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Chalmers University of Technology

Abstract

The main objective of this thesis is to perform stability andcontrol studies in the area of VSC-
HVDC. A major part of the investigation focuses on the explanation of poorly-damped con-
ditions and instability that are linked to dc-side resonances. Initially, a frequency domain ap-
proach is considered, applied to a two-terminal VSC-HVDC connection that is modeled as a
Single-Input Single-Output (SISO) feedback system, wherethe VSC-system and dc-grid trans-
fer functions are defined and derived. The passivity analysis and the net-damping criterion are
separately applied, demonstrating the superiority of the latter as an analysis tool. Furthermore,
it was discovered that the net-damping of a system and the damping factor of its poorly-damped
dominant poles are correlated in an almost linear way.

The occurrence of poorly-damped conditions is further analyzed from an analytical perspective,
where the eigenvalues of a two-terminal VSC-HVDC system areapproximated by closed-form
expressions. This offers the benefit of a deeper understanding in the way selected parameters of
the system can affect the frequency and damping characteristics of its eigenvalues. TheSimilar-
ity Matrix Transformation(SMT) method is introduced in this thesis and applied to the reduced
4th order state-space model of a two-terminal VSC-HVDC system.The results show that the
SMT offers improved accuracy in approximating the actual eigenvalues of the system, com-
pared to the already establishedLR method.

Finally, studies are performed in VSC-MTDC grids, with the main objective of proposing ad-
vanced control strategies that can offer robust performance during steady-state and transient
conditions, with improved power flow and direct-voltage handling capabilities. The advanta-
geous properties of the proposed controllers are proven through simulations of four- and five-
terminal MTDC grids, in which their benefits compared to their conventional counterparts are
shown.

Index Terms: VSC, HVDC, Poor damping, Frequency Domain Analysis, Net damping,
Passivity Analysis, Symbolic eigenvalue expressions, MTDC, Droop control.
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Chapter 1

Introduction

1.1 Background and motivation

The use of Voltage Source Converter based High Voltage Direct Current (VSC-HVDC) sys-
tems is considered to be a major step in facilitating long distance power transfer and integrating
remotely located renewable energy sources to major consumption centers. First introduced in
1997, with the commissioning of a 3 MW technology demonstrator at Hellsjön, Sweden [1],
VSC technology has improved drastically over the years, in terms of power and voltage rat-
ing, harmonic performance and losses [2, 3]. VSC-HVDC is a fairly recent technology, free
of several constraints associated with the thyristor-based Line Commutated Converter (LCC)
technology, with added degrees of freedom such as independent control of active and reactive
power. The VSC eliminates the need for telecommunication links between stations (at least in
a point-to-point configuration), which is otherwise a necessity in LCC-HVDC to perform the
reversal of power flow. Additionally, VSC stations can be connected to weak ac grids and even
perform black-start, in contrast to LCC stations that can only be connected to relatively strong
ac grids. This also represents a limitation for the LCC-based technology when it comes to inte-
gration of large renewable power generation units (e.g. large scale wind farms), which usually
comprise weak grids. These features render the VSC as an ideal candidate for implementation
in Multi-terminal HVDC (MTDC) systems, with numerous stations connected in a variety of
ways.

The introduction of power electronics in power systems has offered a breakthrough in terms
of controllability and stability. In turn, this has led to anincreased possibility of interactions
between the system components. Potential resonances mightappear that, if become poorly
damped, can degrade the effective damping of the system and increase the risk of instabil-
ity. Such occurrences have often been described in traction[4–7] and classical HVDC appli-
cations [8–13]. Poorly-damped resonances between the converter stations and the transmis-
sion cables can appear both in two-terminal VSC-HVDC connections [14] and VSC-MTDC
grids [15,16].

Stability studies are typically approached by using numerical analysis to determine the actual
values of the system’s poles [17]. Alternative solutions may however offer a different perspec-
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Chapter 1. Introduction

tive to the understanding of stability and poor damping. A frequency domain approach is pro-
posed in [9,18] and further utilized in [19,20], where the passivity analysis of a system is used
to derive design criteria. This concept has however limitations as it cannot provide answers for
non-passive systems, where other methods should be furtherused. A different frequency do-
main tool is the net-damping criterion, used in [21–24] to facilitate a subsynchronous torsional
interaction analysis of turbine-generator sets. There, the system was modeled as a Single-Input
Single-Output (SISO) feedback process, comprising of an open-loop and a feedback subsystem.
The assessment of the accumulated subsystemdampingat the open-loop resonant frequencies
offered direct and consistent conclusions, regarding the closed-loop stability. Nevertheless, this
method has never been used in VSC-HVDC studies.

An analytical approach to the stability of a system offers the benefit of a deeper understanding
in the way selected parameters of a system can affect the frequency and damping characteris-
tics of its eigenvalues. Hence, it is valuable if such symbolic descriptions can be obtained for
a poorly-damped VSC-HVDC link, highlighting the relationship between the system’s parame-
ters and its poorly-damped poles. A major problem in this process is the fact that the analytical
description of a high-order system is challenging and in many cases impossible. Modeling a
VSC-HVDC connection while maintaining a sufficient level ofcomplexity, can lead to a sys-
tem whose order can easily surpass the tenth order. It is therefore important and interesting to
significantly minimize the order of such systems, in such a way that most of the information on
the dynamic response is preserved.

Relevant research in the analytical approach area has takenplace mostly in electric drives and
traction systems [25, 26], where a rectifier and an inverter are connected via dc lines. How-
ever, the analytical description considers only the resonance of the dc cable, disregarding the
effect of the converter controllers on the overall performance. In [14], the analytical eigenval-
ues of the dc-link in a two-terminal VSC-HVDC connection is provided, but is only applicable
for zero power transfer. Approximate symbolic eigenvaluesin VSC-MTDC grids are provided
in [27] but require significant simplifications, influencingthe validity of the final expressions.
In [28, 29] the approximate analytical eigenvalue solutions of analogue electronic circuits are
computed by the semi-state equations of the investigated system. The proposed process may
not always be successful and could lead to a significant loss of information. The poles of an
analogue circuit are calculated through the time constant matrix of the system in [30]. However,
this kind of approach allows analytic computation of the first two dominant poles only with
major system simplifications being required in order to compute the other poles. In [31–33],
the LR iterative method is used to calculate the symbolic poles andzeros of analogue elec-
tronic circuits, based on their state matrix. However the implemented approach incurs a heavy
computational burden and numerous simplifications are still required to produce compact final
solutions. Consequently, the development of analytical methods that are more computationally
efficient and provide sufficient accuracy in the approximation of a plurality of eigenvalues, is
considered of great value.

The concept of MTDC grids as counterpart to the very well established High Voltage AC grids
is an interesting approach when it comes to high power transmission over long distances. Rel-
evant research in the field used to strictly consider LCC-HVDC stations [34, 35], but recently
there has been a shift of interest towards VSC technology. Different types of control strate-
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gies for VSC-MTDC grids have been suggested, e.g. the voltage-margin control [36, 37], or
droop-based control [38–40]. In [41], a comprehensive analysis on the control and protection
of MTDC grids has been carried out, while other works such as [16, 17] deal with the study of
the stability in such systems. Further development is required for control strategies that offer
robust performance during steady-state and transient conditions, with improved power flow and
direct-voltage handling capabilities.

1.2 Purpose of the thesis and main contributions

The main purpose of this thesis is to perform studies on the stability of VSC-HVDC systems
and investigate the interaction between the control structures, passive components and operating
points. The ultimate goal is to develop methodologies and tools that will allow the explanation
and understanding of poorly-damped conditions that may appear in such systems. Furthermore,
the potential of using VSC technology in large scale MTDC grids, requests a robust control
structure with exceptional handling characteristics of the power-flow and direct-voltage man-
agement. This is an area to which this thesis attempts to contribute accordingly.

To the best of the author’s knowledge, the main contributions of this thesis are the following:

1. An approach is proposed to explain the origin of dc-side instability and poorly-damped
conditions in a two-terminal VSC-HVDC system, based on the frequency domain ana-
lysis of the subsystems that constitute the latter. Furthermore, an almost linear correla-
tion between the net-damping of a system and the damping factor of the poorly-damped
closed-loop dominant poles has been discovered.

2. A new method to derive the analytical eigenvalue expressions of a 4th order two-terminal
VSC-HVDC model, was developed and its effectiveness was demonstrated. This enables
the extraction of eigenvalues in a closed form, making it possible to understand how a
certain system parameter or operational point contributesto the placement of a pole and
can therefore assist in understanding how a system can be simplified for easier further
analysis.

3. Two new types of droop-based control strategies for application in MTDC grids, are
developed and analyzed. The associated controllers offer steady-state and dynamic en-
hancement in the handling of relatively stiff- or constant-power controlled VSC stations
connected to the grid, compared to conventional controllers.

1.3 Structure of the thesis

The thesis is organized into eight chapters with Chapter 1 describing the background informa-
tion, motivation and contribution of the thesis. Chapter 2 provides a theoretical base for the
understanding of the VSC-HVDC technology and presents the VSC control structure and its
limitations, the components of a realistic VSC-station andinformation on the latest advances

3



Chapter 1. Introduction

in converter topologies. Chapter 3 functions as a general introduction to the concept of damp-
ing in dynamic systems and focuses on poorly-damped conditions that may appear. Examples
are provided in the areas of traction, electric drives, classical HVDC and VSC-HVDC, along
with the main contributing factors to such conditions in each case. In Chapter 4, the dynamic
behavior of two-terminal VSC-HVDC transmission systems isanalyzed through a frequency
domain approach. Thepassivityapproach and thenet-dampingcriterion are utilized to explain
poorly-damped conditions and occasions of instability, aswell as to describe the way certain
interventions to the VSC control can improve the dynamic performance of the complete sys-
tem. Following the frequency domain analysis, Chapter 5 focuses on an analytical approach to
the description of poorly-damped conditions in two-terminal VSC-HVDC systems, by means
of deriving analytical eigenvalue expressions that contain all the parameters of the control and
passive components of the system, as well as the nominal operating points. As tools to accom-
plish this objective, the chapter introduces theSimilarity Matrix Transformation(SMT) method
and provides an overview of theLR iterative method. The chapter concludes with the deriva-
tion of state-space models for a generic two-terminal VSC-HVDC transmission system and the
dc-transmission link that connects the two VSC stations. The eigenvalues of these models are
analytically extracted using the SMT and LR methods in Chapter 6, where the accuracy and the
validity of the final expressions is thoroughly analyzed andcomments on the capabilities and
limitations of each method are made. Chapter 7 provides an insight to MTDC grids regarding
the technologies involved, grid topologies and control strategies. Within the context of direct-
voltage droop control in MTDC grids, the chapter introducestwo proposed droop-based control
methods with advantageous properties in the handling of relatively stiff- or constant-power con-
trolled VSC stations connected to the grid. Finally the thesis concludes with a summary of the
results achieved and plans for future work in Chapter 8.
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Chapter 2

VSC-HVDC operation and control

The use of VSC in HVDC applications and the analysis of the behavior of the associated sys-
tems require an understanding of the fundamental properties and functionalities of the VSC
technology. The intention of this chapter is to provide a basic but detailed background informa-
tion on VSC-HVDC systems. The main structure and componentsof a VSC-HVDC system are
initially described, followed by an introduction to the operational principles of a VSC. Thus,
the interconnected layers of control that allow the VSC to operate as a controllable voltage
source are presented. This will provide the basis for the understanding of the dynamic behavior
of VSC-HVDC systems, as will be investigated in the following chapters. Finally, the control
strategy of a typical two-terminal VSC-HVDC transmission link is presented and demonstrated
via simulations.

2.1 Introduction to VSC-HVDC

The typical configuration of a two-terminal VSC-HVDC transmission link is illustrated in
Fig. 2.1, where two VSC stations connect two ac systems via a dc-transmission system. The
two ac systems can be independent networks, isolated from each other, or nodes of the same
ac system where a flexible power transmission link is to be established. The interconnection
point between a VSC station and its adjacent ac system is called the Point of Common Cou-
pling (PCC). The main operating mechanism of a VSC station considers the ability of the VSC

PCC1

dc-transmission 
linkA

C
 f

ilt
e
rs

VSC1
AC
Grid
#1

PCC2 AC
Grid
#2

VSC2Pg1 Pg2

dc,1υ
+

-

+

-

A
C

 f
ilt

e
rs

dc,2υ
Phase 
reactor

Phase 
reactor

Fig. 2.1 Two-terminal VSC-HVDC transmission link. The controlled power is the power entering the
phase reactor with a positive direction towards the VSC station.
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Chapter 2. VSC-HVDC operation and control

to function as a controllable voltage source that can createan alternating voltage of selected
magnitude and phase, allowing the exchange of a predetermined amount of active and reactive
power between itself and the ac system. This is achieved by operating the stations as active rec-
tifiers that can created a voltage waveform. In order to ensure that, the dc side of the converters
must maintain a fairly stiff direct voltage. For this reasonand as explained later in Section (2.5),
one of the VSC stations bears the duty of controlling the voltage in the dc transmission to a
designated value while the other station handles the control of the active power flow that will be
exchanged between the two ac nodes. In parallel to that, eachstation can regulate the reactive
power exchange with its interconnected ac system, independently from the active power han-
dling. This is a major feature that the LCC-HVDC lacks. Additionally, the presence of diodes
connected in anti-parallel with the IGBTs provides bidirectional power capabilities to the VSC,
without the need to invert the polarity of the dc-link voltage, unlike in LCC-HVDC. The de-
sired power exchange in a VSC station is imposed at the connection point of the phase reactor,
connecting the VSC main valves to the transformer, shown in Fig. 2.1.

The dc-transmission link may consist of overhead or cable type of conductors, based on the
operational characteristics of the transmission system. Avery common arrangement of the dc
link, used extensively in classical HVDC, is the asymmetricmonopole, with or without metal-
lic return. In this way only one pole is energized while the other is either a grounded conductor
or isolated ground connections at each station, respectively. For these arrangements, the tran-
sformers have to be designed for dc stresses and there is no redundancy if the single energized
pole is lost. The bipolar connection solves the redundancy issue by connecting two identical
asymmetric monopole systems in parallel, in such a way that the grounded parts of the stations
are connected to each other and there is a positively and negatively charged pole completing
the system. This arrangement is more costly, but if an energized pole is lost, the VSC-HVDC
can keep operating with the remaining pole, at a reduced power rating. The last type of VSC
connection is the symmetric monopole, as shown in Fig. 2.1, constituted by two conductors
connecting the VSC stations and operated at opposite voltages. This is achieved by splitting the
dc-side capacitor into two identical parts with a grounded midpoint. In this way, the transformer
does not suffer from dc stresses and redundancy is still offered at 50% of the rated power. This
arrangement is going to be used in the present thesis. This convention will be used in the rest of
the thesis as well.

The following sections provide a detailed overview on the key components of a VSC transmis-
sion system, the operating principles and the control systems involved.

2.2 Main components of a VSC-HVDC transmission system

The complete description of a VSC-HVDC transmission systemis presented in Fig. 2.2. The
main part of the station, comprising of the switching valves, is surrounded by a number of key
components that are necessary for the proper operation of the converter. These are the dc-side
capacitor, ac-side filters, the phase reactor, the couplingtransformer and the dc-transmission
lines. These components are further described in this section.
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Fig. 2.2 Components of a VSC-HVDC station.

2.2.1 AC-side transformer

A VSC station is usually connected to an ac grid via a converter transformer. Its main function
is to facilitate the connection of the converter to an ac system whose voltage has a different
rated value. Furthermore, the transformer blocks the propagation of third-order harmonics and
multiples to the main ac system, while at the same time provides galvanic isolation between
the latter and the VSC station. The transformer is a three-phase ac power-transformer, equipped
with a tap changer. For large power ratings, the size and weight of a three-phase transformer
can be forbidding from a structural and transportation point of view and is, therefore, built as
separate single-phase transformers. For asymmetrical dc-transmission configurations, the trans-
former will be exposed to a dc-offset in the valve-side ac voltages, which will result in a slightly
more complicated transformer design [2].

2.2.2 Phase reactor

The phase reactor is one of the key components of a VSC station. Its main function is to fa-
cilitate the active and reactive power transfer between thestation and the rest of the ac system.
With the one side of the reactor connected to the ac system, the VSC is able to apply a fully
controlled voltage to the other side of the reactor. The magnitude and phase difference of the
latter, compared to the ac-system voltage will induce a controlled amount of active and reactive
power transfer over the reactor.

A secondary function of the phase reactor is to filter higher harmonic components from the
converter’s output current and also limit short-circuit currents through the valves. The phase
reactor impedance, in combination with the transformer impedance, defines the short circuit
current for the valve diodes [2]. According to [42], the typical short-circuit impedance of this
type of phase reactor is 0.15 pu. The phase reactor is modeledas an inductor in series with
a small resistance, which takes into account the reactor losses. The authors in [43] consider a
reactor inductance of 0.25 pu.
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Chapter 2. VSC-HVDC operation and control

(a) (b) (c)

Fig. 2.3 AC-side filters. (a) 2nd order filter, (b) 3rd order filter and (c) Notch filter.

2.2.3 AC-side filters

The voltage output of the HVDC converters is not purely sinusoidal but contains a certain
amount of harmonics, due to the commutation valve switchingprocess. This causes the current
in the phase reactor to also contain harmonics at the same frequencies, apart from the desired
sinusoidal component at the grid frequency. These currentsare not desired to flow in the rest
of the ac grid as they could cause additional losses in other components and distorted voltage
waveforms.

When using PWM modulation, a high frequency ratiomf, shown later in Section (2.3.2), shifts
the switching harmonics to the high-frequency range, wherethe reactance of any inductors on
the ac side (including the phase reactor) becomes high. As a result, the generated harmonic
currents have low amplitude and the waveform of the resulting converter current propagating
to the rest of the grid approaches the sinusoidal form, whilethe harmonic losses are simultane-
ously decreased. However, this choice forces the valves to switch at a higher frequency and the
switching losses are increased.

Aiming to maintainmf at a reasonably low value but also reduce the harmonic content of the
VSC output, a range of passive filters are used, connected between the phase reactor and the
transformer [2, 44]. Typical examples are 2nd order filters, 3rd order filters or notch filters, as
depicted in Fig. 2.3. Depending on the converter topology and its switching levels, the harmonic
content of the converter output can be reduced to a level where the necessary ac-side filters can
be reduced in number and size or even neglected.

2.2.4 DC-side capacitor

The main function of the dc-side capacitor is to reduce the voltage ripple on the dc-side and
provide a sufficiently stable direct-voltage from which alternating voltage will be generated
on the ac-side of the converter. Furthermore, the capacitoracts as a sink for undesired high-
frequency current components that are generated by the switching action of the converter and
are injected to the dc-side. These currents are prevented from propagating to the rest of the dc-
transmission link, being filtered by the inductance and resistance of the dc lines. Additionally,
the dc-side capacitor acts as a temporary energy storage where the converters can momentarily
store or absorb energy, keeping the power balance during transients.
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Cpole/2

Rpole Lpole

Cpole/2

Fig. 2.4 Π-model of a single pole for a dc-transmission link.

The capacitor sizing is usually performed considering the amount of power to be stored. Con-
sequently, the capacitor is characterized by thecapacitor time constant, defined as

τ =
Cdcυ2

dc,N

2 ·PN
(2.1)

whereCdc is the capacitance,υdc,N is the rated pole-to-pole direct voltage andPN is the rated
active power of the VSC. The time constant is equal to the timeneeded to charge the capacitor
of capacitanceCdc from zero toυdc,N, by providing it with a constant amount of powerPN [45].
A time constant of 4 ms is used in [46] and 2 ms in [2].

2.2.5 DC-lines

The transmission of power between VSC-HVDC stations is performed using dc-lines. Each dc-
pole can be modeled as aΠ-model, with resistanceRpole, inductanceLpole and two identical ca-
pacitors with capacitanceCpole/2 each. This is depicted in Fig. 2.4. Transmission lines are nor-
mally described in terms of resistance/km/poler, inductance/km/polel and capacitance/km/pole
c. With the length of the dc-transmission system being provided in km units, the previous cable
elements are defined as

• Rpole= r·(transmission line length)

• Lpole= l ·(transmission line length)

• Cpole= c·(transmission line length)

It is possible to use two different types of dc-transmissionlines: cables or overhead lines. Cable-
poles are normally laid very close to each other and therefore have a relatively high capacitance
and low inductance per km. On the contrary, overhead transmission line poles are located in a
relative distance from each other and as a result they have a relatively high inductance and low
capacitance per km. The values that are going to be used in thepresent thesis are presented in
Table 2.1.

TABLE 2.1. PHYSICAL PROPERTIES FOR MODELING DC-TRANSMISSION LINES

Type of dc-transmission liner (Ω/km/pole) l (mH/km/pole) c (µF/km/pole)
Cable 0.0146 0.158 0.275

Overhead line 0.0178 1.415 0.0139
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Fig. 2.5 Half-bridge converter: (a) Converter topology and(b) Output voltage waveform.

2.3 VSC principle of operation

In contrast to theline-commutated converters, the VSC belongs to theself-commutated con-
vertercategory, being able to switch its power electronic valves at any desired current flowing
through them. This feature allows the VSC to generate a desired alternating voltage at its ac-
side and produce a bi-directional power flow. This section describes how the VSC operates and
provides a brief introduction to the application of the Pulse-Width Modulation (PWM) method.
Observe that other modulation strategies can be applied in actual installations in order to re-
duce the system losses, but most of them share common traits with the (PWM) method. Finally,
the operational limitations of the VSC are analyzed and a number of existing and future VSC-
HVDC converter topologies are presented.

2.3.1 Converter structure, switching and modulation

The explanation of how a VSC operates starts from the fundamental half-bridge converter in
Fig. 2.5(a). The dc-side is connected to a dc-source of voltage υdc, which is in turn divided
equally among two series-connected identical capacitors.Each of them bears a direct voltage of
υdc/2. The two switchesS1 andS2 are operated with the following sequence of actions

1. The switching pattern is periodic with frequencyω0 and periodTs.

2. For a duration∆t1, switchS1 is kept at on-state andS2 at off-state. The output voltageυa

is equal to+υdc/2.

3. For a duration∆t2 = Ts−∆t1, switchS1 is kept at off-state andS2 at on-state. The output
voltageυa is equal to−υdc/2.

12



2.3. VSC principle of operation

S1

S2

2
dcυ

2
dcυ

+

+
-

-

dcυ

+

-

S3

S4

S5

S6

bυ
cυ

aυ

Fig. 2.6 Three-phase six-bridge VSC converter.

The resulting periodic waveform ofυa is shown in Fig. 2.5(b), fluctuating between+υdc/2 and
−υdc/2. The Fourier series of this waveform can be expressed as

υa =
υa,0

2
+υa,1sin(ω0t+φ1)+

∞

∑
n=2

υa,nsin(nω0t +φn) (2.2)

where the termsυa,n andφn are the Fourier coefficients and angles, respectively. For aswitching
duty-cycle of 0.5 (or∆t1 = Ts/2), the dc-offset termυa,0/2 becomes equal to zero and (2.2)
becomes

υa = υa,1sin(ω0t +φ1)+
∞

∑
n=2

υa,nsin(nω0t +φn) (2.3)

This implies that there is a fundamental sinusoidal harmonic of amplitudeυa,1 with a frequency
ω0, along with higher harmonics. Ann-th order harmonic will have a frequencyn ·ω0 and
amplitudeυa,n. For this type of square waveform, the amplitude of the sinusoidal components
are defined as

υa,n =
2·υdc
π·n , n= 1,3,5, ...

υa,n = 0, n= 0,2,4, ...
(2.4)

with υa,n < υa,n−1 for every oddn. This means that the fundamental component has the largest
amplitude. Consequently, under the considered switching pattern, the half-bridge leg is able to
behave as a voltage source, generating an alternating output voltage that comprises of a funda-
mental sinusoidal component of fixed amplitude and varying phase (achieved by delaying the
whole switching pattern over time), together with higher-order harmonics of smaller magnitude.

If three half-bridge legs are connected to the same voltage source and dc-side capacitors as in
Fig. 2.6, a three phase VSC converter is created, with each leg being able to independently
produce its own alternating voltageυa, υb or υc. In this case, if the three legs are provided with
the same square wave switching pattern of 0.5 duty-cycle andfrequencyω0, but consecutively
phase shifted by 2π /3 rad from one leg to the next, the VSC acts as a three-phase voltage source
with voltages of equal magnitudes and phase-shifted by 2π /3 rad.
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Chapter 2. VSC-HVDC operation and control

2.3.2 Sinusoidal Pulse-Width Modulation

The previously described square-waveform modulation applied on a half-bridge converter has
several disadvantages. As mentioned earlier, even though it is possible to control the phase
of the resulting output voltage waveform, it is not possibleto modulate the amplitude of the
sinusoidal components ifυdc is fixed, with the fundamental component being the object of
interest. Furthermore, relation (2.4) indicates that there are harmonics in the low-frequency
range with significant amplitude and bulky filtering equipment would be required to ensure
that the output voltage is mainly represented by the fundamental component. A number of
alternative modulating techniques are used in practice to solve these problems e.g. the pulse-
width modulation, the space-vector modulation, or the selective-harmonic elimination. The first
of these methods is further described here.

Considering the half-bridge converter of Fig. 2.5(a), the PWM method dictates that switchesS1

andS2 do not necessarily have to be switched with a fixed duty cycle.A selected sequence of
alternating switchings with different time durations can create an output voltage whose funda-
mental component can have controllable amplitude, while the amplitude of higher harmonics
can be significantly reduced. A version of the PWM is the Sinusoidal Pulse-Width Modula-
tion (SPWM) and its concept is presented in Fig. 2.7, appliedon the half-bridge converter of
Fig. 2.5(a).

The main idea behind this method, applied to a VSC, considersthe sampling of a desired refe-
rence signal in order to recreate it as an output voltage. A periodic triangular-wave carrier signal
is used for the sampling, with amplitudeAc and frequencyfc. The value ofAc is chosen equal to
υdc/2 with reference to the converter of Fig. 2.5(a). Assume thatthe desired reference voltage
output of the VSC is

υa,ref = Ar sin(2π frt +φ) (2.5)

whereAr is the amplitude of the reference andfr is its frequency. TheModulation index ma and
theFrequency ratio mf are defined below.

ma =
Ar

Ac
(2.6)

mf =
fc
fr

(2.7)

In order to apply the SPWM to the half-bridge converter of Fig. 2.5(a), amplitudesAc andAr

are normalized by the valueυdc/2, resulting inAc,norm=1 while the reference signal of (2.5)
becomes

(υa,ref)norm= Ar,normsin(ω0t +φ) =
Ar

υdc
/

2
sin(ω0t +φ) (2.8)

with the Modulation index becoming

ma=
Ar

υdc
/

2
(2.9)

The top graph of Fig. 2.7 shows the superposition of a normalized referenced signal at a fre-
quency offr=50 Hz, corresponding to a reference voltage with an amplitudeAr slightly smaller
thanυdc/2, and a carrier signal atfc=1500 Hz. The SPWM method follows the rules
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Fig. 2.7 Application of SPWM to a half-bridge converter. Thegraphs show the carrier and reference
waves, the pulses to the active switches and the output voltage waveforms.

• If at any instance the reference signal has a higher value than the carrier signal, thenS1 is
set at on-state andS2 is kept at off-state.

• If at any instance the reference signal has a lower value thanthe carrier signal, thenS1 is
kept at off-state andS2 is set at on-state.

The resulting switching pulses forS1 andS2 are shown in Fig. 2.7, with values 1 and 0 cor-
responding to on- and off-state, respectively. Following these switching patterns, the resulting
step-wise waveform of the half-bridge converter is presented in the lower graph. In this case,
and considering that the waveform varies between−υdc/2 andυdc/2, the amplitudeυa,1 of the
fundamental is given as

υa,1 = ma ·
υdc

2
=

Ar

υdc
/

2
· υdc

2
= Ar (2.10)

This indicates that the resulting waveform has a fundamental component which is identical to
the reference voltage in (2.5). The converter is thus able toreproduce a reference with vary-
ing amplitude while keepingυdc constant, unlike the square-waveform modulation. The same
principle applies to the three-phase VSC in Fig. 2.6.

As long asma≤ 1, the VSC operates in its linear region and relation (2.10) applies. Forma> 1
(the reference signal has higher amplitude than the carriersignal), the VSC enters the over-
modulation region where (2.10) does no longer apply. In thiscase, the amplitude of the funda-
mental is no longer equal to the amplitude of the reference and can reach a maximum value of
2υdc/π , defined by (2.4), and that corresponds to a fully square waveform of the VSC output
voltage.
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Fig. 2.8 Steady-state power transfer on the ac-side of a VSC-HVDC converter.

An added benefit of the SPWM method is the fact that when the VSCis operated in its linear
region, the high-order harmonics of the voltage output primarily appear at the close vicinity of
frequencies that are integer multiples offc. The higher the frequency ratiomf, the further these
harmonics are relocated towards higher frequencies, whereassociated passive filters can have
small dimensions and cost. However, a highfc implies that there are more converter switchings
per reference period and this leads to higher switching losses. It is thus necessary to find a
compromise in terms of cost/size of passive filters and switching losses.

2.3.3 Power-transfer capabilities and limitations

Having described how the VSC can produce a fully controllable output alternating voltage, it is
possible to examine the power-transfer capabilities of a VSC-HVDC station. Figure 2.8 shows
the portion of an HVDC transmission link with a VSC station and the phase reactor. The as-
sociated ac system, transformer and ac-side filters are considered by an equivalent Thevenin
model that is connected to the phase reactor, with the connection point having a voltage phasor
V̄g =Vg∠0. For simplicity purposes, the phase reactor and the valvesof the station are consid-
ered to be lossless.

The VSC can produce an output voltageV̄c =Vc∠δ with a desired magnitude and an angle dif-
ferenceδ , compared tōVg. For such a system, the steady-state per-unit complex powerabsorbed
by the VSC at the connection point of the phase reactor to the rest of the ac system is equal to

Sg = V̄g [Īf]
′
=Vg

[
Vg−Vc∠δ

jXf

]′
=−VgVc

Xf
sin(δ )+ j

V2
g

Xf
− j

VgVc

Xf
cos(δ ) (2.11)

where the active and reactive power are

Pg =−VgVc

Xf
sin(δ ) (2.12)

Qg =
V2

g

Xf
−VgVc

Xf
cos(δ ) (2.13)

Considering that the phase shift angleδ is usually very small, the Taylor approximation of
sin(δ ) and cos(δ ) gives δ and 1, respectively. As such, equations (2.12) and (2.13) are re-
written as

Pg =−VgVc

Xf
δ (2.14)

Qg =
Vg−Vc

Xf
Vg (2.15)
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Fig. 2.9 Capability curve of a VSC-HVDC station.

Taking into account thatVg is expected to be relatively stiff and the variation range ofVc is
normally small (0.9-1.1 p.u.), it can be seen thatδ is the dominant term in (2.14) in defining the
allowablePg. Likewise, the termδ is absent in (2.15), indicating that the magnitude difference
Vg−Vc is dominant in defining the amount ofQg. For this reason, it can be claimed that the active
powerPg is controlled by the angle difference of the voltages acrossthe phase reactor, and the
reactive powerQg is controlled by the magnitude difference of the voltage phasors. Given that
the VSC can independently control the magnitude and phase ofits output voltage, it can be
claimed that the VSC is able to control the active and reactive power transfer independently.

However, the power-transfer capabilities of a VSC station are not unlimited and care should
be taken so that certain limitations are not exceeded. Thereare mainly three factors that limit
the power capability, seen from a power system stability perspective [47] and their effect is
presented in Fig. 2.9. The first one is the maximum current through the IGBTs of the converter
valves. The maximum apparent power|Smax| that the VSC can output at its ac-side is

|Smax|= |Pc+ jQc|max=
√

(P2
c +Q2

c)max=Vc · If,max (2.16)

whereIf,max is the maximum allowed current through the IGBTs, dictated by the design of the
latter. Relation (2.16) defines a circle of maximum MVA, withradiusVc · If,max. Therefore, for
a givenIf,max and varyingVc, the maximum allowed MVA limit of the VSC changes as well.
Three such circles are drawn in Fig. 2.9 forVc equal to 0.9, 1.0 and 1.1 pu.

The second limit is the maximum steady-state direct-voltage levelVdc,max. The reactive power
is mainly dependent on the voltage difference between the alternating voltage that the VSC can
generate from the direct voltage on its dc side (with the amplitude of the fundamental being
directly related toVdc), and the grid ac voltage. If the grid ac voltage is high, the difference be-
tween theVdc,max and the ac voltage will be low. The reactive power capabilityis then moderate
but increases with decreasing ac voltage. The third limit isthe maximum direct current through
the cable. This affects only the active power and is drawn by astraight line in Fig. 2.9. The
enclosed area between the previous limits defines the allowed operational area of the VSC. If
these limits are to be considered for powersPg andQg, small adjustments need to be made to
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Fig. 2.10 Three-level Neutral-Point-Clamped converter.

the curves of the figure, to account for the active-power losses and reactive-power absorption,
owing to the presence of the phase reactor.

2.3.4 Advances in converter topologies

Even though numerous designs for potential HVDC convertersexist, only a few are considered
realistic for commercial use and even less have been implemented in practice. The great majority
of all VSC-HVDC connections having been built to date [3] arebased on the two-level converter
of Fig. 2.6. However, the produced two-level ac-side voltage has a high harmonic content and
the use of filters is necessary, with losses being high due to the high switching frequency at
which the valves are operated.

(a) (b)

Fig. 2.11 Module cells for a Modular Multilevel Converter: (a) Half-bridge cell and (b) Full-bridge cell.
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Fig. 2.12 Modular Multilevel Converter: (a) Converter topology, (b) Voltage waveforms with half-bridge
cells and (b) Voltage waveforms with full-bridge cells.

A first effort towards multilevel ac voltage has been performed by adapting the Neutral-Point-
Clamped (NPC) converter to HVDC standards. This converter is presented in Fig. 2.10(a) in its
three-phase arrangement and the resulting phase voltage isdepicted in Fig. 2.10(b). The con-
verter can now switch to three levels (+υdc/2, 0 and−υdc/2), leading to less total harmonic
distortion, reduced losses and filter requirements but at the cost of high mechanical complex-
ity, increased converter size, challenges in balancing thedc-side capacitors and uneven loss
distribution among the valves. An actively clamped topology that solves the loss distribution
problem of the NPC was introduced, called Active NPC (ANPC),with the clamping diodes
being replaced by transistors [3,48].

The major breakthrough in VSC-HVDC however was provided by the introduction of the Modu-
lar Multilevel Converter (MMC) [49]. Overall, the MMC resembles a two-level converter where
the series IGBT valve is replaced by a chain of series connected, identical and isolated cells each
providing fundamental voltage levels. The MMC is shown in Fig. 2.12(a). Cumulatively, the
whole chain produces a voltage consisting of a very finely-shaped ac waveform with a dc-offset
of equal magnitude to the direct voltage of the adjacent dc cable. Eventually the phase voltage
will consist of only the alternating part. In its simplest form, the MMC uses the half bridge cell
(Fig. 2.11(a)) where a capacitor is either inserted or bypassed, providing two possible voltage
levels;Vcap or 0, whereVcap is the voltage of the cell capacitor. The arm- and phase-voltage
waveforms at one leg of the converter are plotted in Fig. 2.12(b). Other cell topologies can also
be used, like the full bridge cell in Fig. 2.11(b), providingvoltage levels ofVcap, 0 or−Vcap.
MMC with full bridge cells, with the associated arm- and phase-voltage waveforms shown in
Fig. 2.12(c), can produce higher magnitude alternating voltage and even suppress dc-faults [50]
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2.4. VSC control

at the expense of higher IGBT numbers. Overall the MMC offersvery low losses, low effective
switching frequency and minimization of ac-side filters.

Very recently, a number of proposed alterations to the original MMC concepts have been pro-
posed and seriously considered for the next generation of MMC [50]. One very interesting
example is the ”Series hybrid with wave shaping on the ac side” shown in Fig. 2.13. This is a
combination of the two-level converter and the MMC. The ideais that the six-bridge converter
provides a two-level voltage while a series connected chainof cells creates a complex waveform
which, when superimposed to the former, results in a fine multilevel sinusoidal waveform. The
main benefit of this topology are the reduced switching losses since the cells of every arm need
to switch and produce a sinusoidal arm voltage for only half of the period of the fundamental.

Another proposed design is the ”Series hybrid with wave shaping on the dc side” (Fig. 2.14)
which is also considered by Alstom as its next generation HVDC solution [51]. Each arm of
the converter consists of an IGBT-stack in series with a chain of cells. The main principle of
operation is that each arm is responsible for creating only half the sinusoidal waveform. This
results in chains of cells rated at approximately only half the total dc-side voltage. The IGBT
valves are needed to isolate the arm that is complementary tothe one connected to the ac-phase
terminal at any time. Even though the MMC technology has onlyfew commissioned examples
to present, the technology trend points towards the domination of the MMC form in VSC-
HVDC applications, mostly due to the very low losses that canbe achieved and the possibility
to suppress dc-faults if full-bridge cells are used.

2.4 VSC control

The dominant method in the control of VSC in various applications is the vector control. Having
been widely applied in machine drives for the control of VSC-driven electrical machines, the
vector control is also highly applied in VSC-HVDC applications, as mentioned in [42]. The
main idea of the vector control involves the representationof a three-phase alternating quantity
of the ac system as a vector with dc-type of properties, positioned on a rotatingdq-rotating
frame. The resulting vector can then be controlled in a similar manner as the voltage and current
of a dc system, and finally restored to its three-phase alternating representation to be applied to
the ac system.

The typical structure of a VSC-HVDC control system is illustrated in Fig. 2.15. Its backbone is
the Vector Current Controller (VCC). This control structure receives as inputs the currents refer-
encesid ∗

f andiq ∗
f , with a role of producing a pair of voltage referenceυd ∗

c andυq ∗
c . These are

transformed into three-phase quantities and provided as modulating signals to the PWM block,
which will generate appropriate firing signals for the VSC valves. The resulting current on the
phase reactor should ideally match the current references.As mentioned in Section (2.3.2), the
modulating voltage signal to the PWM is internally normalized by the value of the direct voltage
of the dc-side capacitor in the VSC.

A Phase-Locked Loop (PLL) is used to synchronize thedq-rotating frame of the converter to

the rotating vectorυ(αβ )
g vector inαβ -coordinates, providing a reliable reference frame for any
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abc-to-dq anddq-to-abc transformations. A number of outer controllers are implemented in
order to control other quantities such as the direct voltageof the dc-side capacitor, the active
and reactive power transfer, and the magnitude of the alternating voltageυg. As already men-
tioned in Section (2.1), the desired active and reactive power exchange in the VSC station is
imposed at the connection point of the phase reactor, connecting the VSC main valves to the
transformer, shown in Fig. 2.15. This is the power entering the phase reactor with a positive di-
rection towards the VSC valves, corresponding toPg andQg. Considering a voltage-orienteddq
frame, the active-power controller operates by controlling id ∗

f . The same applies for the direct-
voltage controller because the energy stored in the dc-sidecapacitor (and therefore its voltage)
is controlled by active power injected to it by the VSC. This means thatid ∗

f can be used for
the direct-voltage control as well. The referenceid ∗

f is thus used either for active-power or
direct-current control. The reactive power is controlled by iq ∗

f , and since the magnitude of the
alternating voltageυg is related to the amount of reactive-power transfer by the VSC, the re-
ferenceiq ∗

f is used either for reactive power or alternating voltage control. Another control
strategy not examined in this thesis is the operation of the VSC as a fixed alternating-voltage
source, where it has to impose a three-phase voltage of desired frequency and magnitude to a
passive network (e.g. a wind-farm) or toblack-startan islanded system.

In this section, the different control blocks that comprisethe complete VSC control system are
individually presented.

2.4.1 Vector current control

The current controller is a major part of the complete VSC-control scheme. Considering the
equivalent process representing the VSC in Fig. 2.16, if Kirchhoff’s voltage law (KVL) is ap-
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plied across the phase reactor, the following combined description of differential equations can
be obtained for the three phases

υ(abc)
g −υ(abc)

c = Lf
di(abc)

f

dt
+Rf i

(abc)
f (2.17)

By applying Clarke’s transformation (described in the Appendix), (2.17) can be expressed in
the fixedαβ -coordinate system as

υ(αβ )
g −υ(αβ )

c = Lf
di(αβ )

f

dt
+Rf i

(αβ )
f (2.18)

A further step is to apply the Park transformation (see Appendix). The PLL of the VSC is

synchronized with the voltage vectorυ(dq)
g . The considered voltage and current vectors can

then be expressed as

υ(αβ )
g = υ(dq)

g ejθg (2.19)

υ(αβ )
c = υ(dq)

c ejθg (2.20)

i(αβ )
f = i(dq)

f ejθg (2.21)

Equation (2.18) can thus be transformed into

υ(dq)
g ejθg −υ(dq)

c ejθg = Lf

d
(

i(dq)
f ejθg

)

dt
+Rf i

(dq)
f ejθg ⇒

υ(dq)
g ejθg −υ(dq)

c ejθg = j
dθg

dt
Lf i

(dq)
f ejθg +Lfe

jθg
di(dq)

f

dt
+Rf i

(dq)
f ejθg ⇒

υ(dq)
g ejθg −υ(dq)

c ejθg = jωgLf i
(dq)
f ejθg +Lfe

jθg
di(dq)

f

dt
+Rf i

(dq)
f ejθg (2.22)

whereωg is the angular frequency of thedq-rotating frame. Usually, the variations inωg(t)
are very small over time and it can then be considered as constant. Under this condition and
eliminating the termejθg, (2.22) can be re-written as

Lf
di(dq)

f

dt
=−Rf i

(dq)
f − jωgLf i

(dq)
f +υ(dq)

g −υ(dq)
c (2.23)
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which can be expanded to its real and imaginary part as

Lf
didf
dt

=−Rf i
d
f +ωgLf i

q
f +υd

g −υd
c (2.24)

Lf
diqf
dt

=−Rf i
q
f −ωgLf i

d
f +υq

g −υq
c (2.25)

These are two cross-coupled first-order subsystems, with the cross-coupling being initiated by
the termsωgLf i

q
f andωgLf idf .

The complex powerSg is calculated as

Sg = υ(dq)
g

[

i(dq)
f

]′
=

(

υd
g + jυq

g

)(

idf − jiq
f

)

⇒

Sg =
(

υd
g idf +υq

g iqf

)

+ j
(

υq
g idf −υd

g iqf

)

(2.26)

where the active and reactive power are

Pg = υd
g idf +υq

g iqf (2.27)

Qg = υq
g idf −υd

g iqf (2.28)

Considering that the PLL performs the synchronization by aligning thed-axis of thedq-rotating

frame to the vectorυ(dq)
g , theq-component of the latter will be zero in steady-state, thus

υ(dq)
g = υd

g (2.29)

Applying (2.29) to (2.27) and (2.28) gives

Pg = υd
g idf (2.30)

Qg =−υd
g iqf (2.31)

which means that the active power can be controlled via thed component of the current,idf ,
while the reactive power with theq component of the current,iqf . If the two currents can be
controlled independently, the VSC could have an independent and decoupled control of the
active and reactive power.

Regarding the active-power balance at the two sides of the valves of the VSC (as reactive power
does not propagate to the dc-side) and assuming that the losses on the valves are negligible, the
following relation applies

Pc = Pdc,in ⇒ Real{υ(dq)
c

[

i(dq)
f

]′
}= υdci in ⇒ υd

c idf +υq
c iqf = υdcidc ⇒

i in =
υd

c idf +υq
c iqf

υdc
(2.32)
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which is the direct current propagating to the dc side of the VSC, as shown in Fig. 2.16. In
steady-state, the currenti in becomes equal toidc, assuming a lossless dc capacitor and neglecting
harmonics due to switching.

Observing (2.23)-(2.25), the only manner in which the VSC can affect the dynamics of the

reactor current and attempt to set it to a desired referencei(dq)∗
f , is by changing its output voltage

υ(dq)
c accordingly. Therefore a control law must be applied providing a referenceυ(dq)∗

c , which
the VSC will apply with ideally no delay.

Equation (2.23) can be transformed in the Laplace domain as

sLf if =−Rf if − jωgLf if +υυυg−υυυc (2.33)

where the bold font indicates the Laplace transformation ofa correspondingdq-coordinate vec-
tor. If the currentif and the voltageυg are perfectly measured, the following control law is
suggested in [52], which eliminates the cross-coupling of the currentdq-components and com-
pensates for the disturbance caused byυg

υυυ∗
c =−F (s)(i∗f − if)− jωgLf if +υυυg (2.34)

where,F(s) is the controller transfer function applied to the current error. If the controller
computational delay and the PWM switching are modeled as a delay timeTd, thenυυυc= e−sTdυυυ∗

c,
[43]. However, for simplification purposes, the delay time can be neglected and thenυυυc = υυυ∗

c.
Under this condition, the control law (2.34) is replaced in (2.33) and provides

sLf if =−Rf if +F (s)(i∗f − if)⇒ if =
1

sLf +Rf
F (s)(i∗f − if)⇒

if = Ge(s)F (s)(i∗f − if)⇒

if =
Ge(s)F (s)

1+Ge(s)F (s)
i∗f (2.35)

whereGe(s) = 1
/
(sLf +Rf), representing the electrical dynamics in the phase reactor. Let Gcc

be the closed-loop transfer function fromi∗f to if. Gcc can be shaped as a low-pass filter, as
follows

Gcc(s) =
acc

s+acc
=

acc
s

1+ acc
s

(2.36)

whereacc is the closed-loop bandwidth. From (2.35), it is

Gcc(s) =
Ge(s)F (s)

1+Ge(s)F (s)
(2.37)

so if Ge(s)F (s) = acc/s, the desired closed-loop system in (2.36) is obtained. Thisyields

F (s) =
acc

s
G−1

e (s) =
acc

s
(sLf +Rf) = accLf +

accRf

s
(2.38)

which indicates thatF(s) is a PI controller with proportional gainKp,cc = accLf and integral
gainKp,cc = accRf.

The block diagram of the complete current controller based on relation (2.34) is provided in
Fig. 2.17. Several improvements can be implemented in the current controller such as
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• anti-windup functionalities in case of voltage saturation

• active damping capabilities to reject undesired disturbances

• filtering of signals before they are fed-forward into the control process

2.4.2 Phased-Locked Loop

The duty of the PLL in the VSC control structure is to estimatethe angle of rotationθg of the

measured voltage vectorυ(αβ )
g . Fig. 2.18 showsυ(αβ )

g , along with theαβ -stationary frame,
the ideally aligneddiqi frame (rotating with angular speedωg and angleθg) and the converter
dq-rotating frame (rotating with angular speedω̂g and an anglêθg). The latter is the frame that
is in the knowledge of the PLL, which tries to position it so that thed-axis is aligned with the
rotating vector.

As it can be seen, as long as the PLL’sdq frame rotates witĥθg and is still not properly aligned

with υ(αβ )
g , thedq-decomposition of the vector is going to produce a non-zeroq-componentυq

g .
The PLL must thus increase or decreaseω̂g speed (and thuŝθg) until the calculatedυq

g becomes
equal to zero. This means that from a control perspective, the termυq

g can be used as an error
signal, which when fed to a PI controller will lead to the creation of such anω̂g and θ̂g that
eventually will setυq

g to zero.

The structure of the adopted PLL is depicted in Fig. 2.19. Thevoltageυ(abc)
g is transformed into

υ(αβ )
g and using the PLL’s estimation̂θg, calculatesυ(dq)

g . Based on the ”error”υq
g , the PLL’s

PI controller is outputting a correction signal∆ω which is added to a constant pre-estimation of
the vector’s angular speedωg,0. This provides the converter angular speedω̂g and is integrated
to produce the updated version ofθ̂g, which is fed back to theαβ -to-dqblock and produces the
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newυq
g . In steady-state,̂ωg andθ̂g become equal toωg andθg, respectively. The gainsKp,PLL

andKi,PLL are selected as suggested in [53] as

Kp,PLL = 2aPLL, Ki,PLL = a2
PLL (2.39)

In [54], a bandwidthaPLL for the closed-loop system of 5 Hz is selected and in [55] a range of
3 to 5 Hz is mentioned as typical bandwidth for grid-connected applications. In this thesis,aPLL
is selected to be 5 Hz (provided to the controller in rad/s units).
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ĝθ∆ω gω̂

Fig. 2.19 Block diagram of PLL.

2.4.3 Direct-voltage control

The portion of the complete VSC model that describes the dynamics of the direct voltage con-
troller is presented in Fig. 2.20. The energy stored in the dccapacitorCdc of the direct-voltage
controlled VSC isCdcW/2, with the valueW = υ2

dc being proportional to the energy of that
capacitor. The dynamics of the dc capacitor become

1
2
Cdc

dW
dt

= Pdc,in−Pdc (2.40)

The direct-voltage controller can be a simple PI controllerF(s) with proportional gainKp and
integral gainKi . The output of the controller is a referenceP∗

g . Assuming no losses on the phase
reactor (neglectRf) and a lossless converter, we have

Pg ≈ Pc ≈ Pdc,in (2.41)
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Fig. 2.20 Direct-voltage regulation in a VSC: (a) Power flow across the converter and (b) Closed-loop
direct-voltage control process.

Therefore,Pg can be considered as the power that is drawn from the ac grid and directly injected
to the dc-side capacitor to keep it charged, as in Fig. 2.20(a). From a control point of view,Pdc
represents a disturbance. Therefore a dc-power feedforward term is added to cancel its effect in
the closed-loop system. Consequently,F(s) can be represented solely byKp, still maintaining a
zero state error [43]. If losses were considered,Ki should be maintained, providing a trimming
action and removing steady-state errors. In the present analysis however, the previous losses are
neglected andKi=0. The expression of the direct-voltage controller can then be written as

P∗
g = F (s)(W∗−W)+Pf = Kp(W

∗−W)+Pf ⇒

P∗
g = Kp(W

∗−W)+H (s)Pdc (2.42)

where W* is the reference ”energy” stored in the capacitor,H(s) is the transfer function of a
low-pass filteraf/(s+af) having bandwidthaf, andPf represents the power-feedforward term of
the direct-voltage controller, equal to the filtered value of Pdc. Given equation (2.30), the current
referenceid ∗

f could then be equal toid ∗
f = P∗

g/υd
g , whereυd

g could optionally be filtered as well
through a low-pass filter of bandwidthaf, as suggested in [43].

Observe that the voltage control is not controllingυdc itself but rather the square of the latter,W.
If the controller were to operate directly on the errorυ∗

dc−υdc, the voltage control process would
be non-linear and the small-signal closed-loop dynamics ofthe system would be dependent on
the steady-state operating pointυdc,0. This inconvenience is avoided by prompting the controller
to alternatively operate on the errorW∗−W [43].

Assuming perfect knowledge of the grid-voltage angle and aninfinitely fast current-control
loop, the requested active powerP∗

g can be immediately applied, thusPg = P∗
g . Substituting

(2.42) to (2.40) and considering (2.41), gives

W =
2Kp

2Kp+sCdc
W∗+

2[H (s)−1]
2Kp+sCdc

Pdc=

2Kp
Cdc

s+ 2Kp
Cdc

W∗+
2[H (s)−1]
2Kp+sCdc

Pdc⇒

W = GcpW
∗+YcpPdc (2.43)
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Fig. 2.21 Active-power controller of the VSC.

whereGcp is the closed-loop transfer function of the voltage controller for Pdc=0. If the propor-
tional gain is selected asKp = adCdc/2, the transfer functionGcp is now equal toad/(s+ad)
which is a first-order low-pass filter with bandwidthad. This serves as a valuable designing tool
for the prediction of the closed-loop performance of the direct-voltage controller.

2.4.4 Active-power control

The role of the active-power controller is to induce the flow of active power equal to a certain
reference. The point of the VSC circuit where the active power is measured and controlled, is
usually the connection point between the phase reactor and the ac-side filters. If the consid-
ered station is in power-control mode, i.e. it is the receiving-end station, the controlled power
corresponds to the powerPg that enters the phase reactor towards the valves of the VSC, with
regards to Fig. 2.15. As shown in (2.30), the active power depends only on the currentidf and
the voltageυd

g . The latter experiences only small variations in practice and its contribution toPg

is considered to be constant. The active power will then be essentially decided byidf . Hence, an
active power controller as in Fig. 2.21 can be used where a PI controller is used to generate the
current referenceid ∗

f that will be fed to the current controller and finally imposedto the phase
reactor.

The PI can have an anti-windup function where the referenceid ∗
f is limited to a maximum value

idmax equal to a rated propertyiN. This can be the rated ac current of the converter or a value close
to the maximum allowed valve current, both turned into an appropriatedq-current quantity.

2.4.5 Reactive-power control

In an almost identical way as the active-power control, the reactive-power control is normally
applied at the connection point between the phase reactor and the ac-side filters, controlling the
active powerQg that enters the phase reactor, with a direction towards the VSC valves. Equation
(2.31) shows that the reactive power at the selected measurement point is proportional to the rel-
atively stiff voltage valueυd

g and the currentiqf . Consequently,Qg can be considered a function
of iqf only. The PI-based reactive-power controller in Fig. 2.22 can then regulateQg to follow a
referenceQ∗

g by creating an appropriate currentiq ∗
f to be provided to the current controller and

finally imposed to the phase reactor. Notice thatQ∗
g andQg are added with opposite signs than

P∗
g andPg in the previous section, because of the minus sign in (2.31).

The controller can have an anti-windup function where the referenceiq ∗
f is limited to a max-
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Fig. 2.22 Reactive-power controller of the VSC.

imum valueiqmax. Considering the previous maximum current limitationiN and a strategy that
gives priority to the establishment of the separately requestedidmax current, the limit of the reac-
tive current reference can be varied during operation by therelation

iqmax=

√

i2N −
(
id ∗
f

)2
(2.44)

2.4.6 AC-voltage regulation

When the VSC is connected to a weak grid, the PCC voltage can beregulated and stiffened. A
weak grid connected to the PCC has by definition a relatively large grid impedance. The flow
of current between such a grid and the VSC would cause significant voltage drop across the
grid impedance and drastically change the voltage magnitude at the PCC, and thus the voltage
υg of the phase reactor as in Fig. 2.16. Considering a mostly inductive equivalent impedance of
the grid, if the VSC absorbs reactive power, the magnitude ofυg is going to decrease, with the
opposite phenomenon occurring for an injection of reactivepower from the VSC. Therefore,
since the reactive power is regulated throughiqf , a PI controller can be used as an alternating
voltage controller, as in Fig. 2.23. Observe that the signs of adding

∣
∣υg

∣
∣∗ and

∣
∣υg

∣
∣ are in such

a way so that a positive error
∣
∣υg

∣
∣∗−

∣
∣υg

∣
∣, (demand for increase of voltage magnitude) should

cause a demand for negative reactive power and therefore positive iq ∗
f .

+
-

* 
f
qiPI

*

gυ

qimax−

qimax

gυ

Fig. 2.23 Alternating-voltage controller of the VSC.

2.5 Control strategy in two-terminal VSC-HVDC systems

In a typical configuration of a two-terminal VSC-HVDC link asthe one in Fig. 2.1, if power
is transmitted from Station 1 to Station 2, then Station 1 is adirect-voltage controlled station
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and Station 2 is active-power controlled. In case of power flow reversal, the previous control
duties are swapped between the stations. The purpose of following such a control strategy is
to allow the direct-voltage controlled station to control the position on the dc-transmission link
with the highest voltage. Once there is power flow through thedc lines, a voltage drop will
develop on the resistance of the lines. The highest voltage will occur at the dc terminals of the
station that injects power to the dc link. Therefore, for safety purposes, this station is set to
direct-voltage control, ensuring that the highest voltageon the lines is firmly controlled and the
physical voltage limitations of the overall equipment are not exceeded.

An example of such a strategy, including power reversal, is presented here. The control algo-
rithm of the stations follows the following logic

• Both station receive the same direct-voltage referenceυ∗
dc but each of them receives an

individual power referenceP∗
g .

• A station is initially set to direct-voltage control mode.

• If a station is provided with a negative power reference (power being injected to the ac side
of the VSC), the station is set to active-power control mode.A command for a positive
power reference (power being injected to the dc side of the VSC) will not be followed.

• If a station receives a positive or zero power reference and used to be in active-power
control mode, it will remain in this mode until its measured transferred power drops to
zero. After this event, it will switch to direct-voltage control mode.

The last step is set so that a potential swapping of the control duties between the stations occurs
only when there is zero actual power flow on the lines, and not only when the power refe-
rence crosses zero. This will prevent sudden power reactions from stations whose control duties
change abruptly. The simulation scenario follows the next steps

1. Both stations start withυ∗
dc= 640 kV andP∗

g,1 = P∗
g,2= 0 MW (zero power transfer).

2. Between t=1 s and t=1.5 s,P∗
g,1 is linearly decreased to -800 MW and remains constant

until t=4 s. It is then linearly increased, reaching 0 MW at t=4.5 s.

3. Between t=6 s and t=6.5 s,P∗
g,2 is linearly decreased to -800 MW and remains constant

until t=8 s. It is then linearly increased, reaching 0 MW at t=8.5 s.

The VSC-HVDC model has the same structure as in Fig. 2.1, having a transmission link com-
prised of 100 km cable-type of lines, with physical characteristics provided in Table 2.1. The ac
grids to which the VSC stations are connected, are considered infinitely strong and are therefore
represented by 400 kV voltage sources. The characteristicsof the VSC stations are provided in
Table 2.2. Regarding the ac-side filtering, the model uses a notch filter centered at the switching
frequencyfs (since the PWM voltage waveform inherits most of its high-frequency components
from the carrier wave that oscillates atfs and forces the converter to switch at roughly the same
frequency), in parallel with a capacitor.
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TABLE 2.2. RATED VALUES OF THE VSC-HVDC STATIONS

PN VSC rated power 1000 MW
υdc,N rated direct voltage 640 kV
υs,N rated voltage at transformer’s ac-grid side 400 kV
υg,N rated voltage at transformer’s converter side 320 kV
SN ac side rated power 1000 MVA
Xl transformer leakage inductance 0.05 pu
Lf phase reactor inductance 50.0 mH (0.153 pu)
Rf phase reactor resistance 1.57Ω (0.1×Xf)
Cdc dc-side capacitor 20µF
ad bandwidth of the closed-loop direct-voltage control 300 rad/s (0.96 pu)
af bandwidth of the power-feedforward filter 300 rad/s (0.96 pu)
acc bandwidth of the closed-loop current control 3000 rad/s (9.6 pu)
fs switching frequency 1500 Hz

fnotch notch-filter frequency 1500 Hz
Cfilter ac-side filter capacitor 5µF

The simulation results are presented in Fig. 2.24. As it can be seen, initially both stations are in
direct-voltage control mode and maintain the dc grid voltage at the reference value. Once Station
1 receives negative power referenceP∗

g,1, it switches to active-power control mode and follows
it while Station 2 is still in direct-voltage control mode, maintaining the voltage at its terminals
at 640 kV. WhenP∗

g,1 ascends to zero, Station 1 remains in active-power control mode and when
the actual powerPg,1 reaches zero, it will safely return to direct-voltage control mode. After
t=6 s, the previously direct-voltage controlled Station 2 receives a negative power referenceP∗

g,2
and becomes active power controlled, untilP∗

g,2 drops to zero and the actual powerPg,2 is zero.
In the same time, Station 1 remained in direct voltage control mode.

2.6 Summary

This chapter served as an introduction to the concept of the VSC technology and focused on
its application to HVDC transmission systems. The main parts of a VSC-HVDC station were
presented, followed by the explanation of the VSC operatingprinciples that provide this type
of converter with unique power transfer handling capabilities. A range of interlinked controllers
that perform the operation of a typical VSC station were presented, within the general con-
text of vector control. Added details were provided on the derivation and tuning of the current
controller and the direct-voltage controller. Finally, the operational strategy of a two-terminal
VSC-HVDC system was presented and demonstrated through a simple simulation result.
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Fig. 2.24 Power reversal in a two-terminal VSC-HVDC system.The properties of Station 1 and Station
2 are indicated by black and gray color, respectively. Powerreferences are indicated by dashed
lines.
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Chapter 3

Poorly-damped oscillations in systems

One of the problems that can generally be observed in dynamicsystems is the potential occur-
rence of poorly-damped oscillations following disturbances. This is of great concern for HVDC
applications, where the ratings and complexity level demand strict avoidance of such events.
The introduction of VSC technology has undoubtedly offeredgreat controllability to the appli-
cations used, but has also influenced their dynamic performance and therefore their ability to
damp potentially hazardous oscillations.

The intention of this chapter is to develop a background on poorly-damped oscillations that may
occur in systems and in particular those encompassing VSC-HVDC. A general description of
damping in systems is provided, followed by the influence of the VSC and constant power loads
in the system. This is followed by examples, description andpossible ways to mitigate poorly-
damped oscillations in the areas of traction, drives, LCC-HVDC and VSC-HVDC. Finally, si-
mulations scenarios illustrate the occurrence of poor damping and instability in a two-terminal
VSC-HVDC system.

3.1 Damping of systems

Most systems in nature can be well-represented by a 2nd order system, generically described as

G(s) =
n(s)

s2+2ζ ωns+ω2
n

(3.1)

wheren(s) is a polynomial of a maximum order of two. In this case, the characteristic poly-
nomial of the system isp(s) = s2+2ζ ωns+ω2

n , whereωn is thenatural frequencyandζ is
thedamping factor. The natural frequencyωn determines the speed of the response while the
damping factorζ determines the degree of overshoot in a step response, as well as the maximum
amplification from input to output. If

• ζ > 1 the characteristic polynomial factorizes into two real poles

• ζ = 1 gives two equal real poles (critical damping)
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α

ωd

ωn

θ

Fig. 3.1 Complex conjugate pole pair of a 2nd order system.

• 0< ζ < 1 gives a pair of complex conjugate poles (damped oscillations)

• ζ = 0 gives a pair of complex conjugate poles on the imaginary axis of thes−plane (pure
oscillations without damping)

• ζ < 0 response unstable

A pair of complex conjugate pole pair is plotted in thes−plane as in Fig. 3.1.

The poles can be written in Cartesian form asα ± jωd or in polar formωn∠θ , whereωd is the
damped natural frequency. The following relationships hold

ζ = cosθ (3.2)

a= ωncosθ = ωnζ (3.3)

ωd = ωnsinθ = ωn

√

1−ζ 2 (3.4)

In a strict sense, poles havingζ less than 0.707 (orθ > 45◦) are considered to have a response
which is too oscillatory and are characterized aspoorly-dampedpoles. Conversely, values ofζ
greater than 0.707 (orθ < 45◦) indicate a behavior with sufficient damping of any oscillatory
components and the corresponding poles are addressed to aswell-dampedpoles. The damping
factorζ is also regarded as thedampingof the system.

In a multi-pole system, any complex conjugate pole pairs canbe defined by the expressions
(3.2)-(3.4), with the poles being characterized by their individual damping factor. However, the
definition of a universal damping in a multi-pole system cannot be given since all the poles
contribute in a non-straightforward manner to the final response . Nevertheless, poorly-damped
complex conjugate poles are not desirable in a multi-pole system and could be responsible
for poorly-damped oscillations. If their damping becomes very small, approaching zero, the
concerned pole pair could become the closest to the imaginary axis among all the poles of the
system; thus becomingdominantpoles and their poorly-damped behavior then dominating the
complete system response.
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3.2 DC-side oscillations in industrial systems

The introduction of power electronic converters in power systems has offered a breakthrough in
the controllability and stability impact of systems. In turn, this has led to an increased possibil-
ity of interactions between the system components. Consequently, potential resonances might
appear that, if become poorly damped, can degrade the effective damping of the system and
increase the risk of instability. Areas where related problems may or have already appeared are
presented in this section.

3.2.1 Effect of Constant Power Loads

The concept of a Constant Power Load (CPL) in power electronic applications, considers a
drive system that is controlled in such a way that it exchanges a constant amount of power
with a system e.g. a motor or a grid. This can be viewed in Fig. 3.2(a) where an inverter is fed
from a dc source through a filtering stage.Rf andLf also include possible line impedances. The
converter is in turn providing powerPL to a load, which is in this case set constant.

Cf

Lf

υfυs

Rf icis

PL

+
-

Load

PL

(a)

Cf

Rf Lf

υfυs

is ic

(b)

Cf

Rf Lf

∆υs
+
- ∆υf Req

∆is

(c)

Fig. 3.2 CPL load and modeling. (a) Full-model description,(b) Equivalent current-source model, (c)
Linearized model.

If the losses in the converter are disregarded, the load power can be assumed equal to the dc-link
power as

PL = υf ic (3.5)

and the whole drive can then be modeled as a simple controlledcurrent-sourceic = PL
/

υf
. The

equivalent circuit can be seen in Fig. 3.2(b). The behavior of this system can then be analyzed
with the hypothesis of a small variation around the nominal operating point. Linearizing the
capacitor dynamics around the operating point of load powerPL and capacitor voltageυf,0
gives

Cf
dυf

dt
= is− ic ⇒

Cf
d∆υf

dt
= ∆is−∆ic ⇒Cf

d∆υf

dt
= ∆is−∆

(
PL

υf

)

⇒
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Cf
d∆υf

dt
= ∆is+

PL

υ2
f,0

∆υf (3.6)

The fact that∆ic =− PL
υ2

f,0
∆υf dictates that the small signal impedance of the converter is

Zinv =
∆υs

∆ic
=−

υ2
f,0

PL
= Req< 0 (3.7)

implying that for small variations around the steady-statenominal point, the drive acts as a
negative resistanceReq, when power is provided to the load. Taking into account the linearized
line dynamics

Lf
dis
dt

= υs−υf − isRf ⇒ Lf
d∆is
dt

= ∆υs−∆υf −Rf∆is (3.8)

the linearized model of the complete system can be seen in Fig. 3.2(c), with the presence of the
negative resistanceReq. The state-space model of the system becomes

d
dt

[
∆is
∆υf

]

=

[
−Rf

Lf
− 1

Lf
1
Cf

PL
υ2

f,0Cf

][
∆is
∆υf

]

+

[ 1
Lf

0

]

∆υs (3.9)

From the Routh theorem, the stability conditions of (3.9) are

υ2
f,0

PL
> Rf (3.10)

Rf

Lf
>

PL

υ2
f,0Cf

(3.11)

Usually, condition (3.10) is satisfied but the same does not always apply in (3.11). Additionally,
in many common applications, the parameters of the system are such that the two eigenvalues
of (3.9) are a pair of complex-conjugate poles with a real part of

Re[p] =− Rf

2Lf
+

PL

2υ2
f,0Cf

(3.12)

It is the evident that for fixed passive components, an increased steady-state power transfer
PL, brings the complex poles closer to the imaginary axis and decreases their damping, with a
possibility of crossing to the Right-Hand s-Plane (RHP) andbecoming unstable. Consequently,
the use of converters in a system that operate as CPL causes stability concerns and are mainly
responsible for poorly-damped oscillations.

3.2.2 Traction and industrial systems

A typical and well-documented field where dc-side resonances and poorly-damped conditions
are recorded, is electrified traction. The most common example are electrical locomotives as
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1~ 
3~ 

Control system

3~M

Single-phase 
main 

transformer

Line-side 
converter

DC-link Motor-side 
inverter

Three-phase 
induction 
machine

Fig. 3.3 Rail vehicle with its main electrical components

the one presented in Fig. 3.3, which shows a motorized wagon fed with alternating voltage.
On-board the wagon there is a single-phase transformer connected to a rectifier (which can be
active or non-controlled) that charges the dc-link. A motor-side inverter is providing the neces-
sary power to an ac-machine, which serves as the prime mover of the wagon. The single-phase
alternating voltage provided to the wagon is typically a 15 kV, 16 2/3 Hz supply (in the Swedish,
Norwegian, German, Austrian and Swiss systems) and is created by rotary synchronous- syn-
chronous frequency converters, as well as static converters. The former are discrete motor-
generator sets, consisting of one single-phase 16 2/3 Hz synchronous generator that is driven
directly by a three-phase 50 Hz, which in turn is fed from the three-phase public distribution
medium voltage supply. Danielsen in [4], investigates the properties of such systems in the Nor-
wegian and Swedish railway. It was found that for the investigated system, a low-frequency
(1.6 Hz) poorly-damped mode can be excited when a low-frequency eigenmode of the mechan-
ical dynamics of the rotary converter is close to the low bandwidth of the direct-voltage control
loop used in the wagon’s active rectifier. This led to a poorly-damped resonance on the dc-link
voltage.

It is however often that direct voltage is provided directlyin traction. In this case, the internal
electrifying system of the wagons is as in Fig. 3.4. Two typesof resonances can be excited in
such systems, as documented in [5]. Figure 3.4(a) shows thatthe RLC circuit created by the
dc-filter of the inverter and the impedance of the transmission lines between the wagon and
the remote substation, may create a resonance at a critical frequency. Another problem may
occur on the wagon itself, if it is using multiple inverters to power multiple wheels. As shown
in Fig. 3.4(b), the filters of different converters are fed from the same dc-link, causing closed
resonant circuits to appear.

A common way in which such resonances are treated in tractionis by using active-damping
control [5, 56]. Figure 3.5 shows an inverter, connected to adirect voltage sourceυs via an
RLC filter, feeding a 3-phase motor. The converter is assumedto provide constant powerPout to
the ac-motor. As shown in Section (3.2.1), this system has two complex-conjugate poles which
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Fig. 3.4 System of traction drives considering resonance ofinput filter. (a) Resonance between substation
and traction drive (b) Resonance between multiple tractiondrives located on the same cart.

can be poorly damped. The idea of active damping implies thatwhen a resonating imbalance
is measured on capacitorCf, an alternating currentidamp of the same frequency and with a
selected phase is injected to the capacitor, reducing the fluctuations of its charge. The active-
damping control involves the filtering ofυs through a low-pass filterF(s) = af/(s+af), with
bandwidthaf, producing the signalυcf. The constantK, transforms the dc-sideidamp into adq-
frame quantity. According to the arrangement of Fig. 3.5, the system can be described by the
circuit in Fig. 3.6(a), where the converter is replaced by a current source. The dynamics at the
dc-capacitor are

Cdc
dυf

dt
= is− ic ⇒Cdc

dυf

dt
= is−

(
Pout

υf
+ idamp

)

⇒Cdc
dυf

dt
= is−

Pout

υf
− υf −υcf

Rdamp
⇒

d∆υf

dt
=

1
Cdc

∆is+
Pout

Cdcυ2
f,0

∆υf −
1

CdcRdamp
∆υf +

1
CdcRdamp

∆υcf (3.13)

The dynamics on the filter are

Ldc
dis
dt

= υs+υf − isRdc ⇒
d∆is
dt

=
1

Ldc
∆υs+

1
Ldc

∆υf −
Rdc

Ldc
∆is (3.14)

and on the filter
dυcf

dt
= af (υf −υcf)⇒

d∆υcf

dt
= af∆υf −af∆υcf (3.15)
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The state space representation of this system is

d
dt





∆is
∆υf
∆υcf



=






−Rdc
Ldc

1
Ldc

1
Ldc

1
Cdc

Pout
Cdcυ2

f,0
− 1

CdcRdamp

1
CdcRdamp

0 af −af










∆is
∆υf
∆υcf



+





1
Ldc

0
0



∆υs (3.16)

The visualization of (3.13) and (3.14) as an electrical circuit can be seen in Fig. 3.6(b), where

Req is the negative resistance due to constant load−Pout

/

υ2
f,0. As it can be seen, the active-

damping control has added a virtual resistance of valueRdamp in the circuit, which if chosen
large enough can not only cancel the negative resistanceReq, but also provide a sufficiently
positive resistance to the system, damping currents that may be caused by a fluctuating∆υs and
without adding actual losses. In this way,∆υf can be minimized, meaning that the voltage ofυf
of the dc-link of the converter can be almost immune to fluctuations of the feeding voltageυs.
In terms of eigenvalues, the state matrix in (3.16) has a realpole in the far left of the Left-Hand
s-Plane (LHP) and two complex conjugate poles. These have almost the same frequency as the
poles of the system without active-damping, but their real part has become much more negative,
implying that their damping has increased.

This type of active damping control is used extensively to damp dc-side resonances and poorly-
damped poles not only in traction, but in any application with controlled VSC converters con-
nected to a dc-link. A relevant damping control method for suppression of resonances in DC
power networks is presented in [57], while a more elaborate non-linear control strategy to mit-
igate negative-impedance instability issues in direct-voltage fed induction machines is investi-
gated in [6]. A virtual-resistance based method is presented in [7] where the rectifier-inverter
drives equipped with small (film) dc-link capacitors may need active stabilization. The im-
pact of limited bandwidth and switching frequency in the inverter-motor current control loop
is considered as well. A different concept of introducing a virtual capacitor parallel to the ac-
tual dc-capacitor of the inverter is introduced in [58], causing a similar effect as the virtual
resistance-based active damping.

The use of active filtering is another well-known method withlarge applicability. Tanaka et. al
in [25] consider large-capacity rectifier-inverter systems, such as in rapid-transit railways, with
single or multiple inverters connected to a single rectifierthrough dc-transmission lines. The
active method proposed is shown in Fig. 3.7, where a small-rated voltage source single-phase
PWM converter is connected in series to the dc-capacitorCdc1 through a matching transformer.
This acts as a damping to the dc-capacitor currentic1. Within this context, a variation of the

Cf

Rf Lf

υfυs

is ic

(a)

Cf

Rf Lf

∆υs
+
- ∆υf Req Rdamp cf
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1 υ∆−
R

∆is

(b)

Fig. 3.6 (a) Current-source equivalent circuit of the inverter and filter system (b) Linearized model of
the system with the active-damping control.
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Fig. 3.7 Active filtering in Rectifier-Inverter systems

depicted active filter is presented in the same publication with the PWM converter using the
power of the capacitorCdc1 to operate in a regenerative manner.

3.2.3 LCC-HVDC

The origin and nature of the dc-side resonances in LCC-HVDC installations varies greatly com-
pared to the dc-side resonances of VSC-HVDC systems or generally DC networks with VSC
converters. The ac- and dc-side of a thyristor converter arenot decoupled as in a VSC, due to
the non-linear switching action of the thyristor converterthat causes a frequency transforma-
tion of voltages and currents between the two sides. This frequency transformation is important
when analyzing dc-resonances for two reasons [10]. Firstly, excitation sources of a certain fre-
quency on the ac-side drive oscillations on the dc-side at different frequency. Secondly, the
impedances involved are at different frequencies at the ac-and dc-side. The thyristor converter
acts as a modulator of dc-side oscillations when transforming them to the ac-side. If the car-
rier frequencyfc is the fundamental frequency of the commutating voltage andthe modulation
frequencyfm is that of the dc-side oscillation, then new side-band frequencies atfc± fm are
generated in the ac-phase currents. Ac-side voltages that excite dc-oscillations can be attributed
to system disturbances or by harmonic sources in the ac-network. Examples are

1. initial transformer energization with an inrush of magnetization inrush current;

2. transformer saturation;

3. single-line to ground faults near the converter resulting in unbalanced phase voltages
which generate second order dc-side harmonics;

4. persistent commutation failures generate fundamental frequency dc-oscillations.

On the dc-side, the harmonic voltages superimposed on the direct voltage produce harmonic
currents that enter the dc line. The amplitude of these depends on the inductance of the nor-
mally large smoothing reactor and the impedance of dc-filters. These harmonic currents may,
for instance, induce interference in telephone lines, in close proximity to the dc lines. This has
been a major concern in LCC-HVDC installations, with strictspecifications from the network
operators on mitigating actions. As a results, an increasedpresence of dc-side filters is required,
whose only function is to reduce harmonic currents.
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Traditional passive dc-side filters have been the norm for years, but their increasing size and
cost has led to the consideration of active filtering. An early mentioning of the concept in LCC
is being made in [11], where active filtering similar to the one in Fig. 3.7 is described. Possible
locations of implementation within the dc-circuit are discussed and a proof of concept is demon-
strated with the actual installation in the Konti-Skan dc-link at the Lindome converter Station,
Sweden. More information on actual concepts and applications is presented in [12] where the
interaction between multiple active filters of a dc-link is discussed, stating that long transmis-
sion lines weaken the coupling between the active filters so that interactions among them do not
disturb the harmonic control. Aspects in the specification and design of dc-side filtering (both
passive and active) in multiterminal LCC-HVDC, are presented in [13] suggesting that active
filters are ideal. Changes in the dc-grid topology can alter the position of dc-resonances and an
adaptive control of the active filters can keep tracking them.

3.2.4 VSC-HVDC

The problem of dc-side resonances can also appear in VSC-HVDC links. A typical two-terminal
VSC-HVDC system is depicted in Fig. 3.8 where each of the transmission poles has been re-
placed with its equivalentΠ-section, as seen earlier in Chapter 2. A first observation isthat the
dc-link is effectively a closed RLC resonant-circuit. If the converter capacitors are considered
equal,Cdc1=Cdc2=Cconv, the resonant frequency of the circuit will be

Cpole/2
Rpole Lpole

Cpole/2

Cpole/2

Rpole Lpole

Cpole/2

Cable pole

Cable pole

Power flow direction

Rectifier Inverter

Cdc2Cdc1
Resonance loop

Fig. 3.8 DC-link resonance loop in a two-terminal VSC-HVDC connection

ωres=
1

√

Lpole

(

Cconv+
Cpole

4

) (3.17)

When power is imported from the rectifier-side and exported from the inverter-side, the trans-
mission link is naturally unstable as will be investigated later in Sections (5.3) and (6.3). The
rectifier station is operating in direct-voltage control mode with a certain controller speed, stabi-
lizing the transmission link and bringing a power balance. The interaction between the dynamics
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Chapter 3. Poorly-damped oscillations in systems

of the direct-voltage controller and the dc-link, lead to a closed-loop system whose properties
are not always predictable. It can be shown in Section (3.3) that the system may have poorly-
damped poles (most often those associated with the resonantfrequency of the dc-link) or even
become unstable. The contribution of the CPL small signal deterioration of the systems stability
characteristics should also be taken into account.

In [15], the authors investigate the transient stability ofa dc grid comprising of clusters of off-
shore wind-turbine converters connected through HVDC-cables to a large onshore VSC inverter.
Using the traveling wave theory on long cables, it was demonstrated that choosing equal lengths
for the cluster cables was a worst case scenario in terms of grid stability. A two-terminal VSC-
HVDC connection between two weak ac grids is presented in [14] using Power-Synchronization
control on the converters, where it was also claimed that theresistance of the dc-link plays a
destabilizing role. A poorly-damped resonance was demonstrated to exist and a notch filter was
used in the control strategy to reduce the dc resonant peak. Investigation of the dynamic sta-
bility has also been performed in multiterminal VSC-HVDC connections as in [16], where the
impact of the droop settingkdroop in the direct-voltage controller of the stations was assessed.
It was found that high values ofkdroop could turn a point-to-point droop controlled connection
unstable.

3.3 Example of dc-side oscillations in two-terminal VSC-HVDC

Instances of poorly-damped behavior and instability are demonstrated in this section, with a
two-terminal VSC-HVDC system being considered the object under testing. The objective is to
highlight the effect of the system’s properties and operating points on its stability. The model of
the system is exactly the same as in Section (2.5) and visualized in Fig. 2.1, with full switching
VSC stations, ac filters and transformers. The characteristics of the VSC stations are provided in
Table 2.2. The only difference is the use of overhead lines inthe dc-transmission link instead of
cables. As explained in Section (2.2.5), overhead lines normally have much higher inductance
per km (almost an order of magnitude greater) than cables of the same voltage and power rating.
A higher inductance in the dc-transmission link tends to decrease the damping of the system, as
will be seen in the analysis that will follow in the next chapters. The overhead line used in this
section have physical properties provided in Table 2.1.

3.3.1 Poorly-damped conditions

Two cases are considered to highlight potentially poorly-damped phenomena

- Case 1: The active-power controlled station imposes a steady-state power transfer of
Pout= 0 MW. At t =1 s, the voltage reference to the direct-voltage controlleris increased
from 640 kV to 645 kV. Att = 1.5 s, the voltage reference is set back at 640 kV.

- Case 2: The active-power controlled station imposes a steady-state power transfer of
Pout = −900 MW. Identically toCase 1, the voltage reference to the direct-voltage con-
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Fig. 3.9 Power and voltage response of the system inCase 1. Upper figure:υdc1 (gray line) andυ∗
dc

(black line). Lower figure:Pin.

troller is increased from 640 kV to 645 kV att = 1 s and then set back to 640 kV at
t = 1.5 s.

The length of the overhead-transmission line is 200 km. For both of the examined cases, the
voltageυdc1 at the dc-terminal of the direct-voltage controlled station and the input powerPin
of the same station are plotted.

Figure 3.9 shows the results for theCase 1scenario. The response ofυdc1 to the new refe-
renceυ∗

dc seems to be sufficiently damped with only a small overshoot. This behavior is equally
reflected on the response ofPin. Both responses show that the excited oscillations are practi-
cally fully damped 70 ms after the step request inυ∗

dc. Regarding the same system but under
the conditions ofCase 2, the response of the same entities are presented in Fig. 3.10. The
simulation shows that the response ofυdc1 has a higher overshoot, compared to Fig. 3.9, and
features a poorly-damped oscillation. Likewise, the response ofPin is dynamically similar to
υdc1. It presents a slightly higher overshoot than its counterpart in Fig. 3.9 (considering the ab-
solute power deviation) and suffers from a poorly-damped oscillatory component of the same
frequency as inυdc1.

This example demonstrated that operating the system under different steady-state conditions
(power transfer in this case), an identical excitation may cause significantly different dynamic
response, without changing any physical or controller parameter in the process.
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3.3.2 Unstable conditions

The length of the dc-transmission link in the previous system is increased to 300 km and a
specific pattern of active-power reference is provided to the active-power controlled station,
while the direct-current controller receives a constant referenceυ∗

dc =640 kV. The sequence of
events is as follows

1. P∗
out =0 MW until t = 5 s.

2. P∗
out is linearly ramped from 0 to -500 MW untilt =5.5 s.

3. P∗
out remains unchanged untilt =6.5 s.

4. P∗
out is linearly ramped from -500 to -900 MW untilt =7 s and then remains constant until

t =8.5 s.

5. P∗
out is linearly ramped from -900 to -500 MW untilt =9 s and then remains constant until

then end of the simulation.

The response of the system can be observed in Fig. 3.11. In thefirst 7 seconds of the simulation,
the system manages to follow the active-power reference without any problems, with the direct-
voltage controller performing seamlessly at all instances. However aftert =7 s and when the
power reaches approximately 900 MW, the system experiencesan oscillation of 199.4 Hz which
constantly increases in magnitude as evidently observed inthe Pin and υdc1 responses. This

46



3.3. Example of dc-side oscillations in two-terminal VSC-HVDC

−1000

−800

−600

−400

−200

0

P  o
ut
 [M

W
]

0

200

400

600

800

1000

1200

P  in
 [M

W
]

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5
600

620

640

660

680

time [s]

υ  d
c1

 [k
V

]

Fig. 3.11 Power and voltage response of the system in instability conditions. Upper figure:P∗
out (black

line) andPout (gray line). Middle figure:Pin. Lower figure:υdc1

oscillation quickly becomes unstable but the system integrity is sustained due to the existence
of limiters in the control structures, limiting the inputi∗d at the current controllers of both VSC
stations to 1.1 pu in the examined scenario. As such,Pin never exceeds 1100 MW in magnitude
and the theoretically unstable oscillation is now contained in a bounded region. It should be
noted that even during this event, the active power controller manages to impose the request
P∗

out on its ac side. Only small signs of the oscillation can be traced onPout. This is attributed to
the fact that the corrected modulation wave of the PWM process is calculated and applied only
at the switching events. For a higher switching frequency, the oscillation is much smaller until
it disappears completely for non-switching converter models.

OnceP∗
out is ramped to -500 MW, the system gradually goes out of instability and becomes stable

and fully operational again after t=9.4 s. This demonstrates how the level of power transfer had
a fundamental impact on the dynamic stability of the system.The instability exhibited in the
example of this section will be further investigated in the following chapter.
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Chapter 3. Poorly-damped oscillations in systems

3.4 Summary

In this chapter, an effort was made to establish a backgroundon poor damping in dynamic sys-
tems, focusing mostly on VSC-HVDC applications. Initiallyit was identified that even though it
is not possible to specify the term of damping in a high-ordersystem, it is acceptable to closely
identify it with the damping factor of its dominant poles, which mainly characterize the dynamic
response of the system. Following this, it was shown how constant-power loads, fed by VSCs,
can decrease the damping factor of complex poles of the system they are part of, leading to
the potential appearance of poorly-damped oscillations. This is a commonly experienced phe-
nomenon in traction, where electrical machines are operated to supply constant traction power.
Existing control methods can improve the damping characteristics of such systems by means of
active damping.

Oscillation phenomena were later identified in LCC-HVDC transmission links. There, the in-
creased harmonic content of the dc-side voltage is inevitably expanded to the ac side as well, as
the LCC cannot decouple its two sides. Some of these harmonics may become poorly damped
and the presence of large passive or active filters is necessary on both ac and dc sides of the con-
verter station. Oscillations may also be experienced in VSC-HVDC systems and resonances,
mostly associated with the characteristic frequency of thedc-transmission link, could appear
under specific conditions, e.g. long transmission-line length. This was further investigated by
simulating a two-terminal VSC-HVDC system, where a combination of long transmission lines
and high power transfer gave rise to poorly-damped resonances and even instability.

The present chapter laid the foundations for the understanding of the analysis that will be per-
formed in the next three chapters, where the poor-damping characteristics of two-terminal VSC-
HVDC transmission systems are analyzed in the frequency domain and analytically.
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Chapter 4

Stability in two-terminal VSC-HVDC
systems: frequency-domain analysis

In this chapter, a two-terminal VSC-HVDC system is modeled in detail and its stability charac-
teristics are examined from a frequency analysis perspective. The aim is to develop a methodol-
ogy pattern, which can describe and possibly predict the occurrence of poorly-damped phenom-
ena or instances of instability. For analysis purposes, thesystem is divided into two subsystems:
one describing the dc-transmission link receiving power from the rectifier station and the other
describing the dynamics of the VSC rectifier station which injects a controlled amount of power
to the dc grid in an effort to stabilize the direct voltage. The two subsystems are initially exam-
ined from apassivitypoint of view with relevant comments being drawn for the overall stability
using the Nyquist criterion. However, the conditions underwhich the passivity approach is
applicable can be limited. A different frequency analysis tool is thus later applied, using the
net-dampingapproach. Finally, an initially unstable system is stabilized by altering the control
structure of the VSC rectifier and an explanation is provided, observing the impact of the system
parameters to the overall net damping.

4.1 Stability analysis based on a frequency-domain approach

If a system can be represented by a closed-loop SISO feedbacksystem, as in Fig. 4.1, its stability
can be evaluated by examining the frequency response of the distinct transfer functionsF (s)
andG(s). Two main methods are considered in this chapter: the passivity approach and the
net-damping stability criterion.

4.1.1 Passivity of closed-loop transfer function

A linear, continuous-time system described by a transfer functionR(s) is defined aspassiveif
and only if, the following conditions apply at the same time [59]

1. R(s) is stable
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in +
-

out)(sF

)(sG

Fig. 4.1 SISO system with negative feedback.

2. Re{R( jω)} ≥ 0, ∀ω ≥ 0

From a complex-vector point of view, the latter is equivalent to the condition of−π
/

2 ≤
arg{R( jω)} ≤ π

/
2, implying that the real part of the transfer function is non-negative. Ad-

ditionally, if R(s) is stable and Re{R( jω)} > 0, ∀ω ≥ 0, the corresponding system is defined
asdissipative. As an example, the typical second-order low-pass filter function

R(s) =
ω2

n

s2+2ζ ωns+ω2
n

(4.1)

represents a dissipative system forζ >0, with a step response that contains either no oscillations
(ζ ≥ 1), or a damped oscillation (0> ζ > 1). However, ifζ = 0, the represented system is only
passive with a step response that contains a sustained oscillation of constant magnitude and
frequencyωn, without ever being damped.

The passivity concept can be expanded to closed-loop systems, as the SISO in Fig. 4.1. If both
the open-loop transfer functionF (s) and the feedback transfer functionG(s) are passive, then
the closed-loop transfer function of the complete system

Rc(s) =
F (s)

1+F (s)G(s)
(4.2)

is stable and passive [60]. The opposite is however not true.If either F (s), or G(s), or both of
them, are non-passive thenRc(s) is not necessarily non-passive or unstable.

The previous statements are very important from a control point of view. If a controlled process
can be represented by the SISO form of Fig. 4.1, the passivitycharacteristic of the subsystems
F (s) andG(s) can either guarantee the stability of the closed loop, or provide a hint for instabil-
ity and there is a need for further investigation using alternative tools, e.g. the Nyquist criterion,
which can provide a definite answer.

4.1.2 Net-damping stability criterion

A useful tool in the frequency analysis of the stability of a system is theNet-Dampingstability
criterion. Its applicability can be investigated on SISO systems, identical to the one depicted in
Fig. 4.1, where the frequency functions of the open-loop andfeedback dynamics are expressed
as

1
F ( jω)

= DF(ω)+ jKF(ω) (4.3)
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and
G( jω) = DG(ω)+ jKG(ω) (4.4)

Canay in [21] and [22] used such a SISO representation in order to introduce the complex torque
coefficients method for subsynchronous torsional interaction analysis of turbine -generator sets.
In that case,F(s) represented the turbine’s mechanical dynamics andG(s) the generator’s
electrical dynamics. AddressingDF(ω) andDG(ω) as damping coefficients andKF(ω) and
KG(ω) as spring coefficients, the introduced method involves the evaluation of the net damping
D(ω) = DF(ω)+DG (ω). If at each resonance of the closed-loop system applies

D(ω) = DF(ω)+DG(ω)> 0 (4.5)

then according to [21], there is no risk for detrimental torsional interaction. Several examples
where provided as proof of the statement but no strict mathematical proof. The method was
shown in [23] not to correctly predict closed-loop oscillatory modes and instabilities. However,
a mathematical proof of the positive-net-damping criterion (4.5) was provided in [24], using the
Nyquist criterion. There, in agreement with [23], it was clarified that the net damping should be
evaluated for the open-loop (not closed-loop) resonances,as well as for low frequencies where
the loop gain exceeds unity.

As part of the proof process in [24], the Nyquist criterion isapplied to the transfer function
F(s)G(s) with

F ( jω)G( jω) =
DF(ω)DG(ω)+KF(ω)KG(ω)

D2
F(ω)+K2

F (ω)
+ j

DF(ω)KG (ω)−DG (ω)KF(ω)

D2
F(ω)+K2

F (ω)
(4.6)

To determine whether the Nyquist curve encircles -1, the imaginary part of (4.6) is set to zero,
yielding

F ( jωN)G( jωN) =
DG(ωN)

DF(ωN)
(4.7)

whereωN is the frequency where the Nyquist curve intersects with thereal axis. Usually, res-
onant frequencies are very close to events of intersectionswith the real axis and therefore con-
stitute points where an encirclement of -1 could occur (thusinstability of the closed loop) [24].
If (4.7) is larger than -1 thenDF(ωN)+DG (ωN)> 0, giving (4.5) in the vicinity of a potential
resonant frequency. However, this accounts only forDF(ωN) > 0, as examined in the previ-
ous references. IfDF(ωN) < 0, relation (4.7) would give the following in order to avoid an
instability

DG(ωN)

DF(ωN)
>−1

DF(ωN)<0−−−−−−→ DG(ωN)<−DF(ωN)⇒

D(ωN) = DF(ωN)+DG(ωN)< 0 (4.8)

showing that extra attention should be given when applying the net-damping criterion, taking
into account the nature ofDF(ω) close to the resonant frequencies.

Compared to the passivity analysis, a benefit of analyzing the stability of a SISO system via the
positive-net-damping criterion is that there is no need foreach of theF(s) andG(s) to be passive
or even stable. In fact it is not uncommon that one or both of the two transfer functions are
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Fig. 4.2 Two-terminal VSC-HVDC model.

individually unstable, but closing the loop through the negative feedback stabilizes the system.
In such cases, the passivity analysis cannot be used, unlikethe positive-net-damping criterion
which can still be applied.

4.2 System representation

The objective of this section is to derive a SISO representation of the two-terminal VSC-HVDC
model, compatible to the depiction of Fig. 4.1. This will allow a further investigation of the
system in terms of passivity and net damping. The model underconsideration is shown in
Fig. 4.2(a). The ac grids are assumed to be infinitely strong and are thus modeled as voltage
sources, to which each VSC station is connected via a filter inductor (with inductanceLf and re-
sistanceRf). The dc terminals of each station are connected to a dc capacitor with a capacitance
Cconv. Each dc cable is modeled as aΠ-model, in the way described in Section (2.2.5). Given
the physical characteristics of the symmetrical monopole configuration and considering balan-
ced conditions, the model in Fig. 4.2(a) can be equated to theasymmetrical monopole model in
Fig. 4.2(b). This model retains the same power and voltage ratings as the one in Fig. 4.2(a) and
has the same dynamics. It is however simplified in form, assisting the later description of the
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Fig. 4.3 DC-side consideration of the system: (a) detailed current-source equivalent model, (b) linearized
model.

model through equations. The transmission link values are defined as

Rdc= 2 ·Rpole, Ldc = 2 ·Lpole, Cdc=Cpole/4 (4.9)

This model will be used further on in this chapter. Choosing the correct type of input and
output for the SISO representation of the system is not straightforward. It will be shown in the
following section that the choice of the small signal deviation ∆W∗ as input and∆P1 as output,
allows a SISO formulation of the considered model, similar to the closed-loop form of Fig. 4.1.

4.2.1 DC-grid transfer function

The part of the model to the right of the dc terminals of VSC Station 1 in Fig. 4.2, can be treated
separately for dynamic purposes. For this analysis, the twoVSC stations can be represented
as controllable current sources with the rectifier injecting currenti1 = P1/υdc1 and the inverter
injecting i2 = P2/υdc2, as depicted in Fig. 4.3(a). The capacitorsCconv andCdc in Fig. 4.2 have
been replaced with their lumped valueCtot.

Considering the capacitor at the rectifier side, the direct-voltage dynamics are

Ctot
dυdc1

dt
=

P1

υdc1
− idc⇒Ctot

d∆υdc1

dt
=

1
υdc1,0

∆P1−
P1,0

υ2
dc1,0

∆υdc1−∆idc ⇒

Ctot
d∆υdc1

dt
=

1
υdc1,0

∆P1−
1

R10
∆υdc1−∆idc (4.10)

where the termυ2
dc1,0/P1,0 has been replaced withR10, since it acts as a fictive resistance which

under a voltage drop of∆υdc1 causes a current∆υdc1/R10. The subscript ”0” denotes the steady-
state value of an electrical entity, around which the latteris linearized, and is consistently used
in the rest of the analysis in the thesis.
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As mentioned earlier, the power-controlled station is set to a fixed power reference and therefore
P2 is assumed to be constant. In this case, the dynamics of the capacitor voltage on the inverter
side become

Ctot
dυdc2

dt
= idc+

P2

υdc2
⇒Ctot

d∆υdc2

dt
= ∆idc−

P2,0

υ2
dc2,0

∆υdc2⇒

Ctot
d∆υdc2

dt
= ∆idc−

1
R20

∆υdc2 (4.11)

Similarly as earlier, the termυ2
dc2,0/P2,0 has been replaced withR20, since it acts as a fictive re-

sistance which under a voltage drop of∆υdc2 causes a current∆υdc2/R20. Finally, the dynamics
of the currentidc are

Ldc
didc

dt
=−Rdcidc−υdc2+υdc1⇒ Ldc

d∆idc

dt
= ∆υdc1−Rdc∆idc−∆υdc2 (4.12)

The differential equations (4.10)-(4.12) constitute the linearized model of the dc-transmission
link and are represented in Fig. 4.3(b) as an equivalent small-signal electrical circuit. The phys-
ical meaning of the termsR10 andR20 can now become clear. It is interesting to notice that due
to the steady-state properties of the circuit

idc,0 =
P1,0

υdc1,0
=− P2,0

υdc2,0
(4.13)

and then

Rdc =
υdc1,0−υdc2,0

idc,0
=

υdc1,0

idc,0
− υdc2,0

idc,0
=

υdc1,0

P1,0
/

υdc1,0

− υdc2,0

−P2,0
/

υdc2,0

=
υ2

dc1,0

P1,0
+

υ2
dc2,0

P2,0
⇒

Rdc = R10+R20 (4.14)

The state-space model of the considered dc-transmission system is created by considering
(4.10)-(4.12). The states of the system arex1 = ∆υdc1, x2 = ∆idc andx3 = ∆υdc2. The only input
is u1 = ∆P1. ForW = υ2

dc1, the output of the system isy = ∆W = 2υdc1,0∆υdc1. The resulting
state-space model is

Adc−link =






− 1
CtotR10

− 1
Ctot

0
1

Ldc
−Rdc

Ldc
− 1

Ldc

0 1
Ctot

− 1
CtotR20






Bdc−link =





1
Ctotυdc1,0

0
0



 , Cdc−link =
[

2υdc1,0 0 0
]
, Ddc−link = 0

(4.15)

denoting as

ω1 =
1

CtotR10
, ω2 =

1
CtotR20

, ω3 =
1

LdcCtot
, ω4 =

Rdc

Ldc

54



4.2. System representation

and taking into account (4.14), the transfer function of thesystem from∆P1 to ∆W is

G(s) =
∆W (s)
∆P1(s)

=
[

Cdc−link (sI −Adc−link)
−1Bdc−link +Ddc−link

]

⇒

G(s) =
2C−1

tot

[
s2+s(ω2+ω4)+ω3+ω2ω4

]

s3+s2(ω1+ω2+ω4)+s[2ω3+ω2ω4+ω1(ω2+ω4)]+2ω3(ω1+ω2)
(4.16)

In a conventional sense, the flow of currenti across an impedanceZ causes a voltage drop
u = Z · i. In a similar manner and observing (4.16), the flow of power∆P1(s) into the dc grid
causes an ”energy” change∆W = G(s) · ∆P1(s). Thereby,G(s) is addressed to as theinput
impedanceof the dc grid.

4.2.2 AC-side transfer function

This section concerns the ac-side dynamics of Station 1 in Fig. 4.2 and its interaction with the
dc-transmission link. Assuming a lossless converter and power-invariant space-vector scaling
[61] or p.u. quantities, the conservation of power on the dc-and ac-side of the converter implies

P1 = υd
c1i

d
f1+υq

c1i
q
f1 (4.17)

which in terms of small deviations becomes

∆P1 = υd
c1,0∆idf1+ idf1,0∆υd

c1+υq
c1,0∆iqf1+ iqf1,0∆υq

c1 (4.18)

As mentioned earlier, the ac grid at the PCC is assumed to be infinitely strong and is represented
by a voltage source with a fixed frequencyωg1 and magnitudeυd

g1+ jυq
g1 on the converterdq-

frame. Once the PLL has estimated the correct angle of itsdq-frame, any changes in the system
will not affect the measured angle and the dynamics of the PLLitself will have no influence
on the system. Consequently, theq-component of the ac-grid voltage has becomeυq

g1 = 0, the

d-component of the ac-grid voltageυd
g1 is constant over time. The ac-side dynamics are then

the following, expressed on the converterdq-frame

υd
c1 = υd

g1− (Rf1 +sLf1) idf1+ωg1Lf1iqf1
υq

c1 =−(Rf1+sLf1) iqf1−ωg1Lf1idf1
(4.19)

which can then be linearized in the following form

∆υd
c1 =−(Rf1+sLf1)∆idf1+ωg1Lf1∆iqf1

∆υq
c1 =−(Rf1+sLf1)∆iqf1−ωg1Lf1∆idf1

(4.20)

The steady-state valuesυd
c1,0 andυq

c1,0 can be derived from (4.20) as

υd
c1,0 = υd

g1,0−Rf1idf1,0+ωg1Lf1iqf1,0
υq

c1,0 =−Rf1iqf1,0−ωg1Lf1idf1,0
(4.21)
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Inserting (4.20) and (4.21) into (4.18), provides the following expression for∆P1

∆P1 =
[

−idf1,0(2Rf1+sLf1)+υd
g1,0

]

∆idf1+
[

−iqf1,0(2Rf1+sLf1)
]

∆iqf1 ⇒

∆P1 =−idf1,0Lf1

(

s+bd
1

)

∆idf1− iqf1,0Lf1
(
s+bq

1

)
∆iqf1 (4.22)

where

bd
1 = 2

Rf1

Lf1
−

υd
g1,0

Lf1idf1,0
, bq

1 = 2
Rf1

Lf1
(4.23)

For a current controller designed as in Section (2.4.1), with closed-loop dynamics of a low-
pass filter with bandwidthacc and perfect cancellation of the cross-coupling term, the relation
betweendqcurrent references and filter currents acquire the following linearized form

∆idf1 =
acc

s+acc
∆id ∗

f1 , ∆iqf1 =
acc

s+acc
∆iq ∗

f1 (4.24)

It is assumed thatiq ∗
f1 is constant and therefore∆iq ∗

f1 = 0. Thus, inserting (4.24) into (4.22)
provides

∆P1 =−acci
d
f1,0Lf1

s+bd
1

s+acc
∆id ∗

f1 (4.25)

The direct-voltage controller of the station is designed inthe same way as in Section (2.4.3)

P∗
in = Kp(W

∗−W)+Pf (4.26)

wherePf is the filtered feedforward power

Pf = H(s)Pm (4.27)

and
H(s) =

af

s+af
(4.28)

is a low-pass filter of bandwidthaf. The actual powerPin will follow its referenceP∗
in with a time

constant defined by the selected control parameters. This power is different fromP1 because of
the reactor resistanceRf1 and the associated power loss. Given the fact that the steady-state value
of the feedforward termPf is equal toP1, it is understood that there is a need for an integrator
with a very low gainKi to compensate for the small steady-state deviation betweenPin andP1.
For very low values ofKi, the integrator has negligible effect on the overall dynamics and can,
at this point, be assumed to be zero [43].

The reference powerP∗
in in terms of PCC properties is

P∗
in = υd

g1i
d ∗
f1 (4.29)

which when inserted to (4.26) gives

υd
g1i

d
f1 = Kp(W

∗−W)+Pf ⇒ υd
g1,0∆id ∗

f1 = Kp(∆W∗−∆W)+∆Pf ⇒
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4.2. System representation

∆id ∗
f1 =

Kp(∆W∗−∆W)+∆Pf

υd
g1,0

(4.30)

Relations (4.25) and (4.30) provide the final expression forthe injected power to the dc-transmission
link

∆P1 = K(s)
[
Kp(∆W∗−∆W)+∆Pf

]
(4.31)

with

K(s) =−
accidf1,0Lf1

υd
g1,0

s+bd
1

s+acc
(4.32)

Given relation (4.27), the filtered power∆Pf can be expressed as

∆Pf = H(s)∆Pm (4.33)

The challenge at this stage is to relate∆Pm directly to∆P1. In order to achieve this, it is necessary
to resort back to the analysis of the dc-grid transfer function in Section (4.2.1) and its state-space
description in (4.15).

Based on the arrangement of Fig. 4.2, as well as the fact that capacitorsCconv andCdc share the
same voltage at all times, the dc-side powers measured at different points of the transmission-
link model are connected in the following way

1
2Cconv

dW
dt = P1−Pm

1
2Cdc

dW
dt = Pm−υdc1idc






⇒ P1−Pm

Cconv
= Pm−υdc1idc

Cdc
⇒

Pm = Cdc
Cconv+Cdc

P1+
Cconv

Cconv+Cdc
υdc1idc⇒

Pm =
Cdc

Ctot
P1+

Cconv

Ctot
υdc1idc (4.34)

Relation (4.34) can then be linearized into

Pm =
Cdc

Ctot
P1+

Cconv

Ctot
υdc1idc⇒ ∆Pm =

Cdc

Ctot
∆P1+

Cconv

Ctot
υdc1,0∆idc+

Cconv

Ctot
idc,0∆υdc1⇒

∆Pm =
Cdc

Ctot
∆P1+

Cconvυdc1,0

Ctot
∆idc+

CconvP1,0

Ctotυdc1,0
∆υdc1 (4.35)

At this point considering the same system as in Section (4.2.1) with the same single input∆P1,
but new output of∆Pm as in (4.35), the new state-space representation becomes

Adc =






− 1
CtotR10

− 1
Ctot

0
1

Ldc
−Rdc

Ldc
− 1

Ldc

0 1
Ctot

− 1
CtotR20






Bdc =





1
Ctotυdc1,0

0
0



 , Cdc =
[

CconvP1,0
Ctotυdc1,0

Cconvυdc1,0
Ctot

0
]

, Ddc =
Cdc
Ctot

(4.36)
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Fig. 4.4 SISO representation of two-terminal VSC-HVDC model: (a) detailed representation, (b) con-
densed representation.

with the only difference compared to (4.15), being found in matricesCdc andDdc. The transfer
function from∆P1 to ∆Pm is now

M (s) =
∆Pm(s)
∆P1(s)

=
[

Cdc(sI −Adc)
−1Bdc+Ddc

]

⇒

M (s) =
Cconv

C2
totυ2

dc1,0

·
Ctotυ2

dc1,0(s+ω2)ω3+P1,0[s2+ s(ω2+ω4)+ω3+ω2ω4]

s3+ s2(ω1+ω2+ω4)+ s[2ω3+ω2ω4+ω1(ω2+ω4)]+2ω3(ω1+ω2)
+

Cdc

Ctot
(4.37)

4.2.3 Closed-loop SISO feedback representation

Following the previous segmental investigation, the individual transfer functions can be com-
bined in order to obtain a representation of the system’s dynamics, relating the single input∆W∗

to the output∆P1. The equations of interest are (4.16), (4.31), (4.32), (4.28) and (4.37) whose
proper linking leads to the graphical representation of Fig. 4.4(a).

The feedback-loop transfer functionG(s) in Fig. 4.4(a) already complies with the SISO form of
Fig. 4.1 but the path from the input to the output, appears more complicated. The latter can be
merged into a single transfer function

F (s) = Kp
K (s)

1−K (s)H (s)M (s)
(4.38)

with the system taking the final desired form of Fig. 4.4(b). This form will be used in the later
parts of this chapter.
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It is interesting to observe that if the direct-voltage controller was only a basic PI-controller
with transfer functionKp+Ki/s, the input-admittance transfer function would simply become

F(s) =
Kps+Ki

s
·K(s) (4.39)

The dynamics of this expression are completely decoupled from those of the dc-transmission
link. Conversely, the presence of the power feedforward term in the considered control intro-
ducesM(s) into the final expression ofF(s) in (4.38), implying that the latter is now coupled to
the dc-transmission system and inherits its dynamics.

From an electrical point of view, a voltage dropu across an admittanceY causes a current
i = Y ·u. In a similar manner and with a reference of Fig. 4.4(b), the appearance of an ”energy”
drope= ∆W∗−∆W causes the converter to respond with a power flow∆P1 = F(s) ·e. Thereby,
F(s) is addressed to as theinput admittanceof the VSC converter.

4.3 Frequency-domain analysis: Passivity approach

It this section the stability of a two-terminal VSC-HVDC, asshown in Fig. 4.2, is investigated
using a frequency-domain approach. The investigation intends to utilize the passivity properties
of the system and the Nyquist criterion. As such, a SISO representation of Fig. 4.4(b) is con-
sidered, where the transfer functionsF(s) andG(s) must be stable. The investigation begins by
considering a simple form of direct-voltage control. Thereby, a commonly used PI-controller
is chosen in the beginning, with a later consideration for a proportional controller with power-
feedforward.

4.3.1 DC-grid subsystem for passivity studies

The dc-grid transfer functionG(s) in (4.16) has three poles, one of which is real. As will be
shown later in Section (6.3), this real pole is always positive for a non-zero power transfer,
renderingG(s) unstable and therefore non-passive. This implies that the analysis of the SISO
system in terms of passivity cannot be performed. However, in a related analysis in [19], if

Ldc

Ctot
<< 2 (4.40)

it is possible to approximateG(s) with the transfer functionG′(s), where the real pole is fixed
at zero

G′ (s) =
2C−1

tot

[
s2+s(ω2+ω4)+ω3+ω2ω4

]

s(s2+ω4s+2ω3)
(4.41)

Condition (4.40) is usually fulfilled in cable-type of lines, where the real pole is sufficiently
close to zero due to the low inductance of the transmission link is, but not necessarily in case of
overhead lines. This will be further investigated in Chapter 6.
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As demonstrated in [19], the replacement ofG(s) with G′(s) has practically negligible effects in
the closed-loop poles of the SISO system and is therefore valid to be considered as the feedback
transfer function. However, the main benefit of consideringG′(s) is that, unlikeG(s), it is stable.
This is a precondition for the passivity analysis.

4.3.2 VSC subsystem

The input-admittance transfer functionF(s) is determined by the ac-side characteristics of the
rectifier VSC Station 1 and its control. Following the analysis of Section (4.2.3), a PI-controller
is at this stage chosen (instead of a proportional controller with power-feedforward) for the
direct-voltage control. This is because, in order to perform a passivity analysis, transfer function
F(s) must be at least stable. Expression (4.39) corresponding tothe use of a simple PI-controller
is always stable, but not (4.38), which is related to the proportional controller with power-
feedforward. For a selection ofKp = adCconv andKi = a2

dCconv/2 as in [14], the ideal closed-
loop direct-voltage control of the rectifier (assuming no dc-transmission link), would have two
real poles ats= ad. As such, the input-admittance transfer function of the SISO system has the
general form of (4.39), providing the final expression

F(s) =
Kps+Ki

s
·K(s) =−

adaccidf1,0Lf1Cconv

υd
g1,0

(s+ad/2)
s

(s+bd
1)

(s+acc)
(4.42)

As it can be observed,F(s) is always stable. This, combined with the fact thatG′(s) is stable,
indicates that a passivity approach of the system can be considered to investigate the stability
of the closed-loop system.

4.3.3 Analysis

The complete VSC-HVDC link is here evaluated and for scalingpurposes the system is exam-
ined in per-unit. The passivity properties of the system mayalter according to the operational
conditions and choice of control parameters and passive elements. Their values are the same
as in Table 2.2, with nominal power transfer and direct voltage, with the difference that the
bandwidthad of the closed-loop direct-voltage control is allowed to vary. A cable-type of the
transmission line is chosen with physical characteristicsprovided in Table 2.1. The cable length
is here set to 50 km.

The frequency response ofG′(s) is presented in Fig. 4.5. A resonance peak is observed at
ω = 7.42 pu, which is very close to the resonance frequency of the transmission link, having
ωres= 7.40 pu, as defined by (3.17). It can also be seen that the phase angle of the transfer
function is always between -90◦ and 90◦ and since it is also marginally stable,G′(s) is passive
for all frequencies. Therefore, withF(s) being already stable, the passivity analysis dictates that
if there is a chance of instability in the closed-loop SISO system thenF(s) will necessarily be
non-passive.

The system is now tested for three different bandwidths of the close-loop direct-voltage control:
(a) ad = 0.4 pu, (b)ad = 1.4 pu and (c)ad = 2.4 pu. Figure 4.6 shows the real and imaginary
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Fig. 4.5 Frequency response ofG′(s).

parts ofG′( jω) andF( jω) for each of the cases. Observe that for the investigated cases, Re[F] is
negative over a large part of the frequency domain, indicating thatF(s) is non-passive and there-
fore provides a hint for possible instability. Observe thatF(s) is non-passive for any amount of
positive power transfer.

In this case, the Nyquist criterion should be applied. For a certain frequencyω, the transfer
functionsF(s) andG′( jω) can be regarded in terms of their real and imaginary parts as

F ( jω) = Fr (ω)+ jFi (ω) (4.43)

G′ ( jω) = G′
r (ω)+ jG′

i (ω) (4.44)

At a frequencyωN the Nyquist curveF ( jω)G′ ( jω) crosses the real axis. There could be mul-
tiple such frequencies but if there is a poorly-damped potential resonance, then aωN will exist
close to that resonant frequency withF ( jωN)G′ ( jωN) being close to the -1 value [62]. If the
closed-loop SISO system is to remain stable, then

F ( jωN)G′ ( jωN)>−1⇒ Fr (ωN)G′
r (ωN)−Fi (ωN)G′

i (ωN)>−1 (4.45)

Such a resonant frequencyωN is found to exist for each of the examinedad cases, with it
being always close to theωpeak= 7.39 pu of Re[G′], which is itself very close to the resonant
frequencyωres= 7.4 pu of the dc-transmission link. As it can be observed in Fig.4.6(b), the
value of Im[G’] (equal toG′

i (ω)) aroundωpeak(and thereforeωN as well) is very close to zero.
A consequence of this is that the termFi (ωN)G′

i (ωN) in (4.45) becomes much smaller than
Fr (ωN)G′

r (ωN) and can thereby be neglected. Expression (4.45) can now be approximated by

Fr (ωN)G′
r (ωN)>−1 (4.46)
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Fig. 4.7 Pole movement of the closed-loop SISO system forad = 0.4 pu (×), ad = 1.4 pu (♦), ad = 2.4 pu
(+). The fifth pole associated with the current-controller bandwidth acc is far to the left and is
not shown here.

62



4.4. Frequency-domain analysis: Net-damping approach

and sinceωN is close toωpeak, (4.46) becomes

Fr
(
ωpeak

)
G′

r

(
ωpeak

)
>−1 (4.47)

SinceG′
r

(
ωpeak

)
= 0.44 pu, (4.47) provides the information that for an increasingly negative

value ofFr
(
ωpeak

)
, the value ofFr

(
ωpeak

)
G′

r

(
ωpeak

)
decreases with the possibility of surpass-

ing -1 and the closed-loop system becoming unstable. This behavior is observed in Fig. 4.6(a)
where for an increasingad, the value ofFr

(
ωpeak

)
is initially positive but gradually turns neg-

ative and keeps decreasing. This indicates that the increase of ad decreases the damping of the
resonant poles of the system and, eventually, leads to the instability of the system.

This can be visually demonstrated in Fig. 4.7 where the closed-loop poles of the system are
plotted for the three different cases ofad. Indeed, an increase ofad causes the poorly-damped
resonant poles of the system, with a natural frequency closeto ωpeak, to become increasingly
under-damped until they become unstable forad = 2.4 pu.

4.3.4 Altered system configuration

At this stage, the same dc-transmission link as before is considered but the direct-voltage
control is changed to a proportional controller with power-feedforward. This means that the
input-admittance transfer functionF(s) is the one described by (4.38). As mentioned in Section
(4.2.3), the transfer functionH(s), which exists within the expression ofF(s), inherits the dy-
namics of the dc-transmission system and is unstable. Furthermore, the fact thatH(s) is located
on a positive feedback loop that forms the finalF(s), as seen in Fig. 4.4(a), causes the complete
F(s) function to be permanently unstable. This means that the passivity approach cannot be
used for the frequency analysis of the closed-loop stability.

One natural way to still use the passivity approach is to approximateG(s) with G′(s) when
deriving the feedforward term forF(s). However, as it will be shown in Chapter 5 and 6, this
approximation does not always hold. For this reason, an alternative frequency-domain method
to assess the system stability will be described in the following section.

4.4 Frequency-domain analysis: Net-damping approach

The net-damping approach in evaluating the stability of a SISO system has no regards on the
passivity of its subsystemsF(s) andG(s). Additionally, it was shown that when possible, the
passivity approach along with the Nyquist curve can provideinformation on the risk of stability
but not strict information on the stability status of a system. This section demonstrates appli-
cations of the net-damping criterion in a two-terminal VSC-HVDC system. In all cases, the
direct-voltage controller features the power-feedforward term.
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Chapter 4. Stability in two-terminal VSC-HVDC systems: frequency-domain analysis

4.4.1 Open-loop resonances

The system under investigation in this part is identical to the two-terminal VSC-HVDC model
whose performance was examined in Section (3.3.2). That system featured long overhead dc-
transmission lines and the transferred power was ramped up in stages, from 0 MW (0 pu) to
500 MW (0.5 pu) and finally to 1000 MW (1 pu). While the model appeared to be stable in the
beginning, as shown in Fig. 3.11, when the power reached 900 MW (0.9 pu), it became unstable
with a resonance of 199.4 Hz. Once the power started decreasing until 500 MW, the stability
was restored.

The SISO representation of the system considers the input-admittance transfer functionF(s)
and the feedback transfer functionG(s) as defined in (4.38) and (4.16), respectively. The in-
vestigation starts by locating potential open-loop resonances of|F( jω)| and |G( jω)|1. The
frequency domain plots of those transfer functions are shown in Fig. 4.8(a)) and Fig. 4.8(b)),
respectively, for the three different power transfers of interest; 0 pu, 0.5 pu and 0.9 pu. Observ-
ing |G( jω)|, it is immediately apparent that there is always a single resonance at a frequency
that is almost independent on the transmitted power and is very close to the resonant frequency
of the dc grid, defined in (3.17). On the other hand,|F( jω)| seems to exhibit no resonances for
powers of 0 pu and 0.5 pu, but does have one for a power of 0.9 pu with a frequency of 0.72 pu.
Table 4.1 displays the characteristic frequency of these resonances.

The value of the dampingDF(ω) at the point of all the observed resonances is positive. Thereby,
the positive-net-damping criterion of (4.5) will be evaluated. As it can be seen in Table 4.1, the
total dampingD(ω) is always positive at the open-loop resonant frequencies for powers of
0 pu and 0.5 pu. This means that the system should be stable, asdemonstrated through the
time-domain simulation of Fig. 3.11. However, once the system has a transferred power of
0.9 pu,|F( jω)| develops a resonance at 0.72 pu as mentioned before, whereD(ω) is negative
with a value of -0.32 pu. This indicates an unstable system, confirming the unstable conditions
displayed in Fig. 3.11.

This behavior can be observed in terms of the pole movement ofthe system for the different
power transfers, as displayed in Fig. 4.9. The poles are calculated for the closed-loop transfer
functionF (s)/(1+F (s)G(s)). As demonstrated, the system exhibits a pair of poorly-damped
complex conjugate poles which are of concern due to their proximity to the imaginary axis. For
a power transfer of 0 pu and 0.5 pu, these poles are stable. However, when the power increases to
0.9 pu, the already poorly-damped poles become unstable with a predicted resonant frequency
of 0.623 pu, or 195.7 Hz, which is very close to the 199.4 Hz oscillation observed in the time-
domain simulation.

1F(s) andG(s) are both unstable. An attempt to locate their resonant points by plotting the bode plot in a way
that a sinusoidal input signal is provided and the amplitudeand phase of the output signal are measured, is not
useful as the response of such systems for any input would be asignal that reaches infinity. However, plotting
|F( jω)| and|G( jω)| still allows the identification of the local peaks that serveas the open-loop resonances and
can be further used in the net-damping analysis.
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Fig. 4.8 Frequency analysis of subsystems and total dampingfor transferred power equal to 0 pu (solid),
0.5 pu (dashed) and 0.9 pu (dotted).

TABLE 4.1. LOCATION OF OPEN-LOOP RESONANCES AND TOTAL DAMPING

Power (pu) |F( jω)| resonant |G( jω)| resonant D(ω) at |F( jω)| D(ω) at |G( jω)|
frequency (pu) frequency (pu) resonance (pu) resonance (pu)

0 - 1.07 - 15.3
0.5 - 1.05 - 13.46
0.9 0.72 1.01 -0.32 10.48
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Fig. 4.9 Pole movement of the closed-loop SISO system for transferred power equal to 0 pu (×), 0.5 pu
(♦) and 0.9 pu (+). The fifth pole associated with the current-controller bandwidth acc is far to
the left and is not shown here.

4.4.2 Non-apparent cases

In the vast majority of the examined cases, a straightforward commenting for the stability of the
system could be provided by focusing only on the open-loop resonances, as in Section (4.4.1).
However there are some rare and unusual scenarios where thisapproach could not give an
explanation for the instability of the system. One of these cases is investigated here. The model
used is the same as in Section (4.4.1) with the differences being

1. the overhead line length is reduced to 50 km.

2. the power transfer is set to 1 pu.

3. the closed-loop bandwidthsad andaf are both increased from 1 pu to 3.5 pu.

Under these conditions, the closed-loop system is unstablewith a pair of unstable complex
conjugate poles at 0.0044±1.541 (pu). The frequency domain results of|F( jω)| and|G( jω)|
are presented in Fig. 4.10(a); as it can be observed, there isonly one open-loop resonance which
is found on|G( jω)| at ω = 2.63 pu;|F( jω)| appears to have no resonances. At that frequency,
dampingDF(ω) is positive, meaning that the total dampingD(ω) should be positive as well.
Indeed, measuring the latter at the resonant frequency gives a positive value ofD(ω) = 11.68 pu
(as seen in Fig. 4.10(b)), suggesting that the system shouldbe stable. This creates a controversy
since the system is already known to be unstable.

It should be reminded here that, as mentioned in Section (4.1.2), the net-damping criterion
should be evaluated not only for the open-loop resonances, but for low frequencies as well where
the loop gain exceeds unity. Following this statement, the Nyquist curve of the system showed
that theF( jω)G( jω) curve crosses the real axis with a value of -1.02 pu (enclosing point -1
and causing instability) at a frequencyωN = 1.54 pu. This frequency is below the open-loop
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Fig. 4.10 Frequency analysis of subsystems, total damping and Nyquist curve of the system.

67



Chapter 4. Stability in two-terminal VSC-HVDC systems: frequency-domain analysis

resonance of 2.63 pu. At this frequency,DF(ω) is positive and the total dampingD(ω) is equal
to -0.0012 pu, indicating that there is instability, even though barely. As mentioned in [24],
negative total damping at low frequencies is a strong indication of instability, even though the
open-loop resonances may have positive damping. This has been demonstrated here, proving
that the net-damping criterion still provides an answer in the rare occasions when the system is
unstable, despite a good damping of the apparent open-loop resonances.

4.5 Correlation between net-damping and damping factor

In the previous section, it was shown how the net-damping criterion can provide direct infor-
mation on whether a SISO system is stable or unstable. However there has been no information
relating the criterion to poorly-damped or near-instability conditions.

4.5.1 Damping in a multi-pole system

As mentioned in Section (3.1), the damping of a system can be strictly defined only for 2nd order
systems as the one described in (3.1). When it comes to multi-pole systems it is not possible
to provide a similarly strict definition of the system’s damping. A step-wise excitation of the
system excites all of its eigenmodes (given the fact the unitstep contains the full frequency
spectrum) and the total system response consists of their superposition.

However, the behavior of a multi-pole system is normally dominated by its dominant poles (if
these exist), which dictate the main properties of its response to a perturbation. Furthermore,
poles with very low damping have, by definition, a very small absolute real part, becoming
potentially dominant as they find themselves very close to the imaginary axis. In such cases, the
final response of the system will be mostly dictated by those poorly-damped poles and it is here
suggested, in a non-strict manner, that their damping factor can be regarded as the damping of
the complete system.

4.5.2 Net-damping in poorly-damped configurations

Typically, the encirclement by the Nyquist plot of -1 occursat low frequencies and in the neigh-
borhood of resonances [62]. These resonances are usually identified with poorly-damped poles
that move towards the RHP of the complex plane due to a change of a critical parameter (e.g.
transferred power). When the system is on the verge of instability, the Nyquist curve intersects
with the point -1. This occurs at a frequencyωcrit with the corresponding closed-loop system
having either a real pole at the origin of thes−plane or a pair of marginally-stable complex-
conjugate poles with a damped natural frequencyωd = ωcrit. If these poles have not yet become
unstable but are close enough to the imaginary axis, the Nyquist curve will cross the real axis on
the right of -1 but in close proximity to it. This occurs at a frequencyωN that is closely related
to the damped natural frequency of the related poorly-damped poles.
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If the system is marginally stable, its net-damping at the frequencyωN = ωcrit = ωd is equal to
zero

D(ωN) = D(ωcrit) = DF(ωcrit)+DG(ωcrit) = 0 (4.48)

Based on the previous analysis, it is here suggested that it is possible to correlate the level of net
damping of a system measured atωN, with the existence of poorly-damped poles that are close
to instability. The closer these poles approach the imaginary axis, the more the net damping
D(ωN) should approach zero until the poles become marginally stable andD(ωN) = 0. The
value that quantifies the level of damping for these poles is their damping factor. The closer the
latter is to zero, the less damped the poles and the system is closer to instability.

The objective of this analysis, is to provide a way though solely a frequency analysis of the sys-
tem to determine whether there are poorly-damped poles critically close to the imaginary axis,
without actually finding the poles of the system and the frequency characteristics of the poorly-
damped poles. For this reason, four different scenarios areexamined where the two-terminal
VSC-HVDC system appears to have poorly-damped poles whose damping decreases with the
change of a system parameter or operational condition, until they almost become marginally
stable. In all cases, the damping of these poles is plotted inconjunction with the measurement
of the net damping at the frequencyωN where the Nyquist curve crosses the real axis closest to
-1. As for the previous sections, the direct-voltage controller is at all times considered to feature
the power-feedforward term.

The four different cases use the basic values as defined in Table 2.2 with the custom differences
being identified in the following way

- Case 1: The system features overhead dc-transmission lines with their properties defined
in Table 2.1 and their length is varied from 50-230 km.

- Case 2: The system features overhead dc-transmission lines and the controller bandwidths
ad andaf are equal and varied from 200-630 rad/s.

- Case 3: The system features overhead dc-transmission lines of 230km in length and the
transferred power at the inverter Station 2 is varied from 0-1000 MW.

- Case 4: The system features cable dc-transmission lines with their properties defined in
Table 2.1 and their length is varied from 26-43 km.

Each of the graphs in Fig. 4.11 shows the pole movement of the system for an increasing trend
of the chosen variable, with the concerned poles being encircled. In the first three cases, the
dampingDF(ωN) of the VSC input admittance is positive atωN and therefore for the system
to be stable, the net-damping should be positive. This is confirmed in Figures 4.11(a)-4.11(c)
where the systems are already known to be stable and the measured net damping is indeed
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Fig. 4.11 Frequency analysis of poorly-damped systems. Four scenarios are examined with a different
variable of the system changing in each of them. In the pole movement, ”∗” corresponds to
the starting value and ”�” to the final value of the variable. The fifth pole associated with the
current-controller bandwidthacc is far to the left and is not shown here.
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positive. On the contrary, in Case 4 the dampingDF(ωN) is negative and according to (4.8), the
net damping should be negative to ensure stability. This is verified in Fig. 4.11(d) where the
stable system exhibits negative net damping atωN.

At this stage it is interesting to notice that for all the investigated scenarios there is a consis-
tency in a sense that there is a monotonous relationship between the net damping of the system
and the damping factor of the poorly-damped poles, providedthat the latter are sufficiently
close to the imaginary axis. The pattern that is exhibited inthe right graphs of Fig. 4.11 dic-
tates that a net damping value|D(ωN)| that is moving consistently towards zero, implies the
existence of poorly-damped poles whose damping factor decreases consistently, until they be-
come marginally stable. In this case, the system would be on the verge of stability. In fact, for
poorly-damped poles which are quite close to the imaginary axis, the relation between|D(ωN)|
and damping factor becomes almost linear. This provides theinformation that a certain rate
of change in the net damping implies a similar rate of change in the damping factor of the
concerned complex poles.

It is important to notice that the previous analysis reachesconclusions regarding

1. the stability of the system

2. the existence of poorly-damped poles

3. the progression of the damping factor of the poorly-damped poles, for a change of a
critical variable

by only using information from the frequency analysis of thesystem, without explicitly solving
the characteristic polynomial to identify specific poles and define which of them are possibly
poorly damped. Another comment on the results is that a relatively large absolute value of the
net-damping measured at the frequencyωN, suggests that even if there are poorly-damped poles,
they are sufficiently far away from the imaginary axis and therisk of instability is minimized.

4.6 Stability improvement

At this stage, an intervention is made to the control of the rectifier station by adding a fil-
tering stage in an attempt to improve the closed-loop stability. The effects of this action are
demonstrated and explained from a net-damping point of view, showing how each subsystem is
individually affected and finally contributes to the overall stability improvement.

4.6.1 Notch filter in the control structure

A notch filter is essentially a 2nd order band-stop filter, centered at a selected frequency and
having a dc-gain equal to unity. It is defined as

Hnotch(s) =
s2+2ξ1ωns+ω2

n

s2+2ξ2ωns+ω2
n

(4.49)
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Fig. 4.12 SISO representation of the two-terminal VSC-HVDCmodel with a notch filter on the power-
feedforward term.

where the three positive and adjustable parameters areξ1, ξ2 andωn. A mitigating behavior
of the filter requiresξ1 < ξ2. The ratio ofξ2/ξ1 determines the depth of the notch centered at
the selected frequencyωn, where the larger the ratio, the deeper the notch. Additionally, the
absolute values ofξ1, ξ2 determine theQ-factor of the filter. The higher theQ, the narrower and
”sharper” the notch is.

In the direct-voltage control structure of the rectifier, ifthere is a poorly damped resonance
on the dc-side, the measured powerPm will contain an oscillation at the resonant frequency.
This signal will pass through the power-feedforward term into the control process and affect
the generated power reference signal. If this frequency appears in the frequency range where
the direct-voltage controller is active, it is possible to mitigate it by introducing a notch filter
centered at the resonant frequency. The ideal location is toadd it in series with the pre-existing
low-pass filter of the power-feedforward control branch. Considering the earlier control version
shown in Fig. 4.4(a), the addition of the notch filter transforms the control path as in Fig. 4.12.

Under this modification, the new input admittance transfer function of the VSC rectifier station
becomes

F (s) = Kp
K (s)

1−K (s)Hnotch(s)H (s)M (s)
(4.50)

4.6.2 Damping effect of the notch filter

The effectiveness of the notch filter in enhancing the stability of the system is here demonstrated
by using the examples described in Section (3.3.2) and in Section (4.4.1). The considered two-
terminal VSC-HVDC link, featuring overhead dc-lines of 300km in length, is found to be
unstable for a power transfer of 0.9 pu. The poles of this configuration can be observed in
Fig. 4.9 (indicated with ”+”) and it is obvious that there is a pair of unstable complex conjugate
poles with a resonant frequency of 0.623 pu. The bandwidth ofthe direct-voltage controller
is 0.955 pu. Therefore, the observed resonant frequency is within the limits of the controller’s
action and as stated earlier, the addition of a notch filter could offer some improvement.

It is here assumed that the properties of the system and the dclines are not precisely known (as in
reality) and the resonant frequency can not be calculated exactly at 0.623 pu. However, for a fair
deviation of the considered system’s parameters from the actual ones, the resonant frequency
is not expected to deviate significantly. A certain experimental convention is thus considered.
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Fig. 4.13 Frequency analysis of the system in the presence orwithout a notch filter.
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TABLE 4.2. DAMPING ANALYSIS IN SYSTEM AFFECTED BY THE NOTCH FILTER

Without notch filter With notch filter
|F( jω)| resonant frequency (pu) 0.72 0.98
|G( jω)| resonant frequency (pu) 1.01 1.01
DF(ω) at |F( jω)| resonance (pu) 0.15 0.44
DF(ω) at |G( jω)| resonance (pu) 2.15 0.60
DG(ω) at |F( jω)| resonance (pu) -0.47 -0.36
DG(ω) at |G( jω)| resonance (pu) 8.33 8.33
D(ω) at |F( jω)| resonance (pu) -0.32 0.09
D(ω) at |G( jω)| resonance (pu) 10.48 8.93

Since the expected resonance is not too far from the bandwidth ad of the direct-voltage control
(at least the same order of magnitude), the notch filter is tuned to have a center frequencyωn

equal toad. Theξ1 andξ2 parameters are also chosen so that the depth of the filter’s notch is
-20 dB and theQ-factor is not too high, so that relatively neighboring frequencies toωn can be
sufficiently attenuated (including the resonant frequencyof 0.623 pu).

It should also be mentioned that for too deep notches and frequencies close toωn, the phase
of Hnotch( jω) starts reaching values close to -90◦ and 90◦, instead of remaining close to 0◦, as
is the case for smaller notch depths. This is not desirable assignals could be introduced to the
control with a severe distortion of their phase, deteriorating the closed-loop stability.

Figure 4.13 presents a frequency analysis of the system withand without a notch filter included.
Specifically, in Fig. 4.13(a) it is possible to observe the|F( jω)| and|G( jω)| curves where, as
expected, there is a single curve for the grid impedance since it is not affected by the presence
of the notch filter. This also means that the dampingDG(ω) of G( jω) in Fig. 4.13(b), as well as
the open-loop resonance of the dc grid at a frequency of 1.01 pu, remains unaffected. Focusing
on |F( jω)|, it is possible to notice that the addition of the notch filterhas caused the open-
loop resonance to move from 0.72 pu to 0.98 pu in frequency. The resonance spine has become
sharper but the absolute value of|F( jω)| at that frequency has decreased, indicating a smaller
intensity in the related time domain oscillations.

The value ofDF(ω) at all open-loop resonances is always positive, as seen in Table 4.2. This
means that to achieve stability, the net-dampingD(ω) at those frequencies should be positive
with a higher value implying an improved damping factor on the poorly-damped poles. As
observed in Section (4.4.1) and repeated in Table 4.2, the system without a notch filter has a
negative net-damping at the VSC input-admittance resonance, making the system unstable.

SinceD(ω) = DF(ω) +DG(ω) and theDG(ω) does not change, an improvement of stabil-
ity by introducing the notch filter should translate into an upwards movement of theDF(ω).
An increase in the value ofDF(ω) in the open-loop resonant frequencies would increase the
total D(ω) there, making it positive; thus ensuring stability. This can indeed be displayed in
Fig. 4.13(b) where the introduction of the notch filter has causedDF(ω) to raise in general and
in fact be constantly positive in a wide spectrum around the critical resonant frequencies. As a
result, the completeD(ω) curve has been raised as well in Fig. 4.13(c), in the same spectrum of
frequencies with only a small negative notch relatively close to the input admittance resonance.
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Fig. 4.14 Stability effect of notch filtering. (a) Pole placement for the system with (♦) and without (×)
a notch filter. An additional pole associated with the current-controller bandwidthacc is far
to the left and is not shown here. (b) Unit-step response of the system with (solid line) and
without (dashed line) a notch filter.

From a pole movement perspective, as depicted in Fig. 4.14(a), the addition of the notch filter
has managed to

1. increased the damping of the already well-damped complexpoles on the left side of the
plot

2. stabilize the previously unstable complex poles

3. introduce a new pair of complex poles close to the now stabilized poles, but with much
better damping than them, without significantly affecting final response of the system

Finally, from a time domain investigation of the system in Fig. 4.14(b), it is observed that the
initial stages of the unit-step response of the system is only slightly slower when a notch filter
is used. This is attributed to the newly introduced complex pole pair, whose relatively small
real part implies a contribution with slow dynamics. However, the major comment is that the
system is now stable with a quick damping of the oscillation which has been excited, only after
approximately 2 periods.

A conventional pole movement approach cannot directly explain the improvement in the stabil-
ity of the system with the introduction of the notch filter, but merely depict the updated pole
location. Nevertheless, the net damping approach clearly offers an explanation the phenomenon.
While the grid impedance and its damping remained unaltered, the notch filter incurred an in-
crease solely in the damping of the VSC input admittance causing the total dampingD(ω) of
the system to be high enough and positive at all of the open-loop resonances, thereby stabiliz-
ing it. Concluding, any intervention, either in the dc-transmission system or the control of the
rectifier station (or both), that can increaseD(ω) in the critical resonant points will provide bet-
ter damping characteristics for the overall system and possibly stabilize an otherwise unstable
configuration.
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4.7 Summary

In this chapter, the dynamics of the generic two-terminal VSC-HVDC system has been studied,
using a frequency domain approach. To assist this type of analysis, the system was modeled as
a SISO feedback system. This comprised of two subsystem:

1. An input-admittance transfer functionF(s), describing the way the direct-voltage con-
trolled VSC subsystem reacts to a given change of direct voltage at its terminals, by
injecting a controlled amount of active power to the dc grid.

2. A feedback transfer functionG(s), describing the way the passive dc-grid subsystem re-
acts to an injection of power from the direct-voltage controlled VSC, by altering the
voltage at the dc-side capacitor of the latter.

Initially, the passivity approach is utilized. If both subsystems are passive, the SISO is stable
as well but at least one non-passive subsystem serves as an indication that the system could be
unstable. The dc-grid transfer functionG(s) is naturally unstable but for low values of trans-
mission line inductance (cable-type of line), it can be approximated by the marginally stable
G′(s), which is also passive. The latter means that it cannot be thesource of instability in the
system. IfF(s) is stable, the closed-loop SISO system stability can then beassessed by the
passivity properties ofF(s). For this reason, a conventional PI voltage control stucture without
power-feedforward is chosen, renderingF(s) stable. It was shown that high values in the band-
width ad renderedF(s) non-passive and the SISO was indeed unstable. This demonstrated the
usefulness of the passivity approach on providing a good indication on the closed-loop stability
in the frequency domain.

However, for other types of direct-voltage controllers or different types of transmission lines e.g.
overhead lines,F(s) can be unstable andG(s) may no longer be approximated by a marginally
stableG′(s). Hence, the passivity approach cannot be used. The net-damping criterion was
thus considered, because it does not require passive or evenstable subsystem transfer functions
to provide answers regarding the stability of the closed-loop SISO system. In systems with a
direct-voltage controller with power-feedforward and overhead lines in the dc grid, the net-
damping criterion demonstrated very accurate predictionson the closed-loop stability and a
relation was derived, correlating the absolute net-damping value and the actual damping factor
of the poorly-damped poles of the system. Finally, the stabilizing effect of adding a notch filter
in the direct-voltage controller of an unstable system was observed and assessed through a net-
damping approach.

Having utilized a frequency domain approache in the analysis of the closed-loop stability of
the two-terminal VSC-HVDC system, the following chapter has the same goal but attempts
to analytically describe the poles of a simplified version ofthe same system. In this way, it is
desired to derive closed-form expressions, containing allthe physical and control parameters
of the system, thereby providing immediate information on the real and imaginary part of the
system’s poles and thereby, the closed-loop stability and damping.
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Chapter 5

Stability in two-terminal VSC-HVDC
systems: analytical approach

A numerical approach and thereby pole movement of the system’s eigenvalues is a very pow-
erful tool to investigate the stability of a system and the impact of different variables (either
system or control variables) on the system performance. However, one flaw in this kind of ap-
proach is that it does not provide a proper understanding of the impact of each parameter on the
system stability. This is where the major advantage of an analytical over the classical numerical
approach lies; by using an analytical method, the eigenvalues of the system can be expressed
in symbolic form and this provides important assistance in getting a deeper understanding on
how each single parameter impacts the stability and, more ingeneral, the pole movement. Fur-
thermore, with the analytical approach it is possible to understand how a certain parameter
contributes to the placement of a pole and can therefore be utilized in understanding how a
system can be simplified for easier further analysis.

This chapter focuses on the derivation of closed-form analytical expressions for the description
of a system’s eigenvalues in terms of their real and imaginary part. The objective is to provide
a tool in thoroughly understanding the dynamics of the system, while at the same time main-
taining a desired level of accuracy on predicting the approximate location of the poles. One
method to achieve this is the existingLR iterative algorithm, an overview of which is given
here. Additionally, a new method for the analytical derivation of eigenvalues, addressed to as
theSimilarity Transformation Matrix(SMT), is proposed and its concept and applicability are
analyzed. Since both of the examined methods utilize the state-space representation of a sys-
tem, the chapter concludes with the derivation of the state-space models of two systems whose
eigenvalues are desired to be analytically described: (a) atwo-terminal VSC-HVDC system and
(b) the dc-transmission link that connects the two VSC stations of the former.

5.1 Analytical investigation of dynamic stability

As observed earlier, a dynamic system may become poorly damped or even unstable under
certain conditions. A deeper knowledge of how a specific parameter (or group of parameters)
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appears in the eigenvalue expressions of a system, is of importance in understanding the mech-
anisms that govern the stability of the latter and can be further used as a tool for its proper
design. Considering VSC-HVDC applications, poorly-damped resonances between the con-
verter stations and the transmission system can appear bothin point-to-point and multiterminal
configurations. An analytical description of the system poles, in terms of damping and charac-
teristic frequency, can provide useful information on the way the control parameters, amount of
power transfer, direct-voltage level or values of passive elements can contribute to conditions
of poor-dynamic performance. The derivation of analyticalexpressions can therefore be used
to predict and correct the behavior of a system of future consideration or modify an existing
VSC-HVDC installation to improve its dynamic properties. However, a great obstacle is that
the analytical description of the eigenvalues of a high-order system is challenging and in many
cases impossible. Although the eigenvalues of polynomialswith a degree up to the 4th can be
found analytically, the resulting expressions are usuallyvery complex and uninterpretable if the
degree is greater than two. Modeling a VSC-HVDC connection maintaining a good level of
complexity, can lead to a system whose order can easily surpass the 10th order. However, under
valid approximations, the description of a two-terminal VSC-HVDC connection can be reduced
to a 4th-order system. Any further attempt to reduce the system’s order would imply the sac-
rifice of fundamental control components or critical passive elements that define the dynamic
response of the system. Other approaches, as the ones described in the previous chapter, must
be considered if a more detailed model of the system is needed.

5.1.1 Cubic equation

If it is possible to represent a system by a third order characteristic polynomial, there is an
analytical way to derive the symbolic eigenvalues. The general form of the cubic equation is

ax3+bx2+cx+d = 0 (5.1)

with a 6=0. The coefficientsa, b, c andd can belong to any field but most practical cases consider
them to be real (as will be the case below). Every cubic equation with real coefficients will have
at least one real solutionx1, with x2 andx3 being either both real or a complex-conjugate pair.

The general formula for the analytical derivation of the equation’s roots is, as in [63],

xk =− 1
3a

(

b+ukC+
∆0

ukC

)

, k∈ {1,2,3} (5.2)
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where

u1 = 1, u2 =
−1+i

√
3

2 , u3 =
−1−i

√
3

2

C=
3
√

∆1+
√

∆2
1−4∆3

0
2

∆1 = b2−3ac

∆2 = 2b3−9abc+27a2d

Even though (5.2) does not appear complicated, the existence of the root 3
√ within it is very

problematic if there is a complex-conjugate pair of solutions, whose real and imaginary parts
are desired to be treated separately. It is possible to derive such expressions for complex roots
of the equation, as in [64], but they always include complex cosines and arc-cosines. This is
not practical when it comes to presenting a direct relation between a coefficient of the cubic
equation and the final roots. Nevertheless, complex systemscan rarely be approximated by a
third-order characteristic polynomial, rendering the value of (5.2) even more questionable.

5.1.2 Quartic equation

As mentioned earlier and will be shown later, a two-terminalVSC-HVDC system can be repre-
sented, at least in general terms, by a 4th-order model, whose analytically derived eigenvalues
can theoretically be found. As with the cubic equation in theprevious section, the general form
of the quartic equation is

ax4+bx3+cx2+dx+e= 0 (5.3)

Every quartic equation with real coefficients will have: a) four real roots, b) two real roots and
a complex-conjugate root pair or, c) two complex-conjugateroot pairs. The general formula for
the analytical derivation of the equation’s roots is, as in [65],

x1,2 =− b
4a −S± 1

2

√

−4S2−2p+ q
S

x3,4 =− b
4a +S± 1

2

√

−4S2−2p− q
S

(5.4)
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Fig. 5.1 Roots of a 4th order characteristic polynomial of a simplified VSC-HVDC system;x1 (gray
cross),x2 (black circle),x3 (gray square) andx4 (black asterisk)

where

p= 8ac−3b2

8a2 , q= b3−4abc+8a2d
8a3

S= 1
2

√

−2
3 p+ 1

3a

(

Q+ ∆0
Q

)

Q=
3
√

∆1+
√

∆2
1−4∆3

0
2

∆0 = c2−3bd+12ae

∆1 = 2c3−9bcd+27b2e+27ad2−72ace

The full expansion of (5.4) is too large to be presented here,implying that the practical value
of such expressions is doubtful. Just as in the roots of the cubic equation, the existence of the
root 3

√ within the quadratic solutions is very problematic if thereis a complex-conjugate pair
of solutions, whose real and imaginary parts are desired to be explicit in form. Another problem
is related to the consistency of the solutions in (5.4). Unfortunately, each of thex1, x2, x3 and
x4 expressions cannot consistently describe a selected root of the system while performing a
variation of the system’s coefficients. This can be viewed inFig. 5.1 where the roots of the 4th

order characteristic polynomial of a simplified VSC-HVDC system are plotted using (5.4). The
cable length of this system is varied from 20-400 km in steps of 20 km, causing a movement
of the eigenvalues along the arrow-paths indicated in the figure. The system has a pair of poles
which retains a complex-conjugate form for the whole cable-length variation, as well as two
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other poles that start as a complex-conjugate pair and then splits into 2 real poles. Each ofx1,
x2, x3 andx4 is plotted with a distinctive marker.

As one can see, the root expressions are not consistent, withall x1, x2, x3 andx4 failing to track
their dedicated pole. This means that even if the expressions in (5.4) present a simple form, they
are not useful in describing specific poles.

5.1.3 Alternative solutions

Even if it is theoretically possible to derive the analytical poles of a 3rd and 4th order system, it
was shown that there are practical obstacles that prevent itfrom taking place if the exact solu-
tions are to be described. A solution to this problem is to develop approximating methods that
can provide such analytical descriptions for equivalent models having poles that are sufficiently
close to those of the initial systems.

In [28,29,66], the approximate solutions of the generalized eigenvalue problem det(sB−A)=0
are sought, where the matrix pencil (A, B) is computed by the semistate equations of an elec-
tronic circuit. The solutions are found by an extensive elimination of those entries inA andB
that are insignificant to the computation of a selected eigenvalue, until the characteristic polyno-
mial of the system becomes 1st or 2nd order. This method has been developed into the commer-
cial tool ”Analog Insydes” as a Mathematicar application package for modeling, analysis and
design of analogue electronic circuits. However, this process may not always be successful and
could lead to a significant loss of information. Following a different approach, the poles of an
analogue circuit are calculated through the time constant matrix of the system in [30]. However,
only the first two dominant poles are computed and any other pole requires major simplification
of the system. In [31–33,67], theLR iterative method is used to calculate the symbolic poles and
zeros of analogue electronic circuits, based on their statematrix. This involves intricate com-
putations which may quickly exceed the computational capabilities of a typical computer [32].
Subsequently, the state matrix should not exceed 6×6 in size while there should be no more
than four symbolic variables. Nevertheless, numerous simplifications are still required to pro-
duce compact final expressions. Despite these problems, theLR method appears to be the most
adequate candidate among the mentioned methods, in attempting to analytically describe a rel-
atively high-order system.

5.2 Approximating methods

In this section, two major approximating methods are presented, in an effort to establish a
foundation for the analytical investigation of the eigenvalues of a VSC-HVDC system. TheLR
method is described in detail with special mention to its potential in symbolic approximation of
eigenvalues, along with its advantages and disadvantages.The other method is a newly proposed
algorithm which tries to achieve the same goal of analytically describing the eigenvalues of a
dynamic system, but in a non-iterative way.
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Chapter 5. Stability in two-terminal VSC-HVDC systems: analytical approach

5.2.1 Similarity Matrix Transformation

TheSimilarity Matrix Transformation(SMT) is a proposed method that is first introduced in this
thesis and aims to analytically derive the analytical eigenvalues of a dynamic system, which is
described in a state-space form. The entity that contains all the necessary information for the
eigenvalue characterization of the system is the state matrix A. In general, a direct extraction
of analytical expressions of the eigenvalues is not possible, as stated earlier, for systems higher
than second order. However, under certain conditions whichrequire matrixA to appear in a
special form, it is possible to extract the symbolic form of the eigenvalues. The concept of the
SMT relies on a proper manipulation of matrixA, while the latter remains in purely symbolic
form, in order to produce an equivalent matrix with the same eigenvalues but whose form allows
the extraction of analytical expressions of the eigenvalues.

Eigenvalues of triangular and quasi-triangular matrices

The eigenvalues of a generic non-singular square matrixA are calculated by setting its char-
acteristic polynomialp(s) = |sI −A| equal to zero and solving in terms ofs. The solutions
correspond to the eigenvalues ofA. However as mentioned earlier, if the characteristic poly-
nomial contains symbolic expressions and its non-zero eigenvalues are more than two, it is
very challenging to derive interpretable symbolic solutions while for more than four non-zero
eigenvalues, it is mathematically impossible.

The determinant of a matrix that is triangular in form (either upper or lower triangular) equals
the product of the diagonal entries of the matrix. If matrixA is triangular, then the matrixsI -A,
whose determinant is the characteristic polynomial ofA, is also triangular. Consequently, the
diagonal entries ofA provide the eigenvalues ofA. If an eigenvalue has multiplicitym, it will
appearm times as a diagonal entry. Considering the previous property, if matrix A has strictly
real entries and is in the following triangular form (lower triangular in this case)

A =














a1,1

a2,2 0
. . .

ak,k
. . .

ai,j an−1,n−1

an,n














(5.5)

its eigenvalues will be the set of{a1,1, a2,2, . . ., ak,k, . . ., an−1,n−1, an,n} and will all be real.
If matrix A has strictly real entries, has a quasi-triangular form and is known to have pairs of
complex-conjugate eigenvalues, then for each eigenvalue pair, a 2×2 sub-matrix will be found
along the diagonal of A. However the opposite does not apply and the existence of such a 2×2
sub-matrix does not necessarily imply the existence of a complex-conjugate eigenvalue pair. The
existence of a non-zero 2×2 sub-matrix along the diagonal of a triangular matrix corresponds
to the existence of two eigenvalues which can be either a complex-conjugate eigenvalue pair or
two real eigenvalues.
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Assume that matrix A has the following form

A =
















a1,1

a2,2 0
. . .

ak,k ak,k+1
ak+1,k ak+1,k+1

. . .
ai,j an−1,n−1

an,n
















(5.6)

The eigenvalues of this matrix will be the set of real eigenvalues represented by all the diagonal
entries ofA (excluding those found within the 2×2 sub-matrix) as well as the eigenvalues of
the 2×2 sub-matrix itself. The latter two eigenvalues will be

λ1,2 =
ak,k+ak+1,k+1

2
±

√

a2
k,k+4ak,k+1ak+1,k −2ak,kak+1,k+1+a2

k+1,k+1

2
(5.7)

If the expression under the square root is negative, i.e.

a2
k,k +4ak,k+1ak+1,k−2ak,kak+1,k+1+a2

k+1,k+1 < 0 (5.8)

the two solutions in (5.7) represent a pair of complex-conjugate eigenvalues

λ1,2 =
ak,k +ak+1,k+1

2
± j

√∣
∣
∣a2

k,k +4ak,k+1ak+1,k −2ak,kak+1,k+1+a2
k+1,k+1

∣
∣
∣

2
(5.9)

otherwise (5.7) represents two real poles. If quasi-diagonal matrixA is known to havem pairs
of complex-conjugate eigenvalues, there will bem 2×2 sub-matrices sufficing (5.8), along the
diagonal ofA.

Suggested method

In linear algebra, twon×n matricesN andÑ are called similar ifÑ=P-1NP for ann×n non-
singular matrixP. The transformation ofN→P-1NP is calledsimilarity transformationof matrix
N, where matrixP is thesimilarity transformation matrix[68]. An important property of the
similarity transformation is the fact that̃N maintains the same eigenvalues asN. Since matrix
Ñ has the same eigenvalues asN, it is theoretically possible to appropriately choose aP matrix
that will causeÑ to be triangular or quasi-triangular. If this is achieved, then the eigenvalues of
Ñ, and therefore ofN, can be extracted from the diagonal entries ofÑ. However, formulating an
appropriate matrixP can be difficult and often impossible, especially if all matrices are given
in symbolic form.
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Chapter 5. Stability in two-terminal VSC-HVDC systems: analytical approach

In this thesis it is desired to mainly investigate the dynamics of a two-terminal VSC-HVDC
system. As will be shown later in Section (5.3.3), such a system can be sufficiently simplified
to a 4th order state-space representation. Given the task of extracting symbolic eigenvalues, a
similarity transformation is supposed to be applied to the system’s state matrix. As such, matrix
N is equated to the latter and will be 4×4 in size. The system is dynamically described by four
eigenvalues. Without replacing numerical values to the symbolic entries of the matrix, it is not
possible to have an initial idea on the nature of these eigenvalues. There are three possible cases:

1. All eigenvalues are real

2. There are two complex-conjugate eigenvalue pairs

3. There is one complex-conjugate eigenvalue pair and two real eigenvalues

Even if the nature of the eigenvalues was known for a certain choice of numerical values for
the variables of matrixN, a slightly different choice of values might totally changethe nature
of the eigenvalues. This is of great concern if it is desired to obtain analytical solutions for the
eigenvalues and observe the results while sweeping the values of certain variables within a wide
interval. In this case, the obtained solutions may prove inconsistent.

To overcome this problem, it is assumed that the nature of theeigenvalues is unknown. However,
as mentioned earlier, a 2×2 sub-matrix along the diagonal of a quasi-triangular matrix hints
the existence of two eigenvalues which can be either a complex-conjugate eigenvalue pair or
two real eigenvalues. Therefore, all three of the previous cases can be covered ifÑ is quasi-
triangular with two blocks of 2×2 sub-matrices along its diagonal while one of the remaining
2×2 blocks is filled with zeros, depending on whetherÑ is upper or lower triangular. For the
lower triangular case,̃N has the following form

Ñ =







a1,1 a2,1 0 0
a2,1 a2,2 0 0
a3,1 a3,2 a3,3 a3,4

a4,1 a4,2 a4,3 a4,4







(5.10)

where each of the 2×2 enclosed sub-matrices is related to two eigenvalues. The block diagonal
matrix Ñ will have at least one zero non-diagonal block matrix, whichimplies that at least four
elements of̃N should be equal to zero; this leads to four equations to be solved.

A 4×4 similarity transformation matrixP is used to perform the similarity transformation of
N. Its general form is

P=







x11 x12 x13 x14

x21 x22 x23 x24
x31 x32 x33 x34

x41 x42 x43 x44







(5.11)

Performing the similarity transformation ofN based onP gives

Ñ = P−1NP=







x11 x12 x13 x14

x21 x22 x23 x24
x31 x32 x33 x34

x41 x42 x43 x44







−1

·N ·







x11 x12 x13 x14

x21 x22 x23 x24
x31 x32 x33 x34

x41 x42 x43 x44






⇒
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Ñ =







y11 y12 y13 y14
y21 y22 y23 y24

y31 y32 y33 y34

y41 y42 y43 y44






=

[
Y11 Y12

Y21 Y22

]

(5.12)

The form of matrixÑ must comply with (5.10), therefore it is required that

Y12 = 0⇒
[

y13 y14

y23 y24

]

= 0⇒







y13 = 0
y14 = 0
y23 = 0
y24 = 0







(5.13)

Equation (5.13) dictates that the definition of an appropriate transformation matrixP requires
the solution of four equations. However, each ofy13, y14, y23 andy24 is a non-linear function
of all elements ofP which renders the solution of (5.13) very cumbersome. Additionally, if
all sixteen elements ofP are expected to be defined symbolically, a solution is theoretically
not possible to be reached since there are four equations to be solved with sixteen unknown
variables to be defined. If a solution is expected to be found,only four entries ofPare considered
to be symbolic variables while the rest must be replaced withnumerical values. The more zero
entries matrixP has, the easier the task of solving (5.13) becomes.

Even limiting the symbolic entries ofP to only four, does guarantee the solution of (5.13) by
default. A random choice of the four necessary elements ofP will most likely lead to a large
expression ofP-1 which, in turn, shall lead to very complex expressions ofy13, y14, y23 andy24.
Consequently, it is important to ensure such a choice of elements inP thatP-1 will have a simple
form.

By definition, the inverse of matrixP is

P−1 =
1

det(P)
adj(P) (5.14)

A first step of simplification is to choose such aP that det(P) is as simple as possible. The best
choice is to consider a triangularP with all the elements across its diagonal being equal to 1. In
this case, det(P)=1. This leads to the expression

P=







1 x12 x13 x14
0 1 x23 x24

0 0 1 x34
0 0 0 1







(5.15)

As stated earlier, only four of the variable entries in (5.15) can be kept in symbolic form. Choos-
ing to equate termsx12 andx34 to 0, the final form ofP and correspondingP-1 are

P=







1 0 x13 x14

0 1 x23 x24
0 0 1 0
0 0 0 1






=

[
I X
0 I

]

(5.16)
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P−1 =







1 0 −x13 −x14
0 1 −x23 −x24

0 0 1 0
0 0 0 1






=

[
I −X
0 I

]

(5.17)

This choice has givenP andP-1 a convenient form, where the remaining four unknown en-
tries are clustered in a 2×2 block sub-matrix. This will ease further steps of the analysis. The
similarity transformation ofN can now be performed, utilizing (5.15) and (5.16)

Ñ = P−1NP=

[
I −X
0 I

]

·
[

N11 N12

N21 N22

]

·
[

I X
0 I

]

⇒

Ñ =

[
N11−XN21 N11X −XN21X +N12−XN22

N21 N21X +N22

]

=

[
Y11 Y12

Y21 Y22

]

(5.18)

The condition expressed by (5.13) needs to be fulfilled, thusthe 2× 2 sub-matrixY12 must
suffice the following

N11X −XN21X +N12−XN22 =

[
y13 y14

y23 y24

]

= 0 (5.19)

If (5.19) can be solved, resulting in an analytical definition of the entriesx13, x14, x23 andx24,
the eigenvalues of the system can be determined by the following 2×2 block matrices of (5.18)

Y11 = N11−XN21 (5.20)

Y22 = N21X +N22 (5.21)

Each ofY11 andY22 will provide two eigenvalues in the general form of (5.7). Provided that
x13, x14, x23 andx24 have been defined analytically and matrixN is maintained in symbolic
form, the previous eigenvalues will be completely analytical expressions.

It is important to notice that the closed form solution of (5.19) cannot be guaranteed and even
if it is possible to be defined, the derived expressions can beso large that offer no practical
advantage in trying to describe the system’s eigenvalues symbolically. It is possible however to
apply simplifications which allow the approximate solutionof (5.19). In this case, variablesx13,
x14, x23 andx24 are still derived in analytical form but are not completely accurate, compared
to the solution provided by a numerical solution of (5.19) when all variables are replaced with
numerical values. The amount of deviation between the corresponding approximate symbolic
matrixP and its accurate numerical counterpart defines the accuracyof the analytical model.

5.2.2 The LR algorithm

The LR algorithm belongs to an extended family of related algorithms, called ”Algorithms of
decomposition type” [69], that calculate eigenvalues and eigenvectors of matrices. The two best
known members of this family are theLR andQRalgorithms [70]. Other related, but less used,
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algorithms in the same family are theSRalgorithm [71] and theHRalgorithm [72]. The authors
in [69] develop a general convergence theory for the previous algorithms of decomposition
type, while an effort to answer to the question of how such algorithms can be implemented in
practical problems is performed in [73].

The common principle in the attempt of all these algorithms to calculate the eigenvalues of a
matrixA, is the use of an iterative action which bears the following generic characteristics

1. In iterationm, a matrixAm whose eigenvalues are expected to be calculated, is provided
as an input to the algorithm.

2. Matrix Am is decomposed into a number of matrices of special form.

3. These matrices are used to construct a matrixAm+1 which issimilar to Am, thus having
the same eigenvalues.

4. The matrices produced by the decomposition ofAm, are appropriately created such that
Am+1 approaches in form a triangular or quasi-triangular matrixas in (5.6) i.e. the numer-
ical value of the elements of its upper or lower triangular approach zero.

5. Matrix Am+1 serves as the input of iterationm+1.

6. The iterations are terminated when the form of the final matrix outputAm is sufficiently
close to a triangular or quasi-triangular form. The approximate eigenvalues can then be
extracted from the diagonal elements ofAm.

7. Matrix A is the input to the first iteration of the algorithm.

QR algorithm

TheQRalgorithm is currently the most popular method for calculating the eigenvalues of a ma-
trix [74]. A descendant of Rutishauser’sLR algorithm [75,76], it was developed independently
by Francis [77, 78] and Kublanovskaya [79]. The fundamentalidea in the iterative process of
this algorithm is to perform aQR decompositionin each iteration i.e. decompose a matrix of
interest by equalizing it to a product of an orthogonal matrix and an upper triangular matrix.

In principle, letA be the real matrix whose eigenvalues are to be computed and defineA1 = A.
At themth iteration (starting with m=1), theQRdecompositionAm =QmRm is computed where
Qm is an orthogonal matrix (i.e.,QT = Q-1) andRm is an upper triangular matrix. The matrices
Qm andRm are then used to construct the matrixAm+1= RmQm, used as input in the following
iteration. Note that

Am+1= RmQm = Q−1
m QmRmQm = Q−1

m AmQm

which is a similarity transformation, proving that all theAm matrices aresimilar and have
the same eigenvalues. Under certain conditions [80], the matricesAm gradually converge to a
triangular type of matrix, allowing the extraction of the eigenvalues from the diagonal elements.
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Even though theQRalgorithm converges in much fewer iterations than theLR algorithm, ma-
tricesQm andRm can be very intricate in form, starting with the very first iteration. As a result,
theQRalgorithm is not deemed the best approach for symbolic calculations but is still the best
solution for the numerical calculation of the eigenvalues of a matrix.

LR algorithm

The LR algorithm is a major representative of the ”Algorithms of decomposition type” and
was first introduced by Rutishauser [75] [76]. The main idea behind it is the application of a
form of theLU decompositionof a matrix during each iteration of the algorithm. In numerical
analysis, LU decomposition (where ”LU” stands for ”Lower Upper”) factorizes a matrix as the
product of a lower triangular matrix and an upper triangularmatrix. The LU decomposition can
be regarded as the matrix form of Gaussian elimination.

The algorithm follows the typical iterative steps described earlier. Let ann×n non-singular ma-
trix A be the subject of investigation. This matrix will serve as the initial input to the algorithm.
In the mth repetition of the algorithm, matrixAm (calculated in the previous iteration and is the
input of the current iteration) is factorized to a lower triangular matrix and an upper triangular
matrix as below

Am =















a1,1 · · · a1,n

a2,2
. . .

... ak,k
...

. . .
an−1,n−1

an,1 · · · an,n















= Lm ·Um (5.22)

Lm =














1
1 0

. . .
1

...
l i,j 1

1














(5.23)

Um =














u1,1

u2,2 ui,j
. . .

uk,k
. . .

0 un−1,n−1

un,n














(5.24)
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Notice thatLm in (5.23) is not just a lower triangular matrix but has a unitary diagonal. The
formulation of theLm andUm matrix in each iteration is performed via the following algorithm

Initialization

{
Lm = Identity matrix of sizen

Um = Am

}

for (i = 1, i ≤ n−1, i = i +1)
for(j = i +1, j ≤ n, j = j +1)
{
(Row j of Um) = (Row j of Um)−

uj,i
ui,i

· (Row i of Um)

l j,i =
uj,i
ui,i

}
end

end

(5.25)

As described above, during the formulation ofLm andUm, a division by the elementsui,i is
performed. This could cause problems if anyui,i is equal to zero (something not uncommon in
sparse matrices). In order to avoid this issue, a partial pivoting of matrixAm must be performed
in principle, ensuring that the elements in the diagonal of the initialUm are non-zero. However,
a zero element in the diagonal does not automatically imply asingularity. As shown in (5.25),
a row ofUm will appropriately update its successive row, altering itsvalues and possibly turn
a zero diagonal entry into a non-zero entity; thus eliminating the problem. In practice, pivoting
matrixA so thata1,1 6= 0 is sufficient to avoid subsequent singularities.

Following the previous decomposition, a new matrixAm+1 is constructed such that

Am+1 = Um ·Lm =















b1,1 · · · b1,n

b2,2
. . .

... bk,k
...

. . .
bn−1,n−1

bn,1 · · · bn,n















(5.26)

This new matrix bears the feature of

Am+1= UmLm = L−1
m LmUmLm = L−1

m AmLm

which is a similarity transformation, proving that all theAm matrices aresimilar and have the
same eigenvalues. Therefore, in the end of every iteration,all resulting matricesAm+1 retain
the same eigenvalues as the original matrixA. The result of performing the action described
in (5.26) is that whenAm+1 is compared toAm, the elements in the lower triangular portion of
Am+1 have smaller values than the same elements inAm. The rest of the entries ofAm+1 have
also been altered during the transformation in (5.26) but this has had no effect on the eigenvalues
which are the same as those ofAm.
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If the starting matrixA has strictly real eigenvalues then after a certain number ofiterations
(e.g.v iterations), the resulting matrixAv+1 has acquired the following general form.

Av+1 =
















d1,1

d2,2 di,j
. . .

dk,k

small
values

dn−1,n−1

dn,n
















(5.27)

If the elements below the diagonal are sufficiently close to zero, it is possible to extract the
approximate eigenvalues of the matrix from the diagonal elements ofAv+1 as the set of{d1,1,
d2,2, . . ., dk,k, . . ., dn−1,n−1, dn,n} and will all be real. If matrixA is known to have pairs of
complex-conjugate eigenvalues, then for each eigenvalue pair, a 2×2 sub-matrix will be found
along the diagonal ofAv+1 as below

Av+1 =


















d1,1
d2,2 di,j

. . .
dk,k dk,k+1

dk+1,k dk+1,k+1
small
values

. . .

dn−1,n−1

dn,n


















(5.28)

where the elementdk+1,k has not necessarily been forced to approach zero. In this case, the ap-

proximate eigenvalues will be the set{d1,1, d2,2, . . ., eig

([
dk,k dk,k+1

dk+1,k dk+1,k+1

])

, . . ., dn−1,n−1,

dn,n}. As mentioned in Section (5.2.1), the existence of such a 2× 2 sub-matrix in a result-
ing Av+1 matrix does not necessarily imply the existence of a complex-conjugate eigenvalue
pair. The existence of a non-zero 2×2 sub-matrix along the diagonal of a quasi-triangular ma-
trix corresponds to the existence of two eigenvalues which can be either a complex-conjugate
eigenvalue pair or two real eigenvalues. Regardless of their nature, the eigenvalues of this 2×2
block ofAv+1 will be described by the general expression

λ1,2 =
dk,k +dk+1,k+1

2
±

√

d2
k,k +4dk,k+1dk+1,k −2dk,kdk+1,k+1+d2

k+1,k+1

2
(5.29)

If the expression under the square root is positive or zero, (5.29) will represent two real eigen-
values. Otherwise, if the same expression is negative, the two solutions in (5.29) represent a pair
of complex-conjugate eigenvalues. If matrixA is known to havey pairs of complex-conjugate
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eigenvalues, there will bey 2×2 sub-matrices along the diagonal ofAv+1, with all remaining
elements below its diagonal and outside the boundaries of these 2×2 sub-matrices, being close
to zero in value.

The advantage of theLRalgorithm is that it only uses the actions and symbols ”+”, ”-”, ” ∗” and
”/” (as well as ”√ ” for complex eigenvalues) compared to the QR algorithm which due to the
orthogonal transformations uses more complicated expressions.

Convergence and computational issues of the LR algorithm

As an iterative process, there should be a criterion according to which the iterations can be
interrupted. This criterion is the proximity in value, between the final approximated eigenvalues
and their exact counterparts, based on a predetermined threshold errorε. The convergence and
stability of theLRalgorithm is investigated in [81–83] as well as in other sources in the literature
and depends on several factors with the most important beingthe following

1. The sparseness of matrixA. An abundance of zero elements in the matrix at the beginning
of the iterations greatly reduces the amount of iterations to achieve sufficiently approxi-
mated eigenvalues

2. The proximity of the eigenvalues. Clustered eigenvaluesresult in a slower convergence.

3. The arrangement of the elements inA. The authors in [31, 32, 67] suggest that a pre-
liminary ordering ofA satisfying

∣
∣a1,1

∣
∣≥

∣
∣a2,2

∣
∣≥. . .≥|an,n| can reduce the computational

complexity. This ordering can be achieved by changing simultaneously a pair of rows be-
tween them and the same pair of columns between them. Such an action does not alter the
eigenvalues of the matrix. This practice is however contested in [33] where the authors
claim that a re-ordering of the diagonal elements ofA in decreasing order can lead to
supplementary iterations.

4. The threshold errorε. The choice of a very small errorε can lead to an increased number
of iterations.

5. The ordern of the system does not seem to affect the convergence speed ofthe algorithm
but significantly increasing the complexity of the entries of matricesAm+1.

The implementation of theLR algorithm with a numerical input matrixA should not normally
cause computational time issues, even for large matrices. However, when symbols are intro-
duced in the entries ofA, and especially whenA is fully symbolic, the computational capa-
bilities of a modern computer can be quickly overwhelmed. Even for small symbolic matrices
(e.g. 6×6), achieving convergence may be impossible. It is therefore necessary to implement
techniques that can reduce the computational effort, if possible, and lead the algorithm into a
quicker convergence.

An important information is the fact that different eigenvalues converge at different speeds. It
can be common that an eigenvalue converges after only a limited number of iterations while an-
other needs considerably more (even orders of magnitude) further iterations to achieve that. This
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can cause problems because every additional iteration of the algorithm significantly increases
the size of the entries ofAm+1. If the algorithm manages to converge, the final expressionsof
the eigenvalues could be prohibitively large to be of any practical use. In this case, a technique
is used such that, every time a diagonal elementbk,k of Am+1 converges to a real eigenvalue of
A, a new matrixĀm + 1 will be used instead, in the subsequent iteration.Ām + 1 is equal to the
version ofAm+1 with thekth row andkth column removed as in (5.30), reducing the size of the
matrix to(n−1)× (n−1).

Am+1 =
















b1,1 · · · b1,k · · · b1,n
... b2,2

...
...

. . . bk−1,k . ..

bk,1 · · · bk,k−1 bk,k bk,k+1 · · · bk,n

. . . bk+1,k
. . .

...
... bn−1,n−1

...
bn,1 · · · bn,k · · · bn,n
















(5.30)

Similarly, if a 2×2 block matrix

[
bk,k bk,k+1

bk+1,k bk+1,k+1

]

on the diagonal ofAm+1 has eigenvalues

which converge to a complex-conjugate eigenvalue pair ofA, thenAm+1 will be replaced by
Ām + 1. The latter is equal toAm+1 whosek andk+1 rows and columns have been removed as
in (5.31), reducing the size of the matrix to(n−2)× (n−2).

Am+1 =


















b1,1 · · · b1,k b1,k+1 · · · b1,n
...

...
...

...
. . . bk−1,k bk−1,k+1 . . .

bk,1 · · · bk,k−1 bk,k bk,k+1 bk,k+2 · · · bk,n

bk+1,1 · · · bk+1,k−1 bk+1,k bk+1,k+1 bk+1,k+2 · · · bk+1,n

. . . bk+2,k bk+2,k+1
. . .

...
...

...
...

bn,1 · · · bn,k bn,k+1 · · · bn,n


















(5.31)

Nevertheless, the expressionsbk,k (for the real eigenvalue case) or eig

([
bk,k bk,k+1

bk+1,k bk+1,k+1

])

(for the complex-conjugate eigenvalue pair case), are now reserved as the approximations of
their respective eigenvalues while the algorithm continues iterating using thēAm + 1 matrix.

Another technique to reduce the computational cost and the size of the final expressions of the
approximated eigenvalues is the elimination of terms within the matrices during every iteration.
There is a possibility that certain terms in some entries (oreven complete entries) of matricesA,
Am, Lm andUm may have insignificant effect on the final convergence of the eigenvalues and
can thus be replaced by zero. This has to be checked at every iteration by replacing all symbols
with their numerical values, apart from the selected term which is set to 0, and executing an
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intermediate numericalLR algorithm [31]. If the algorithm converges, then the selected term
can be eliminated and the symbolic execution of theLR can resume. It is possible that only
certain eigenvalues ofA are desired to be approximated. In this case the previous method can
be applied with regard to only those selected eigenvalues.

A final technique is derived from experimental results. It ispossible that in the case of complex-
conjugate eigenvalues, either the real or the imaginary part of the approximated eigenvalue
expressions seem to converge at a different speed. The final expression of these eigenvalues can
then be formed by the combination of the real and imaginary part expressions at the iteration
where each of them converged. This does not affect the overall speed of the algorithm but can
reduce the size of the final approximated eigenvalues.

5.3 State-space modeling of systems under investigation

In a two-terminal VSC-HVDC link, at least one of the converter stations controls the direct
voltage, while the other station has the duty to control the active power. Consequently, the
active power is automatically balanced between the two converter stations. This balancing is
achieved by the action of the local control system of the direct-voltage controlled converter,
trying to stabilize the naturally unstable dc-transmission link. The properties of the latter affect
the design of the control. As described in [14], the RHP pole of a process, described by the
transfer functionGd(s), imposes a fundamental lower limit on the speed of response of the
controller. The closed-loop system of the direct-voltage control has to achieve a bandwidth that
is higher than the location of the RHP pole ofGd(s) to stabilize the process. It is thus useful
to know in depth the dynamics of the dc-transmission link andthen proceed into describing the
dynamics of the complete VSC-HVDC link.

5.3.1 Investigated system

The system under consideration is a two-terminal symmetrical monopole VSC-HVDC link, as
in Fig. 5.2. This is practically identical to the model examined in Section (4.2) and shown in
Fig. 4.2(b). The connection is comprised of two VSC stations, as well as ac- and dc-side com-
ponents. Assuming a strong ac grid, the arrangement consisting of the ac grid, the transformer

Cdc

Rdc Ldc

Cdc

Cable poles
Cconv

Station 2Station 1

Direct-voltage 
controlled converter

Cconv

Active-power 
controlled converter

Power flow direction

dc-transmission system

Fig. 5.2 Model of a the two-terminal VSC-HVDC system investigated in this chapter.
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Cdc

Rdc Ldc

Cconv1

P1 P2
idc

υdc1 Cdc Cconv2υdc2

(a)

Rdc Ldc
P1 P2

idc

C2 υdc2C1υdc1

(b)

Fig. 5.3 (a) Detailed dc-transmission link description, (b) dc-transmission link description with lumped
capacitances.

and the ac-harmonic filters is represented by a voltage source. Furthermore, the phase reactor is
assumed to be lossless and is represented by a single inductor.

Regarding the dynamic description of the system, the closed-loop response of the current control
is typically much faster (at least an order of magnitude) than the closed-loop response of the
outer (direct-voltage and active-power) controllers [52]. Therefore, a valid simplification is to
consider an infinitely fast current control, causing the ac side dynamics to be effectively ignored.

5.3.2 DC-link transmission model

The process of expressing the dynamics of the dc-system is almost identical with the process
followed in Section (4.2.1), but with a number of customizations and nomenclature changes to
accommodate a more generic approach to the investigation. The passive elements comprising
the dc-link transmission system can be seen in Fig. 5.2, as the objects within the gray area. The
figure shows that both stations have dc-link capacitors withthe same valueCconv. A more gen-
eral approach of the system can be considered here where the two capacitors are not identical,
with one having a generic capacitance ofCconv1 and the other havingCconv2, respectively. This
convention is followed only in this section and the resulting generic dc-transmission link can be
seen in Fig. 5.3(a).

CapacitorsCconv1 and its adjacentCdc are connected in parallel. The two pairs can be replaced
by the equivalent lumped capacitorsC1 = Cconv1+Cdc andC2 = Cconv2+Cdc, as shown in
Fig. 5.3(b). Considering powerP1 being injected from the left side of the dc-link transmission
and powerP2 from the right side (representing the instantaneous powersfrom Converter 1 and
Converter 2), the system is linearized as

C1
dυdc1

dt
=

P1

υdc1
− idc ⇒
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d∆υdc1

dt
=

1
C1υdc1,0

∆P1−
P1,0

C1υ2
dc1,0

∆υdc1−
1

C1
∆idc (5.32)

representing the dynamics of voltageυdc1 across the capacitorC1 and

C2
dυdc2

dt
= idc+

P2

υdc2
⇒

d∆υdc2

dt
=

1
C2

∆idc+
1

C2υdc2,0
∆P2−

P2,0

C2υ2
dc2,0

∆υdc2 (5.33)

representing the dynamics of voltageυdc2 across the capacitorC2 and finally

Ldc
didc

dt
=−Rdcidc−υdc2+υdc1⇒

d∆idc

dt
=

1
Ldc

∆υdc1−
Rdc

Ldc
∆idc−

1
Ldc

∆υdc2 (5.34)

representing the dynamics of the currentidc, flowing across the cable resistanceRdc and the
cable inductanceLdc.

The state-space model of the considered dc-transmission system is created by considering
(5.32), (5.33) and (5.34). The states of the system arex1 = ∆υdc1, x2 = ∆idc andx3 = ∆υdc2.
The inputs areu1 = ∆P1 andu2 = ∆P2, while y1 = ∆υdc1 andy2 = ∆υdc2 serve as the output of
the system. The resulting state-space model is

Adc−link =







− P1,0

C1υ2
dc1,0

− 1
C1

0
1

Ldc
−Rdc

Ldc
− 1

Ldc

0 1
C2

− P2,0

C2υ2
dc2,0







Bdc−link =






1
C1υdc1,0

0

0 0
0 1

C2υdc2,0






Cdc−link =

[
1 0 0
0 0 1

]

, Ddc−link =

[
0 0
0 0

]

(5.35)

5.3.3 Two-terminal VSC-HVDC model

This section regards the two-terminal VSC-HVDC system of Section (5.3.1) as a complete
entity, with the aim of merging the dynamics of the control systems and the dc-link transmission
into a common state-space model. This model will effectively describe the interaction between
the physical system and the controller structures.
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Direct-Voltage Control

The portion of the complete model that describes the dynamics of the direct-voltage controller
is presented in Fig. 5.4. A difference in the treatment of thedirect-voltage controller compared
to the design approach of Chapter 2 is the fact that the dynamics of the converter capacitorCconv

cannot be considered separately from the capacitorCdc of the equivalent dc-linkΠ-model. The
dynamics of the two capacitors are restricted by their common voltageυdc1. The combined
energy stored in these dc-capacitors is(Cconv+Cdc)υ2

dc1/2, with the valueW = υ2
dc1 being

proportional to this energy. The dynamics of the combined capacitors become

1
2
(Cconv+Cdc)

dW
dt

= Pin−Pline
L {·}−−−→W =

2
s(Cconv+Cdc)

(Pin−Pline) (5.36)

with Pin andPline the active power drawn from the ac side and the propagated dc power beyond
the capacitorCdc of the dc-linkΠ-model, respectively.

The direct-voltage controller used here is the same as described in Section (2.4.3), featuring a
power-feedforward term. Assuming no losses on the phase reactor, the converter and the dc-side
capacitors, the controller integral gainKi can be equalized to zero. Thus, as earlier described,
the expression of the direct-voltage controller can then bewritten as

P∗
in = F (s)(W∗−W)+Pf = Kp(W

∗−W)+Pf ⇒

P∗
in = Kp(W

∗−W)+H (s)Pm (5.37)

The transmitted dc-side power is measured after the converter capacitorCconv, as also shown
in [43]. This corresponds to powerPm in Fig. 5.4(a). PowerPline is not a measurable quantity
because it exists only in the equivalent dc-linkΠ-model. Therefore,Pf is equal to the filtered
value ofPm, by means of a first-order low-pass filter with a transfer function H (s) = af

/
(s+af),

whereaf is the bandwidth of the filter.

Assuming perfect knowledge of the grid-voltage angle and aninfinitely fast current-control
loop, the requested active powerP∗

in can be immediately applied, thusPin=P∗
in. Substituting

(5.36) to (5.37) gives

W =
2Kp

2Kp+s(Cconv+Cdc)
W∗+

2H (s)
2Kp+s(Cconv+Cdc)

Pm− 2
2Kp+s(Cconv+Cdc)

Pline ⇒

Station 1

Pin
Pin Pm

Cconv υdc1

Pline

Cdc

(a)

*W +
+

++
-

-

Pm

Kp W( )dcconv

2

CCs +

)(sH

Pline

in
*
in PP =

(b)

Fig. 5.4 (a) VSC rectifier (b) Closed-loop rectifier control process.
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W = Gcp ·W∗+Ycp1·Pm−Ycp2·Pline (5.38)

whereGcp is the closed-loop transfer function of the voltage controller for Pdc=0. If the com-
bined value of(Cconv+Cdc) is known, then as suggested in [52], the proportional gain isselected
asKp = ad(Cconv+Cdc)

/
2. Considering the previous,Gcp is now equal toad

/
(s+ad) which is

a first-order low pass filter with bandwidthad. However,Cdc is not easily measured, or even
the equivalentΠ-model is not exactly valid in reality. As a result, the only available value is
Cconv which can be measured on the real dc-side capacitors of the VSC station. Therefore, the
proportional gain is selected asKp = adCconv

/
2.

Based on the arrangement of Fig. 5.4, as well as relation (4.34), powersPin, Pm andPline are
connected in the following way

Pm =
Cdc

Ctot
Pin+

Cconv

Ctot
Pline (5.39)

whereCtot is equal to the added capacitancesCconv+Cdc.

Using (5.37) and (5.39), and considering thatW∗ is equal to
(
υ∗

dc

)2 (whereυ∗
dc is the corre-

sponding voltage reference forυdc1), the dynamics of the power-feedforward term become

Pf = H (s)Pm = af
s+af

Pm ⇒ sPf =−afPf +afPm
L −1{·}−−−−→

dPf
dt =−afPf +afPm ⇒ d

dtPf =−afPf +af
Cdc
Ctot

Pin+af
Cconv
Ctot

Pline ⇒

dPf
dt =−afPf +af

Cdc
Ctot

[
Kp(W∗−W)+Pf

]
+af

Cconv
Ctot

υdc1idc⇒

dPf
dt =−afPf +af

Cdc
Ctot

[

Kp

[(
υ∗

dc

)2−υ2
dc1

]

+Pf

]

+af
Cconv
Ctot

υdc1idc⇒

dPf
dt =−af

(

1− Cdc
Ctot

)

Pf +af
Cdc
Ctot

Kp
(
υ∗

dc

)2−af
Cdc
Ctot

Kpυ2
dc1+af

Cconv
Ctot

υdc1idc⇒

d∆Pf

dt
=−af

Cconv

Ctot
∆Pf +af

Cdc

Ctot
adCconvυdc1,0∆υ∗

dc−af
Cdc

Ctot
adCconvυdc1,0∆υdc1+af

Cconv

Ctot
υdc1,0∆idc+af

Cconv

Ctot
idc,0∆υdc1⇒

d∆Pf

dt
=−af

Cconv

Ctot
∆Pf −af

adCdcCconvυdc1,0−Cconvidc,0

Ctot
∆υdc1+af

Cconvυdc1,0

Ctot
∆idc+afad

CdcCconvυdc1,0

Ctot
∆υ∗

dc (5.40)

Furthermore, the dynamics of the dc-voltage capacitor at the terminals of the voltage controlled
station become
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1
2Ctot

dW
dt = Pin−Pline = P∗

in−Pline ⇒

1
2Ctot

dW
dt = Kp(W∗−W)+Pf −Pline ⇒

1
2Ctot

dW
dt = Kp

[(
υ∗

dc

)2−υ2
dc1

]

+Pf −υdc1idc⇒

dυ2
dc1

dt = adCconv
Ctot

(
υ∗

dc

)2− adCconv
Ctot

υ2
dc1+

2
Ctot

Pf − 2
Ctot

υdc1idc⇒

d∆υdc1

dt
=

adCconv

2Ctotυdc1,0
∆(υ∗

dc)
2− adCconv

Ctot
∆υdc1+

1
Ctotυdc1,0

∆Pf −
1

Ctot
∆idc−

idc,0

Ctotυdc1,0
∆υdc1⇒

d∆υdc1

dt
=

adCconv

Ctot
∆υ∗

dc−
(

adCconv

Ctot
+

idc,0

Ctotυdc1,0

)

∆υdc1+
1

Ctotυdc1,0
∆Pf −

1
Ctot

∆idc (5.41)

Modeling of the dc system

Figure 5.5 shows the related dc system and VSC Station 2. Froma general perspective and
assuming that the dynamics of the current control of Station2 were not neglected, the dynamics
of the active-power transfer in Station 2 are independent from the dynamics of the direct-voltage
control and the dc circuit. This happens because, with regards to this station

1. the current controller beneath the active-power controller does not use any properties or
measured signals from the dc-side to impose the currentidf that tries to follow the current

referenceid,∗f .

2. The PCC voltage for the considered strong grid is considered constant. Even if a weak
grid is considered, the change of the PCC voltage is related to the ac side physical prop-
erties and the current flow caused by the current controller.Therefore, the PCC voltage
dynamics are not related to the dc-side.

3. The active-power controller uses a feedback ofPout to produce a current referenceid,∗f .
HoweverPout is the product ofidf andυd

g . As referred above, neither of these are related
to the properties on the dc-side of Station 2.

Therefore, the flow ofPout is related only to properties of the active-power controller, the current
controller and the associated ac-grid structure. Additionally, assuming linear operation of the
VSC, the current controller’s operation is not affected by the level ofυdc,2. Therefore, the active-
power controlled VSC acts as an ideal power source, transferring powerPout between its dc and
ac side, withPout seen as an externally provided input by the rest of the system.

The dc-cable dynamics are provided as
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Rdc Ldc

Cdc Cconv

Station 2

υdc1

Pline

υdc2

Pout
Poutidc

Fig. 5.5 DC cable and inverter station of the VSC-HVDC link.

Ldc
didc

dt
=−Rdcidc−υdc2+υdc1⇒

d∆idc

dt
=

1
Ldc

∆υdc1−
Rdc

Ldc
∆idc−

1
Ldc

∆υdc2 (5.42)

while the dynamics of the dc capacitor located at the terminals of the power controlled station
will be

(Cconv+Cdc)
dυdc2

dt = idc+
Pout
υdc2

⇒

Ctot
d∆υdc2

dt = ∆idc− P2,0

υ2
dc2,0

∆υdc2+
1

υdc2,0
∆Pout ⇒

d∆υdc2

dt
=

1
Ctot

∆idc−
P2,0

Ctotυ2
dc2,0

∆υdc2+
1

Ctotυdc2,0
∆Pout (5.43)

whereP2,0 is the steady-state value ofPout.

State-space representation

The state space model of the considered two-terminal VSC-HVDC is created by considering
(5.40)-(5.43). The states of the system arex1 = ∆Pf, x2 = ∆υdc1, x3 = ∆idc andx4 = ∆υdc2.
The inputs areu1 = υ∗

dc andu2 = ∆Pout, while y1 = υdc1 andy2 = ∆Pin serve as the outputs of
the system. The output∆Pin is derived using (5.37) and the earlier assumption thatPin = P∗

in as
follows

Pin = Kp(W∗−W)+Pf ⇒ Pin =
adCconv

2

[(
υ∗

dc

)2−υ2
dc1

]

+Pf ⇒

∆Pin =
adCconv

2

[
2υdc1,0∆υ∗

dc−2υdc1,0∆υdc1
]
+∆Pf ⇒

∆Pin = adCconvυdc1,0∆υ∗
dc−adCconvυdc1,0∆υdc1+∆Pf (5.44)

Regarding the steady-state of the system, the steady-statevalue ofPin is P1,0. As a result,idc,0

can be expressed asidc,0 = P1,0

/

υ2
dc1,0 =−P2,0

/

υ2
dc2,0. Under these conditions, the state-space

model of the system becomes
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AHVDC =










−af
Cconv
Ctot

af

(

−adCconvCdcυdc1,0
Ctot

− CconvP2,0
Ctotυdc2,0

)

af
Cconvυdc1,0

Ctot
0

1
Ctotυdc1,0

−adCconv
Ctot

− P1,0

Ctotυ2
dc1,0

− 1
Ctot

0

0 1
Ldc

−Rdc
Ldc

− 1
Ldc

0 0 1
Ctot

− P2,0

Ctotυ2
dc2,0










BHVDC =








afad
CdcCconvυdc1,0

Ctot
0

adCconv
Ctot

0
0 0
0 1

Ctotυdc2,0








CHVDC =

[
0 1 0 0
1 −adCconvυdc1,0 0 0

]

, DHVDC =

[
0 0

adCconvυdc1,0 0

]

(5.45)

5.3.4 Validity of VSC-HVDC model simplifications

The purpose of deriving the simplified state-space model of atwo-terminal VSC-HVDC model
in Section (5.3.3), is to sufficiently approximate an original high-order system with a much
simpler and lower-order model. The eigenvalues of the latter will be approximated by the ana-
lytical methods described earlier. It is thus important to ensure that the derived expression (5.45)
of the linearized simplified model, represents to a fairly good degree the equivalent complete
high-order system, with small loss in accuracy.

Modeling of systems

The first step in the verification process is to describe the full model which will later be simpli-
fied. This model appears in Fig. 5.6(a) and is in essence the same as Fig. 5.2. Both converters
feature a current controller as described in Section (2.4.1) with a closed-loop bandwidthacc.

The direct-voltage controlled station features a controller identical to the one described in Sec-
tion (2.4.3), which is exactly the same as in (5.37). Given a referenceW∗, this controller pro-
duces a referenceP∗

in which when divided by the modulus of the ac grid voltageEd1, will provide
the referencei∗d of the current controller. The current controller of the direct-voltage controlled
station will then impose a currentid across the inductanceLc1, causing the flow of powerPin.
The active power controller of Station 2 is a PI-based controller as described in Section (2.4.4).

Taking into consideration the simplifications mentioned inthe previous section, the previous
model can be simplified into the one shown in Fig. 5.6(b). As such, the strong grid and an
infinitely fast current controller causes the dynamics of the dynamics related to the ac sides and
current controllers to be effectively ignored. Having infinitely fast current controllers means that
P∗

in andP∗
out from the direct-voltage and active power controllers can beimposed instantaneously

asPin andPout, respectively. The two stations can then be replaced with power sources which
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Station 1 Station 2

Direct-voltage 
controlled converter

Active-power 
controlled converter

Power flow direction

Cdc Cdc CconvCconv

Rdc Ldc

dc1υ dc2υc1LinP
inP

1i 2idci
outP

c2L outPmP

(a)

Active-power 
controlled current 

source

Cdc Cdc CconvCconv

Rdc Ldc

dc1υ dc2υ

inP
1i 2idci outP

Direct-voltage 
controlled current 

source
mP

(b)

Fig. 5.6 (a) Complete model of a two-terminal VSC-HVDC link,(b) Simplified current-source based
model of a two-terminal VSC-HVDC link

cause the flow of powersPin andPout, respectively. This can be represented electrically with
current sources that provide dc currentsi1 = Pin

/
υdc1 andi2 = Pout

/
υdc2.

The procedure described in Section (5.3.3) is effectively an investigation of the dynamic prop-
erties of the simplified model in Fig. 5.6(b). This model is non-linear and was thus linearized
to provide the expressions (5.45). A difference between thetwo is that the dynamics associated
with the active power controller have not been considered inthe linearized model because, as
claimed in Section (5.3.3), they can be treated separately from the dynamics of the rest of the
circuit (which are of specific interest) andPout can acts as an external input to the system. This
will be verified in the following comparative simulations.

Comparative simulations

The three different models described earlier are here compared under the same conditions and
scenarios. This will clarify whether the simplified models (and especially the linearized model)
sufficiently approximate the initial detailed model, in terms of dynamic response. If the approxi-
mation is acceptable, the linearized model can be used further on for the analytical identification
of the system’s eigenvalues.

The complete two-terminal VSC-HVDC model shown in Fig. 5.6(a), as well as its simplified
current-source based equivalent of Fig. 5.6(b) are simulated in PSCAD, while the linearized
model of (5.45) is applied in Simulink. It should be noted that the first two models feature a
fully functional active-power controller, in contrast with the linearized model. All of the mod-
els are then operating using the values of Table 5.1. The dc-transmission system comprises of
cables-type of lines. The direct-voltage controllers attempt to regulate the voltageυdc1 (via its
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Fig. 5.7 Response ofυdc1 andPin after a direct-voltage reference step of 1 kV, for zero steady-state power
transfer. Complete model (dashed black), simplified current-source based model (solid black),
linearized model (solid gray).

equivalent energyW) so thatυdc1= υ∗
dc =Vdc,b. Furthermore, two different steady-state power

transfer scenarios are investigated;Pout = 0 MW andPout = Pb = 1000 MW. In any case, the
systems will react to a direct-voltage reference step of 1 kVat t = 0.02 s.

Figure 5.7 present the reaction of all three models for a zerosteady-state power transfer. The
response of the linearized model is practically indistinguishable from the simplified model,
regarding bothυdc1 andPin. It can also be observed that both of these models approximate very
sufficiently the behavior of the complete model, with minimal loss of accuracy. The voltage-
step scenario is then repeated forPout = 1000 MW, with results presented in Fig. 5.8. Both
of the simplified and the linearized models approximate the complete model sufficiently well,
regarding bothυdc1 andPin.

TABLE 5.1. RATED VALUES OF THE MODELED VSC-HVDC LINK

Pb rated active power 1000 MW
Vdc,b rated direct voltage 640 kV
Cconv shunt converter capacitor 20µF

ad bandwidth of the closed-loop direct-voltage control 300 rad/s
af bandwidth of the power-feedforward filter 300 rad/s
acc bandwidth of the closed-loop current control 3000 rad/s
Lc phase reactor inductance 50.0 mH

length cable line length 100 km
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Fig. 5.8 Response ofυdc1 andPin after a direct-voltage reference step of 1 kV, for 1000 MW steady-state
power transfer. Complete model (dashed black), simplified current-source based model (solid
black), linearized model (solid gray).
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Fig. 5.9 Response ofυdc1 andPin after a direct-voltage reference step of 1 kV, for 1000 MW steady-state
power transfer. Linearized model (solid black), linearized model with modified linearization
points (solid gray).
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Fig. 5.10 Response ofPin andPout of the complete model after a direct-voltage reference stepof 1 kV at
t=0.02 s, for 1000 MW steady-state power transfer.

The behavior of the linearized model theoretically relies heavily on the initial conditionsP1,0,
P2,0, υdc2,0 andυdc1,0. However, given that the losses on the transmission link areusually a small
fraction of the transmitted power, the difference betweenP1,0 andP2,0, as wel as betweenυdc2,0
andυdc1,0, is usually small. An approach that could simplify the description of the linearized
model and contribute to a more compact analytical description of its eigenvalues, is to consider
the approximationP1,0 = P2,0, which is equal to the desired steady-state ofPout, and at the same
time υdc2,0 = υdc1,0 = Vdc,b. Under this simplification, the response of the modified linearized
model, in comparison with the complete and simplified models, is plotted in Fig. 5.9. This figure
clearly shows that the linearized model behaves practically identically to the simplified one, with
the same dynamics and steady-state response. Finally, bothof them have very close dynamics
and behavior as the complete model, with only a slight overestimation of the damping properties
of the systems poles. Judging by these results, the latest simplification of the linearization points
is always considered in all the analysis that follows.

A final remark regards the earlier consideration thatPout is treated as an external input by the
rest of the system, with dynamics that are unrelated to thoseof the direct-voltage controller and
dc-transmission link. Figure 5.10 shows the behavior of thecomplete HVDC model, with the
active-power controller operating (thusPout could vary if the power feedback of the controller
was disturbed). The direct-voltage reference step att = 0.02s has, as expected, effect onPin but
no effect at all onPout. This proves that the dynamics leading to the creation ofPout are totally
isolated from the dc-dynamics of the system. As a result,Pout can indeed be treated as an input
to (5.45) and Station 2 can be, indeed, regarded as a power source ofPout.

Concluding, the assumptions taken to simplify the originaltwo-terminal VSC-HVDC model
leading to the final linearized expression of (5.45), were proved to be effective. This means that
the linearized model can be safely considered as representative of the original complete system,
in terms of dynamics, and will thus form the basis for the upcoming analytical investigation of
the system’s eigenvalues.
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5.4 Summary

This section highlighted the value of an analytical approach in the analysis of dynamic systems,
with emphasis given on two-terminal VSC-HVDC transmissionsystems. Initially, the problems
encountered in a conventional approach to the analytical solution of a higher than 2nd order
characteristic polynomial were discussed. As part of alternative processes to solve these prob-
lems, theSMT method was introduced as a powerful tool to derive the analytical eigenvalues
of a 4th order system. Its concept and algorithmic process were thoroughly presented, followed
by an overview of the already establishedLR method, whose value in the field of analytical
eigenvalue derivation has been proven.

In order to demonstrate the effectiveness and compare thesetwo methods, an advanced two-
terminal VSC-HVDC system was sufficiently approximated by asimplified 4th order state-space
model that is suitable for use by both methods, without compromising a lot of the accuracy in the
dynamic description of the original system. Furthermore, the dc-transmission link connecting
the two VSC stations contains vital information for the design of the system’s direct voltage
controller. Given the subsequent interest in the description of its poles, the state-space model of
a generic dc-transmission link is developed.

The following chapter considers the application of theSMT and LR methods to the earlier
described models, with the objective of extracting useful and compact analytical expressions of
their eigenvalues.
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Chapter 6

Applications of the analytical approach

The previous chapter focused on the establishment of the proposedSMTanalytical method, the
presentation of the iterativeLR method, as well as the formulation of the state-space represen-
tations for a 3rd order dc-transmission link model and a 4th order two-terminal VSC-HVDC
model. In this chapter, the previously described methods are applied on the latter model, in an
attempt to derive the analytical expressions of its eigenvalues. Additionally, theLR method is
used to estimate the analytical eigenvalue expressions of the dc-transmission link model, being
more suitable than theSMT method in performing this task. The models are transformed into
a suitable form for use by each of the methods and the accuracyof the analytically derived ex-
pressions is assessed by comparing their values to those of the numerically derived eigenvalues,
for a wide range of parameter variation.

6.1 Application of Similarity Matrix Transformation

In this section, theSMTmethod is applied in an effort to demonstrate its potential in determining
the analytical eigenvalue expressions of a two-terminal VSC-HVDC connection. The simplified
4th order model described in section Section (5.3.3) is selected as the object of the investigation.

TheSMTmethod utilizes the state matrix of a linear or linearized dynamic system. As such, a
4×4 state-matrixAs is set equal to the state matrix provided in Section (5.45), containing all
the necessary information for the estimation of the system’s eigenvalues.

As =










−af
Cconv
Ctot

af

(

−adCconvCdcυdc1,0
Ctot

− CconvP2,0
Ctotυdc2,0

)

af
Cconvυdc1,0

Ctot
0

1
Ctotυdc1,0

−adCconv
Ctot

− P1,0

Ctotυ2
dc1,0

− 1
Ctot

0

0 1
Ldc

−Rdc
Ldc

− 1
Ldc

0 0 1
Ctot

− P2,0

Ctotυ2
dc2,0










(6.1)

In order to proceed further, an appropriate similarity transformation matrixP needs to be de-
fined, which will transformAs into a similar 4× 4 matrix Ã whose form is a lower quasi-
triangular block matrix as in (5.10). Given the descriptionof the suggested method presented in
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Section (5.2.1), if a 4th order system is considered, the optimum choice of a similarity transfor-
mation matrix should have the form of (5.16). Reaching a finalexpression for the 4 eigenvalues
of the system requires a number of simplifications to be performed. The validity of these sim-
plifications is greatly dependent on the numerical values ofthe system’s unknown parameters
and their range of variation. Specific symbolic terms in intermediate stages of the analysis may
have negligible impact on the final results, when replaced with their numerical values and can
thus be neglected. This approach will simplify further steps in the analysis and will allow final
closed formed expressions to be derived.

6.1.1 Parameter values

The state matrixAs described in (6.1) contains ten unknowns, i.e. four steady-state valuesP1,0,
P2,0, υ1,0 andυdc1,0; four dc-circuit parametersRdc, Ldc, Cdc andCconv; two controller design
parametersad andaf. The rated parameters of the VSC-HVDC link are presented in Table 5.1.

In steady-state, the voltage controller stabilizesυdc1 so that its reference value isVdc,b, thus
υdc1,0=Vdc,b. The steady-state power transfer with a direction from the power controlled station
to its ac grid is represented byPout,0 and is considered to be equal to the rated active power,
Pout,0=Pb. Therefore the steady-state value ofP2 is P2,0=−Pout,0. For a negative power transfer
P2 (exported from the power controlled station to its ac grid),voltageυdc2 will have a value
slightly lower thanυdc1. However, in steady-state the difference between the two voltages is
only dependent on the cable resistance and is therefore extremely small (no more than 0.5% at
maximum power transfer). As a result, it is valid to considerυdc2,0= υdc1,0, without the loss
of significant accuracy in terms of system dynamics. Considering low losses on the resistance
Rdc leads to a further simplification of|P1,0|= |P2,0|; thusP1,0= Pout,0. Matrix As now takes the
form

As =










−af
Cconv
Ctot

af

(

−adCconvCdcυdc1,0
Ctot

+
CconvPout,0
Ctotυdc1,0

)

af
Cconvυdc1,0

Ctot
0

1
Ctotυdc1,0

−adCconv
Ctot

− Pout,0

Ctotυ2
dc1,0

− 1
Ctot

0

0 1
Ldc

−Rdc
Ldc

− 1
Ldc

0 0 1
Ctot

Pout,0

Ctotυ2
dc1,0










(6.2)

6.1.2 Matrix simplification

Before performing the formal similarity transformation ofmatrix As, it is possible to re-model
its entries in an appropriate way, for easier further calculations. Having entries that are simple
in form and possibly appear multiple times within the matrixthat will be subjected to similarity
transformation, is desirable because they ease the task of reaching compact final expressions for
the eigenvalues.

By definition, asimilar matrix has the same eigenvalues as the original matrix to which it is
similar. Consequently,As may be subjected to an abstract number of consecutive similarity
transformations, with the resulting matrix still maintaining the same eigenvalues asAs. An
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initial objective is therefore to find a similar matrix ofAs which will have simplified entries. A
corresponding similarity transformation matrixM must be defined to achieve this. The form of
M is chosen as

M =







m11 0 0 0
0 m22 0 0
0 0 m33 0
0 0 0 m44







(6.3)

UsingM to perform a similarity transformation of matrixAs produces a similar matrixA0 as

A0 = M−1AsM =








1
m1

0 0 0
0 1

m2
0 0

0 0 1
m3

0
0 0 0 1

m4







·







a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34
a41 a42 a43 a44






·







m1 0 0 0
0 m2 0 0
0 0 m3 0
0 0 0 m4






⇒

A0 =








a11
m2
m1

a12
m3
m1

a13
m4
m1

a14
m1
m2

a21 a22
m3
m2

a23
m4
m2

a24
m1
m3

a31
m2
m3

a32 a33
m4
m3

a34
m1
m4

a41
m2
m4

a42
m3
m4

a43 a44








(6.4)

The choice ofm1, m2, m3 andm4 for optimum simplification of the entries ofA0 is such thatM
becomes

M =







υdc1,0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







(6.5)

with the resultingA0 matrix becoming

A0 = M−1AsM =











−af
Cconv
Ctot

af

(

−adCconvCdc
Ctot

+
CconvPout,0

Ctotυ2
dc1,0

)

af
Cconv
Ctot

0

1
Ctot

−adCconv
Ctot

− Pout,0

Ctotυ2
dc1,0

− 1
Ctot

0

0 1
Ldc

−Rdc
Ldc

− 1
Ldc

0 0 1
Ctot

Pout,0

Ctotυ2
dc1,0











(6.6)

The immediate benefit of using (6.5) is the fact thatυdc1,0has been eliminated from the matrix
elementsAs,21 andAs,13 in (6.2) if they are compared with the corresponding elements A0,21
andA0,13 in (6.6). This not only simplified some of the original entries but allowed them to
now appear multiple times in the same matrix. Aiming at reducing the visual complexity,A0 is
re-written as

A0 =







−a b a 0
c −d −c 0
0 e −R·e −e
0 0 c f






=

[
A11 A12
A21 A22

]

(6.7)

109



Chapter 6. Applications of the analytical approach

Substituting the nominal values of Table 5.1, the previous matrix elements becomeR= 2.92,
a = 223.26, b = 0.0846,c= 37209.3, d = 314.1, e= 31.65 and f = 90.84. In terms of mag-
nitude comparison, the former translates intoc ≫ a,d,e, f ≫ b,R. This relation is critical for
simplification steps that will follow.

6.1.3 Similarity transformation

At this stage, matrixA0 is subjected to a similarity transformation that will produce asimilar
matrix Ã, in the form of (5.10). A similarity matrixP identical to the one in (5.16) is thus used,
giving

Ã = P−1A0P=

[
I −X
0 I

]

·
[

A11 A12
A21 A22

]

·
[

I X
0 I

]

⇒

Ã =

[
A11−XA21 A11X −XA21X +A12−XA22

A21 A21X +A22

]

=

[
Y11 Y12

Y21 Y22

]

(6.8)

As mentioned earlier in the method description in Section (5.2.1), the condition that needs to
be fulfilled in order to giveÃ a quasi-lower triangular form is that the upper right 2×2 block
matrixY12 in (6.8) is a zero matrix:

Y12 = A11X −XA21X +A12−XA22 =

[
y13 y14

y23 y24

]

= 0 (6.9)

which when broken down to its 4 individual elements, provides the following relations that must
be fulfilled at the same time

y11 = a−a ·x11+e·R·x11−c·x12+(b−e·x11)x21 = 0 (6.10)

y12 = e·x11−a ·x12− f ·x12+(b−e·x11)x22 = 0 (6.11)

y21 =−c+c·x11+e·R·x21− (d+e·x21)x21−c·x22 = 0 (6.12)

y22 = c·x12+e·x21− f ·x22− (d+e·x21)x22 = 0 (6.13)

Extraction of expressions

Directly solving the non-linear equations (6.10)-(6.13) leads to large symbolic expressions of
no practical use. Furthermore, when the values of the different unknowns are replaced and a
certain parameter is swept, the pole movement is not continuous, leading to an undesirable type
of closed form solution similar to what a numerical solver would derive for a 4th order system,
as demonstrated earlier in Chapter 5. Reaching compact expressions that describe the poles of
the system, requires further simplifications to be applied.In order to achieve this, it is necessary
to observe the numerical behavior of the transformation matrix entries for different parameter
sweeps. The numerical study ofx11, x12, x21 andx22 is given in Fig. 6.1.

The solutions ofx11, x12, x21 andx22 are calculated by fixing three out of the four parameters
ad=300 rad/s,af=300 rad/s,length=100km andPout=1000MW, and studying the transformation
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matrix variables with respect to the remaining parameter. Parametersad andaf are each swept
from 10-1000 [rad/s], the cable length is varied from 10-1000 [km] and the power transferPout

can vary from 10-1000 [MW]. Consequently, the graphs can have a common horizontal axis in
the range of 10-1000 units.

Figure 6.1 shows that for a wide variation of all the parameters under consideration,x11 has a
value between -1.5 and 0.25,x22 is negative with an absolute value between 0.9 and 1.5,x12

takes very small positive values below 0.02, whilex21 is negative and exhibits large variations
for the different system parameters. It is interesting to notice that sweepingad andaf results in
the same graph pattern for both cases ofx21 andx22.

Relations (6.10) and (6.11) can be expressed as

[
x11

x12

]

=

[
a−eR+ex21 c
−e+ex22 a+ f

]−1

·
[

a+bx21

bx22

]

⇒

[
x11
x12

]

=





a2+a f+abx21+b f x21−bcx22
a2+a[ f+e(−R+x21)]+e[c+ f (−R+x21)−cx22]

a(e+bx22−ex22)+be(x21−Rx22)
a2+a[ f+e(−R+x21)]+e[c+ f (−R+x21)−cx22]



⇒

[
x11

x12

]

∼=





a2+a f−bcx22
a2+ec(1−x22)

ae(1−x22)
a2+ec(1−x22)



 (6.14)

The last approximation is based on the fact thatc≫ a,d,e, f ≫ b,Rand that the value ofx21 is
much smaller thana. Sincec is much larger than the other parametersa, b, d, e, f andR, the
term Φ = eRx21− (d+ex21)x21 in (6.12) is negligible if|x21| is small enough. Consequently
(6.12) becomes

−c+cx11+Φ−cx11 = 0⇒−1+x11+
Φ
c
−x22 = 0⇒−1+x11−x22 ≈ 0⇒

x22 ≈ x11−1 (6.15)

An early positive assessment on the validity of (6.15) can bemade by observing the graphs of
x11 andx22 in Fig. 6.1, for the sweeping of the same parameter. Combining (6.14) and (6.15)
provides the approximate solution forx11 as

x11 ≈ 1+
b
2e

+
a2

2ce
−

√

a4+2a2bc+b2c2+4c2e2−4ace f
2ce

(6.16)

which can be further simplified to

x11 ≈ 1+
b
2e

+
a2

2ce
−

√

a4+2a2bc+4c2e2−4ace f
2ce

(6.17)

Finally, utilizing (6.13), (6.14), (6.15) and (6.17) provides the approximate solutions forx12, x21

andx22 as follows
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Fig. 6.1 Numerical study ofx11, x12, x21 andx22 for sweeping parametersaf , ad, cable length andPout.

x12 ≈−
a
(

a2+bc−2ce−
√

a4+2a2bc+4c2e2−4ace f
)

c
(

a2−bc+2ce+
√

a4+2a2bc+4c2e2−4ace f
) (6.18)

x22 ≈
b
2e

+
a2

2ce
−

√

a4+2a2bc+4c2e2−4ace f
2ce

(6.19)

x21 =
cx12− (d+ f )x22

e(x22−1)
(6.20)
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Eigenvalue analysis

After the proper selection of the entries of transformationmatrix P, the eigenvalues of the
original state matrixAs are determined by the following 2×2 block matrices of̃A in (6.8)

Ã1 = A11−XA21 =

[
−a b−e·x11

c −d−e·x21

]

(6.21)

Ã2 = A21X +A22 =

[
−e·R+e·x21 −e+e·x22

c f

]

(6.22)

Simulations considering a wide variation of the unknown parameters of the system, show that
Ã2 almost always provides the solution for a poorly damped complex-conjugate pole pair whose
frequency is closely associated with the resonant frequency of the R-L-C dc-circuit of the sys-
tem, comprising of the dc-cables and the capacitors of the stations. Further in the analysis, these
poles will be referred to as ”Poorly-damped poles”. Taking into account relations (5.7)-(5.9)
and (6.21), the analytical expression for the stated complex-conjugate eigenvalue pair will be

λ1,2 =
f −eR+ex21

2
± j

√∣
∣
∣( f +eR−ex21)

2+4ce(x22−1)
∣
∣
∣

2
(6.23)

Ã1 will then provide the other two poles of the system, which according to the different choice
of parameters are either a well-damped (compared to the previous pole pair) complex-conjugate
pole pair or two real poles. Both of these forms are expressedby (6.24), where the sign of the
expression under the square root defines the complex or real form of the solution.

λ3,4 =
−a−d−ex21

2
±

√

(a+d+ex21)
2−4(−bc+ad+cex11+aex21)

2
(6.24)

Further in the analysis, these poles will be referred to as ”Well-damped poles”.

6.1.4 Results

In this section, the exact eigenvalues of the two-terminal VSC-HVDC system, found by numer-
ically extracting them fromAs, are compared to the analytical eigenvalues expressed by (6.23)
and (6.24). Different scenarios are investigated where thevalues of all the system’s parameters
and steady-state entries are set to be constantly equal to the values of Table 5.1, with the excep-
tion of a parameter that is allowed to vary. The interest in doing so is to observe the accuracy
of the analytical expressions compared to the exact eigenvalues, for different values of the se-
lected parameter. It should be further noted that the valuesof Table 5.1 are considered typical
for actual installations, based on the references providedin Chapter 2 and any variations around
them define deviations from the norm. Five scenarios are considered

1. Variation ofaf between 10-600 rad/s
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2. Variation ofad between 10-600 rad/s

3. Variation ofad = af between 10-600 rad/s

4. Variation of the cable length between 20-600 km

5. Variation ofPout,0 within the interval 0-1000 MW

Each scenario is assessed based on a common figure pattern. Initially, the movement of the exact
and approximated poles of the system for the variation of thedesired parameter (or parameters)
is presented. All poles, both thePoorly-damped polesand Well-damped polesare originally
presented in a common graph, highlighting their relative location in the complex plain. Given
the fact that thePoorly-damped polestypically have much higher characteristic frequency than
the Well-damped poles(approximately 1 order of magnitude larger), the depictionof all the
poles in the same graph could obscure the differences between the exact and approximated
poles, especially if the level of approximation is very high. A closer view of each of the two
type of poles is thus provided, ensuring a better visual inspection of the fine differences between
the exact and approximate solutions.

A separate figure shows the nominal algebraic magnitude error εN,nom for each of the poorly and
well-damped conjugate pole pairs that normally appear. Letp represent a nominal set (design
point) of then unknown parameters that describe a given condition of the system (p ⊂R

n), g(p)
the expression for the exact solution of a pole atp and h(p) the approximation of g(p). Then the
nominal algebraic magnitude errorεN,nom of this pole is here defined as

εN,nom=
‖g(p)−h(p)‖

‖g(p)‖ (6.25)

This expression considers not only the magnitude difference between the exact and approxi-
mated pole solutions, but also their angle differences.

It was observed that in some cases, while varying the selected system parameter, two poles con-
stituting a well-damped pole pair would eventually become real poles of unequal magnitudes.
Furthermore, this did not occur for the same values of the selected parameter in the exact and
approximated systems. This causes complications since thecomparison between a pole pair
and two distinct real poles does not provide useful information. For this reason, the pole mag-
nitude error of the well-damped pole pair is shown only when both the exact and approximated
expressions are complex-conjugate in form.

Since the poorly-damped poles are of greater importance forthe investigation of a system’s
stability than the well-damped poles, more information arepresented for the former. Thus, a
separate figure is used to present the error of the poorly damped pole pair approximation, split
into real part errorεN,real and imaginary part errorεN,imag and defined as

εN,real=

∣
∣
∣
∣

Re[g(p)]−Re[h(p)]
Re[g(p)]

∣
∣
∣
∣

(6.26)

εN,imag=

∣
∣
∣
∣

Im [g(p)]− Im [h(p)]
Im [g(p)]

∣
∣
∣
∣

(6.27)
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At this point it should be mentioned that expressions (6.25)-(6.27) may take large values if the
location of g(p) is quite close to the origin of the axes of the complex plain,even if the absolute
error difference is not large. The fact that g(p) is in the denominator of the prevous expressions
implies that the division with a small value could lead to large errorsεN,nom, εN,real andεN,imag,
which may not reflect fairly the quality of the approximation.

Variation of af

The bandwidthaf is usually chosen to be close or equal to the direct-voltage closed-loop band-
width ad [43]. The current scenario examines the impact of a varied difference between the two
bandwidths, while keepingad constant. Fig. 6.2 presents the results of the parametric sweep of
af. The poorly-damped poles appear to be stiff in terms of frequency variation, as observed by
the relatedεN,imag error which does not exceed 2.2%. The well-damped poles start as two real
poles and at aroundaf=35 rad/s, split into two complex-conjugate poles with increasing fre-
quency and almost constant damping. In the same figure, the approximated poles clearly follow
closely the exact values, both of poorly- and well-damped poles. ErrorsεN,nom andεN,imag of the
poorly-damped poles increase almost linearly for an increase ofaf but remain below 1.82% and
1.7% respectively. ErrorεN,real of the poorly-damped poles follows the same increasing trend
and is limited to 4.97% for the maximum value ofaf.

The match of exact and approximate values is quite close for the well-damped poles with their
error εN,nom starting at around 3.6% foraf=35 rad/s, then quickly dropping below 0.77% and
gradually increasing up to 4.48%. The initial relatively high error followed by a rapid decrease
happens because in that region, the absolute value of the exact pole is relatively small and
as explained earlier, its use in the division withinεN,nom leads to a numerically high error as a
percentage which is not representative of the overall sufficient approximation. Observe however,
that this error is fairly small.

Variation of ad

This scenario examines the impact of a varied difference between the two bandwidthsad and
af, while keeping the main bandwidth of the direct-voltage controller ad constant. In Fig. 6.3,
the movement and relative position of the poles for a variation of ad is very similar to the one
observed earlier in Fig. 6.2 for a variation ofaf. Once again, the approximated poles follow
closely the numerical values and movement trend of the exactpoles for the whole variation
region ofad, both for poorly- and well-damped poles. ErrorsεN,nom andεN,imag of the poorly-
damped poles are constantly below 1% while the corresponding errorεN,real has a peak value of
2.2% aroundad=442 rad/s.

The errorεN,nom of the well-damped poles starts just below 6.5% forad=36 rad/s, but quickly
drops and stabilizes below 2.8% throughout the range of [42-600] rad/s. Similarly as in the
previous simulation scenario, the proximity of the accurate pole to the origin of the axes for
small values ofad, causesεN,nom to be relatively high in that region.
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Concurrent variation of ad and af

As mentioned earlier, the bandwidthaf of the power-feedforward filter and the bandwidthad
of the direct-voltage controller are normally chosen to be approximately or even precisely the
same in value. This scenario examines the case wheread=af and vary from 10-600 rad/s. As
observed in Fig. 6.4, increasing the value of parametersad=af causes the real part of both pole
pairs to drastically reduce. The poorly-damped poles maintain their characteristic frequency
quite close to 1500 rad/s all the time, while the well-dampedpoles seems to feature a virtually
constant damping throughout the sweeping range ofad=af.

The approximation achieved in Fig. 6.4 is exceptionally well for all the values of the swept
bandwidths. Regarding the poorly-damped poles, their error εN,imaghas a peak value of 0.74% at
ad=af=505 rad/s,εN,nom is constantly increasing from 0.2% until 1.44% in the available region
of bandwidth variation while errorεN,real follows the same pattern of constantly increasing
value from 0.38-6.82% in the same region. The errorεN,nom of the well-damped poles starts just
below 3.54% forad=10 rad/s, but quickly drops and then keeps increasing to a maximum value
of 5.97% at the maximum value ofad=af=600 rad/s.

Variation of cable length

The analysis of the results shown in Fig. 6.5 show that the approximated eigenvalues follow the
movement trend of the exact eigenvalues, for both pole pairs, but the relative errors are a bit
higher compared to the previous scenarios, especially whenthe cable length is at its maximum
value. A general comment is that for increasing cable length, the real part of both poorly- and
well-damped poles increases algebraically while the imaginary part of both pole pairs decreases.
The rate of imaginary part decrease is large in the case of thepoorly-damped poles, hinting a
close relation between the frequency of this pole pair and the physical properties of the dc-
cables, unlike the other pole pair whose rate of imaginary part (i.e. frequency) decrease is much
more limited.

All the measured errors of the poles have a constantly increasing trend for an increase of the
cable length. Regarding the poorly-damped poles, errorsεN,nom, εN,real andεN,imag reach a peak
value of 4.67%, 8.84% and 4.27% respectively for a cable length of 600 km, while the error
εN,nom of the well-damped poles has a peak of 8.72% at the same cable length.

In order to relate the range of length variation used in this section with actual values, it can be
mentioned that typical transmission-lengths for VSC-HVDCsystems of existing and planned
sites are in the range of 100 up to 400 km [3,84], with the notable exception of Caprivi-link that
measures 950 km [85].

Variation of transferred power

The results for varying transfer power in Fig. 6.6 show a goodapproximation of the exact poles.
It is interesting to notice that the pole movement for the entire power variation interval is quite
minimal, implying a poor correlation between transferred power and system eigenvalue, for the
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Fig. 6.2 Pole movement and approximation error studies on scenario #1 whereaf is varied.
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Fig. 6.3 Pole movement and approximation error studies on scenario #2 wheread is varied.
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Fig. 6.4 Pole movement and approximation error studies on scenario #3 wheread andaf vary.
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Fig. 6.5 Pole movement and approximation error studies on scenario #4 where the cable length is varied.
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Fig. 6.6 Pole movement and approximation error studies on scenario #5 wherePout,0 is varied.
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selected properties of the given HVDC. Just as in the cable length variation scenario, all the
measured errors of the poles have a constantly increasing trend for an increase of the cable
length. Regarding the poorly-damped poles, errorsεN,nom, εN,real andεN,imag reach a peak value
of 0.63%, 1.91% and 0.60% respectively for a maximum power transfer of 1000 MW, while the
errorεN,nom of the well-damped poles has a peak of 1.88% at the same power transfer level.

6.2 Application of the LR algorithm to a VSC-HVDC system

In this section, theLR algorithm is applied to a two-terminal VSC-HVDC connection. The
objective is to demonstrate the potential of this method in analytically determining the eigen-
values of this system, investigate the complexities involved as well as the advantages, disad-
vantages and limitations of theLR method compared to the earlier suggestedSMT technique.
In an attempt to perform a comparison with theSMT technique, the simplified 4th order model
described in Section (5.3.3) is again selected here as the object of the investigation. The state
matrix of the complete model in (6.1) was further simplified to the one in (6.2). The refined
version of the latter is provided in (6.6), whose visually simplified version is given in (6.7) and
repeated below.

A1 =







−a b a 0
c −d −c 0
0 e −R·e −e
0 0 c f







The nominal values of the VSC-HVDC link are the same as in Table 5.1 and the LR algo-
rithm will investigate the eigenvalue movement ofA1 for a perturbation of the system’s val-
ues around the nominal quantities. As described in Section (5.3.3), the convergence of the
algorithm is assisted if the diagonal elements are rearranged in a descending order, as far as
their absolute values are concerned. For the nominal valuesof Table 5.1, it is observed that
|−d|>|−a|>|−R·e|>| f |. Matrix A1 is thus pivoted to the expression (6.28), having its diago-
nal elements in descending order.

A1 =







−d c −c 0
b −a −a 0
0 e −R·e −e
0 0 c f







(6.28)

The authors in [31–33], have used theLRmethod in sparse state matrices of analogue electronic
circuits using at most four symbolic variables. MatrixA1 is however not sparse and it is desired
to acquire eigenvalue expressions which reflect the effect of all the parameters of the system.
As such, the entries of (6.28) are going to be treated fully symbolically, as well as the variables
each of these entries represent.
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6.2.1 General expression of eigenvalues

Using the steps described in Section (5.2.2), a similar matrix Am+1 is produced at the end of the
mth iteration of the algorithm, whose general form is given in (5.26). Given the characteristic
form of the initial matrixA1 in (6.28), matrixAm+1 is observed to have the following form

Am+1 =







b11 b12 −c 0
b21 b22 b23 0
b31 b32 b33 −e
0 0 b43 b44






=

[
A11 A12

A21 A22

]

(6.29)

where the elementsbi,j are different in every iteration. Just as in the case of theSMT, the four
approximated eigenvalues ofA1 are found from the diagonal block matricesA11 andA22 in
(6.29). MatrixA11 provides two eigenvaluesλ1,2 as below

λ1,2 =
b1,1+b2,2

2
︸ ︷︷ ︸

Part A

±

√

b2
1,1+4 ·b1,2 ·b2,1−2 ·b1,1 ·b2,2+b2

2,2

2
︸ ︷︷ ︸

Part B

(6.30)

In all the examined cases in this chapter, the expression under the square root is negative and the
above expression represents a pair of poorly-damped complex-conjugate poles with a real part
equal toPart Aand an imaginary part equal to|Part B|, as these are defined in (6.30). Likewise,
matrixA22 provides two eigenvaluesλ1,2 as below

λ3,4 =
b3,3+b4,4

2
︸ ︷︷ ︸

Part A

±

√

b2
3,3+4 · (−e) ·b4,3−2 ·b3,3 ·b4,4+b2

4,4

2
︸ ︷︷ ︸

Part B

(6.31)

In most of examined cases in this chapter, the expression under the square root is negative, with
the above expression representing a pair of usually well- orat least better-damped complex-
conjugate poles with a real part equal toPart Aand an imaginary part equal to|Part B|, as these
are defined in (6.31). However, in some cases the expression under the square root is positive,
leading to two real poles a) (Part A + Part B) and b) (Part A - Part B).

The same nomenclature as in Section (5.2.1) is going to be used, thus referring to eigenvalues
λ1,2 as ”Poorly-damped poles” and to the eigenvaluesλ3,4 as ”Well-damped poles”.

6.2.2 Convergence of eigenvalue expressions

The accuracy of the results provided by the expressions (6.30)-(6.31) increases with every iter-
ation of the algorithm. However, each additional iterationadds further complexity to the sym-
bolic form of thebi,j terms in the same expressions. A compromise needs to be made between
the accuracy of the solutions and the size of the final eigenvalue expressions.

An investigation of the convergence of theLR algorithm is performed by applying scenario #4
of Section (6.1.4) where the cable length is swept from 20-600 km, using the data of Table 5.1.
As expected from Fig. 6.5, the system will have two a pair of complex-conjugate poorly-damped
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Fig. 6.7 Convergence of the different parts of the eigenvalues for different iterations of the LR algorithm,
compared to the exact numerical solution. The cable length is swept from 20-600 km. (a) Real
part ofλ1,2, (b) Imaginary part ofλ1,2, (c) Real part ofλ3,4, (d) Imaginary part ofλ3,4

poles and a pair of complex-conjugate well-damped poles;Part AandPart B in (6.30)-(6.31) are
expected to express the real and the imaginary part of their eigenvalues, respectively. Fig. 6.7
presents the results for separately considering the real and imaginary parts of both eigenvalue
pairs, as obtained by different iterations of the LR algorithm. Their values are then compared to
the exact values, corresponding to the numerical solution of the eigenvalue problem.
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Figure 6.7(a) and Fig. 6.7(c) show that after the 3rd iteration of the algorithm, the real parts of
both eigenvalue pairs quickly converge to their exact numerical values, with the 5th iteration
resulting in an almost perfect matching with the exact solutions. The imaginary part of the
poorly-damped poles has started to successfully converge even earlier, by the 3rd iteration as
seen in Fig. 6.7(b). However, Fig. 6.7(d) shows that the imaginary part of the well-damped
poles needs more iterations to converge. After the 2nd iteration, the approximated expression
starts approaching the exact solution but will need more than five iterations to get close to
matching conditions. The previous observations are consistent with relevant scenarios where
other values of the system are swept.

The results of this investigation demonstrate that the LR algorithm can provide reliable results
within few repetitions of the algorithm, as well as the fact that the convergence rate of the real
and imaginary parts, or to be more precisePart A andPart B (to include the eigenvalues that
become real), of complex poles may vary. This conclusion must be properly utilized, combined
with the fact that the symbolic expressions may become overwhelmingly large after only a few
iterations.

6.2.3 Analytical eigenvalues expressions

As a reasonable compromise between accuracy and size of the final expressions, the 4 eigenval-
ues of the system are chosen to be represented by theirPart A from the 3rd iteration and their
Part B from the 2nd iteration. Any higher iterations provide expressions so large in size that
have no practical value when it comes to symbolic description of eigenvalues. Nevertheless, the
chosen iteration results are still large. A simplification procedure must take place during the LR
procedure, erasing any terms that have small effect on the final results.

Within the previous context, the final symbolic expressionsfor the poles of the system will be
as described below.

Part A of Poorly-damped poles

The expression forPart A of the poorly-damped polesλ1,2 is

K1+K2

4eR(a+d)(ad−bc+ce)−2c[a(6bd−2de)+e(4bc−2ce+d2)]
(6.32)

where

K1 = a3ce+a2 [6bcd− ce f−d(d+eR)(3d+2eR)]−e2[c2(−4bR+d+2eR− f )+2cdeR2+d2eR3] (6.33)

K2 = 3abc[ce+2d(d+eR)]−ea
[
c2e+c

(
4deR+d f +2e2R2)+dR(d+eR)(2d+eR)

]
(6.34)
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Part A of Well-damped poles

The expression forPart Aof the well-damped polesλ3,4 is

f (ad+ce)2−c2e2(a+d)
4c2e2 (6.35)

Part B of Poorly-damped poles

The expression of Part B cannot be easily simplified to a single term but can be represented in
the format of (6.30), replacing

b1,1 =
c
[
a2(e−b)+ae(2d+eR)+e

(
2bc−2ce+3d2+2deR

)]

−ce(a+eR)−2cde+d3 (6.36)

b1,2 =
c2e

[
a2

(
ce−3d2

)
−2ace(d+eR)+ce

(
4bc−2e(c+dR)+d2

)]

(bc−ad) [(ad−bc+ce)2+ce2R(a+d)]
(6.37)

b1,3 =
ce2(bc−ad)(2ad+aeR−4bc+2ce)

(ac(b−e)+2bcd−2cde−ce2R+d3)
2 (6.38)

b1,4 =
c3e

(
3b2−4be+2e2

)(
d2−ce

)

(ad−bc+ce)2 [ce(a+eR)+2cde−d3]
(6.39)

Part B of Well-damped poles

Similarly, the expression of Part B cannot be easily simplified to a single term but can be repre-
sented in the format of (6.31), replacing

b3,3 = c

[

a(d+ f )−bc+d f
c(a+d− f )

− ce2
(
a2+ad+bc+d2

)

(a+d)(ad+ce)2

]

(6.40)

b4,3 =
c4e3(bc−ad)2

[c2e2(a+d)− f (ad+ce)2]
2 (6.41)

b4,4 =
bc−ad
a+d

(6.42)

Practically, all of the terms (6.32)-(6.42) can be further simplified in such a way that sufficient
or even improved level of accuracy can be guaranteed in a narrow area of variation of all or
selected variables of the system. However, a more general approach is considered for the rest of
the analysis, using expressions that are sufficiently accurate in a wide range of variable variation.
Thus, the previous terms are going to be used in the complete format that they have been given.
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6.2.4 Results

The previously obtained eigenvalue expressions are testedfor their accuracy through a series of
scenarios where different parameters of the system vary in value. For consistency purposes, the
examined scenarios are exactly the same as those in Section (6.1.4) which are summarized as

1. Variation ofaf between 10-600 rad/s

2. Variation ofad between 10-600 rad/s

3. Variation ofad = af between 10-600 rad/s

4. Variation of the cable length between 20-600 km

5. Variation ofPout,0 within the interval 0-1000 MW

This approach provides an opportunity to assess the effectiveness of both methods on the same
type of model and conditions, while drawing some conclusions from their comparison. Once
again, the same type of assessment is used as in Section (6.1.4), where:

• a visual inspection of the approximation of the eigenvaluesis performed by plotting the
pole movement of the exact and approximated poles of the system for the swept parame-
ter. Both theLRandSMTresults are plotted to highlight how well each method performs.

• the nominal algebraic magnitude errorεN,nom for each of the poorly- and well-damped
complex-conjugate pole pairs are plotted for theLRalgorithm. The errorεN,nom is defined
in (6.25).

• the real part errorεN,real and imaginary part errorεN,imag of the poorly-damped complex-
conjugate poles are plotted for theLR algorithm. These have been defined in (6.26) and
(6.27) respectively.

Variation of af

Figure 6.8 presents the results of the parametric sweep ofaf. The LR-approximated poorly-
damped poles appear to follow in general the track path of their exact counterparts. The asso-
ciated errorεN,real reaches a maximum of 10.54% for the maximum value ofaf but constantly
lies below 3.7% in the regionaf ∈[10-400] rad/s. A smaller error is observed for the imaginary
part of the poorly-damped poles which never exceeds 5.05%. It is interesting to notice that all
the characteristic errors of these poles are minimized in the area around the nominal value of
af, with an increasing trend asaf deviates sharply from 300 rad/s.

A slightly different behavior is observed for the well-damped poles which, even though follow
correctly the movement of the exact poles, appear to have a non-negligible magnitude error
εN,nom for af <100 rad/s. This happens because in that region, the absolutevalue of the exact
poles is relatively small and its use in the division withinεN,nom leads to a numerically high error
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as a percentage. However, for the greatest part of the variation region ofaf, the well-damped
poles have a small magnitude error (constantly below 3.6% for af ∈[115-600] rad/s), in fact
achieving a better approximation than theSMT-derived expressions for great values ofaf.

Variation of ad

In Fig. 6.9, the movement and relative position of the poles for a variation of the bandwidth of
the direct-voltage controller is very similar to the one depicted in Fig. 6.8 for a variation ofaf.
Furthermore, all the errors for theLR-obtained eigenvalues seem to follow the trends observed
for the variation ofaf but are smaller in absolute values. As far as the poorly-damped poles are
concerned, their errorsεN,real andεN,imag never exceed 3.2% and 2.7% respectively, while the
combined errorεN,nom takes a maximum value of 2.69% for the maximum value ofaf.

The errorεN,nom of the well-damped poles takes, once again, high values for very low values
of af, but quickly drops and stabilizes below 3.62% throughout the range of [42-600] rad/s.
Similarly as in the previous simulation scenario ofaf, the proximity of the accurate pole to
the origin of the axes for small values ofad, causesεN,nom to be relatively high in that region.
Overall though, theSMT-derived poles seem to converge slightly better to the exactvalues.

Concurrent variation of ad and af

As observed in Fig. 6.10, increasing the value of parametersad=af causes the real part of
both pole pairs to drastically reduce, while the well-damped poles seem to maintain their
damping factor throughout the variation region. Regardingthe poorly damped poles, the LR-
approximated eigenvalues are relatively close to their exact counterparts, even though the cor-
respondingSMT-derived eigenvalues appear to have a better convergence. Especially at high
and low values ofad=af, theLR-derived poorly-damped poles show a non-negligible variation
in their imaginary part as reflected by their errorεN,imag. However, the same error becomes very
small for a great range around the nominal value ofad=af=300 rad/s. Conversely, errorεN,real
of the same poles remains low for most of the area of parametervariation, with an increasing
trend for increasingad=af, reaching the highest value of 5.37% forad=af=600 rad/s.

Regarding the well-damped poles, the detailed view of Fig. 6.10 shows a very good tracking of
the exact pole movement for theLR method; even better than the one achieved by theSMT. In
fact theLR-approximated poles seem to retain a damping value closer tothe one of the exact
solutions. The level of approximation in terms of magnitudeerrorεN,nom is also acceptable with
the latter lying below 3.7% in the regionad=af ∈[85-600] rad/s.

The deviation in the poorly-damped pole approximation accuracy of the imaginary part between
theLR andSMTmethod, is attributed to the necessary simplification that had to be performed
on the terms ofPart B of these eigenvalues, as these are finally expressed in (6.36)-(6.39).
These simplifications were carried out considering an overall good approximation level, without
focusing on a specific variable. As shown here, the behavior of the LR-approximations is not
the optimal for large or very small values ofad=af, compared to theSMTmethod results.
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Fig. 6.8 Pole movement and approximation error studies on scenario #1 whereaf is varied.

129



Chapter 6. Applications of the analytical approach

−350 −300 −250 −200 −150 −100 −50 0

−1500

−1000

−500

0

500

1000

1500

Eigenvalue movement for a
 d
 ∈ [10 600] rad/s

Real

Im
ag

in
ar

y

 

 

−200 −150 −100 −50 0

−200

−100

0

100

200

Detailed view of well damped poles

Real

Im
ag

in
ar

y

−200 −150 −100
1440

1460

1480

1500

1520

Detailed view of poorly damped pole

Real

Im
ag

in
ar

y

0 200 400 600
0

1

2

3

4

5

R
ea

l p
ar

t e
rr

or
   ε N

,r
ea

l (
%

)

 a
 d
 (rad/s)

Errors ε
N,real

 and ε
N,imag

 of poorly damped poles

 

 

0

1

2

3

4

5

Im
ag

in
ar

y 
pa

rt
 e

rr
or

   ε N
,im

ag
 (

%
)

Real part
Imaginary part

0 200 400 600
0

1

2

3

4

5

P
oo

rly
 d

am
pe

d 
po

le
 e

rr
or

 (
%

)

 a
 d
 (rad/s)

Nominal algrebraic error ε
N, nom

 

 

0

10

20

30

40

50

W
el

l d
am

pe
d 

po
le

 e
rr

or
 (

%
)

Poorly damped poles
Well damped poles

Exact value
LR algorithm
Simil. Matrix Transf.

 

 

Starting point
Ending point

Fig. 6.9 Pole movement and approximation error studies on scenario #2 wheread is varied.
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Fig. 6.10 Pole movement and approximation error studies on scenario #3 wheread andaf vary.
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Fig. 6.11 Pole movement and approximation error studies on scenario #4 where the cable length is var-
ied.
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Fig. 6.12 Pole movement and approximation error studies on scenario #5 wherePout,0 is varied.
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Nevertheless, they are still acceptable with a maximum error εN,imag of 15.2% for the poorly-
damped poles at the lowest value ofad=af=10 rad/s.

Variation of cable length

The results shown in Fig. 6.11 show that theLR-approximated eigenvalues closely follow the
movement trend of the exact eigenvalues, for both pole pairs. The nominal magnitude error
εN,nom of the well-damped poles is relatively low within the variation range of the cable length,
remaining below 6.1%, with theLRmethod achieving even better results than theSMTfor large
cable lengths. A good level of approximation is also achieved for the poorly-damped poles
whose real part is approximated with an errorεN,real which starts at a very low value of 0.17%
and keeps increasing until 7.13% for the maximum length of the cable.

However, the error of theLR-method on the imaginary part of the same poles is not in the same
level. The related errorεN,imag lies below 5.78% for the first 200 km and then constantly increas-
ing until 21.2% at 600 km. This consequently affects the total nominal magnitude error of the
poorly-damped poles considers both the real and imaginary parts of the poles. The description
of these poles is better using theSMT-method.

Variation of transferred power

The results for varying transfer power in Fig. 6.12 show a relatively good approximation of the
exact poles while using theLR-method. It should be noted that even though the pole movement
is quite minimal for the exact numerical system, theLR algorithm tends to derive approximate
poles with a slightly wider range of variation, unlike theSMT-method which presents a minimal
pole movement. Observing the poorly damped poles, theLR-method achieves an approximation
with constantly declining errorsεN,nom, εN,real andεN,imag, contrary to theSMT-method whose
respective errors followed a constantly increasing trend as seen in Fig. 6.6. All of these errors
are no larger than 5.1% for theLR-method at the worst case of zero transferred power.

As far as the well-damped poles are concerned, theLR-method approximates the exact poles
with a consistently smaller real-part divergence than theSMT-method, but a greater imaginary-
part divergence. Nevertheless, it correctly shows the increasing trend of its imaginary part for
increasing power transfer, unlike theSMT-method. The nominal magnitude errorεN,nom of the
well-damped poles for theLR-method starts at 2.13% and reaches 3.58% for the maximum
amount of power transfer.

6.3 Application of the LR algorithm to an HVDC transmis-
sion system

A second example of theLR algorithm is demonstrated in this section, by applying it tothe
3rd order model of the dc-transmission system described in Section (5.3.2). The objective is to
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analytically describe the physical dynamics of this naturally unstable system, which the direct-
voltage controller attempts to stabilize during the operation of the complete VSC-HVDC link.
The authors in [14] make an attempt to characterize analytically the poles of the dc-transmission
system but can provide symbolic expressions only when thereis zero power flow across it,
essentially reducing the problem to the estimation of a 2nd order system with the third eigenvalue
being real and zero.

It must be noted that, contrary to what expected, theSMTmethod fails to produce approximate
expressions for the eigenvalues of this system, even if it islower in order that the 4th order VSC-
HVDC model investigated in Section (6.1). This happens because an approximation similar to
(6.15) cannot be made in the case of the dc-transmission system investigation, which would
lead to the solution of the non-linear equations that appear.

The initial matrix inputA1 to theLRalgorithm is the state matrix of the dc-transmission system
model, as described in (5.35) and repeated below.

A1 =







− P1,0

C1υ2
dc1,0

− 1
C1

0
1

Ldc
−Rdc

Ldc
− 1

Ldc

0 1
C2

− P2,0

C2υ2
dc2,0







(6.43)

The capacitances used in (6.43) are defined asC1 = Cconv1+Cdc andC2 = Cconv2+Cdc, with
reference to Fig. 5.3(b). Given the usual practice in two-terminal VSC-HVDC links, the con-
verter capacitors have the same value. This means thatC1 =C2 =Clink can be considered here.
The transmission model is regarded to be part of a stable VSC-HVDC system. This means that
the two steady-state electrical values of the system are linked by the relations

idc,0 =
υdc1,0−

√

4P2,0R+υ2
dc1,0

2Rdc
(6.44)

υdc2,0 = υdc1,0− idc,0Rdc (6.45)

P1,0 = idc,0υdc1,0 (6.46)

P2,0 = idc,0υdc2,0 (6.47)

Consequently, onlyP2,0 andυdc1,0 need to be defined externally.

The nominal values of the overall VSC-HVDC link (to which thedc-transmission model (6.43)
theoretically belongs) are the same as in Table 5.1 and theLR algorithm will investigate the
eigenvalue movement ofA1 for a perturbation of the system’s values around the nominalquan-
tities. As described in Section (5.3.3), the convergence ofthe algorithm is accelerated if the
diagonal elements are rearranged in a descending order, as far as their absolute values are con-
cerned. For the nominal values of Table 5.1, it is observed that

∣
∣
∣
∣
∣
− P2,0

C2υ2
dc2,0

∣
∣
∣
∣
∣
>

∣
∣
∣
∣
∣
− P1,0

C1υ2
dc1,0

∣
∣
∣
∣
∣
>

∣
∣
∣
∣
−Rdc

Ldc

∣
∣
∣
∣
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Matrix A1 is thus pivoted to the expression (6.28), having its diagonal elements in a descending
magnitude order

A1 =







− P2,0

C2υ2
dc2,0

0 − 1
C2

0 − P1,0

C1υ2
dc1,0

− 1
C1

− 1
Ldc

1
Ldc

−Rdc
Ldc






=







− P2,0

Clinkυ2
dc2,0

0 − 1
Clink

0 − P1,0

Clinkυ2
dc1,0

− 1
Clink

− 1
Ldc

1
Ldc

−Rdc
Ldc






=

=





a 0 c
0 b −c
−d d −R·d





(6.48)

wherea=−P2,0

/(

Clinkυ2
dc2,0

)

, b=−P1,0

/(

Clinkυ2
dc1,0

)

, c= 1
/
Clink, d= 1

/
Ldc andR=Rdc.

6.3.1 General expression of eigenvalues

Using the steps described in Section (5.2.2), a similar matrix Am+1 is produced at the end of the
mth iteration of the algorithm, whose general form is given in (5.26). Given the characteristic
form of the initial matrixA1 in (6.48), matrixAm+1 is observed to have the following form

Am+1 =





b11 b12 b13

b21 b22 b23
b31 b32 b33



=

[
A11 A12

A21 A22

]

(6.49)

where the elementsbij are different in every iteration. MatrixA1 has three eigenvalues, which
for all the parameter-variation scenarios where observed to be consisting of a real eigenvalue
and a complex-conjugate eigenvalue pair. The real approximated eigenvalueλ1 of A1 is found
from the diagonal block matricesA22 as below

λ1 = A22 = b33 (6.50)

Matrix A11 provides the approximated complex-conjugate eigenvalue pair λ2,3 as below

λ2,3 =
b11+b22

2
︸ ︷︷ ︸

Part A

±

√

b2
11+4 ·b12 ·b21−2 ·b11 ·b22+b2

22

2
︸ ︷︷ ︸

Part B

(6.51)

The expression under the square root is consistently negative, leading to a pair of complex-
conjugate poles with a real part equal toPart A and an imaginary part equal to|Part B|.

6.3.2 Convergence of eigenvalue expressions

Owing to the nature of theLRalgorithm, the accuracy of the results provided by the expressions
(6.50) and (6.51) increases with every iteration of the algorithm, with each additional iteration
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6.3. Application of the LR algorithm to an HVDC transmissionsystem

adding further complexity to the symbolic form of thebi,j terms in the same expressions. Simi-
larly to Section (6.2.2), an investigation of the rate of convergence of (6.50) and (6.51) needs to
be performed. The objective is to get an impression of when the algorithm should be terminated,
guaranteeing satisfactory convergence at the same time.

A modified scenario #5 of Section (6.1.4) is performed, wherethe power transfer|P2,0| is swept
from 0-1000 MW, using the data of Table 5.1. A difference withthe original scenario is that the
transmission link is considered to be overhead lines, with alength of 600 km. Such a choice is
made because the high inductance of overhead lines causes a great eigenvalue variation of the
eigenvalues. This provides more visual data to evaluate theconvergence of theLR algorithm.
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Fig. 6.13 Convergence of the different parts of the eigenvalues for different iterations of theLR algo-
rithm, compared to the exact numerical solution. The cable length is 600 km and|P2,0| is
swept from 0-1000 MW. (a) Real part ofλ2,3, (b) Imaginary part ofλ2,3, (c) λ1.
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Figure 6.13(a) presents the real part of the complex-conjugate eigenvaluesλ2,3. As it can be
observed, there is a great leap in the performance of the algorithm between 1st and 2nd iteration,
with the real part already converging sufficiently after only 2 iterations. The same comment can
be made about Fig. 6.13(c) and the real eigenvalueλ1. Interestingly enough, the imaginary part
of the complex-conjugate eigenvaluesλ2,3 converges at the first iteration of the algorithm as
seen in Fig. 6.13(b).

6.3.3 Analytical eigenvalues expressions

Judging from the results of the previous section, a reasonable compromise between accuracy
and size of the final expressions implies that

• the real eigenvalue of the system will be approximated by theexpression of the 2nd itera-
tion.

• the real part of the complex-conjugate eigenvalues will be approximated by the expression
of Part A from the 2nd iteration.

• the imaginary part of the complex-conjugate eigenvalues will be approximated by the
expression of Part B from the 1st iteration.

Within this context, the final symbolic expressions for the poles of the system will be as de-
scribed below.

Part A of complex-conjugate poles

Regarding, the complex-conjugate pole pair,Part A is evaluated as

(a+b)[a2b2−
(
a2+ab+b2

)
cd]+

(
a2+b2

)
cd2R

2a2b2−2(a2+b2)cd
(6.52)

Part B of complex-conjugate poles

Part B of the complex conjugate pole pair is evaluated as

1
2

√

(a−b)2+
2(a−b)2cd

ab
+

(a+b)2c2d2

a2b2 (6.53)

Real eigenvalueλ1

The real eigenvalue of the dc-transmission system is evaluated as

abd[bc+a(c−bR)]
−b2cd+a2(b2−cd)

(6.54)
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6.3. Application of the LR algorithm to an HVDC transmissionsystem

Observations

Part Bof the complex-conjugate poles is found to be almost identical to the resonant frequency
ωres of the dc-transmission link which is defined as

ωres=
1

√

Ldc
Clink

2

(6.55)

Minute deviations in the imaginary part of the complex polesare attributed to the resistanceRdc

of the lines, which slightly alters the dynamics of the transmission link. This observation was
made in all the scenarios examined for the model of the dc-transmission system and to a lesser
extent in the poorly-damped poles of the VSC-HVDC model in Section (6.1) and Section (6.2),
where the interaction with the direct-voltage controller leads to small but noticeable differences
in the imaginary part of these poles.

Without the resistanceRdc, the dc-transmission link would be a pure LC-circuit with two mar-
ginally -stable complex-conjugate poles atωres. The presence of the resistance additionally im-
proves the damping of the complex-conjugate poles but at thesame time leads to the existence
of the unstable poleλ1. In fact, an increased value ofRdc movesλ1 further towards the right
of the RHP, deteriorating the stability of the closed-loop HVDC system. This effect is however
profoundly observed only when overhead transmission linesare used in the HVDC link. As will
be shown in the following section, a relatively large movement of the unstable pole is observed
only when overhead transmission lines are employed. When a cable is used instead, the unstable
pole deviates much less and remains in the vicinity of the axis origin.

Observe that the termR= Rdc may not be visually present in all of the expressions (6.52)-(6.54)
but it exists withina andb as part ofP1,0 andυdc2,0.

6.3.4 Results

In a similar pattern as in Section (6.1.4) and Section (6.2.4), the previously obtained eigenvalue
expressions are tested for their accuracy through a series of scenarios where different parameters
of the system vary in value. The dc-transmission system under investigation is considered to be
under temporary stability (as if it were part of a functioning VSC-HVDC link). The steady-state
electrical values of the system are normallyυdc1,0 = 640 kV andP2,0=−1000 MW, withυdc2,0
andP1,0 being calculated from (6.44)-(6.47). Four examined scenarios are examined. These are
summarized as

1. Variation of
∣
∣P2,0

∣
∣ between 0-1000 MW with cable type of transmission system

2. Variation of
∣
∣P2,0

∣
∣ between 0-1000 MW with overhead-line type of transmission system

3. Variation of the transmission-line length between 20-600 km, using cable type of trans-
mission system
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4. Variation of the transmission-line length between 20-600 km, using overhead-line type of
transmission system

The values of the converter capacitors and cable propertiesare found in Table 5.1 while the
overhead line properties are found in Table 2.1. The same type of assessment is used as in
Section (6.1.4), where:

• a visual inspection of the approximation of the eigenvaluesis performed by plotting the
pole movement of the exact and approximated poles of the system for the swept parame-
ter.

• the nominal algebraic magnitude errorεN,nom for each of the complex-conjugate pole pair
and the real eigenvalue are plotted. The errorεN,nom is defined in (6.25).

• the real part errorεN,real and imaginary part errorεN,imag of the complex-conjugate pole
pair are plotted. These have been defined in (6.26) and (6.27)respectively.

Variation of P2,0 with cable type of transmission system

The results in Fig. 6.14 show that the dynamics of the dc-transmission system are practically
immune to the level of steady-state power transfer over the lines, especially the complex poles.
Furthermore, the real pole is shown to be permanently unstable in non-zero power transfer
conditions. This is expected because the transmission linehas no natural way to balance the
input and output powers after a deviation, leading to an uncontrolled behavior of the voltage of
the capacitors. Regarding the effectiveness of theLRalgorithm, it is clear that the approximated
and numerically derived results cannot be visually distinguished from each other. Indications of
the good level of approximation are the errorsεN,nom of all poles which are constantly below
3×10−3 %, with εN,real even lying below 2×10−5 %.

Variation of P2,0 with overhead-line type of transmission system

The same type of power variation as above but using an overhead line, has similar results in
terms of restricted pole movement but the complex poles seemto be much more under-damped,
as seen in Fig. 6.15. This provides an early information about the stability of the complete VSC-
HVDC system. Compared to the cable-type of dc-transmission, a direct-voltage controller with
fixed bandwidth settings would now try to stabilize a processwith worse damping characteris-
tics. This would cause the closed-loop poles of the overhead-line based system to have worse
damping characteristics than with the cable-type of lines.

Once again, the approximation achieved by theLR method are very sufficient withεN,nom of
all poles remaining under 4×10−3 % for any power transfer. Exceptionally good results are
observed for the complex poles of the system withεN,imag and εN,real reaching a maximum
value of 9.2×10−4 % and 3.4×10−4 % for the maximum power transfer, respectively.
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Fig. 6.14 Approximation studies on scenario #1 where|P2,0| is varied over a cable-based system.
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Fig. 6.15 Approximation studies on scenario #2 where|P2,0| is varied in an overhead-line based system.
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Fig. 6.16 Approximation studies on scenario #3 with cable-transmission lines of varying length.
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Fig. 6.17 Approximation studies on scenario #4 with overhead-lines of varying length.
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6.4. Investigation on the accuracy of the approximating methods

Variation of cable length

In Fig. 6.16, the power transfer is set to its maximum value and the length of the cable is
increased. This has a fundamental impact on the complex poles of the line, with an increasing
length leading to a constantly decreasing imaginary part ofthe poles. This is explained because
as mentioned earlier, the imaginary part of these poles is very close to the resonant frequency
of the transmission system, which depends highly on the length of the line.

As far as the approximation of the poles is concerned, it is still high with the magnitude error
εN,nom of the unstable real pole reaching a maximum of 0.105 % at 600 km of length and the
same error for the complex poles reaching a maximum of 0.026 %at the same cable length. The
high level of accuracy is observed on the real and imaginary parts of the complex-conjugate
poles, withεN,real andεN,imag peaking at 2.2×10−3 % and 0.027 %, respectively.

Variation of overhead-line length

The impact of the length variation of an overhead dc-transmission line is observed in Fig. 6.17.
Compared to the same scenario for a cable-type line, the overhead-line results differ greatly.
The complex-conjugate poles are distinctively closer to the imaginary axis while their real part
decreasing noticeably for an increasing transmission linelength, increasing their damping; a
phenomenon that was not observed in the complex poles of the cable-based system, where their
real part was stiff for length changes. Another, and possibly the most important, difference is
observed on the unstable pole. The shifting of its location towards the right of the RHP is much
more profound than the cable-based system, reaching valuesas high asλ1=9.37, compared to a
maximum value of 1.98 in the latter. This acutely unstable pole, in combination with complex-
conjugate poles being very close to the imaginary axis, leadto a closed-loop VSC-HVDC sys-
tem with worse dynamic performance when overhead lines are used, rather than cables.

The level of approximation achieved by theLR algorithm is very satisfying in this case as
well. This is evident by the magnitude errorsεN,nom of the unstable real pole and the complex-
conjugate poles, peaking at 0.081 % and 9×10−3 %, respectively. Furthermore, the errorsεN,real
andεN,imag of the complex-conjugate poles feature maximum values of 0.048 % and 8.9×10−3

%, respectively.

6.4 Investigation on the accuracy of the approximating me-
thods

6.4.1 Accuracy of the Similarity Matrix Transformation

The accuracy of the analytical expressions in closed form for the eigenvalues of the system
is directly related to the level of accuracy in approximating (6.15). As mentioned earlier in
Section (6.1.3), the factor which determines the level of accuracy in this approximation is the
term Φ

c = eRx21−(d+ex21)x21
c which should be the closest possible to a zero value. The morethe
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factor Φ
c deviates from zero and becomes comparable tox11 andx22, the worse the accuracy of

the final eigenvalue expressions.

All the unknown parameters of the system contribute to the final expression ofΦc , thus affecting
the quality of the final symbolic eigenvalue solutions. However, the degree to which each of
these parameters affect the resulting expressions varies.The majority of the system unknowns
does not seem to have great impact on the approximation accuracy. It was observed that the
only unknown which had a significant impact on the final results is the inductance of the dc-
transmission link, where the greater its value, the less accuracy in the resulting expressions
compared to their numerically extracted values.

A series of parametric scenarios display the effect of an increased inductance in Fig. 6.6, where
scenarios 2, 3, 4 and 5 from Section (6.1.4) are repeated withthe only difference being that the
cable is replaced by an overhead line. Overhead lines typically have much greater inductance
per kilometer and much lower capacitance per kilometer thancables of equivalent power and
voltage ratings. The overhead line used in this section has values defined in Table 2.1.

Figure 6.18(a) shows the results from the modified scenario #2 wheread is varied. The approx-
imated poles closely follow the numerical values and movement trend of the exact poles for
small values ofad but when the latter becomes greater than 300 rad/s, the approximated poles
start to deviate, especially considering the real part of the poorly-damped poles. This is because
the approximation in (6.15) does no longer hold for large values ofad. This is however of not
significant importance sincead normally lies close to 4 pu or 300 rad/s [86], [43]. The error
εN,nom of the poorly- and well-damped poles atad=300 rad/s is 9.84% and 19.41% respectively.

Figure 6.18(b) presents the results from the modified scenario #3 whereaf andaf vary. The ap-
proximation achieved is sufficiently well for values of the bandwidths up to nominal, mapping
the exact eigenvalues in a correct way. However, for larger than nominal values of the band-
widths, the tracking of the poorly-damped poles starts to deteriorate. A representative example
of this is when the bandwidths are set to their maximum value of 600 rad/s. The numerically
exact solution shows a system which has a pair of unstable complex-conjugate poles, while the
approximating algorithm presents the same poles as stable but poorly-damped. Still, this is not
an important issue because in practice the related bandwidths do not reach such high values.

Figure 6.18(c) presents the results from the modified scenario #4 where, in this case, the length
of the transmission line length varies. As reflected in the figure, the approximated poles manage
to follow the movement path of the exact poles most of the range of the transmission line length
but the well-damped pole pair fails to split into two real poles for high values of the length.
The errorεN,nom of the poorly-damped poles reaches a maximum of 30.14% at around 250 km
of line length while the same error reaches a local maximum of23.47% at 140 km, managing
to stay below that level until 466 km of line length. For the nominal length of 100 km, the
same error for the poorly- and well-damped poles is however much lower at 9.84% and 19.41%
respectively.

Finally, Fig. 6.18(d) presents the results from the modifiedscenario #5 where the amount of the
transferred powerPout,0 varies. Comparing the results to those in Fig. 6.6, a first observation is
that the pole movement, when alteringPout,0, is quite significant in the presence of transmission
lines instead of cables, where the poles are almost indifferent to the transmitted power level. The
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(a) Pole movement and approximation errors whenad is swept from 10-600 rad/s.
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(b) Pole movement and approximation errors whenad=af is swept from 10-600 rad/s.
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(c) Pole movement and approximation errors when the the transmission line length is swept from 20-600 km.
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(d) Pole movement and approximation errors when the transferred power is swept from 0-1000 MW.

Fig. 6.18 Approximation studies of the system for a change ofthe cable to overhead transmission lines.
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Chapter 6. Applications of the analytical approach

results for varying transfer power in Fig. 6.18(d) show a relatively good approximation of the
exact poles with a magnitude error for both the well and poorly damped poles below 20%. The
poorly damped poles are in fact approximated with an errorεN,nom which reaches a maximum
of 9.84% for the rated power transfer and keeps dropping for decreasingPout,0.

Overall, theSMTmethod seems to be able to provide reliable results for a widerange of vari-
ation of the system’s unknown parameters around their nominal values. The greatest impact on
the accuracy of the method is caused by the inductance of the transmission medium between
the stations (cable or transmission line), where it was shown that a large but realistic value of
the inductance can raise the approximation errors from the range of 1-5% (in the case of cable)
to 10-30% (in the case of transmission line).

6.4.2 Accuracy of the convergence of the LR algorithm

By definition, the derived symbolic expressions for the description of the system’s poles us-
ing theLR-method are created without taking into consideration the numerical values of the
symbolic entries. This cannot guarantee, however, the validity or level of accuracy of the same
expressions for different values of the system’s unknowns.TheLR-algorithm will usually con-
verge within the first few iterations but it is often the case that for a different parameter-setup of
the same system, the method will require a considerable number of additional iterations to con-
verge on specific problematic eigenvalues. It should be reminded that every additional iteration
adds further complexity to the symbolic expression of the poles.

A possible solution in these cases is to significantly limit the perturbation margins of the desired
unknowns of the system. This implies that the final symbolic expressions are expected to be
valid in a very confined area of parameter variation. If this convention is respected, it is possible
to attempt a drastic simplification of the intricate eigenvalue expressions into simpler forms,
still without any guarantee that the final expressions will be compact enough to be considered
useful or presentable.

The application of theLR-algorithm in the transmission-line model showed no noticeable ef-
fect of the system’s parameters and steady-state values on the accuracy of the solutions, which
remained at high levels in all of the examined scenarios. Thedifferences between cable and
overhead-transmission line had also no impact on the convergence, even though that implied
large changes in the considered inductance and capacitanceof the dc-link. Unrealistic values of
the system’s unknowns were not examined but this would be outof the scope of this thesis.

Some considerations on the accuracy of the algorithm are however risen when the complete
VSC-HVDC model is regarded. The parameters of the VSC-HVDC model examined in this
chapter were varied in an attempt to assess the accuracy and convergence of the algorithm. Just
as in theSMTmethod, it was found that the value of the inductance of the dc-transmission link
has the greatest impact on the convergence of theLR-algorithm. In fact, the greater the value of
the inductance, the less accurate the approximation becomes and more iterations are necessary
to achieve reliable results.

To demonstrate the effect of an increased inductance, scenario # 4 of Section (6.1.4) and Section
(6.2.4) where the transmission link length is varied from 20-600 km is repeated. Only now, just
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Fig. 6.19 LR-algorithm convergence for a high inductance dc-link whose length is swept from 20-
600 km. Different iteration results of Part A and B of the poles are combined. The black line
represents the exact poles and the gray line represents the approximated poles. The ’∗’ and ’�’
markers correspond to the starting and ending position of a pole, respectively.
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as applied in Section (6.4.1), the cable is replaced by an overhead line. Overhead lines typically
have much greater inductance per kilometer and much lower capacitance per kilometer than
cables of equivalent power and voltage ratings. The overhead line used in this section has the
same characteristics as the one used in Section (6.4.1).

As mentioned earlier, Part A and Part B of anLR-derived eigenvalue expression converge at
a different iteration rate. Fig. 6.19 shows a series of results with a combination of Part A and
Part B, calculated at different iterations of the algorithm. Each row of figures features Parts B
stemming from the same iteration, whereas each column of figures features Parts A of the same
iteration. It should be noted that

• the approximated results are based on expressions that havenot been subjected to any
symbolic simplification.

• the earlier results in Section (6.2.4) are based on the simplified expressions of Parts A of
4th iteration and Parts B of 3rd iteration, as presented in Section (6.2.3).

It is interesting to observe that in all of the Figures 6.19(a)-(i), the approximated poorly- and
well-damped poles do not manage to keep a consistent movement trend from their starting point
until the ending point. On the contrary, the expression representing the poorly-damped poles
shows a good level of approximation for small values of the dc-link length, then diverges and
for large length values converges to the location of the exact well-damped poles. The opposite
happens for the approximated well-damped poles. There is sufficient approximation for low
cable lengths but then follows a great divergence until theystart converging to the exact poorly-
damped poles for high length values.

Figure 6.19(a) presents the results for a 4th iteration Part A and 3rd iteration Part B of the
eigenvalues. Any expression of higher iteration will be difficult to be presented symbolically.
Both well- and poorly-damped poles feature the convergencebehavior described earlier with
nominal magnitude errorsεN,nom below 20% only for approximately 0-100 km and 450-600 km
(the latter regards convergence to the opposite type of polethough).

Higher iterations of Part A and Part B show that the convergence improves for both poorly-
and well-damped poles but there is always a cable length region where an approximated pole
starts to diverge and then follow the path of the other type ofpole. This behavior persists even
after 100 iterations of the algorithm, but the previously described ’swapping’ between poles
occurs abruptly at a single dc-link length value. This proves that theLR-method, in this case,
will finally follow accurately the true eigenvalues of the system, but a single expression in terms
of (6.30) or (6.31) is not consistent enough to describe exclusively a single type of pole (either
poorly- or well-damped). This is an aspect that did not occurin the SMT method, where the
consistency is respected but the accuracy of approximationcannot be further improved.

6.5 Summary

In this chapter, theSMTandLR methods described in Chapter 5, were implemented in the cal-
culation of analytical eigenvalues expressions of VSC-HVDC related state-space models. More
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specifically, both methods were applied to a 4th order two-terminal VSC-HVDC transmission
system model, while theLR method was further applied to the 3rd order model of an HVDC-
transmission link.

Regarding theSMT method, a number of valid conventions were used to simplify the state-
space VSC-HVDC model from its original form, in such a way that several of the state-matrix
entries could become identical. This provided more compactfinal expressions. The solution
of the eigenvalue problem requires the solution of non-linear equations, which under a certain
convention can be simplified and solved. The accuracy of thissimplification was shown to be
the key factor determining the accuracy of the derived eigenvalue expressions.

As far as theLR method is concerned, the entries of the original state-space models were mod-
ified in a similar manner as in theSMT method, to possess a plurality of identical terms and
provide compact final eigenvalue expressions. Additionally, the order according to which the
states were positioned in the state-matrix was re-arrangedto facilitate a faster convergence of
the iterative algorithm. It was observed that the real and imaginary part of complex conjugate
eigenvalues, achieve sufficient accuracy at different convergence rates. This behavior, along
with the fact that every additional iteration of the algorithm increases the complexity of the fi-
nal solutions, led to the practice of separately deriving the analytical real and imaginary part of
complex poles from those iterations that provided sufficient accuracy.

Both methods demonstrated satisfactory results, with great accuracy in the expression of the
eigenvalues of the examined systems, for a wide variation ofcontrol and physical parameters.
Nevertheless, in the case of the two-terminal VSC-HVDC model, theSMTmethod appeared to
provide consistently increased accuracy than theLR method, especially for the poorly-damped
complex poles, which are of great concern during the designing of such systems. This implies
that in relevant studies on two-terminal configurations, theSMTmethod should be prefered to be
used as the tool of choice. The chapter is finalized by an investigation in the convergence of the
two methods, showing that the use of dc-transmission lines with large inductance per kilometer
(i.e. overhead lines) in the two-terminal VSC-HVDC model, may affect the accuracy of the
analytical solutions, with theSMTresults being less affected than those derived by theLR. The
same observation was however not made in the case of the dc-transmission link eigenvalues,
where theLR method seemed to provide accurate expressions.

From an overall perspective, once the desired analytical eigenvalue expressions are obtained
by one of the previous methods, it is possible to simplify them to a great extent, in a way that
the resulting expressions are valid in a relatively small range of parameter variation around a
nominal set of parameter values. Such an analysis may be further extended to a degree that only
one critical parameter is allowed to vary, making the simplifications even more drastic. As a
result, it may be possible to acquire such simplified forms that design criteria for an HVDC
system can be derived. This objective can be part of a future study on the subject.
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Chapter 7

Control investigation in Multiterminal
VSC-HVDC grids

The expansion of the point-to-point HVDC transmission concept into a multi-terminal arrange-
ment, broadens the possibilities for a more flexible power transfer between ac grids and pro-
vides the means for a reliable integration of dispersed, high-capacity renewable power sources
to highly interconnected power systems. However, moving from a two-terminal to a multiter-
minal scale, increases the technical requirements and addscomplexity to the control strategies
that can be applied.

This chapter functions as an introduction to the ideas, visions and challenges behind the multi-
terminal concept, focusing on VSC-based MTDC grids. Existing control strategies are presented
and new types of controllers are proposed, aiming to enhancethe performance of the system or
accommodate new power-flow needs that current solutions have difficulty in handling. Exam-
ples utilizing four- and five-terminal MTDC grids, demonstrate the effectiveness of the proposed
controllers by comparing their performance to that of conventional control concepts, both in
steady-state and in cases of large disturbances.

7.1 Multiterminal HVDC grids

The use of HVDC technology has traditionally been restricted to point-to-point interconnec-
tions. However in recent years, there has been an increase inthe interest for MTDC systems,
given the technological advances in power electronics and VSC technology, as well as the chal-
lenges that rise from the need for the interconnection of large power systems and the intercon-
nection of remotely located generation sites. An MTDC system can be defined as the connection
of more than two HVDC stations via a common dc-transmission network. Just as the concept of
a conventional ac grid relies on the connection of multiple generation and consumption sites to
a common ac transmission system, the MTDC comprises of stations that inject or absorb power
from a dc-transmission system.
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Chapter 7. Control investigation in Multiterminal VSC-HVDC grids

Fig. 7.1 ABB’s HVDC grid vision in the 1990’s [88].

7.1.1 Technologies and initial projects

Since there are two types of HVDC converters (LCC and VSC), two types of MTDC grids
can be realized: an LCC-HVDC based and a VSC-HVDC based MTDC grid. Hybrid versions
combining the two technologies have also been introduced asconcepts [87], but the operational
and protection challenges appear to be hindering factors for a practical realization. The first
multi-terminal HVDC was an LCC-based system that was established in Quebec-New England,
Canada, in 1990. The existing HVDC line of 690 MW was extendedtowards north, over a
distance of 1100 km to connect a new 2250 MW terminal and also to the south, over a distance
of 214 km to connect a 1800 MW terminal. In 1992 a new 2138 MW terminal was added to the
already operational multi-terminal system. Nevertheless, despite the potential of transferring
large amounts of power compared to the VSC technology, experience has shown that LCC-
based MTDC grids appear to have important difficulties from acontrollability and flexibility
point of view.

The first time that an MTDC was installed using the VSC technology was in 1999 at the Shin-
Shinano substation in Japan. The system comprised of three VSC-HVDC terminals in back-to-
back connection and has been used for power exchange betweenthe two isolated 50 Hz and
60 Hz ac grids of Japan [36]. However, the lack of dc-transmission lines in the system, do not
render it an MTDC grid, in the conventional sense. Even though there is no ”true” VSC-based
MTDC grid commissioned yet, the VSC technology has been extensively used in point-to-point
connections, overcoming the technological limitations and disadvantages of LCC-HVDC and
proving that it can constitute the cornerstone of future MTDC grids.
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7.1. Multiterminal HVDC grids

(a) (b)

Fig. 7.2 (a) ABB vision for a European DC grid [89], (b) DESERTEC vision from 2009 [90].

7.1.2 Visions

The potential presented by the HVDC technology in bulk energy transfer over long distances,
triggered an early interest by the academic and industrial community for highly interconnected,
continental-wide, power systems. This was aided by an increased deregulation of the European
electricity market and the development and planning of remotely-located renewable power-
plants, as different visions started rising regarding the future of power systems. In this context,
there is a requirement of a flexible system that is able to transfer a large amount of power across
the continent.

Inspired by the early advances in multi-terminal HVDC, ABB already in the 1990s presented its
vision of the future highly interconnected, European-widepower system as shown in Fig. 7.1.
As observed, this plan considered the reliance of the European energy needs on a bulk import
of renewable energy (from wind, solar and hydro power plantsdispersed around the continent)
over a large mainland MTDC grid. The latter would constitutean overlying layer on top of
the existing ac-system. However, the available LCC-HVDC technology of the time proved to
be a weakening agent, since it could not offer the power-flow and grid flexibility required for
the realization of such an ambitious vision. The advances inthe VSC-HVDC technology to-
wards the end of the decade, revived the ideas for large MTDC grids. Consequently, similar
plans have been re-assessed and further developed by other parties, e.g. the DESERTEC foun-
dation in Fig. 7.2(b), while ABB presented its detailed concept of a European MTDC grid, as
in Fig. 7.2(a).

As a step towards the realization of large scale grids, smallDC grids are expected to be initially
developed and connected to the main ac system. This will testthe concept and determine future
requirements for an expansion of the grids. Such a proposal has been presented for a three-
terminal HVDC grid in Shetland, UK, as shown in Fig. 7.3(a). The North Sea is a location shared
by many nations and featuring high wind power potential. These properties make it an ideal
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(a) (b)

Fig. 7.3 (a) Example of possible three-terminal HVDC grid inUK [89], (b) EWEA vision from 2009
[91].

area to develop small-scale multi-terminal connections with offshore wind power integration.
Several relative proposals have been made, as in Fig. 7.3(b).

7.2 Key components for future large scale Multiterminal con-
nections

The realization of MTDC grids presupposes the use of a numberof components which are nec-
essary for the operational and safety integrity of the grids. Such devices are either not developed
yet or are in the final stages of their development, without having been commissioned yet.

7.2.1 DC-breaker

Devices for switching and protection of dc grids are vital torealize MTDC grids, especially for
meshed grids. A dc-fault affects the complete dc-transmission grid and if the faulty segment
of the lines is not isolated, the entire MTDC system would have to be taken out of operation.
Circuit breakers are widely used in transmission and distribution grids to interrupt short circuit
currents.

Figure 7.4(a) shows a schematic representation of a dc grid under where a dc-fault occurs as a
short circuit between the dc cables. Due to the terminal capacitor of the VSC station, which is
charged atυdc in steady-state operation, the system on the left of the fault can be described by
a constant voltage source ofυdc voltage, together with the impedance of the cable pair between
the converter and the fault location. The latter consists ofan equivalent resistanceRcableand an
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Fig. 7.4 DC-fault conditions: (a) Schematic representation of dc grid under short circuit condition, (b)
Equivalent circuit of a dc grid under short circuit condition.

equivalent inductanceLcable, as shown in Fig. 7.4(b). Upon occurrence of short-circuit,the full
grid voltage appears across the equivalent impedance. Considering a very small value ofRcable,
this voltage is approximately applied entirely acrossLcable causing a fault currentifault with a
constant rise ratedifault/dt = υdc/Lcable. The grid inductance does not limit the fault current
which will keep increasing as long asυdc is sustained. For very low values ofLcable (which
is the case for dc-transmission lines),difault/dt may reach values of hundreds of kA/s [92].
Therefore the fault current would rise to a very high value ina short amount of time and needs
to be interrupted quickly.

The important fact for interrupting off short-circuit currents in ac system is the natural zero
crossing. Since the natural zero crossing of current does not occur in a dc system, one important
question is how to interrupt short-circuit current or load current. In [92], a brief overview of the
concept of dc-circuit breakers is provided but no actual designs. The only HVDC breaker whose
operational effectiveness has been verified, was presentedby ABB [93] and is ready for actual
implementation. The principle of operation of this breakeris shown in Fig. 7.5. The hybrid
HVDC breaker consists of three essential components: a loadcommutation switch (LCS), an
ultra fast mechanical disconnector (UFD) and a main breakerwith surge arresters in parallel.

In normal operation, the load current flows through the closed UFD and the LCS. When the
dc-fault occurs and the control of the system detects it, themain breaker is switched on and
the LCS is switched off (with this sequence). As a result, thehigh fault current can now keep
flowing through the main breaker and UFD can be opened safely under virtually zero current
and without the fear of an arc across it. Finally, the main breaker is switched off and the fault
current flows through the highly resistive surge arresters that quickly limit and finally extinguish
it. The complete fault clearing time is in the range of ms ( [93] mentions 2 ms).

7.2.2 DC-DC converter

The interconnection of ac systems with different magnitudes of operating voltages is easily
performed through the use of transformers. In the future, MTDC grids may be developed with-
out necessarily following the same direct-voltage specifications. Given the benefits of having
interconnected power systems, from a power stability and power market perspective, the pos-
sibility of interconnecting such grids would prove invaluable. A lack of adequate concepts for
transforming direct voltages in high-power dc grids is one of the major challenges for the real-
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Fig. 7.5 Hybrid HVDC breaker operation principle: (a) normal load current path, (b) fault initiates oper-
ation, (c) LCS interrupts and commutates the current to the main breaker, (d) the main breaker
interrupts and commutates the current to the arrester.

ization of interconnected MTDC grids of different voltage ratings. This requirement has been
highlighted in [94] where a benchmark for future dc-gids hasbeen suggested.

DC/DC converters have extensively been used in various low-voltage/low-power applications
such as switched power supplies for electronic appliances.Very simple topologies are usually
considered like the classic buck or boost converters. For relatively higher power applications,
different topologies have been developed using DC/AC/DC topologies with a medium or high-
frequency ac-link as discussed in [95] and [96]. The generalstructure of these converters is
shown in Fig. 7.6. A medium/high frequency ac link includes atransformer to step up or step
down the voltage between the dc-input and the dc-output side, resulting in an advantageous
galvanic isolation, especially for high power applications. The frequency of the ac link depends
on the power level and varies between a few kHz to several MHz.

The galvanic isolated DC/DC converter consists of an inverter at the input side, transforming
the direct voltage into an alternating voltage of a certain frequency. In contrast to conventional

υdc1 υdc2

Fig. 7.6 General topology of a galvanic isolated DC/DC converter.
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converter applications for grid connections or drives, a sinusoidal output is not needed in this
kind of devices. Consequently, the frequency of the output ac voltage is equal to the switching
frequency resulting in a rectangular waveform applied to the transformer [97]. This makes fil-
ter elements unnecessary. The high operating frequency leads to a significant reduction in the
volume of the transformer. Finally at the output side, a rectifier is connected to change the alter-
nating voltage at the output of the transformer into a directvoltage. For a bi-directional power
transfer, both converters should have the form of an active rectifier.

Presently, DC/DC converters are available for power levelsbetween a few kW up to 1 or 2
MW [98]. It should be mentioned that although in the work of [98], a total output power of
1.5 MW has been realized, the converter has a modular structure where each module has an
output power of only 0.19 MW. This power level of a single module is significantly lower than
the requirements in HVDC grids, where the nominal power ranges from several hundreds of
MWs up to GWs. Three-phase topologies offer significant advantages for high-power appli-
cations [99]. Furthermore, standard three-phase transformer cores are available with various
materials, reducing the total volume of the system. Summarizing these aspects, three-phase
topologies seem to be the most advantageous concepts when being used in a multi-megawatt
DC/DC converter [92].

7.3 MTDC-grid topologies

Several types of MTDC connection concepts are possible to beestablished in practice, each
presenting a number of advantages and drawbacks. The most important of these designs and
probable to be actually implemented are summarized below.

Independent HVDC links

This grid configuration, presented in Fig. 7.7(a), follows the concept of having a grid with
independent two-terminal HVDC links where a cluster of stations are located in the same geo-
graphical area, sharing the same ac busbar. In this case, allthe connections are fully controllable
without the need of a centralized control to coordinate the stations. It may consist of a mix of
LCC- and VSC-HVDC links, operating at potentially different voltages. This setup is ideal to
incorporate existing HVDC lines into an MTDC grid and has no need of dc-breakers.

Radial grid

Owing to the simplicity of the design and the possibility to offer a sufficient level of power-flow
flexibility between multiple stations, the radial grid topology presented in Fig. 7.7(b), will most
likely be applied to the majority of the first MTDC grids. It isdesigned like a star without closed
paths forming. The reliability of this configuration is lower than the other type of connections
and in case of a station disconnection, portions of the dc grid could be ”islanded”.
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Fig. 7.7 MTDC topologies: (a) independent HVDC links, (b) radial connection, (c) ring connection, (d)
meshed connection.

Ring grid

The ring topology, shown in Fig. 7.7(c), connects all converter stations in a closed serial cir-
cuit, with each converter featuring two dc-connections to other stations. The advantages of this
connection type lie on the simplicity of the construction and operation. However, this type of
connection suffers from low reliability and high losses dueto the long transmission lines (if the
geographical location of the stations is big), which are necessary to close the grid loop. The
impact of the latter is intensified in the presence of remote stations which need to be connected
to the rest of the grid with two separate dc links.

Meshed grid

The meshed grid topology is presented in Fig. 7.7(d). As it can be observed, this type of grid
constitutes a ”dc” replica of an ”ac” transmission system, introducing redundant paths between
dc nodes. An additional advantage of this connection schemeis that a station may be added on
certain point of an HVDC link with a separate cable connection, without the need to interrupt
the initial HVDC link and introduce the station at the interruption point. The meshed MTDC
grid allows multiple power paths between dc nodes, increases the flexibility of power exchange
between the respective ac nodes, increases the overall reliability and reduces the shortest con-
nection distance between two nodes in the grid. However, a consequence of these features is the
need for advanced power flow controllers and an increase in the cable cost since more (and po-
tentially long) connections need to be established. Furthermore, the use of dc-breakers at every
station is considered necessary to ensure the viability of the grid in case of dc-faults.
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Fig. 7.8 Voltage-margin control in a three-station MTDC grid. The desired operating point is indicated
with ’×’.

7.4 Control of MTDC grids

The voltage and power control within a VSC-MTDC grid has beena challenge, given the task
of coordinating a large number of stations with the final objective of establishing a desired
power flow in the grid. A limited number of solutions have beenproposed so far, with the most
important of those being theVoltage-margincontrol and theVoltage-droopcontrol. Altered
versions of these fundamental control strategies are frequently found in the literature, but the
core of their philosophy remains the same.

7.4.1 Voltage-margin control

The voltage-margin method presented in [36,37] suggests that each converter follows a voltage-
power pattern where, according to the dc-grid voltage level, the converter can be automatically
assigned duties of either direct voltage or constant power control. There can only be one direct-
voltage controlled station operating in the complete MTDC grid.

An example of the method can be demonstrated in Fig. 7.8, where a grid of three converters is
considered. The direct voltage of the grid in steady-state conditions can vary betweenυdc,min
and υdc,max. Assume that a power flow plan requires Station 1 to inject 100MW to its ac-
side, Station 2 to inject 300 MW to its ac-side and Station 3 toinject 400 MW to the dc grid
(guaranteeing the power balance), while the voltage of the grid is maintained at a level ofυdc,1
(assuming very small voltage deviations around this value per station terminal to allow dc power
flow). Once the stations have been started-up and brought thegrid voltage to an initialυdc,min,
each of them follows their custom voltage-power pattern indicated in Fig. 7.8. The system then
reacts in the following steps.

1. Stations 1, 2 and 3 are dictated to inject +300 MW, +200 MW and +500 MW of power
to the dc grid, respectively. This gives a net power of 1000 MWtransfered to the dc grid,
causing the direct voltage to start increasing.

2. When the direct voltage reachesυdc,3, Station 1 becomes direct-voltage controlled while

161



Chapter 7. Control investigation in Multiterminal VSC-HVDC grids

Stations 2 and 3 keep injecting +200 MW and +500 MW to the dc grid, respectively.

3. Station 1 changes its power to maintain the direct voltageand power balance until it
reaches -100 MW which is not enough to compensate for the +700MW injected by the
other stations. This causes the direct voltage in the grid toincrease, exceedingυdc,3, and
Station 1 becomes again power controlled injecting 100 MW toits ac side. The net power
in the dc grid is now constant at +600 MW and the direct voltagein the grid increases
constantly.

4. When the direct voltage reachesυdc,2, Station 2 becomes direct-voltage controlled, being
able to support a dc power from +200 MW up to -300 MW. This is notenough to com-
pensate for the combined power of +400 MW, injected to the dc grid by Stations 1 and
3. This causes the direct voltage in the grid to increase, exceedingυdc,2, and Station 2
becomes again power controlled injecting 300 MW to its ac side. The net power in the dc
grid is now constant at +100 MW and the grid voltage increasesconstantly.

5. When the direct voltage reachesυdc,1, Station 3 becomes direct-voltage controlled, being
able to support a dc power from +500 MW up to -500 MW. This is enough to compensate
for the combined power of -400 MW, injected to the dc grid by Stations 1 and 2.

6. The system stabilizes with Station 1 exporting 100 MW to its ac side, Station 2 injecting
300 MW to its ac side and Station 3 keeping the direct voltage at υdc,1 while injecting
400 MW to the dc grid. This matches the desired power flow scenario.

If Station 3 is lost, Stations 1 and 2 keep injecting powers -100 MW and -300 MW, respectively,
to the dc grid. This gives a net power of -400 MW, which causes the direct voltage to start
decreasing. Once the latter reachesυdc,2, Station 2 becomes direct voltage controlled while
Station 1 is still in power control mode, injecting -100 MW. Station 2 can provide a power of
+100 MW to bring a power balance while maintaining the voltage atυdc,2. The system thus
stabilizes.

Concluding, the voltage-power curves of the stations can bedesigned in such a way that in
case a station is lost, another station will automatically resume the control of the direct voltage,
which is vital for the survival of the MTDC grid. The inherentdisadvantage of the method is
that the single station which is in direct-voltage control mode, has to bear the possibly large
changes of net power that could occur following the loss of a station.

7.4.2 Voltage-droop control

A method sharing some common traits with the voltage-margincontrol but overcoming its dis-
advantage of having a single station bear the changes of net power following the loss of a station,
is the voltage-droop control. This method follows a similarconcept with the frequency-droop
control of synchronous generators being simultaneously connected to an ac grid. In this case,
the change of grid frequency causes all generators to react in terms of power, with the indi-
vidual contribution being decided by their frequency-power droop characteristic. In the voltage
droop control, the change in the direct voltage in the dc gridcauses the MTDC stations to react
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with a change of their power transfer. The method was initially demonstrated in LCC-MTDC
grids [38] and later adapted for VSC-MTDC grids for offshorewind power integration [39,40].

An example of the applicability of the method is shown in Fig.7.9. The scenario is the same
as in Section (7.4.1). Once the stations are started up and the direct voltage of the grid reaches
υdc,min, all three stations inject power into the dc grid, raising the voltage. At a voltageυdc,1,
Station 1 exports 100 MW to its ac side, Station 2 injects 300 MW to its ac side and Station
3 injects 400 MW to the dc grid. This means that the net power import to the dc grid is zero
and the direct voltage is stabilized. Assume now that the voltage momentarily decreases. The
stations will then follow their droop curves and as a result,Stations 1 and 2 will decrease their
export of power to their ac sides while Station 3 will inject more power to the dc grid. This
implies a positive net power injection to the dc grid, causing the voltage to increase. In the same
manner, if the direct voltage exceedsυdc,1, Stations 1 and 2 will increase their export of power
to the ac grid, while Station 3 will decrease its injection ofpower to the dc grid. This will cause
a deficit of net power to the dc grid, causing its voltage to decrease back to its original position.

Assuming for example that Station 3 is lost, Stations 1 and 2 are still extracting power from
the dc grid. This implies that the grid voltage will start dropping until a valueυdc,new where
P1(υdc,new)+P2(υdc,new) = 0. It is obvious that such a point exists aboveυdc,min because at that
voltage level both surviving stations are already injecting power to the dc grid, stopping any
further decrease inυdc and start raising it again. It is evident that in cases of power changes in
the grid (such as the loss of a station), all surviving droop controlled stations contribute to the
new power distribution instead of just one station as in the voltage margin control.

Voltage-droop controller

The steady-state droop curves illustrated in Fig. 7.9 require a certain type of control in the
MTDC stations, with two possible options presented in Fig. 7.10. As it can be seen, the core of
each controller can be either a conventional direct-voltage controller (DVC) or an active power
controller (APC). In Fig. 7.10(a), the droop control can operate in a way that an error between
a power setpointPsetpointand the actual power flowPactualof the converter (corresponding toPg

-100MW -300MW

υdc1

υdc,max

υdc,min

υdc

P

υdc

P

υdc

P

Station 1 Station 2 Station 3

× 

400MW
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Fig. 7.9 Voltage-droop control in a three-station MTDC grid. The desired operating point is indicated
with ’×’.
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that is measured at the phase reactor as defined in Chapter 2) provides a corrective droop signal,
weighed by the droop constantk, to a DVC which without the added droop signal tries to follow
a direct-voltage setpoint ofυsetpoint

dc as reference. In steady-state, and assuming that the limiter
at the output of the DVC has not been saturated, the total input error to the DVC will be zero, or

υactual
dc =

(

Psetpoint−P∗
)

k+υsetpoint
dc =⇒

υactual
dc =

(

Psetpoint−Pactual
)

k+υsetpoint
dc (7.1)

This relation expresses the angled droop line in Fig. 7.10(c), where the point{Psetpoint, υsetpoint
dc }

is a point along the droop line and the pair{Pactual, υactual
dc } are the actual power and direct

voltage conditions at the specific station. At the same time,the tangent of the droop line will
be equal to−k. What this implies is that once the setpoint pair and the droop constant are
defined, if the actual powerPactual, the VSC will regulate the voltage at its dc terminals to be
equal toυactual

dc , which is found by the intersection of the defined droop curveandPactual. From
a different perspective, if the power flow is different thanPsetpoint, the DVC tries to follow the
voltage referenceυsetpoint

dc modified by a value of
(
Psetpoint−P∗)k, which is added to the latter.

This acts like loosening the action of the integrator in the DVC and instructs the controller
to follow a slightly different voltage reference thanυactual

dc with the choice ofk affecting the
magnitude of the deviation.

In a similar manner, the same droop action can be achieved by an APC which is trying to follow
a referencePsetpoint modified by the weighted error (υsetpoint

dc −υactual
dc ) /k. This controller is
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shown in Fig. 7.10(b) and the steady-state relation betweenvoltages and powers is given again
by (7.1). This means that the DVC- and APC-based droop controllers operate on the same droop
curve and produce the same steady-state results.

In an MTDC with a number of droop-controlled stations, the choice of setpoints for each con-
verter dictates how the steady-state power flow will be established. If the desired power flow
and the direct-voltage at the terminals of a selected converter are known, it is possible to execute
a power flow calculation in the MTDC grid so that all the necessary actual powers and direct
voltages at the terminals of each station are evaluated. This calculation should take into account
losses on the dc lines, the filter inductor, added harmonic filters and the converter itself. If the
resulting power and voltage pairs are provided as setpointsto the MTDC converters, the grid
will settle with actual power and voltage values being identical to the given setpoints, regardless
of the choice of droop constant for each station. This is a powerful tool in the accurate control
of the MTDC grid.

Contingencies and secondary control

Once a scheduled power flow has been established in the droop controlled MTDC grid, any
unplanned changes to the grid structure and operational conditions will set a new power and
direct-voltage balance. As an example, the loss of a stationor the unpredictable influx of power
by a station which is connected to a wind-farm will cause an initial change in the net injected
power to the dc grid. The direct voltage of the grid will thus change and all droop controlled
stations will follow their voltage-power droop curves, altering their power outputs until the
system reaches a state where the net injected power is zero and the voltage settles. The reaction,
in terms of power, of each station to a given voltage change isdefined by the slope of its droop
curve and therefore its droop constantk. The steeper the curve (largek), the stiffer the station
will be in terms of power change. This is an important information regarding the prioritization
of stations in the system during contingencies, in case there is a demand for selected stations to
preserve their power transfer as much as possible.

Following such unexpected events, it is obvious that the system operator would desire to restore
part of the initial power scheduling or establish a totally new planned power pattern. Conse-
quently, there is a need for a secondary, higher level control. This will monitor the conditions
of the grid, communicate with all the stations, take into account the needs of the system oper-
ator and give localized orders to the stations to adjust their voltage-power curve settings until
the complete grid reaches the desired steady-state. Ideally, this controller should solve a new
power flow problem in the MTDC grid and provide the stations with new setpoints. The authors
in [100, 101] suggest similar types of secondary controllers without the need for an accurate
solution of the power flow problem, with sufficiently good results nonetheless.

7.4.3 Control strategy for connections to renewable power plants

An important area of application for MTDC grids includes theconnection of distributed and
remote renewable power sources to the ac grid. The role of theMTDC grid would consider the
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collection of power from the power plants and a planned redistribution of the latter to selected ac
grids. However, the power in-feed from intermittent sources, e.g. offshore wind-farms, cannot
be accurately predicted. Therefore, it is not possible to set a preselected power flow and an
MTDC grid relying entirely on voltage-margin or droop control cannot be established.

An MTDC station that is connected to a cluster of such power sources would have to be ope-
rating as a fixed ac voltage source to which the power plants would connect and inject all
their available power. This control strategy is exactly thesame as the one used in existing two-
terminal VSC-HVDC connections to offshore wind-farms [39]. If the amount of neighboring
power plants is large, it could be desired to have more than one MTDC converters connected
to it. This would provide the MTDC operator with the flexibility to select how the power is
going to be shared among the converters for a more efficient power distribution, but also offers
redundancy in case a connected converter is lost. In this case, the power plant cluster would
not necessarily have to shed its power and shut down but its power could be absorbed by the
remaining stations, if the power rating of the latter allowsit. If the produced power exceeds the
capacity of the remaining connected stations, a portion of the power sources could be shut down
but the rest can remain connected.

For such a power flow scenario, the MTDC stations connected tothe power source cluster
should follow a control strategy similar to the one employedin a conventional ac grid. There,
multiple synchronous generators are connected to a common ac grid and each of them is
frequency-droop controlled via a governor, sharing the load variations according to their droop
setting. In the same manner, the connected MTDC stations would be acting as virtual syn-
chronous machines [102], with a droop setting to control theway the stations share power
during variations from the cluster or when an MTDC station islost.

On the other hand, the stations connecting such an MTDC grid to the external ac networks
should operate under the assumption that there is an unpredictable amount of power injected to
the MTDC grid. A solution to the problem is suggested in [103], where all these stations are
featuring direct-voltage droop control with power setpoints equal to zero and common voltage
setpoints. As a result, when there is no influx of power from the power sources, the affected
MTDC stations establish a common voltage to the nodes of the dc grid, ensuring zero power
flow between the dc lines. When there is power influx, the same stations will react based on
their droop curves, sharing the power according to the choice of the droop characteristic at each
station.

7.5 Controller offering direct-voltage support in MTDC gri ds

Within the droop-control context in MTDC grids, a modified droop controller is proposed at
this stage that can be utilized by any voltage controlled butalso constant-power controlled
stations connected to the grid. The benefit of such a controller lies in the fact that contrary to
a conventional constant-power controlled station, the useof the proposed controller offers the
possibility of controlling the grid voltage during contingencies while ensuring the transfer of the
requested power in steady-state conditions. The principles of operation and simulation scenarios
proving the effectiveness of the proposed controller are presented in the following sections.
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7.5.1 Direct-voltage support in MTDC grids

Abrupt and unscheduled power changes may occurs in an MTDC grid. In these cases, the
MTDC stations that are droop-controlled will react according to their droop curves, in an effort
to support the stiffness of the direct voltage in the grid by altering their power transfer. It is there-
fore deduced that a plurality of droop controlled stations in the grid increases the direct-voltage
support.

Some of the stations in the grid may however operate under constant power control, without the
provision for a droop functionality. These stations will try to sustain their power transfer before
and after an unexpected power change in the grid. While this is beneficial from the scope of an
uninterrupted power transfer, it reduces the ability to quickly support the direct-voltage stiffness
of the grid. It is essential that as many stations as possiblechange their power during such events
so that large direct-voltage fluctuations with dangerouslyhigh peaks, which could damage the
grid equipment, are avoided or quickly damped. The power controlled stations cannot provide
such an assistance to the grid.

7.5.2 Controller for direct-voltage support in MTDC grids

A controller, which can be used to solve the problem of providing additional voltage support
to an MTDC with droop-controlled and constant-power controlled stations, is proposed in this
section. The same type of controller can be used in all stations. Its main design features are
shown in Fig. 7.11. It constitutes a cascaded structure which can be divided in two main parts.
”Part 1” is a PI-based constant-power controller while ”Part 2” is a Droop-based Direct-Voltage
Controller (D-DVC). A selector is used to activate or deactivate Part 1, setting the operation
of the complete controller to a constant-power or droop-control mode, respectively. When Part
1 is activated, the controller is in its complete form and is addressed to as ”Power-Dependent
Direct-Voltage Controller” (PD-DVC).

Voltage-droop control mode

In the Voltage-droop control mode, the controller reduces itself to the D-DVC Part 2 of the
complete controller of Fig. 7.11. This structure is similarto the standard droop controller as
depicted in Fig. 7.10(a), but encapsulates a number of changes. The voltage control is not per-
formed on the direct voltage but rather on the square of the latter. This is in accordance with the
description of the direct-voltage controller described inSection (2.4.3) and suggested in [43].
Following the same controller design, a power-feedforwardterm is included where the dc power
Pdc of the converter is fed-forward through a low-pass filterHf(s) = af/(s+af) of bandwidth
af.

The direct-voltage controller in Section (2.4.3), which here acts as the core of the complete
droop controller, was designed to have only a proportional gainKp. A key feature in the present
controller is the manner in which the droop mechanism is incorporated. Similar to the frequency-
droop in synchronous generators connected to ac grids, the droop is here desired to have an

167



Chapter 7. Control investigation in Multiterminal VSC-HVDC grids

+
-

PI
setpointP

actualP
Kp+

-( )2setpoint
dcυ d

g

1

υ
*
di

*P

( )2actual
dcυ

×

1

0

+
+
+

filtered dc,P

Constant- power control mode

Voltage-droop control mode

Part 1

Part 2

+
+

droop

Droop 
mechanism

+
+

s

Ki

+
-

setpointP
actualP

(a)

k +
-

setpointP
actualP

Droop 
signal

(b)

Droop 
signal

k⋅⋅ setpoint
dc2 υ

[ ]2x2k

+

+
+
-

setpointP
actualP

(c)

Fig. 7.11 Power-Dependent Direct-Voltage Controller: (a)Complete structure of the controller, (b)
Droop mechanism for linear relation between power and square of the voltage, (c) Droop
mechanism for linear relation between power and voltage.

impact only on the integral part of the direct-voltage controller, affecting its steady-state output.
Therefore, unlike the conventional design in Fig. 7.10(a),the droop signal in the D-DVC is af-
fecting the proportional part of the PI but operates exclusively on the integral part. In this way
a great part of the closed-loop dynamics represented by the proportional part (as the controller
without the droop was originally designed) remains unaffected.

Regarding the droop mechanism block, there are two options that can be selected. The first is
shown in Fig. 7.11(b), with the value amplifying the errorPsetpoint−Pactualbeing a droop con-
stantk, exactly in the same way as in the conventional droop of Fig. 7.10(a). However, if this
is applied the controller would impose a linear connection between the steady-state power and
the square of the voltage, rather than the power and the voltage as is observed in the conven-
tional droop controller. Instead, the relation between power and the voltage will now be cubic.
Nevertheless, given the small deviation region of the direct-voltage in operational conditions,
the cubic curve is still close enough to the linear curve and is monotonous. The latter is more
important than the linearity for the droop concept to function in a grid application. As such, the
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droop mechanism can be still designed with a droop constant.

If the linearity between steady-state direct voltage and active power are to be respected, the
droop mechanism should be modified. Starting from the lineardroop curve described in (7.1),
it is possible to derive the following relation

υactual
dc =−
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Psetpoint−Pactual

)
k−υsetpoint

dc ⇒
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dc
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This form is now compatible to be used in the droop controllerof Fig. 7.11(a) and the droop
mechanism is modified to the one presented in Fig. 7.11(c).

Constant-power mode

During this mode, the PD-DVC controller of Fig. 7.11(a) operates in its complete form including
Part 1 and Part 2. This is a composite structure consisting ofthe D-DVC, with the addition of
a standard active-power PI controller adding its output signal to the voltage error of the D-
DVC. Actively adding a constant to the voltage error is equivalent to manipulating the setpoint
υsetpoint

dc . As a result, the voltage-droop characteristic curve wouldmove in a parallel motion to
a new position.

Assume that a power-flow solver has calculated the necessarysetpoints for the stations of a dc
grid, including a constant-power controlled station. Focusing on the latter, its power setpoint
Psetpoint is set equal to its desired constant power referenceP∗, with its direct-voltage setpoint
υsetpoint

dc being provided by the power-flow solution. These values are given to the controller of
Fig. 7.11(a) and the station will ideally settle to a steady-state ofPactual= Psetpointandυactual

dc =

υsetpoint
dc (if all the other stations are provided with setpoints from the power-flow solver). This

point is indicated with ”×” in Fig. 7.12, located on the droop curve of the station. It isnoticed
that Part 1 of the controller has not contributed at all in reaching this steady-state and its output
is equal to zero.

If a contingency occurs in the MTDC grid (i.e. a station is lost), the droop-controlled stations
react by following their droop curves in order to support thevoltage stiffness of the grid and,
as a result, re-adjust their steady-state power transfers.The station with the PD-DVC would
react as well due to its droop characteristics, altering itspower momentarily. However, in the
new condition of the grid, the setpoint pair{Psetpoint, υsetpoint

dc } cannot be followed anymore.
Nevertheless, there is a request to respect the power setpoint in order to ensure constant steady-
state power transfer. At this stage, Part 1 of the controllercalculates a necessary corrective
signal, which is added to the error at the input of the droop controller in Part 2. This operation is
equivalent to the active calculation of a new voltage setpoint by an external master-level control,
with the added advantage that it is performed locally. Consequently, the change in setpoints
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caused by the PI controller of Part 1 moves the entire droop characteristic along the voltage
axis, as illustrated in Fig. 7.12, until the pair ofPsetpointand an adequate voltage setpoint, which
will allow the flow of Psetpointin the grid, can be found on it. This new point is indicated with ”•”
in Fig. 7.12. From the previous analysis it is also clear thatthe controller will operate seamlessly
in pre- and post-contingency conditions, even if a randomυsetpoint

dc is originally provided.

7.5.3 Comments on the PD-DVC

Based on the description above, when the selector is set at position ”1”, the controller is able to

1. accurately maintain a given power reference without the need of communication with
other stations

2. retain the ability to provide voltage support during contingencies, in a way dictated by its
droop constant.

To achieve such characteristics, it is necessary to design the PI-based power controller of Part 1
so that the active power dynamics are slower than the direct-voltage dynamics, corresponding to
the design of Part 2. This allows the droop function to act quickly during a contingency without
being in conflict with the slower active-power control, which will restore the correct power flow
at a slightly later stage. This is compatible with the conventional design of a two-terminal VSC-
HVDC link where the direct-voltage control is designed to bemuch faster than the active-power
control.

Another comment regards the measurement of the actual powerPactual input to the controller.
It is possible to measure this power either asPdc at the dc-side of the station or asPg at the ac-
side of the station, as shown in Fig. 2.16. These quantities will differ due to the system losses.
Therefore, depending on the location of measuringPactual, the power setpointPsetpoint should
be calculated accordingly, to account for these losses. In this Chapter, it is chosen to identify
Pactualwith Pg.
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Fig. 7.13 Testing configuration of a five-terminal VSC-MTDC grid.

7.5.4 MTDC model-setup

The effectiveness of the PD-DVC will be verified through scheduled power-flow and contingency-
event simulations. For this purpose, a five-terminal MTDC grid is considered. This is an ideal
testing platform since it offers the possibility to simultaneously set a plurality of stations in
pure droop control and constant-power mode. For simplicity, in all of the simulations the HVDC
converters as well as their supplementary components (coupling inductor, transformer, ac-filters
and dc-side capacitor) are considered identical in terms ofratings and physical values and their
properties are described in Table 2.2. Any converter employing a droop functionality features
the same droop characteristick, equal to 2.5%. The layout of the five-terminal VSC-MTDC grid
is presented in Fig. 7.13, where for visual reasons a dc-linepair is shown as a single conduc-
tor. The grid is divided into distinct sectionsL1-L7 of overhead lines with assigned lengths of
L1=25 km,L2=50 km,L3=100 km,L4=50 km,L5=100 km,L6=70 km andL7=30 km.

7.5.5 Power-flow studies

At this stage, the functionality of the PD-DVC in establishing a desired power flow to the
previously described MTDC grid is demonstrated. The controller of Fig. 7.11(a) is applied
to all the stations. Among them, Stations 1, 3 and 4 are selected to operate with the selector
in position ”0”, effectively turning them into pure droop-controlled stations while Stations 2
and 4 have the selector in position ”1”, being constant-power controlled. The gain values of the
PI controller in ”Part 1” of the PD-DVC are chosen appropriately to provide a setting time of
approximately 1 s for a power-step reference. The droop mechanism is chosen to be the one in
Fig. 7.11(c) ensuring a linear relation between voltage andpower change. For the purpose of
this example, all stations are connected to infinitely strong grids, which are thus represented by
400 kV voltage sources.

A selected power-flow schedule dictates that the active power measured at the PCC of Stations
2, 3, 4 and 5 should be equal to -400 MW, 400 MW, -300 MW and -200 MW, respectively.
The direct voltage at the terminals of Station 1 is chosen equal to the rated value of 640 kV.
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The reactive-power contribution from the stations is set to0. Based on these requirements and
using performing a dc-power flow calculation, it is possibleto calculate the necessary setpoints
Psetpoint andυsetpoint

dc provided to the stations, such that the desired power flow will be estab-
lished. These values are presented in Table 7.1.

The performance of the complete system is here evaluated in conditions when there is a prede-
fined power schedule and when unexpected power changes occurdue to changes in the demands
of constant-power controlled stations. A related power flowpattern is implemented in stages as
described below

1. Initially, all stations are provided withPsetpoint=0 MW andυsetpoint
dc =640 kV so that there

is no power flow and the direct voltage of the MTDC is 640 kV at every measured point.

2. Between t=2 s and t=2.3 s, the setpoints of the stations arelinearly ramped from their
previous values to the ones in Table 7.1.

3. At t=4 s, the power setpoint of the constant-power controlled Station 2 is changed step-
wise toPsetpoint=-600 MW.

4. At t=5.5 s, the power setpoint of the constant-power controlled Station 2 is changed step-
wise toPsetpoint=0 MW.

The results of the simulation are shown in Fig. 7.14 where thePsetpointreferences of Stations 2
and 4 are depicted as well.

As expected, when all stations are provided with the calculated setpoints (until t=4 s), the steady-
state power and voltage match the given setpoints. At t=4 s, Station 2 is given a power-setpoint
step-change, which follows accurately. At the same time, Station 4 reacts slightly due to the
droop functionality within its direct-voltage controllerbecause there is a momentary change in
the grid voltage conditions, but quickly settles back to itsunchanged power setpointPsetpoint=-
300 MW, as dictated by the constant-power setting of its overall controller. The pure droop
controlled stations however react based on their droop curves and since there is an unexpected
increase in the exported power from the grid, they have to compensate to restore a power bal-
ance.

TABLE 7.1. SETPOINTS TO THE STATIONS

Station Psetpoint[MW] υsetpoint
dc [kV]

Station 1 515.472 640
Station 2 -400 638.166
Station 3 400 639.794
Station 4 -300 634.691
Station 5 -200 635.537
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Fig. 7.14 Active-power and direct-voltage response of a five-terminal MTDC grid using the PD-DVC. A
preselected power scheduling is applied, followed by consecutive power steps at the constant-
power controlled stations.

As a result, Station 5 reduces the power it exports and Stations 1 and 3 increase the power they
import to the dc-side.

In the same manner, the power setpoint of Station 4 is changedto zero at t=5.5 s and it promptly
follows it, with Station 2 briefly reacting to the sudden risein voltage in the grid (as there was
an unexpected reduction in exported power) but quickly settles back to its unchangedPsetpoint=-
600 MW. The droop controlled stations once again react basedon their droop curves to resore
the power balance.

Overall, the simulation verifies the functionality of the PD-DVC in an MTDC grid, achieving
simultaneous operation of three droop-controlled stations and two constant-power controlled
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stations.

7.5.6 Dynamic performance under fault conditions

The performance and direct-voltage supporting propertiesof the PD-DVC are demonstrated
through fault studies on the ac- as well as the dc-side. Thesestudies are performed on the same
five-terminal MTDC grid as described in the previous section, featuring three droop-controlled
and two constant-power controlled stations. The objectiveof the fault study is to compare the
performance of the PD-DVC to that of an active-power PI controller that would conventionally
be used to ensure constant power flow. As such, two types of MTDC-grid control strategies are
tested:

• ”Control Strategy 1”: All stations feature the PD-DVC of Fig. 7.11(a).

• ”Control Strategy 2”: The constant-power controlled stations feature regular PI control
with a rise time that is chosen to be close to the one achieved by the PD-DVC in ”Control
Strategy 1”. The other stations are chosen to operate with the proposed PD-DVC in D-
DVC mode (selector in position ”0”).

For consistency purposes in both the ac- and dc-side fault scenarios, the following common
settings are chosen:

1. The stations are set-up exactly as in Section (7.5.5), with Stations 2 and 4 being in
constant-power control mode and the setpoints to all the stations provided as in Table 7.1.

2. The ac-sides of all VSC stations are connected to infinite buses apart from the stations
close to which the faults occur. These are connected to an ac grid of Short Circuit Ratio
(SCR) equal to 2.

3. DC-choppers have been omitted in order to observe the puredynamics of the fault phe-
nomena.

4. The vector of the reference currents(i(dq)
f )∗max to the current controller of all stations is

limited to 1.0 pu.

5. The reactive power reference is set to zero for all stations.

AC-side fault scenario

The distance of the fault location from the VSC station terminals has a large effect on the
response of the station. The closer the fault is placed to theVSC station, the more fault current
contribution is bound to come from the station rather than the connected ac-network. In the
present simulation scenario, the fault is chosen to be located close to Station 2. Namely, the
equivalent grid impedance of the associated ac-network (which has been calculated for SCR=2)
is split into two parts in series connection. The first one is equal to the 80% of the grid impedance
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Fig. 7.15 Active-power and direct-voltage response of the five-terminal MTDC grid using the ”Control
Strategy 1” and ”Control Strategy 2” schemes. An ac-side fault is applied close to Station 2 at
t=3 s.
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and is connected to the infinite ac-source while the other part is equated to the rest 20% of the
impedance and is finally connected to the VSC station terminals. A small resistor is connected
between the connection point of the two impedances and the earth, through a breaker.

While being in steady-state conditions, the breaker closesat t=3 s and then opens after 50 ms.
This causes the voltage at the fault location to drop to approximately 22% of the original 400kV.
The power and direct-voltage response of the system for the two different types of control strate-
gies is presented in Fig. 7.15. For the ”Control Strategy 2” control mode, the power references
of the inverters are closely followed throughout the event,apart from the immediately affected
Station 2 which experiences a great power change. The response of the droop-controlled sta-
tions is fast and the initial power flow is quickly restored after the fault is cleared. On the other
hand, the direct-voltage, at the beginning and the clearingof the fault, exhibits large magnitude
deviations followed by relatively poorly-damped high frequency components.

When the ”Control Strategy 1” scheme is used, the power response of all stations is affected.
During the fault, the power of the stations seems to change with less severity than in the ”Control
Strategy 2” scheme. In fact, the immediately affected Station 2 seems to be able to still export
almost 200 MW to its ac-side (rather than only 50 MW in the ”Control Strategy 2”), implying
that the droop controlled stations don’t have to significantly alter their contribution. After the
fault clearing there is a low-frequency power oscillation until the systems quickly settles again
at t=4.2s. This low frequency oscillation is identified to most systems that feature a wide use of
direct-voltage droop and reflects the effort of the system tofind a new power-voltage settling
point, based on the distributed droop curves. Its frequencyand magnitude deviation is mostly
affected by the droop constantk.

In general, the direct-voltage response is less abrupt and better controlled compared to the one
achieved with the ”Control Strategy 2” control. The poorly-damped oscillations experienced
previously are now slightly better damped but the major difference is identified at the voltage
overshoot at the beginning and the duration of the fault, which is significantly reduced. In the
same manner, the voltage overshoot at the moment of fault-clearing is generally reduced with
the only exception of Station 3 where the ”Control Strategy 1” scheme features just slightly
higher overshoot than the ”Control Strategy 2” control.

Nevertheless, the post-fault power response of the system employing the ”Control Strategy 1”
scheme exhibits relatively large oscillations, compared to the system with the ”Control Strategy
2” scheme. It was further found that their frequency is related to the value of the droop con-
stantk. Despite the fact that these oscillations are quickly damped (approximately 1 s after the
clearing of the fault), their magnitude is large enough to consider such a power flow behavior
as undesired in an actual MTDC. This calls for modifications in the control algorithms.

DC-side fault and disconnection of a station

In this scenario, a fault is applied at t=1.5 s at the point between the upper dc-side capacitor
and the positive dc-pole at Station 1, which is connected to earth through a small resistance.
The station is provisioned to be equipped with DC-breakers on both of its dc terminals which
manage to forcefully interrupt the fault current after 5ms and disconnect the station from the
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Fig. 7.16 Active-power and direct-voltage response of the five-terminal MTDC grid using the ”Con-
trol Strategy 1” and ”Control Strategy 2” control schemes. Adc-side fault is applied close to
Station 1 at t=1.5s, followed by the disconnection of the station.
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dc grid. For simulation purposes, after the disconnection of the station, the fault location is
also isolated but the station is kept in operating mode. Thishas no effect on the system, whose
response is the main focus of the fault scenario.

The simulation results are presented in Fig. 7.16. During the fault, the surviving droop-controlled
Stations 3 and 5 experience a large inrush of active power when the ”Control Strategy 2” is
used, which quickly reaches and slightly exceeds the rated 1000 MW for Station 3. At the same
time, the constant-power Station 3 provides a very stiff power control while Station 5 exhibits
a poorly-damped power oscillation. In contrast, the power response under ”Control Strategy
1”, features contribution from all stations to the voltage support. Station 3 quickly increases
its power but never exceed the rated 1000 MW. Station 2 reduces its power extraction from
the grid and imports almost the rated power to the MTDC grid. At the same time, the pre-
viously stiff power-controlled Station 4 responds by decreasing its power extraction from the
grid. This prevents the converter capacitors of the dc grid to quickly discharge and is evident in
all the monitored direct-voltages, which are not allowed todip excessively right after the fault,
compared to ”Control Strategy 2”. This is occurring becausethe D-DVC part of the proposed
controller is operating in all surviving stations (rather than just the pure droop-controlled) and
reacts immediately to the change of the direct voltage.

Nonetheless, the long-term direct-voltage response is very similar for both control strategies
and in all the remaining stations, mainly characterized by apoorly-damped 53.2 Hz oscillation
which is eventually damped after 0.5 s. However for the plurality of the Stations (2, 3 and 4), the
direct-voltage overshoot occurring just after the beginning of the fault is always smaller when
the ”Control Strategy 1” scheme is used. This becomes important in the cases of Stations 2 and 4
that feature the largest voltage peak and the ”Control Strategy 1”. The sole exception of Station 5
where the ”Control Strategy 1” surpasses ”Control Strategy2”, in the highest monitored voltage
overshoot.

7.6 Control strategy for increased power-flow handling

The control aspect in VSC-MTDC grids is of great importance,with voltage droop based me-
thods considered as the most attractive solutions. This kind of existing strategies are normally
designed to maintain the level of voltage in the MTDC grid almost constant during unexpected
events, thus sacrificing the power flow. The aim of this section is to introduce a new droop-
controller structure which maintains the dc-grid voltage close to the nominal values and at the
same time tries to preserve the power flow, following such events as faults or disconnection of
stations.

7.6.1 Comparison with standard strategies

In principle, droop-based strategies are designed in a way to secure that the direct voltage of
the grid lies within strict boundaries under normal operation. However, in a post-fault scenario
where there is a change in the dc-grid layout (i.e. an HVDC station is disconnected), this strategy
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would sacrifice the accuracy of the power flow.

Considering a conventional D-DVC in the form of Fig. 7.10(a), a relatively small value of the
droop constantk implies that the controller is restrictive towards voltageand will not allow a
large variation of the direct voltage for a large variation of the power. In contrast, a relatively
large value ofk renders the controller restrictive towards power, allowing a small variation
of power in case of large changes of the dc-link voltage. In anMTDC grid, it is necessary to
maintain the voltage within a strict margin for proper operation of the system; at the same time it
is important to maintain the desired power flow in the different stations not only in steady-state,
but also in case of unexpected events such as faults or unplanned disconnection of a station.
Droop-controlled converters that are expected to maintaintheir the power flow to a large extent,
require large values ofk while converters that are mainly responsible for maintaining the direct
voltage and are expected to contribute the most power duringunexpected events require low
values ofk.

However, as investigated in [16], in a MTDC where there are stations using conventional droop
control with high values ofk (in the range of 60-100% instead of the more conventional 2%)
the chances of reaching instability in the grid are very high. Therefore a new controller is here
proposed to accommodate the use of large droop constants in order to offer better dynamic
response during fault events or power scheduling changes.

7.6.2 Proposed Controller

The proposed controller is presented in Fig. 7.17 and is a modified version of a conventional
D-DVC depicted in Fig. 7.17(a), which in turn is practicallyidentical to the one in Fig. 7.11(a)
(with the selector in position ”0”). The branch that provides the droop-based correcting signal to
the voltage controller consists of a PI-based droop controller that operates on the error between
the reference powerPsetpoint for the station of interest and the actual transferred powerPactual.
The controller’s corrective signal is added to the referenceυsetpoint

dc of the standard direct-voltage
controller.

The version in Fig. 7.17(b) achieves a linear steady-state relation between the actual power and
the square of the voltage (or ”energy stored in the dc-capacitor”) while the version in Fig. 7.17(c)
achieves a linear steady-state relation between the actualpower and the voltage. This is respec-
tively equivalent to the droop choices in the previously proposed controller of Fig. 7.11(b) and
Fig. 7.11(c).

Steady-state properties

The steady-state behavior of the proposed controller can beanalyzed in the simpler case of the
version in Fig. 7.17(b). Observing the branch generating the droop signal, it is possible to derive
the closed-loop transfer function of the combined PI controller with the negative feedback of
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This means that in steady-state, the investigated controller behaves exactly like the conven-
tional D-DVC with droop constantk of Fig. 7.17(a). Analyzing in a similar way, the suggested
controller in Fig. 7.17(c) behaves exactly as the conventional droop controller, portrayed in
Fig. 7.11 with the selector at positions ”0” and the droop selection of Fig. 7.11(c). Therefore,
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the use of the conventional or the suggested controller has no effect on the final power flow that
will be established in the MTDC grid, as long as the same setpoints and droop constants are
provided to the respective stations.

Dynamic properties

In the conventional droop controller of Fig. 7.17(a), the droop signal is created by comparing the
given power setpointPsetpointof a station to the actual transferred powerPactual, amplified by the
droop constantk and then added to the voltage setpointυsetpoint

dc . This means that whenever there
is a difference between the power setpoint and its actual value, the voltage controller will try
to set the direct voltage equal to the voltage represented bythe predetermined voltage setpoint,
corrected by the value of the droop signal. Whenk is relatively large, rapid and large power
flow changes in the system could lead to a large droop signal passing directly to the voltage
controller. This explains from a macroscopic point of view the instabilities observed in [16].

Conversely, the proposed controller features a PI-based droop signal mechanism. Even if in
steady-state the droop part of the controller reduces to a proportional gaink (in the case of
Fig. 7.17(b)), during transients it provides a filtering action, preventing large and rapid droop
signals from reaching the voltage controller. This allows improved dynamic performance when
changing setpoints, as well as in fault or station disconnection events.

7.6.3 Application of the proposed controller

The properties of the proposed controller are verified through power-flow and contingency-
event simulations. A four-terminal MTDC grid is consideredas shown in Fig. 7.18. This choice
instead of the five-terminal grid of Section (7.5.4) is performed because it was found that dy-
namic phenomena involving poor damping, can be better observed in this configuration. The
design of this grid follows the pattern used in Section (7.5.4), where for simplicity purposes, the
HVDC converters as well as their supplementary components (coupling inductor, transformer,
ac-filters and dc-side capacitor) are considered identicalin terms of ratings and physical values
and are the same as in Table 2.2. The grid is divided into distinct sectionsL1-L5 of overhead
lines with assigned lengths ofL1=100 km,L2=100 km,L3=100 km,L4=160 km andL5=40 km.
All stations are connected to infinitely strong grids, whichare represented by 400 kV voltage
sources.

Two different types of droop controllers will be utilized inthe simulations: the conventional
D-DVC of Fig. 7.17(a) (addressed to as ”Classic”) and the proposed controller in its version of
Fig. 7.17(b) (addressed to as ”Proposed”). In a conventional D-DVC as the one in Fig. 7.10(a),
where the voltage controller acts onυdc, the droop constantk is defined by a percentage value
e.g. 3%. This implies that if for zero power transfer the controlled station has a direct voltage at
its terminals equal toυdc,0, for rated power transfer the same voltage will drop by 3%. Addition-
ally the connection between transferred power and direct voltage at the terminals of the station
is linear. When the voltage controller, instead, acts onυ2

dc, there is no longer linear correlation
between power and voltage butk can still be defined as earlier, corresponding to the percentage
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Fig. 7.18 Testing configuration of a four-terminal VSC-MTDCgrid.

of dc-voltage change between zero and rated power transfer conditions.

Post-fault performance

After unexpected events in the system, such as faults, changes in the layout of the grid may occur
e.g. disconnection of certain portions of the dc grid. In this case, the new physical characteristics
of the grid will no longer be able to support the pre-fault scheduled power flow and all droop
controlled stations will have to re-adjust their power outputs according to their droop curves
and hencek values. High values ofk cause the associated station to be very restrictive on power
variations for any voltage variations in the dc grid. This means that the affected station will try
to retain its power exchange very close to its power setpointat all times and try to maintain its
assigned power flow.

The four-terminal MTDC grid shown in Fig. 7.18 is simulated with all stations operating with
the same type of controller at the same time (either ”Proposed” or ”Classic”). The selected
strategy dictates that

• When the ”Classic” control is used, all stations have the same droop constantk=2.5%.

• When the ”Proposed” control is applied, Stations 1, 2, 3 and 4have droop constants
k1=2.5%,k2=20%, k3=20% andk4=80%, respectively. This indicates that Station 1 is
expected to maintain the direct voltage at its terminals close to its setpoint under most
conditions, while the rest of the stations exhibit stiffness on the change of their power
transfer, with the highest degree of stiffness observed in Station 4.

A selected power-flow schedule dictates that the active power measured at the PCC of Stations
2, 3 and 4 should be equal to -600 MW, -700 MW and 700 MW, respectively. The direct voltage
at the terminals of Station 1 is chosen equal to the rated value of 640 kV. The reactive-power
contribution from the stations is set to 0. Based on these requirements and performing a dc-
power flow calculation, it is possible to calculate the necessary setpointsPsetpointandυsetpoint

dc
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provided to the stations, such that the desired power flow will be established. These values are
presented in Table 7.2.

A sequence of events is implemented in consecutive stages, as described below

1. Initially, all stations are provided withPsetpoint=0 MW andυsetpoint
dc =640 kV so that there

is no power flow and the direct voltage of the MTDC is 640 kV at every measured point.

2. Between t=1 s and t=1.4 s, the setpoints of the stations arelinearly ramped form their
previous values to the ones in Table 7.2.

3. At t=2.0 s, a fault is applied at the point between the upperdc-side capacitor and the
positive dc-pole at Station 3, which is connected to earth through a small resistance.
The station is provisioned to be equipped with DC-breakers on both of its dc-terminals
which manage to forcefully interrupt the fault current after 5 ms and disconnect the station
from the dc grid. For simulation purposes, after the disconnection of the station, the fault
location is also isolated but the station is kept in operating mode.

The results of the simulation are shown in Fig. 7.19. After the disconnection of Station 3, the
”Proposed” controller manages to restrain the power at Station 4 at 655 MW, from the pre-fault
700 MW, while under the ”Classic” control it reaches 366 MW insteady-state. Additionally,
Station 2 transmits a power of -693 MW under the ”Proposed” control, instead of the pre-fault
-600 MW, but deviates to -781 MW under ”Classic” control. Given that only Station 1 was
provided with a low droop constant in the ”Proposed” controlstrategy, it now bears the total
power that needs to be injected to the grid to restore a power balance. On the contrary, in the
”Classic” control strategy, all the remaining stations share equally the burden of changing their
power to restore a power balance, causing a significant deviation in the power transfer of them
all. Consequently, Station 1 decreases its power, under ”Proposed” control, from 615.2 MW to
49.6 MW, unlike the ”Classic” control scenario where it onlydecreases to 425.2 MW.

The changes in steady-state direct voltage are in any case relatively limited and are formulated
according to the droop gains of the remaining stations and the new power flow. The results
show that under the ”Proposed” control with a combination ofdroop constant values according
to which station is needed to preserve its power transfer after contingencies, the power flow is
better preserved while keeping the voltages in the MTDC gridclose to the nominal value.

TABLE 7.2. SETPOINTS TO THE STATIONS

Station Psetpoint[MW] υsetpoint
dc [kV]

Station 1 615.245 640
Station 2 -600 633.204
Station 3 -700 630.202
Station 4 700 638.166
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Fig. 7.19 Power and direct voltage of all stations in the four-terminal MTDC, after the disconnection
of Station 3. Blue color represents ”Proposed” control while red color represents ”Classic”
control.
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Dynamic performance during power-flow changes

Poorly-damped conditions might appear in droop controlledMTDC grids [41]. Such events may
appear when high values ofk are applied [16], as will be demonstrated in the current simula-
tion scenario. The four-terminal MTDC grid used in the previous section, is simulated with all
stations operating with the same type of controller at the same time (either ”Proposed” or ”Clas-
sic”). In both cases, the controllers of Stations 1, 2, 3 and 4havek1=2.5%,k2=20%,k3=20%
andk4=80%, respectively. This is exactly the same as in the strategy for the ”Proposed” control
strategy of the previous section, but now the same droop constants are applied to conventional
droop controllers as well.

A sequence of events is implemented in consecutive stages, as described below

1. Initially, all stations are in steady-state, following the setpoints of Table 7.2.

2. At t=2 s, new values of setpoints are provided to the stations. These are calculated based
on a demand for an increase in power at Station 4 from the initial 700 MW to 950 MW,
while Stations 2 and 3 maintain their power and Station 1 should still regulate the direct
voltage at its terminals at 640 kV. The new setpoints are provided in Table 7.3.

The effect of the application of a new set of set-points to thestations is presented in Fig. 7.20
where the power and direct voltage of each station is provided over time. Even though both
types of control manage to establish the requested power flowchanges in steady-state, the con-
figuration using the ”Classic” control appears to suffer from poorly-damped oscillations. This
oscillation appears in the voltage and power of Station 4 andis located at approximately 298 Hz.
It should be reminded that this station features the highestvalue of droop constant. The perfor-
mance on the other stations, which feature a smaller value ofk, does not seem to be affected by
the oscillation.

On the other hand, when the ”Proposed” type of control is applied, there is no issue with the
298 Hz voltage and power oscillation, which does not appear at all. Additionally, all stations
(including Stations 2, 3 and 4 that feature relatively high values ofk), demonstrate a smooth
power and voltage response, ensuring the dynamic integrityof the system. Furthermore, all
stations exhibited a high overshoot peak when the ”Classic”control was chosen. This type of
control appears to have a fast response, which in turn leads to high overshoots in the voltage
response during the application of the new setpoints. On thecontrary, the ”Proposed” type
of control seems to perform in a smoother manner, maintaining the voltage very close to the
nominal values with insignificant overshoots and no poor damping issues.

TABLE 7.3. UPDATED SETPOINTS TO THE STATIONS

Station Psetpoint[MW] υsetpoint
dc [kV]

Station 1 364.948 640
Station 2 -600 634.604
Station 3 -700 633.007
Station 4 950 641.415
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Fig. 7.20 Power and direct voltage response in the four-terminal MTDC during a change of setpoints at
t=2 s. Blue color represents ”Proposed” control while red color represents ”Classic” control
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7.6.4 Dynamic performance during ac-faults

The behavior of the PD-DVC controller in Section (7.5.6) demonstrated satisfactory results,
restricting the deviations in the direct voltage of the dc grid after an ac-fault, but at the expense
of relatively large power fluctuation in all stations. The ”Proposed” controller is here tested in
exactly the same conditions as those in Section (7.5.6), in an attempt to evaluate whether the
performance of the system can be improved in the case of ac-faults.

In this sense, the power flow scenario of Section (7.5.6) is repeated on the same five-terminal
MTDC grid, with the same setpoints given to the converters. Two types of MTDC-grid control
strategies are tested:

• ”Proposed” control: Identical to the ”Control Strategy 1” control of Section (7.5.6) but
Stations 2 and 4 feature the ”Proposed” controller proposedin this section with a droop
constant equal tok=80%. Even though this strategy does not provide constant-power
control to Stations 2 and 4, the selected value of their droopconstants imply that any
deviations from the power setpoints, in case of station disconnection in the grid, would
be minimal. The other stations of the grid keep using the PD-DVC controller of Section
(7.5.2) in its standard-droop mode (or D-DVC mode), with droop constants equal to 2.5%.

• ”Control Strategy 2” control scheme: Same as the strategy ofthe same name in Section
(7.5.6).

The results of the ac-fault simulation are presented in Fig.7.21. As it can be observed, the use
of ”Proposed” control has improved the power response of thestations not only compared to
the ”Control Strategy 1” control of Section (7.5.6) but alsocompared to the ”Control Strategy
2” control. In the duration of the fault, all stations seem torestrict the deviation of their pre-fault
power, with the exception of Station 4, which nonetheless presents only as minor oscillation in
the power transfer. Furthermore, after the fault is clearedand the stations try to restore the orig-
inal power flow, the power response with the ”Proposed” control appears to be faster and more
accurate with minimal overshoots, compared to the ”ControlStrategy 2” scheme. In particular,
the power at Stations 1 and 2 never exceed 564 MW and -472 MW under ”Proposed” control,
respectively. The same quantities for the ”Control Strategy 2” have values of 598 MW and -529
MW.

As far as the voltage response is concerned, the ”Proposed” control shows impressive results
compared to the ”Control Strategy 2” scheme, very similar tothose obtained by the ”Control
Strategy 1” in Fig. 7.15. Despite the fact that Stations 2 and4 are controlled so that their power
transfer is maintained as close to the designated power setpoint, the droop characteristics of
their ”Proposed” controllers still allows them to support the dc-grid voltage.

Concluding, the ”Proposed” controller offers the similar benefits as the PD-DVC control in
terms of direct-voltage support to the grid, but with the advantage of a great improvement in its
power response during system disturbances, while providing almost constant power control to
selected stations.
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Fig. 7.21 Active-power and direct-voltage response of the five-terminal MTDC grid using the ”Pro-
posed” controller and ”Control Strategy 2” scheme. An ac-side fault is applied close to Station
2 at t=3s.
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7.7 Summary

This chapter presented the concept of VSC-MTDC grids and focused on their structural and
control features. Having provided a brief description of the history and visions in the MTDC
area, the possible future topologies and key components were described, along with the main
types of control that are considered for implementation. Among the latter, the voltage-droop
control appeared to be the dominant solution and the main objective of the chapter was to
introduce new droop-based controllers that offer improvedpower-flow handling capabilities
and provide voltage support to the dc grid under disturbances.

An initial proposal involved the PD-DVC controller, capable of proving constant power control
to stations that require it, under all circumstances, including a change in the dc grid e.g. sta-
tion disconnection. Simulation results in a five-terminal MTDC grid showed that the controller
provided much better voltage support than a conventional active-power PI controller, but at the
cost of relatively high power-fluctuations in the grid. A second type of controller, addressed
to as ”Proposed”, was later introduced, designed specifically for cases where a station is re-
quired to be in droop-control mode but also retain its power flow as much as possible during
grid contingencies. The results in a four-terminal MTDC grid demonstrated improved power-
handling capabilities and increased the damping of the system, compared to a conventional
droop controller. Furthermore, its voltage support capabilities were almost identical to those of
the PD-DVC controller, but with the added benefit that previously observed acute power-flow
fluctuations during fault conditions were now greatly diminished.
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Chapter 8

Conclusions and future work

8.1 Conclusions

In this thesis, the dc-network dynamics of VSC-HVDC systemswere thoroughly investigated in
two-terminal connections and new perspectives were introduced to the control of VSC-MTDC
grids. As an introductory part, Chapter 3 set the backgroundfor poorly-damped conditions in
dynamic systems. It was shown in an explicit way that a VSC station operating as a constant-
power provider in a VSC-HVDC or in motor drives, introduces the effect of a negative resis-
tance. This has a degrading effect on the damping of the complex poles of the system, whose
frequency is usually related to the characteristic frequency of the LC filter between the VSC
and its dc source in drive applications, or the dc-transmission link natural frequency in a two-
terminal VSC-HVDC connection.

In Chapter 4, a two-terminal VSC-HVDC system was modeled as aSISO feedback system,
where the VSC-transfer functionF(s) and the dc-grid transfer functionG(s) were defined and
derived. The implemented direct-voltage control had a direct impact on the transfer function
F(s) while G(s) relied entirely on the passive components of the dc-transmission link and the
operating conditions. Furthermore, if no power-feedforward term is used in the direct-voltage
control,F(s) is completely decoupled from the dynamics of the dc-transmission link. This is a
major advantage when analyzing the SISO system in the frequency domain because it is possible
to observe the separate contribution to instability by the VSC and the dc grid. This feature was
exploited when using the passivity approach, where it was shown that as long asG(s) can be
successfully replaced by a marginally stable and incidentally passive transfer functionG′(s),
the passivity characteristics of the VSC via its transfer functionF(s), will, to a certain degree,
determine the stability of the closed-loop system. Indeed,it was shown that when the direct-
voltage controlled VSC station imports power to the dc grid,the dc-grid resonant peak might
coincide with a negative Re[F( jω)], meaning that instead of being damped, the resonance is
amplified; the more negative Re[F( jω)] is, the greater the risk of instability. As an example, a
factor that caused such conditions to appear was an increasing bandwidthad of the closed-loop
direct-voltage control.

Nevertheless, it was shown that a direct-voltage controller with power-feedforward leads to an
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F(s) that is no longer decoupled from the dc-grid dynamics and is unstable and non-passive.
Since the passivity approach could no longer be used, the net-damping criterion was utilized as
an alternative frequency-domain approach. It was shown that the criterion could explain most
conditions of potential instability, simply by focusing onthe open-loop resonant frequencies
of the VSC and dc-grid transfer functions and determining whether the cumulative damping of
these functions was positive at the resonant points (and therefore stability was ensured). Addi-
tionally, the open-loop resonances could be defined in unstable subsystem transfer functions,
showing that unstable subsystems did not prohibit the application of the criterion to derive con-
clusions for the closed-loop stability. It was also found that the absolute amount of net-damping
in the system measured at the frequency where the Nyquist plot crosses the real axis closest to
-1, is directly related to the existence of poorly-damped dominant poles and their damping fac-
tor. A net-damping approaching zero at that frequency, indicates the existence of poorly-damped
poles with constantly decreasing damping factor.

In Chapter 5, theSMTanalytical method was developed and presented in conjunction with the
already knownLR method, which had nevertheless never been implemented in the analysis of
power systems or control related processes. A benefit of theSMT focused on the fact that is not
iterative, meaning that the form and complexity of the final analytical eigenvalue expressions is
known from the beginning, in contrast to the iterativeLR where each additional iteration theo-
retically improves the accuracy but dramatically worsens the compactness of the expressions. A
two-terminal VSC HVDC system was successfully minimized toa 4th order state-space repre-
sentation and both methods were applied on it in Chapter 6. Itwas discovered that when using
theLRmethod, the imaginary part of the expressions for complex-conjugate poles was converg-
ing at less iterations of the algorithm than the real part. Thus, it was suggested that theLRcould
be interrupted while executing, in order to extract a sufficiently accurate expression of the imag-
inary part and then be allowed to execute until the real part was sufficiently accurate as well. The
final eigenvalue expression comprised of the two separatelyextracted real and imaginary parts.
Both methods showed impressive results in approximating the actual values of the VSC-HVDC
model, but theSMTshowed a consistent increase in accuracy compared to theLR. A concluding
investigation revealed that a high inductance per kilometer of the dc lines, adversely affected
the accuracy of the results; in this case, theSMTshowed a better tolerance, being able to show
the way the eigenvalues would move for the change of a system parameter and still provide a
good estimation of the absolute location of the poles. TheLR was further applied to calculate
the eigenvalues of the dc-transmission link portion of the previous two-terminal connection,
demonstrating excellent results for any parameter variation.

Finally, Chapter 7 focused on the development of droop-based controllers for the use in MTDC
grids. In the beginning, a controller was proposed for use incases where a VSC station re-
quired to maintain its designated power flow after unexpected contingencies in the grid, such as
the loss of a station following a dc-side fault, while maintaining voltage-droop characteristics
during transients in the grid. The concept was tested in a five-terminal MTDC, where the per-
formance of the controller was compared to that of a conventional PI-based power controller. It
was shown that the use of the proposed controller caused a smaller direct-voltage variation in
the grid during and after ac faults, but at the expense of significant but quickly damped power
oscillations at all the stations. The performance after thedisconnection of a station showed com-
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parable behavior to that of having a pure PI controller to regulate the power, but with a slight
improvement in reducing the direct-voltage oscillations that occurred within the MTDC. A sec-
ond droop-controller variation was proposed for use in MTDCgrids where a droop-controlled
station requires a very high droop constant, meaning that itshould maintain its power flow al-
most constant under all grid conditions, but still provide direct-voltage support as a conventional
droop-controlled station would during grid contingencies. The proposed controller was tested
in a four-terminal MTDC and compared to the performance of conventional droop-controllers,
with the same droop constants being used for the same stations in both scenarios. It was shown
that following a rapid change of power and voltage setpoints, the two controllers had no dif-
ference in steady-state performance (as desired), but the proposed control provided a smooth
power and direct-voltage reaction from the stations that used it, compared to the conventional
control that even exhibited poorly-damped oscillations. Finally, the controller was tested in the
five-terminal MTDC of the earlier scenario and showed very good results for the ac-side fault
scenario with almost negligible power oscillations compared to the first controller that was pro-
posed.

8.2 Future work

The main focus of this thesis has been on the stability and control studies in the area of VSC-
HVDC, with most of the efforts being concentrated around thetwo-terminal arrangement but
later expanded to MTDC as well. Several future steps can be considered for the improvement
of the acquired results and the investigation of related butunexplored areas of interest.

In the frequency-domain analysis of the two-terminal VSC-HVDC model, it was shown that the
passivity approach can be applied only within specific boundaries. In particular, the unstable
pole of the dc-grid transfer functionG(s) must be sufficiently close to the origin, so thatG(s)
can be replaced by the marginally stableG′(s), as shown in Chapter 4. Furthermore, the VSC-
transfer functionF(s) must also be stable, limiting the choices on the direct-voltage control
strategy. In general, a higher complexity of the model increases the chances of having unstable
subsystem transfer functions. Contrary to the passivity approach, the net-damping approach not
only does not seem to suffer from such restrictions but can also give far more consistent and
direct information on the system’s stability and the system’s poorly-damped poles. As such, a
future consideration is to apply the net-damping criterionmethodology to higher complexity
models and MTDC grids that can be represented by SISO models.

The analytical expressions that were derived by theSMT andLR methods, constitute a leap
in acquiring useful and relatively compact eigenvalue descriptions. However, if it is desired to
established design specifications from these expressions,their final form should be further sim-
plified. A future step could therefore consider studies on minimizing the analytical expressions,
to the extent that their validity is sufficient for a small variations of only some, or preferably
just one of the system’s parameters. Since the derived eigenvalues would no longer need to
have a complicated form in order to express the cumulative effect of all the parameters on the
pole movement, the eigenvalue expressions could be substantially reduced and provide design
criteria and specifications.
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Additionally, in this thesis, theSMTandLR methods were applied to system models up to the
4th order. Systems of higher order could either increase the complexity of the final eigenvalue
expressions (at least in the case of theLR), or may not even be solvable (considering theSMT).
It could be useful to modify theLR method so that the maximum possible simplifications could
be performed while creating the assisting matrices at each iteration step. In this way, it could
be possible to produce final expressions for higher-order models, that are valid within a small
variation margin of a nominal set of system parameters. Similarly, it could be useful to investi-
gate whether it is theoretically possible to apply theSMTmethod on 5th or 6th order models, or
whether a specific structure of the model’s state-matrix canassist the solution of the eigenvalue
problem.

Regarding the MTDC grid investigation, it could be desirable to develop a procedure for the
tuning of the proposed controllers, based on a strict dynamic description of the system’s model.
This step, as well as improvements to the functionality of the controllers, could definitely be
considered for future research.

A following step in the investigation of poorly-damped resonances in VSC-HVDC systems is
the consideration of the input admittance of the VSC-stations. A relevant analysis has been
performed in [43] for a single two-level VSC that is normallyequipped with a lumped dc-side
capacitor, without considering the impact of a dc-transmission link dynamics connected to the
converter. The MMC has already been tested in HVDC applications and the current indications
seem to consider this type of converter as dominant for future commissioned projects [2]. Each
of the submodule cells of the MMC has a small capacitor bank and a unique switching pat-
tern inserts or disconnects this capacitor to the rest of theconverter circuit. This implies that
the effective dc-side capacitance of the MMC, depends on thetype of cell-switching and will
inevitably impact the input admittance of the converter (especially on its dc-side) and the dy-
namics of the VSC-HVDC system to which the converter is connected. A future consideration
for the expansion of the results of this thesis would consider the calculation of the input admit-
tance of the MMC converter and investigate its impact to the development of poorly-damped
conditions and instability in two-terminal HVDC and MTDC grids.
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Appendix A

Transformations for three-phase systems

A.1 Introduction

In this appendix, the necessary transformations from three-phase quantities into vectors in sta-
tionaryαβ and rotatingdq reference frames and vice versa will be described.

A.2 Transformation of three-phase quantities to vectors

A three phase system constituted by three quantitiesυa(t), υb(t) andυc (t) can be transformed
into a vectorυ(αβ ) (t) in a stationary complex reference frame, usually calledαβ -frame, by
applying the following transformation

υ(αβ ) (t) = υα (t)+ jυβ (t) = Ktran

(

υa(t)+υb(t)ej 2
3π +υc (t)ej 4

3π
)

(A.1)

The transformation constantKtran can be chosen to be
√

2/3 or 2/3 to ensure power invariant or
amplitude invariant transformation respectively betweenthe two systems. This thesis considers
a power invariant transformation. Equation (A.1) can be expressed in matrix form as

[
υα (t)
υβ (t)

]

= T32





υa(t)
υb(t)
υc (t)



 (A.2)

where the matrixT32 is given by

T32 = Ktran

[

1 −1
2 −1

2

0
√

3
2 −

√
3

2

]

The inverse transformation, assuming no zero-sequence, i.e.υa(t)+υb(t)+υc (t) = 0, is given
by the relation





υa(t)
υb(t)
υc (t)



= T23

[
υα (t)
υβ (t)

]

(A.3)
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where the matrixT23 is given by

T23 =
1

Ktran






2
3 0
−1

3
1√
3

−1
3 − 1√

3






A.2.1 Transformation between fixed and rotating coordinatesystems

For the vectorυ(αβ ) (t) rotating in theαβ -frame with the angular frequencyω(t) in the posi-
tive (counter-clockwise direction), adq-frame that rotates in the same direction with the same
angular frequencyω(t) can be defined. The vectorυ(αβ ) (t) will appear as fixed vectors in this
rotating reference frame. A projection of the vectorυ(αβ ) (t) on thed-axis andq-axis of the
dq-frame gives the components of the vector on thedq-frame as illustrated in Fig. A.1.

d

q

( )tθ

( )( )tαβυ

( )tdυ

β

α

ω(t)

( )tqυ

( )tαυ

( )tβυ

Fig. A.1 Relation betweenαβ -frame anddq-frame.

The transformation can be written in vector form as follows

υ(dq) (t) = υd (t)+ jυq (t) = υ(αβ ) (t)e−jθ (t) (A.4)

with the angleθ(t) in Fig. A.1 given by

θ (t) = θ0+

t∫

0

ω (τ)dτ

The inverse transformation, from the rotatingdq-frame to the fixedαβ -frame, is provided as

υ(αβ ) (t) = υ(dq) (t)ejθ (t) (A.5)
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In matrix form, the transformation between the fixedαβ -frame and the rotatingdq-frame can
be written as [

υd (t)
υq(t)

]

= R(−θ (t))

[
υα (t)
υβ (t)

]

(A.6)

[
υα (t)
υβ (t)

]

= R(θ (t))

[
υd (t)
υq(t)

]

(A.7)

where the projection matrix is

R(θ (t)) =

[
cos(θ (t)) −sin(θ (t))
sin(θ (t)) cos(θ (t))

]
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Appendix B

Per-unit Conversion

The use of the per-unit system in the analysis of Chapter 2, requires the establishment of base
values for the conversion of entities from natural to per-unit values. This section provides the
definition of all the necessary base values for both ac- and dc-side quantities.

B.1 Per-unit conversion of quantities

The base values for the electrical variables (current and voltage), as well as entities that corre-
spond to electrical properties (impedance, inductance, capacitance, frequency) are provided in
Table B.1, for both ac- and dc-side quantities. As, an example, Table B.2 presents the numerical
form of the derived base values for the system with characteristics described in Table 2.2.

TABLE B.1. BASE VALUES

Base value Definition
Base frequency (ωbase) 2π fnominal

Base time (tbase) (2π fnominal)
−1

Base power (Sac−base) SVSC−rated

ac side - Base voltage (υac−base) uac−rated

ac side - Base current (iac−base)
Sac−base√
3υac−base

ac side - Base impedance (Zac−base)
υ2

ac−base
Sac−base

ac side - Base inductance (Lac−base)
Zac−base

ωbase

ac side - Base capacitance (Cac−base) (Zac−baseωbase)
−1

dc side - Base power (Sdc−base) SVSC−rated

dc side - Base voltage (υdc−base) udc−rated

dc side - Base current (idc−base)
Sdc−base
υdc−base

dc side - Base impedance (Zdc−base)
υdc−base
idc−base

dc side - Base inductance (Ldc−base)
Zdc−base

ωbase

dc side - Base capacitance (Cdc−base) (Zdc−baseωbase)
−1
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TABLE B.2. BASE VALUES

Base value Numerical value
ωbase 314.16 rad/s

Sac−base 1000 MVA
υac−base 320 kV
iac−base 1.8 kA
Zac−base 102.4Ω
Lac−base 325.9 mH
Cac−base 31.08µF
Sdc−base 1000 MW
υdc−base 640 kV
idc−base 1.563 kA
Zdc−base 409.6Ω
Ldc−base 1304 mH
Cdc−base 7.77µF
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