
Chalmers Publication Library

An Event-Driven Manufacturing Information System Architecture

This document has been downloaded from Chalmers Publication Library (CPL). It is the author´s

version of a work that was accepted for publication in:

IFAC/IEEE Symposium on Information Control Problems in Manufacturing, INCOM

Citation for the published paper:
Theorin, A. ; Bengtsson, K. ; Provost, J. et al. (2015) "An Event-Driven Manufacturing
Information System Architecture". IFAC/IEEE Symposium on Information Control Problems
in Manufacturing, INCOM

Downloaded from: http://publications.lib.chalmers.se/publication/217989

Notice: Changes introduced as a result of publishing processes such as copy-editing and

formatting may not be reflected in this document. For a definitive version of this work, please refer

to the published source. Please note that access to the published version might require a

subscription.

Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers
University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses,
conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that
Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted.
The CPL service is administrated and maintained by Chalmers Library.

(article starts on next page)

http://publications.lib.chalmers.se/publication/217989


An Event-Driven Manufacturing
Information System Architecture

Alfred Theorin ∗ Kristofer Bengtsson ∗∗ Julien Provost ∗∗∗
Michael Lieder ∗∗∗∗ Charlotta Johnsson ∗

Thomas Lundholm ∗∗∗∗ Bengt Lennartson †

∗ Lund University, Lund, Sweden
(alfred.theorin@control.lth.se, charlotta.johnsson@control.lth.se).
∗∗ Sekvensa AB, Gothenburg, Sweden (kristofer@sekvensa.se).
∗∗∗ Technische Universität München, Munich, Germany

(provost@ses.mw.tum.de).
∗∗∗∗KTH Royal Institute of Technology, Stockholm, Sweden

(lieder@kth.se, thomas.lundholm@iip.kth.se).
† Chalmers University of Technology, Gothenburg, Sweden

(bengt.lennartson@chalmers.se).

Abstract: Future manufacturing systems need to be more flexible, to embrace tougher and
constantly changing market demands. They also need to make better use of plant data, ideally
utilizing all data from the entire plant. Low-level data should be refined to real-time information
for decision making, to facilitate competitiveness through informed and timely decisions.
The Line Information System Architecture, LISA, is designed to enable flexible factory
integration and data utilization. In LISA, international standards and established off-the-shelf
technologies have been combined with the main objective to be industrially applicable. LISA
is an event-driven architecture with a prototype-oriented information model and formalized
transformation services. It features loose coupling, flexibility, and ease of retrofitting legacy
devices. The architecture has been evaluated on both real industrial data and industrial
demonstrators and is also being installed at a large automotive company.

Keywords: industry automation, agile manufacturing, flexible manufacturing systems,
architectures, events, decision support systems, automobile industry

1. INTRODUCTION

A hidden asset in manufacturing industry is data. Investi-
gations estimate that 85% of the data are unstructured,
and 42% of all transactions (sending and receiving in-
formation) are paper-based (IBM (2007)). CEOs in the
manufacturing industry say that “we need to do a better
job to capture and understand information rapidly in order
to make sound business decisions” (Hill and Smith (2009)).

Future industrial manufacturing systems need to make
better use of the data (Panetto and Molina (2008)). The
low-level data has to be transformed into information
that can be used for decision making. In addition, future
manufacturing systems need to be productive, flexible,
competitive, sustainable, secure, and safe and must reduce
waste of material, capital, energy, and media. Most auto-
motive companies use advanced information systems (Dai
et al. (2012)). However, most of these systems lack many
key features. Improved control, optimization, and human
interaction in manufacturing processes is also important
for future manufacturing (Blanc et al. (2008)).

There are several types of manufacturing information sys-
tems, such as Manufacturing Execution Systems (MES)
(Dai et al. (2012)), Enterprise Resource Planning (ERP)
(Umble et al. (2003)), or Multi-Agent Systems (MAS)

(Leitao et al. (2013)). These systems require information
about the real-time performance and behavior of the man-
ufacturing plant. However, there is no vendor-independent
integration architecture for such information management
and many companies have developed their own solutions.
With an increasing demand to launch new vehicle models
faster, automotive companies require flexible and scalable
information systems.

To enable access to the data, all devices and software
must first be integrated. To accomplish this, a flexible
architecture is needed which facilitates integration of any
application or device. Plants often use a wide range of
devices, based on different technologies from different eras.
Some devices originate from when the plant was built,
and devices have then been added as part of continuous
improvements. Retrofitting legacy devices is thus a partic-
ularly important aspect. It must be possible to integrate
them regardless of their capabilities or technology.

The contribution of this paper is a new information system
architecture, called Line Information System Architecture
(LISA), that enables flexibility and scalability. The archi-
tecture is event-based, has formalized transformation pat-
terns, and uses stream-based aggregation and prototype-
oriented information models. LISA is able to handle layout
and structural changes on the plant floor and allows a



large diversity of devices and applications. Furthermore,
LISA enables new Key Performance Indicators (KPIs) to
be calculated, not only for new, but also for historical data.
LISA has been implemented and evaluated on industrial
data and demonstrators, and is being installed at a large
automotive company.

In Section 2, the concepts of service-oriented and event-
driven architectures are introduced. In Section 3, LISA is
described. How LISA can be used for KPI calculation is
explained in Section 4. Finally, event-based control with
LISA is presented in Section 5.

2. SERVICE-ORIENTED ARCHITECTURES

When new functionality and systems are added, they
need to be rapidly integrated with existing systems. The
traditional integration approach in manufacturing is to
connect applications on a Point-to-Point (PtP) basis using
the client/server pattern. The pattern mandates that the
server and the client know about each other. The number
of connections in a fully connected network increases
quadratically with the number of applications. This is
known as “spaghetti integration” and makes the system
rigid and hard to maintain (Boyd et al. (2008)). Each time
an application is added, all other applications need to be
updated to be able to interact with the new application.

It is common that applications can only communicate
through proprietary or specific protocols, and applications
may require external message translators to communicate
with each other. This is, for example, the normal case
for communication between Programmable Logic Con-
trollers (PLCs) from different vendors. Another challenge
is communication between the different levels of ISA95, see
Fig. 1, known as vertical integration.

Level 4 
Business Planning & Logistics 

Level 3 
Manufacturing Operations Management 

Level 5 Company Management 

Level 1 

Level 2 
Batch 

Control 
Discrete 
Control 

Continuous 
Control 

Level 0 The actual production process 

Fig. 1. Functional hierarchy as defined by ISA95.

The PtP approach poorly supports business requirements
(Ribeiro et al. (2008)). Yet, industry has been slow to
migrate to new approaches, mainly due to the cost of
replacing their established legacy systems based on PtP
(Boyd et al. (2008)). However, migration has been sig-
nificantly accelerated by the advent of Service-Oriented
Architectures (SOAs) (He and Xu (2014)).

2.1 Service-Oriented Architecture

SOA is a distributed software architecture where self-
contained applications expose themselves as services,

which other applications can connect to and use. To
reach its full potential, SOA applications should be self-
describing, discoverable, and platform- and language-inde-
pendent. This leads to loose coupling and high flexibility.

SOA has recently received much attention in both academia
and industry. The adoption of SOA in a company typi-
cally starts as an IT initiative to improve infrastructure
efficiency and can then mature into optimized use for
business purposes (Welke et al. (2011)). SOA is widely
used on the business level and is expected to revolutionize
manufacturing in a similar fashion.

The further down the hierarchy in Fig. 1, the shorter
the task time frame. On level 1 it is common with hard
real-time requirements, with deadlines in the order of
milliseconds. The devices which execute on level 1 often
have strictly limited memory and computational power.
There is a trade-off between flexibility and real-time per-
formance (Theiss et al. (2009)) and thus, the further down
SOA is wanted, the more performant (and hence less
flexible) it needs to be. Most SOA tools are tailored for
business processes, which do not have strict timing or
resource requirements. Thus, these tools cannot be used
for manufacturing processes. However, there have been
initiatives to bring SOA to level 1 and 2 by customizing
the web service technology for resource constrained devices
(Cucinotta et al. (2009); Dai et al. (2014)).

2.2 Event-Driven Architecture

Even though SOA conceptually offers loose coupling and
is intended to be distributed, service orchestration is typ-
ically done centrally, with the orchestrator taking control
of the involved services. SOA 2.0, also known as advanced
SOA or event-driven SOA, is the next generation of SOA
that focuses on events, inspired by Event-Driven Architec-
ture (EDA). SOA 2.0 enables service choreography, where
each service reacts to published events on its own, rather
than being requested to do so by a central orchestrator.

EDA is extremely loosely coupled and highly distributed
by design. An event creator only needs to know that the
event occurred, it does not need to know anything about
who is interested in the event or how it will be processed
(Michelson (2006)). Event data should be immutable since
it is then always (thread-)safe to send the events within
and between applications. With EDA, applications turn
from synchronized and blocking to asynchronous and non-
blocking (Kuhn and Allen (2014)).

3. LINE INFORMATION SYSTEM ARCHITECTURE

LISA is an EDA that provides loose coupling of applica-
tions and devices, as well as a flexible message structure for
integration. The core components of LISA are the message
bus, the LISA message format, and communication and
service endpoints. They enable creation and transforma-
tion of events into usable information in a loosely coupled
way, and will be described in the following sections.

3.1 LISA Events

A common approach for information systems is an object-
oriented structure for event types and events (Cheng et al.



(1999)). LISA on the other hand uses a prototype-based
approach (Taivalsaari and Moore (2001)). Prototypal in-
heritance, unlike object-oriented inheritance, is achieved
by cloning and refining an object, here an event. This
makes event creation, identification, and filtering less rigid,
as there is no strict class hierarchy enforcing class relations.

When something happens, for example, when a machine
changes state, an event with information about the change
is sent. A LISA event is defined as e = 〈id, t, AV 〉,
where id is a unique event identifier, t is a timestamp,
and AV = {attr1 : value1, . . . , attrk : valuek} is a set of
ordered attribute–value pairs describing the event.
Definition 1. (Attribute pattern). An attribute pattern
ap = 〈AVap, Aap〉 is a tuple including a set of ordered
attribute–value pairs AVap and a set of attributes Aap. If
e1 = 〈id1, t1, AV 1〉 such that AV ap ⊆ AV 1 and Aap ⊆ A1,
where A1 denotes all the attributes found in AV1, then e1
is matched by ap. This is denoted e1 ↼ ap. 2

An attribute pattern is used to match, identify, filter,
and create events. In this article, a pattern is denoted,
for example, ap = {attr1 : value1, attr2 : value2, attr3 : _},
where AVap = {attr1 : value1, attr2 : value2} and Aap =
{attr3}. When the value is replaced with “_”, that at-
tribute can have any value. Values can also be a list of
ordered attribute–value pairs or a list of values. Hence,
hierarchical data structures can be represented.

Patterns can be defined freely by the user and are not
enforced by LISA. However, the events receivers will match
events based on patterns, which makes the definitions
important. These patterns cannot be standardized for the
lower levels of ISA95 since each plant has a unique system
structure with a large diversity of devices.

Example Consider the workstation WS1 in Fig. 2. It
consists of an operator Op1, a product instance P1 with
product identifier p1, a position Pos1 and a machine M1.
The workstation can perform three operations: O1 – place
a product at Pos1, O2 – use M1 to process the product
at Pos1, and O3 – move the product at Pos1 to the next
workstation. Each operation is executed once per product
instance and can be traced by start and stop events. Often,
there are events which are not observable. Here, only O↓1pi

,
O↑2pi

, O↓2pi
, and O↑3pi

are observable, where O↑kpi
and O↓kpi

denote the start and stop events, respectively. These events
are fired once per product instance Pi.

Events do not have to be related to the execution of an
operation, for example, resource alarms, running mode
changes, or the start of a lunch break. Here, the machine
fires an Ms

1i event whenever the machine has changed
execution mode (operating, idle, or down) and the events
are based on the attribute patterns shown in Table 1. 2

3.2 Message Bus

It is important with a standardized, structured, and
generic concept to describe and implement loosely coupled
software applications that are heterogeneous, disparate,
and deployed and run independently. Hence, LISA uses
an Enterprise Service Bus (ESB), a component that takes
care of message routing between distributed applications.

�1

�1

���1

��1

Fig. 2. An example workstation.

Table 1. Attribute patterns used for creating
and matching the example events.

O↓
1 name: O↓

1 O↑
3 name: O↑

3
location: [Line1, WS1] location: [Line1, WS1]
resources: [Op1, Pos1] resources: [M1, Pos1]
rfid: _ rfid: _

O↑
2 name: O↑

2 Ms
1 name: Ms

1
location: [Line1, WS1] location: [Line1, WS1]
resources: [M1, Pos1] status:

{mode: _,
O↓

2 name: O↓
2 currentTool: _}

location: [Line1, WS1] consumption:
resources: [M1, Pos1] {energy: _,
consumption: duration: _}
{energy: _,
duration: _}

To avoid PtP connections and ensure loose coupling, the
ESB should support the following Enterprise Integration
Patterns (EIPs) (Hohpe and Woolf (2003)):

• Message: The information or data are packaged into
a message that can be transmitted on a message bus.
• Messaging : Messages are transferred immediately, fre-

quently, reliably, and asynchronously using customiz-
able formats. Messaging is event-based: when there is
a new message, it is sent to the message bus.
• Publish-subscribe channel : When a message is sent on

a publish-subscribe channel, a copy of the message is
delivered to each channel subscriber.
• Message filter : If the content of an incoming message

does not match the criteria specified by the message
filter, the message is discarded. This pattern allows
each application to further filter incoming messages.

In the LISA prototype, Apache ActiveMQ is used, but
could be replaced by any ESB supporting these patterns.

Fig. 3 shows an overview of the communication architec-
ture of LISA. The connection of applications (devices,
services, external applications) to the ESB is through
endpoints, which are responsible for 1) adapting the events
and information according to the LISA message format, 2)
publishing LISA messages on the corresponding channels
on the ESB, and 3) filtering incoming LISA messages
from the ESB. If an application is modified (for example
due to hardware replacement, variable renaming, or new
measurements), only its endpoint needs to be changed. No
other endpoints or applications need to be updated.

3.3 LISA Message Format

The LISA message format is designed to be simple and
to enforce as little structure as possible. It consists of
a header and a body. The header contains information
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Fig. 3. Overview of the LISA communication architecture.
related to message sending and routing. The body is
an ordered attribute–value map. Values are usually of
primitive data types, but can also be lists or maps. Hence,
LISA messages support hierarchical structures. The only
mandatory attributes are in the body, namely event id and
timestamp, t. Otherwise, there are no constraints.

Each plant has a unique system structure with different
types of devices and LISA should be able integrate any
device on level 1 and 2. LISA makes this possible by letting
the users define the events, which could be considered a
drawback. However, it means that it is easier to change or
extend events, which indeed makes LISA flexible.

3.4 Communication Endpoints

Many devices have limited capabilities and knowledge and
they communicate with different device specific protocols
and interfaces, for example, OPC or RS-232. To replace all
production equipment with new devices which all support
the same specific protocol and interface is unfeasible. In-
stead, the diversity of devices has been embraced. In LISA,
devices are integrated with communication endpoints.

A communication endpoint is an adapter between a device
and the ESB. Device event data are converted to the
LISA message format and are published on ESB channels.
Similarly, the communication endpoint filters events and
converts and communicates event data to the device. If
a device is modified or replaced, only the corresponding
communication endpoint needs to be updated.

Example continued There are three communication end-
points in the workstation: one connected to an RFID
reader, one to M1, and one to a PLC. The events fired
during one work cycle are shown in Fig. 4. Event O↓1 is
fired by the RFID reader when it senses that a product is
placed at Pos1. The first Ms

1 event is fired by M1 when
changing from idle to operating mode. Then, the PLC
fires the start of the processing operation, O↑2 . When the
processing is completed, the PLC fires O↓2 and M1 fires
another event, Ms

1 , telling that it is in idle mode. The
work cycle is completed with O↑3 , which fires when the
RFID reader senses that the product is removed. 2

3.5 Service Endpoints

When calculating KPIs and controlling a plant with an
MES system, most industries have similar structures.

𝑂1
↓ 𝑂2

↓ 
𝑀1

𝑠 

𝑂2
↑ 

𝑀1
𝑠 

𝑂3
↑ 

work cycle 

time 

Fig. 4. Events fired during one work cycle. Note that the
first and secondMs

1 are different events with the same
name. They have different id, t, and data.

Hence, the low-level events should be transformed and
updated to a more standardized structure with attribute
names and semantics based on international standards like
ISO 22400 (ISO (2014a)). This is managed by the service
endpoints.

One challenge is to manage all the different devices.
Many devices know little about the manufacturing. In
the workstation example, only the RFID reader knows
which product is at the workstation, or rather which
product identifier. To calculate various KPIs, it is therefore
necessary to transform, update, and aggregate events.

LISA classifies three basic types of transformations: Fill,
Map, and Fold. Fill and Map add additional data to events
and Fold transforms event sequences into new events.
Definition 2. (Fill). A Fill transformation transforms an
event e = 〈id, t, AV 〉 by appending a set of attribute–value
pairs, that is, 〈id, t, AV ′〉 = Fill(e), where AV ⊂ AV ′. 2

Fill transformations only use static data. If applied to the
same event, the result is always the same. A common use
case is to add product identity and type based on an RFID
tag, or to add information about the original event sender.

Often, an event needs information which depend on the
current system state. If we study a system as a DES,
a state can be identified based on an initial state and
a sequence of events (Cassandras and Lafortune (2008)).
This is also true in the LISA architecture. Let Σ∗ be the
set of all finite sequences of events over the set of all LISA
events Σ. Then, given a finite sequence s ∈ Σ∗ ordered by
the timestamp, the state q ∈ Q of the system is defined
by q = δ(q0, s), where q0 is the initial state of the system
and δ is the transition function of the system, defined as
δ : Q× Σ∗ → Q : (q0, s) 7→ δ(q0, s).

The state of a specific part of the system R, such as a
product or a resource, can also be identified by an event
sequence. If we define R using an attribute pattern apR,
then the current state of R is qR = δ(q0R, sR), where
only events that match apR are included in the sequence
sR. The Map transformation permits to refine an event
according to the current system state.
Definition 3. (Map). A Map transformation transforms
an event e = 〈id, t, AV 〉 by appending a set of new
attribute–value pairs based on the current state q, that
is, 〈id, t, AV ′〉 = Map(e, q), where AV ⊂ AV ′. 2

Fill and Map can be used to transform events in multiple
steps, to simplify the implementation and to increase the
flexibility. However, they do not change the unique identi-



fier id or the timestamp t of the event. The transformation
history and the event version could be stored as attributes
to make it easier to trace the transformation chain.
Definition 4. (Fold). A Fold transformation is a function
that transforms a finite sequence of events, s ∈ Σ∗, into a
single new event, e, that is, e = Fold(s). 2

Fold can be used to bundle a set of events. It can also im-
plement advanced event pattern identification algorithms
like Complex Event Processing (CEP) (Luckham (2002))
or real-time languages (Perez et al. (2014)). CEP formal-
izes how patterns and knowledge are identified from a
flow of low-level events, which results in high-level events
(Cugola and Margara (2012)).

Example continued A Fill transformation updates RFID
reader events with product identifier and product type
attributes, that is, O′↓1pi

= ProductF ill(O↓1pi
). A database

that stores RFID tag numbers and their corresponding
product identifiers and product types is used.

A Map transformation adds information about which
product instance is at the workstation. This is known by
listening to O′↓1pi

events.

One Fold transformation tracks when a product first enters
the system and when it leaves, resulting in an event with
the lead time of each product instance. Another Fold
transformation tracks all operation events and combines
start and stop events into an operation event which can,
for example, include durations and consumptions. There
is also a Fold transformation that aggregates the machine
events, for each hour and for each day, to an event about
operating behavior and energy consumption.

In summary, the following transformations are used:

• e′ = ProductF ill(e). The product id and product
type are added to events, where e ↼ {rfid, location}
and e′ ↼ {rfid, location, productID, productType}.
• e′ = LastPositionF ill(e). If a location is the last
position for this product, it is added to the event.
Here e ↼ {location, productID : plast, productType}
and e′ ↼ {lastPosition : true}. Observe that the
transformation keeps all attributes, it is only the
added key-value pair that is shown.
• e′ = ProductMap(e, qL) is applied to events
e ↼ {location, productID, productType}, that is,
each location is mapped to the product located there
(stored in the qL states).
• productMessage = ProductFold({e ∈ s|e ↼
{productID : pi}}). Collects events related to a spe-
cific product identifier pi and, after the last event,
sends a product message. The message includes the
time of the first and last events, the sequence of vis-
ited positions, and the aggregated operation energy
consumption.
• operationMessage = OperationFold(ei ∈ {O↑i , O

↓
i }).

Collects operation events, Oi, and sends operation
messages.
• resourceMessage = ResourceFold({∀e ∈ s|e ↼
{resource : rid}}). Collects events that match a
specific resource rid and sends a status message every
hour and every 24 hours. 2

3.6 LISA Flexibility

Example continued The line is extended with two more
identical workstations, WS2 and WS3. O3 now means
moving the product in WS1 to WS2 and after the pro-
cessing in M2, the product is moved to WS3 (O5). The
complete line, Line1, includes four transport operations
(O1, O3, O5, O7), three processing operations (O2, O4, O6),
and three machines that send events.

When the new workstations are connected to LISA, the
messages will include the new layout without changing
the service endpoints. For example, productMessage will
include events from the added workstations, including in-
formation about the longer lead time and the new process-
ing steps. Also, ResourceFold will automatically detect
the new machines and start to send resource messages for
them. Since these messages follow a structure understood
by the upper level information receivers, these upper ser-
vices do not have to change either. 2

Absence of PtP communication as well as a multitude
of event structures and event generators result in loose
coupling between information levels. Using Fill, Map, and
Fold transformations also provides increased flexibility.
The example may seem trivial, but this flexibility does
typically not exist for automotive manufacturers. Often, a
PtP communication approach is used and the upper level
systems require detailed understanding about the current
layout, making the system layout rigid.

3.7 Standards

Standards offer harmonized terminology with the objective
to improve communication. Hence, different terms for the
same thing or the same term for different things are
avoided. Standards also offer concepts to facilitate design
and operation of industrial manufacturing systems. The
following standards have been useful when designing LISA:

• ISA95/IEC 62264, Enterprise-Control System Inte-
gration (ISA (2009)) (IEC (2003)). This standard
focuses on defining the domain of Manufacturing
Operation Management (MOM) and its interface to
business and logistics systems, also known as ERP.
• ISO 22400, KPIs for manufacturing operations man-
agement (ISO (2014a)) (ISO (2014b)). This standard
defines common KPIs for MOM. In particular, the
domains of manufacturing, product quality assurance
testing, materials handling, inventory, and mainte-
nance are considered.
• ISO 20140, Evaluating energy efficiency and other
factors of manufacturing systems that influence the
environment (ISO (2013)). This standard establishes
a method for evaluating environmental influence of a
manufacturing system, for example, energy consump-
tion, waste, and release.

4. KPI CALCULATION AND VISUALIZATION

LISA does not enforce calculation of specific KPIs or
require that the user follows a specific standard. However,
to allow the user of LISA to, in a flexible way, define
and calculate KPIs on current and historical data, it is
important to use well-defined attributes and values.



Example continued Product lead time, TC , is the time
between the initiation of operating a product and its final
delivery. Here, TC is calculated for a product Pi with the
product identifier pi using the time difference between the
first and the last event. This is the time between placing
the product Pi at Pos1 and removing it from WS3.

This final lead time is calculated in the ProductFold and
is then added to the product message that the trans-
formation sends out. The events have been transformed
in a number of steps before the ProductFold creates the
product message. The event O↓7 is part of the following
transformations:

• O↓
7prod

↼ {productID : pi} = ProductF ill(O↓
7)

• O↓
7last

↼ {lastPosition : true} = ProductF ill(O↓
7prod

)

• Producti ↼ {leadT ime, ...} = ProductFold(O7last)

Downtime, TD, is the time that a machine Mi is unavail-
able for operation and is defined as the sum of times
between event pairs Ms

i that change mode to and from
down. This is calculated in the ResourceFold transforma-
tion. With the same approach, idle time and operation
time are calculated, and added to the resource messages.

The duration a particular product Pi stays at a certain
position Posi is calculated as the time difference between
Pi being put on Posi and removed from it. Aggregating
time durations of all positions in the production line for a
single product enables detailed visualization and analysis
of time intensive operations, see Fig. 6.

These KPIs are calculated by services and added to the
messages. Some examples are shown in Table 2. KPIs for
product lead time, availability, and product position times
are quantified and visualized continuously for the LISA
demonstrator, see Fig. 5 and Fig. 6. 2

Table 2. KPI attributes for the example events.

O2 M1 status productMessage . . .
startTime operationTime productID . . .
stopTime downtime Operations: [. . . ]
productID idleTime Consumption: [. . . ]
resources Consumption: [. . . ] startTime
consumption Performance: [. . . ] stopTime
. . . . . . . . .

Fig. 5. Online KPIs for machine availability.

5. CONTROL

Events originating from different levels can be used to per-
form high-level coordination and control. The production
could, for example, be initiated by a business level order
event and carried out through interaction between produc-
tion machines, coordination software, and field devices.

Fig. 6. Online KPIs for product lead time (top) and time
spent at each position for a single product (bottom).

A machine-centered plant view focuses on the flow through
each machine while an order-centered view focuses on flow
of the product being produced for each order. A machine-
centered plant view makes it easier to get the control
right while an order-centered view is more relevant on
the higher levels as produced products are parts of orders
which should be possible to trace and visualize. Depending
on which you choose you get a good overview of either the
machines or the orders. Even so, with the right events both
views can be constructed.

5.1 Grafchart

Grafchart is a graphical programming language which ex-
tends Sequential Function Charts (SFC), the IEC 61131-3
(IEC (2013)) PLC standard languages for sequential appli-
cations. SFC is supported by most industrial automation
systems and is widely used and accepted for industrial
automation.

Grafchart has the same graphical syntax as SFC, with
steps and transitions, and adds high-level features for hi-
erarchical structuring, reusable procedures, and exception
handling. Associated with the steps are actions which
specify what to do. Associated with each transition is a
condition for when the application state may change, for
example, when an event with specific content is received.

JGrafchart is a freely available development environment
for Grafchart which has previously been used for service
orchestration using web service technology (DPWS) (The-
orin et al. (2013)) and OPC Unified Architecture (Theorin
et al. (2014)). Unlike these technologies, event-driven con-
trol does not provide any built-in error handling to detect,
for example, invalid requests. To know if a request was
successful, an acknowledgment event is required.

LISA is event-driven while JGrafchart applications are
executed periodically. If events are allowed to arrive at any
rate to JGrafchart, pulse events might be invisible to the
JGrafchart application. To avoid this kind of issues, the
communication endpoint throttles the message delivery
rate to JGrafchart according to the execution rate.

With a machine-centered view, each machine selects which
product to process next and gets information about how
to process the product. With an order-centered view, each



product selects where it should be processed and tells the
machine how to process the product.

Example continued Machine-centered and order-centered
control for the workstations could look like in Fig. 7
and Fig. 8 respectively. Here, reusable procedures are
particularly useful for workstation and order control. 2

5.2 Demonstrator

Control with LISA has been evaluated on a system consist-
ing of a real PLC connected to a physical system, a CNC
machine, and an order system, each connected through a
communication endpoint. The CNC machine is connected
via MTConnect, the PLC system is connected via OPC,
JGrafchart is connected via SocketIO, and the order sys-
tem is a mockup. In the OPC endpoint, all writable vari-
ables generate an event when they change, which ensures
acknowledgments for write requests. As there is no central
coordinator, this is classified as a service choreography.

WorkStation

WS_1 WS_2 WS_3

O1_stop

S Read ProductData

S Perform O1

S Perform O2

O2_stop

S Perform O3

O3_stop

ProductArrived

ProductDataIO

Fig. 7. Machine-centered control. The WorkStation imple-
mentation is reusable, parameterized by its I/O and
product processing information.

NewOrder

OC

1

OrderControl

WorkStation

ProductAtWS_X

WS_X

OrderData

O1_stop

S Perform O2

O2_stop

S Perform O3

O3_stop

ProductData

S Perform O1

IO

Fig. 8. Order-centered control. The implementation is
reusable, parameterized by the order data.

For the demonstrator, an order-centered view was selected.
A production request from the order system spawns a
procedure call in JGrafchart. The request also triggers the
CNC machine to start producing. When the CNCing com-
pletes, the product enters the physical system controlled

by the PLC and JGrafchart begins to send requests to
the PLC which handles the real-time control. When the
production is completed, an event with the production
log is sent. The resulting demonstrator control program
in JGrafchart is similar to Fig. 8.

6. CONCLUSION

LISA has been developed with the objective to be indus-
trially applicable. It is to a large extent based on inter-
national standards and established off-the-shelf solutions,
for example, ActiveMQ. It has been shown to be applicable
for discrete manufacturing, for example in the automotive
industry, where processes are running asynchronously and
the product flow is non-linear. One core aim of LISA is
that it should be usable for any device and application.
To confirm interoperability, various industrial devices and
software have been used in the demonstrators. Involvement
of several industrial partners provided valuable feedback
on the applicability of the research and permitted evalu-
ation of the architecture. As a result, LISA is an event-
based service-oriented architecture which offers flexibility
and scalability both for control of low-level applications
and aggregation of higher level information, such as KPIs.

An automotive company that has been involved in this
research is currently installing LISA. It will be used in
their new body-in-white plant. Previously, at the com-
pany, a workstation sent predefined KPIs for each work
cycle. With LISA, all communication is event-based on a
finer granularity and devices like PLCs, robots, product
carriers, and operators send and receive low-level events
which are then aggregated to get the desired KPIs.

LISA has also been evaluated on historical data from an-
other automotive manufacturer. The data did not conform
to the LISA message structure, but due to the flexible
nature of LISA, events could be identified and generated.

For the demonstrator, integration with LISA was straight-
forward. The advantages of the extreme loose coupling
of EDA were also experienced. In particular, applications
could be developed and tested in isolation as the other ap-
plications were easily replaced by mockups, which produce
events without their respective physical device.

Improved visualization for decision support and integra-
tion of online optimization are future work.
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