of the VIs and then checking them one by one in sequential
order. Any violated VIs are then added to the model in the next iteration. Ideally we
would like to add as many violated VIs to the model as we can in each iteration, to
best assess the new family of VIs collective potential to close the initial optimality gap.
Unfortunately, the number of VIs in (3.8) exceeds 500000 even for the smallest of our
test instances, and attempting to add too many at once only results in memory failure
when solving. To deal with this problem we have chosen an upper limit of 8000 total
new VIs to be added to the model. This limit was chosen simply through trial and error,
by running the cutting-plane algorithm for different choices of upper limit and different
problem sizes. Increasing the upper limit further would lead to memory failure for larger
test instances (mfjs7–10 ).
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The cutting-plane algorithm is also terminated if a pre-specified time limit is exceeded.
As mentioned in section 1.1, part of what inspired the subject of this thesis is the po-
tential application of the new VIs to improve the performance of the so-called iterative
solution procedure developed in [23]. For each iteration of the iterative solution pro-
cedure a time limit of 7200 CPU seconds was set for each call to the CPLEX solver,
and for the model using the tardiness objective the iterative solution procedure would
take 4–7 iterations before terminating. With this in mind, and the potential application
of running the cutting-plane algorithm parallell to the iterative solution procedure, a
time limit for each call to the CPLEX solver is set to 40000 CPU seconds, by taking
4·7200+7·7200

2 ≈ 40000. Note that since the time limit is for each call to the CPLEX
solver the total computation time may still exceed 40000 CPU seconds. Furthermore,
since computation times tend to be quite long, we have decided that the cutting-plane
algorithm will run for a maximum of 5 completed iterations.

To summarize, the termination criteria for our implementation of the cutting-plane al-
gorithm are:

• LP solution is feasible to unrelaxed problem, hence optimal

• time limit of 40000 CPU seconds reached (for each call to CPLEX)

• limit of 5 completed iterations reached

• limit of 8000 VIs added reached

• no violated VIs found

4.3 Computational Results

In this section we will present the results from running our cutting-plane algorithm on
the models TI-make-task(-prec) and TI-tard-task(-prec) described in chapter 3, using
the twelve largest Fattahi test instances as input data as mentioned in section 4.1. Our
main priority is to evaluate the new VIs ability to bridge the gap between the initial LP
relaxation bound z0, and the best objective value found z∗. One measurement that will
be used is the percentage of initial optimality gap closed (piogap), which is defined in
this thesis as:

piogap =
z(xk)− z0

z∗ − z0
· 100%. (4.1)

Here z(xk) denotes the objective value corresponding to LP solution xk, after k iterations
of the cutting-plane algorithm (e.g., z0 = z(x0)). To remind the reader, the mipgap is
defined as the relative difference between the best LB found and the best objective value
found. The mipgap is defined in this thesis as:

mipgap =
z∗ − z(xk)

z∗
· 100%. (4.2)
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The best objective values found, i.e., z∗, that are used in this thesis have been calculated
via the iterative solution procedure described in [23, 24]. The values of z∗ that were used
will be displayed along with the results for each model. As has been mentioned earlier,
the main strength of the TI-formulation is that it yields very strong LBs. Although
it may be beneficial to tighten the bounds further, when the initial optimality gap is
small to begin with the positive effects of tightening it further may not be worth the
computational cost of adding the new cuts. With this in mind we present both the new
LBs obtained for each iteration of the cutting-plane algorithm as well as the total time
for solving and resolving the LP relaxation.

Computations were carried out using AMPL-CPLEX 12.1.0 (Fourer et al., 2002; IBM
Corp., 2009) on a computer with four 2.90 GHz Intel Core i5-3470S processors, each
with four cores, with a total memory of 16.75 Gbyte of RAM. All results presented in
this section are those obtained from this computer. Since computation times were often
very long, and since we would sometimes encounter memory issues during preliminary
testing, the results were also verified using a second computer with additional memory.
This second computer has two 2.66 GHz Intel Xeon X5650 processors, each with six
cores, with a total of 48 Gbyte of RAM.

4.3.1 Diversifying cuts

Let V I(t,k,u,∆) denote a single VI from the family (3.8) for some task t ∈ T , resource
k ∈ Mt, time interval u ∈ H, and ∆ ∈ {1, . . . , ptk − 1}. During preliminary testing
of the cutting-plane algorithm we discovered that many cuts of a similiar ”type” were
being added. By ”type” we mean that clusters of VIs were being added for the same
task, resource and time interval but for varying values of ∆ (e.g., V I(1,1,1,1→ 100) or
V I(2,2,2,1 → 80)). This led us to believe the LP relaxation bound could perhaps be
raised higher if we were to add a more diverse range of cuts, to avoid adding similar VIs
in the sense that they cut off much of the same portions of the feasible region. To do this
we experimented with checking only, for example, every third or tenth ∆ of the VIs in
the separation stage of the cutting-plane algorithm. We also experimented with skipping
different time intervals u but saw greater effects for skipping ∆. Figure 4.2 displays the
effect of skipping different sized chunks of ∆ on the percentage of the initial optimality
gap that is closed after the cutting-plane algorithm has terminated. The results from the
smallest five instances sfjs9–10 and mfjs1–3 are omitted for TI-tard-task (Tardiness),
since no difference in the percentage of the initial optimality gap closed was observed for
these instances. For the same reasons results for sfjs9, mfjs4, mfjs6–8 and mfjs10 are
omitted for TI-make-task (Makespan).
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Figure 4.2: The piogap after termination of the cutting-plane algorithm while attempting
to diversify the cuts added in each iteration. ”skip 1–20” denotes the number of ∆ that
are skipped when checking for violated VIs in the separation stage of the cutting-plane
algorithm.

As we can see, by skipping to check certain ∆, and consequently adding a more diverse
range of VIs before hitting our upper limit on cuts added, the initial optimality gap
could be closed even further than when checking every ∆ (skip 0). Furthermore, a
smaller number of cuts were added for higher values of skipped ∆, but still managed to
achieve the same LB. For TI-make-task the best results where achieved for skip 10 and
15. For TI-tard-task we achieved the best results for skip 15 and skip 20 but ended up
hitting our time limit for mfjs8 with skip 20. Since using skip 15 yielded the best results
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within our time limit for both objectives we will only be presenting the results for these
below. Also worth noting from the two graphs in figure 4.2 is that the new VIs seem to
have a significantly greater effect on bridging the initial optimality gap for TI-tard-task
model as opposed to the TI-make-task model.

4.3.2 Results for the minimization of tardiness

A summary of the results from running our cutting-plane algorithm using skip15 (see
figure 4.2) on the model TI-tard-task (TI-tard-task-prec for the two largest instances)
is displayed in table 4.2. In this table, the best objective value (z∗) along with the
initial LP relaxation bound (LB before) and the LB after the cutting-plane algorithm
has terminated (LB after) are presented. The piogap and the mipgap are calculated
according to the aforementioned formulas (4.1) and (4.2) respectively. For instances
sfjs9 and mfjs2–3 the LP relaxation solution that was found was also optimal to the
unrelaxed problem (marked with ”int” for integer feasible). For the two largest instances
mfjs9–10 solving the initial LP relaxation of the model TI-tard-task went beyond our
time limit. For these instances we have thus instead used the smaller model TI-tard-
task-prec utilizing the alternative precedence constraints (3.4) (marked in the table with
”prec” to signify this).

Tardiness results

Problem z∗ LB before LB after mipgap before mipgap after piogap

sfjs9 554.329 554.329 - int 0.00% - -

sfjs10 5736.04 5521.378 5547.495 3.74% 3.29% 12.17%

mfjs1 10 732.4 10 696.906 10 728.881 0.33% 0.03% 90.09%

mfjs2 13 915.752 13 915.752 - int 0.00% - -

mfjs3 9671.92 9671.920 - int 0.00% - -

mfjs4 19 300.8 19 145.468 19 222.144 0.80% 0.41% 49.36%

mfjs5 12 416.3 12 371.236 12 401.132 0.36% 0.12% 66.34%

mfjs6 19 585.9 19 179.748 19 272.132 2.07% 1.60% 22.75%

mfjs7 35 111.1 33 702.649 33 987.216 4.01% 3.20% 20.20%

mfjs8 25 225.3 24 794.569 24 956.039 1.71% 1.07% 37.49%

mfjs9 prec 60 159.5 54 326.835 54 520.069 9.70% 9.37% 3.31%

mfjs10 prec 45 568.4 42 152.024 42 176.057 7.50% 7.44% 0.70%

Table 4.2: Cutting-plane algorithm results for TI-tard-task(-prec).

We can see that adding the new VIs yield tighter LBs for all test instances in which
violated VIs were found. The effect of these seem to diminish however for the two
largest instances using the alternative precedence constraints. Note that, as previously
mentioned, using the alternative precedence constraints results in a looser initial LP
relaxation bound. The resulting initial mipgap is therefore relatively larger for these
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instances. In retrospect we could have, in addition to the new VIs, checked if the current
LP solution xk also violated the original precedence constraints (3.3e) for the two largest
instances. By doing this it may have been possible to raise the LB even further.

Time elapsed (tardiness)

The total time spent (in CPU seconds) on solving the initial LP relaxation (LP relax),
resolving the LP problem each time violated VIs are appended to the model (resolve),
checking for violated constraints (loop), and the total time spent from initialization to
termination of the cutting-plane algorithm (total) are presented in table 4.3. In addition
to the computation times, the number of completed iterations (#it) and reason for the
cutting-plane algorithm’s termination (termination) are also reported.

Tardiness times

Problem LP relax resolve loop total #it termination

sfjs9 1 0 0 1 0 optimal

sfjs10 1 1 16 17 1 no cuts found

mfjs1 4 1 32 37 1 no cuts found

mfjs2 1 0 18 19 0 optimal

mfjs3 3 0 36 39 0 optimal

mfjs4 12 183 176 371 2 no cuts found

mfjs5 20 773 260 1053 3 no cuts found

mfjs6 62 2071 348 2481 3 no cuts found

mfjs7 1076 18154 364 19594 2 max VIs

mfjs8 4431 24698 174 29303 1 max VIs

mfjs9 prec 89 1083 199 1371 1 max VIs

mfjs10 prec 425 3356 1369 5150 2 max VIs

Table 4.3: Computation times (in CPU seconds), number of completed iterations, and
reason for termination for the cutting-plane algorithm for TI-tard-task(-prec). The termi-
nation critera are: current LP solution is optimal (optimal), time limit reached (time limit),
maximum completed iterations reached (max #it), maximum number of added VIs reached
(max VIs), and no violated VIs were found (no cuts found).

The majority of time spent was on solving and resolving the LP problem in each iteration.
The time limit that was set and the maximum number of iterations were not reached
for any of the test instances. Although not observable in the table, the addition of the
VIs between iterations to the model would most often cause an increase in resolve time,
but would sometimes also cause it to decrease. Furthermore, the increase in resolve time
would most often occur already after the first iteration. This was also, in the majority of
cases, the iteration in which the largest number of cuts were added to the model (more
on this in the following subsection). The loop time for each iteration increases together
with problem size, since the size of the family of VIs that are checked also grows with
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problem size. Note that the loop for checking the VIs for violation was executed in
AMPL which is not particularily efficient for this purpose. Implementing this step in a
language that is better at handling this type of operation could greatly reduce the time
requirement of this step.

Cuts added (tardiness)

In table 4.4 the number of VIs added in each iteration is presented. The sum of all VIs
that have been added once the cutting-plane algorithm has terminated is also displayed.
Cells in the table containing a ”0” denote iterations in which no violated VIs were found.
Cells that have been left empty mean that the cutting-plane algorithm terminated before
checking for additional cuts in the corresponding iteration.

Tardiness cuts added

Problem Iteration 1 Iteration 2 Iteration 3 Iteration 4 Total

sfjs9 0 0

sfjs10 24 0 24

mfjs1 251 0 251

mfjs2 0 0

mfjs3 0 0

mfjs4 1524 487 0 2011

mfjs5 370 1946 142 0 2458

mfjs6 3789 248 219 0 4256

mfjs7 7175 825 8000

mfjs8 8000 8000

mfjs9 prec 8000 8000

mfjs10 prec 6243 1757 8000

Table 4.4: Number of VIs added in each iteration of the cutting-plane algorithm for the
model TI-tard-task(-prec)

As can be observed in both table 4.3 and 4.4, the cutting-plane algorithm would most of-
ten either terminate due to the maximum number of added VIs being reached or because
no violated VIs were found. The majority of cuts found for almost all instances were
also found within the first iteration of the cutting-plane alorithm. For larger problem
instances (mfjs7–10 ) the upper limit on number of cuts added was reached. It may be
possible to bridge the initial optimality gap even further for these instances by adding
more cuts. As previously mentioned, however, this will often lead to memory problems
or induce a computation time that is beyond our time limit. Since the size of the family
of new VIs increases with problem size, it may also be possible to obtain higher LBs,
with the same upper limit for cuts added, by skipping even larger chunks of ∆. By
doing this we could potentially reach VIs ”later on” in our enumeration before hitting
the upper limit of violated VIs added, and thus potentially find a more diverse group of
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violated VIs to add to the model. With this in mind, it may have been a good idea to
implement a ”skip ∆” that is dependent on the problem size instead of keeping it static
for all instances.

4.3.3 Results for the minimization of makespan

In this section we present the results of running our cutting-plane algorithm using skip15
on the model TI-make-task(-prec). These are displayed in table 4.5 in the same form
as in the previous subsection for tardiness. For the smallest instance sfjs9 the solution
found was optimal for the unrelaxed model and is therefore marked with ”int”(for integer
feasible) to represent this. Computation time for solving the LP relaxation of TI-make-
task for the two largest instances, mfjs9–10, went beyond our time limit. For these
instances we will thus instead be presenting the results of the model TI-make-task-prec
utilizing alternative precedence constraints. Once more, these instances are marked with
”prec” to signify this.

Makespan results

Problem z∗ LB before LB after mipgap before mipgap after piogap

sfjs9 210 210 - int 0.00% - -

sfjs10 516 456.955 461.832 11.44% 10.50% 8.26%

mfjs1 468 410.852 411.922 12.21% 11.98% 1.87%

mfjs2 446 402.928 403.082 9.66% 9.62% 0.36%

mfjs3 466 416.616 417.757 10.60% 10.35% 2.31%

mfjs4 554 496 496 10.47% 10.47% 0.00%

mfjs5 514 453.241 456.228 11.82% 11.24% 4.92%

mfjs6 634 614 614 3.15% 3.15% 0.00%

mfjs7 879 764 764 13.08% 13.08% 0.00%

mfjs8 884 764 764 13.57% 13.57% 0.00%

mfjs9 prec 1081 801.747 801.994 25.83% 25.81% 0.09%

mfjs10 prec 1208 944 944 21.85% 21.85% 0.00%

Table 4.5: Cutting-plane algorithm results for TI-make-task(-prec).

From table 4.5 it seems that the new VIs generally have less of an effect on closing the
initial optimality gap for the model utilizing the makespan objective instead of tardiness.
Furthermore, the cuts do not seem to consistently improve the LBs; bridging a small
portion of the mipgap for some instances and for others having no effect on the LB
whatsoever. For instances mfjs4, mfjs6–8 and mfjs10 the additional VIs have no effect
on the LB. Note that for all of these instances the initial LP relaxation bound was integer
valued.
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Time elapsed (makespan)

In table 4.6 the computation times for the model TI-make-task(-prec) are presented in
the same form as before for TI-tard-task(-prec). Just as before, the number of completed
iterations and reason for termination are also presented.

Makespan times

Problem LP relax solve loop total #it termination

sfjs9 10 0 1 11 0 optimal

sfjs10 2 325 59 386 4 no cuts found

mfjs1 60 861 80 1001 4 no cuts found

mfjs2 27 190 42 260 1 no cuts found

mfjs3 93 1606 122 1821 2 no cuts found

mfjs4 548 5569 307 6424 5 max #it

mfjs5 342 5886 158 6386 2 no cuts found

mfjs6 1456 33635 591 35682 5 max #it

mfjs7 3896 59560 632 64088 2 time limit

mfjs8 12482 26802 506 39790 1 time limit

mfjs9 prec 265 4779 242 5287 1 max VIs

mfjs10 prec 430 9484 1047 10962 2 max VIs

Table 4.6: Computation times (in CPU seconds), number of completed iterations, and
reason for termination for the cutting-plane algorithm for TI-tard-task(-prec). The termi-
nation critera are: current LP solution is optimal (optimal), time limit reached (time limit),
maximum completed iterations reached (max #it), maximum number of added VIs reached
(max VIs), and no violated VIs were found (no cuts found).

The model TI-make-task utilizing the makespan objective is generally more difficult
to solve than the model TI-tard-task that makes use of the tardiness objective. By
comparing the tables 4.6 and 4.3 (computation times for TI-tard-task(-prec)), we can
also see that the computation times are larger for TI-make-task(-prec) than TI-tard-
task(-prec) for all instances. Computation time for instances mfjs7–8 went beyond our
time limit. However, by observing the previous table 4.5 we can see that the added
VIs from previous completed iterations for instances mfjs7–8 had no effect on the LB.
Furthermore, the initial LP relaxation bounds for these instances are also integer valued.
If the instances mfsj7–8 were to follow the trend of other instances with integer valued
initial LB (i.e., mfjs4, mfjs6 and mfjs10 ), then allowing the cutting-plane algorithm to
go beyond the time limit would still have no effect on raising the LB. Just as before for
the tardiness objective, the addition of the VIs to the model would most often induce an
increase in time to resolve the LP relaxation. Note again that, although not observable
in the table, this increase in resolve time would most often occur already after the first
iteration when the largest number of cuts were added.
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Cuts added (makespan)

The number of added VIs in each iteration of the cutting-plane algorithm are presented
in table 4.7 for the model TI-make-task(-prec), in the same form as before for TI-tard-
task(-prec).

Makespan cuts added

Problem Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Total

sfjs9 0 0

sfjs10 1631 894 375 6 0 2906

mfjs1 1266 306 17 3 0 1592

mfjs2 328 0 328

mfjs3 1971 205 0 2176

mfjs4 973 95 2 148 86 1304

mfjs5 2143 493 0 2636

mfjs6 2409 84 471 19 16 2999

mfjs7 1306 634 167 2107

mfjs8 1727 384 2111

mfjs9 prec 8000 8000

mfjs10 prec 6849 1151 8000

Table 4.7: Number of VIs added in each iteration of the cutting-plane algorithm for the
model TI-make-task(-prec)

As seen in table 4.7 above, the cutting-plane algorithm would most often terminate
because no additional violated VIs were found. Similar to before, the majority of cuts
found were within the first iteration of the cutting-plane algorithm. The upper limit
on new VIs added was reached only for the two largest instances for the model using
alternative precedence constraints.
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5
Conclusions

In this final chapter we will review and summarize the results of this thesis and draw
general conclusions from these. Furthermore, we will discuss our study in retrospect
along with ideas for potential future research.

5.1 Conclusions

In this thesis we have shown that a family of VIs originally formulated for a time-indexed
MILP model of the SMSP can be extended to a time-indexed MILP model of the FJSP.
These VIs have previously been shown to be facet-inducing for the SMSP and strong
for the PMSP. To evaluate the strength of the VIs for the FJSP we have implemented a
cutting-plane algorithm and observed the VIs ability to bridge the initial optimality gap
for the ten largest Fattahi test instances. This has been done for two different models:
the model TI-tard-task utilizing a tardiness objective, and the model TI-make-task uti-
lizing a makespan objective.

The importance of the choice of objective function is reflected in the varying effect of
the VIs on the LB, as well as computation time, of the two models tested. The model
TI-make-task is generally more difficult to solve than the model TI-tard-task, which is
indicated by larger computation times for all test instances. The overall effect of the VIs
on bridging the initial optimality gap for the Fattahi instances is also in general much
greater and more reliable for the objective of minimizing tardiness. Note, however, that
the initial optimality gap for tardiness is relatively smaller than for makespan to begin
with. For the model TI-tard-task the VIs improve the LB for all instances in which vio-
lated VIs were found. Unfortunately, the relative effects seem to diminish with increased
problem size and when utilizing the alternative precedence constraints. The added VIs
will, in the majority of cases, also induce an increase in the time required to solve the LP
relaxation. For the model TI-make-task the VIs do not reliably improve the LB for the
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instances tested, sometimes improving the LB but in other cases having no effect on the
LB at all. Adding the VIs to TI-make-task would also significantly increase computation
time for all instances, causing the time to solve larger instances to go beyond our time
limit. For larger instances (i.e., mfjs7–10 ) of the model TI-tard-task(-prec), and the two
largest instances for TI-make-task-prec, the upper limit on VIs added was reached. A
large portion of the family of VIs would therefore go unchecked, since adding additional
VIs would cause memory problems. In section 4.3.1 we experimented with diversifying
the VIs added by changing the order in which the VIs were checked for violation in the
separation stage of the cutting-plane algorithm. The result of this experimentation was
that the LB could be raised higher than otherwise, while adding fewer VIs to the model.
It is possible that by diversifying them further, or according to a different procedure,
the LB for these larger instances could be raised even higher.

In its current state, the cutting-plane algorithm does not appear to be useful for improv-
ing the performance of the previously mentioned iterative solution procedure developed
in [23] (also described in [24]). The addition of the VIs to the model using the objective
of minimizing tardiness do seem to have potential to raise the LB to a degree that would
be helpful. However, to improve the iterative solution procedure the improved LB must
be made available at an earlier iteration of this procedure. Currently the cutting-plane
algorithm does not operate quickly enough to achieve this. Furthermore, the VIs ability
to improve the LB for larger problem instances (for which we are also most interested
in improving the iterative solution procedure) is still too small to justify the increase in
computation time. This is true in particular when utilizing the objective of minimizing
makespan where the effect on the LB is either small or non-existant, yet still induces a
heavy increase in computation time.

5.2 Discussion and future research

During the course of this study we have had several ideas for improving the performance
of the cutting-plane algorithm that we did not have the time to implement, many of
which have already been mentioned. It has been noted that the separation step, in
which the current LP solution is checked to see if it violates any of the family of VIs,
requires a longer computation time than expected. Given more time we would have liked
to implement this step in another programming language (for instance C) that can more
easily recognize opportunities to parallelize computation and thus potentially perform
this step much faster. In addition to this, we feel that the LB could be raised even
higher (in particular for larger instances where the maximum number of added VIs was
reached) by diversifying the VIs added further than what has been done. A condition
that is dependent on problem size, skipping larger chunks of ∆ for larger problems, may
have been useful in achieving this. It would have also been interesting to experiment
more with changing the order in which the tasks, resources and time periods are checked
as well. Another idea to diversify the VIs added is to apply a condition that checks
whether or not cuts to be added are sufficiently orthogonal to eachother in the sense
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that their scalar product is close to zero.

For the two largest instances mfjs9–10 we were unable to solve the LP relaxation of TI-
tard-task and TI-make-task within our time limit and were therefore forced to resort to
the two smaller models TI-tard-task-prec and TI-make-task-prec using alternative prece-
dence constraints for these instances. In [23], it has already been established that the
models using these alternative constraints do not have as strong lower bounds as those
using the original precedence constraints. In retrospect we could have, in addition to the
cutting-plane algorithm using the new VIs, used the original precedence constraints in
its own cutting-plane algorithm. The results could then be compared to further evaluate
the strength of the new VIs. Another possibility would be to experiment with adding
the VIs in combination with other types of relaxations, to better assess the VIs ability
to achieve higher LBs for these larger, more computationally demanding instances.

As previously mentioned in section 1.1, the family of VIs that were extended to the FJSP
in this thesis have also previously been extended to a time-indexed MILP model of the
PMSP in the Ph.D. thesis [2]. In [2], two additional families of VIs were developed (one
of which was based on the family of VIs that we have extended to the FJSP) and tested
for the same model of the PMSP with positive results. The extension of these other two
families of VIs to the FJSP may also be another interesting topic for future research.
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Summary of notation

Sets

J set of jobs; j ∈ J := {1, . . . ,n}
Nj set of operations of job j; i ∈ Nj := {1, . . . ,nj}
K set of resources; k ∈ K := {1, . . . ,m}
T set of tasks; t ∈ T := {1, . . . ,

∑
j∈J nj}

T̃ set of terminal tasks; t ∈ T̃ := {n1, (n1 + n2), . . . , (
∑

j∈J nj)}
(i.e., tasks corresponding to the final operation of each job)

Mt set of resources that are allowed to process task t, (Mt ⊆ K)

Tk set of tasks allowed to be processed on resource k, (Tk ⊆ T )

H set of time periods; u ∈ H := {1, . . . ,Hmax}
Ht time window of task t; Ht := {rt, . . . ,Hmax − δt}

(i.e., time steps in which task t can begin and be processed to completion)

Parameters

n total number of jobs

nj total number of operations corresponding to job j

m total number of resources

Hmax size of planning horizon

rt release date of task t

dt due date of terminal task t ∈ T̃
ptk processing time of task t on resource k

ptk largest processing time among tasks Tk\{t} competing with task t for resource
k, ptk = maxs∈Tk\{t}{psk}

δt shortest possible remaining processing time from the starting time of task t to
completion of corresponding terminal task

βt weights used for tardiness objective function

Cmax makespan

(i.e., time difference between the starting time of the earliest scheduled job
and the time in which all jobs have been completed)

Variables

xtku =

{
1, if task t starts in the beginning of time step u on resource k

0, otherwise



Glossary

FJSP flexible job shop scheduling problem

JSP job shop scheduling problem

SMSP single-machine scheduling problem

PMSP parallell-machine scheduling problem

MILP mixed integer linear programming

IP integer linear programming

LP linear programming

VI valid inequality

TI time-indexed

LB lower bound
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