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Abstract

This paper focuses on the update step of Bayesian nonlinear �ltering. We �rst derive the unscented Gaussian likelihood
approximation �lter (UGLAF), which provides a Gaussian approximation to the likelihood by applying the unscented
transformation to the inverse of the measurement function. The UGLAF approximation is accurate in the cases where
the unscented Kalman �lter (UKF) is not and the other way round. As a result, we propose the adaptive UGLAF
(AUGLAF), which selects the best approximation to the posterior (UKF or UGLAF) based on the Kullback-Leibler
divergence. This enables AUGLAF to outperform both the UKF and UGLAF.

Keywords: Bayes' rule, Kalman �lter, Gaussian approximation, nonlinear �ltering

1. Introduction

The objective of Bayesian �ltering is to estimate the
current state of a process based on previous measurements
up to the current time. Estimators of interest such as the
minimum mean square error (MMSE) estimator require
knowledge of the probability density function (PDF) of
the current state given the current and previous measure-
ments. This PDF is referred to as the posterior PDF.
In principle, the posterior can be calculated in a recur-
sive procedure that involves two phases: prediction and
update.

If the system is linear and Gaussian or the state space
is discrete, the posterior PDF can be calculated in closed-
form. In other cases, the posterior PDF is intractable
in general so approximations are required. Particle �l-
ters (PFs) [1] obtain weighted samples from the posterior
by sequentially drawing from an importance density. PFs
give an asymptotically exact approximation of the pos-
terior as the sample size tends to in�nity although their
performance for a �nite sample size may be poor. Thus, it
is of interest to develop computationally e�cient Gaussian
approximations, especially, if the posterior is unimodal.

Gaussian approximations are often based on the Kalman
�lter (KF). Even though the KF is most commonly known
in the literature as the solution to the linear/Gaussian �l-
tering recursion, the KF can also be applied in the nonlin-
ear case [2, Sec. II.A]. In this case, the KF does not provide
the true posterior PDF, it is an approximation. Particu-
larly, the update step of the KF consists of approximating
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the �rst two moments of the posterior by the linear mini-
mummean square error (LMMSE) estimator with its mean
square error matrix [2, Sec. II.A]. Calculating the LMMSE
estimator requires knowledge of the mean and covariance
matrix of the current measurement and cross-covariance
between the current state and the current measurement.
However, these moments (KF moments) cannot be cal-
culated in closed-form so we require approximations. In
this paper, we refer to these approximations as approxima-
tions to the KF. For instance, the extended Kalman �lter
(EKF) [3, 4] approximates the KF moments using ana-
lytical linearisation while the unscented KF (UKF) [2, 5]
and cubature KF (CKF) [6, 7] use sigma-point methods.
Other approaches, such as the iterated EKF (IEKF), use
the maximum a posteriori (MAP) estimate in the update
step to approximate the posterior [8]. However, the IEKF
is not ensured to converge and requires the calculation of
Jacobians.

In the update step with a nonlinear measurement func-
tion, analysis has shown that the KF and its approxima-
tions tend to perform well when the measurements are im-
precise but deteriorate as the measurements become more
precise [9, Sec. II.D]. Motivated by this, we focus on the
update step and seek a computationally e�cient Gaus-
sian posterior density approximation which can be used
in combination with the KF to provide good performance
for precise and imprecise measurements. To this end we
propose the following: 1) a �ltering algorithm which is ac-
curate for precise measurements and 2) a method to select
between the proposed �lter and the UKF as suggested by
the available measurements. These contributions are dis-
cussed below.

We �rst develop a derivative-free �lter that approxi-

Preprint submitted to Elsevier 28th January 2015

© 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/
by-nc-nd/4.0/



mates the likelihood as a Gaussian, which can be used
to �nd a Gaussian approximation to the posterior. This
method is based on the unscented transformation (UT) [2]
and we refer to it as the unscented Gaussian likelihood
approximation �lter (UGLAF). The UGLAF is shown to
be optimal for low enough measurement noise variance.

Motivated by the fact that the KF approximation is
accurate for high measurement noise variance while the
UGLAF approximation is accurate for low measurement
noise variance, we propose an adaptive approach in which,
depending on the situation, one of the two Gaussian pos-
terior density approximations is selected. The choice be-
tween the candidate approximations is made using the
Kullback-Leibler divergence [10]. The resulting algorithm,
the adaptive UGLAF (AUGLAF), switches between the
UGLAF and the UKF. The idea of using two approxima-
tions to the posterior depending on their suitability was
also used in the truncated UKF (TUKF). The TUKF was
proposed in [11] but it has two main drawbacks. First, the
rule to select between the truncated KF and KF approx-
imations is ad-hoc. Second, the TUKF is an optimistic
�lter for precise measurements.

The rest of the paper is organised as follows. In Section
2, the UGLAF is presented. We discuss the relationships
between UGLAF and existing �lters in the literature in
Section 3. AUGLAF is introduced in Section 4. Numerical
simulations in which the performances of these �lters are
analysed are provided in Section 5. Finally, conclusions
are drawn in Section 6.

2. UGLAF

This paper focuses on the update phase of Bayesian
�ltering. Let x ∈ Rnx and z ∈ Rnz be the state and the
measurement, respectively. We write the state vector as
x =

[
aT , bT

]T
, where T stands for transpose, a ∈ Rna ,

b ∈ Rnb and nx = na + nb, such that the measurement
equation is

z = h (a) + η (1)

where h (·) is the measurement function and η is the mea-
surement noise with PDF pη (·) which is a zero-mean Gaus-
sian1 with covariance matrix R. Using (1), the conditional
PDF p (z |a ) of the measurement z given the state a be-
comes

p (z |a ) = pη (z− h (a)) (2)

Given a measurement z, the likelihood function l (·) is
the conditional PDF (2) viewed as a function of the state

l (a) = pη (z− h (a)) (3)

where we have dropped the dependence on z for the sake
of notational simplicity. Given a prior p (·), the aim is to

1If the measurement noise is not Gaussian, it can be approximated
as Gaussian using its �rst two moments.

calculate the posterior q (·), which is given by Bayes' rule

q (x) ∝ l (a) p (x) (4)

where ∝ denotes proportionality. The UGLAF provides a
Gaussian approximation to q (·) under the assumptions:

• A1 The measurement function h (·) is a continuous,
bijective function whose inverse is continuously dif-
ferentiable (which implies nz = na).

• A2 The likelihood is integrable.

• A3 The prior is Gaussian with mean x and covari-
ance matrix Σ:

x =
[
aT ,b

T
]T

(5)

Σ =

[
Σa Σab

ΣT
ab Σb

]
(6)

In Section 2.1, we develop a Gaussian likelihood approx-
imation. Then, in Section 2.2, we use the Gaussian like-
lihood approximation to obtain a Gaussian posterior ap-
proximation. We prove the optimality of UGLAF as the
measurement noise variance tends to zero in Section 2.3.
Finally, how to generalise UGLAF for nonbijective mea-
surement functions is explained in Section 2.4.

2.1. Unscented Gaussian approximation to the likelihood

In general, a likelihood function is not a PDF because
it does not integrate to one. However, Bayes' rule remains
unaltered if we replace the likelihood by a scaled version of
the likelihood. Then, under Assumption A2, we can de�ne
a normalised likelihood l̃ (·) that integrates to one

l̃ (a) =
l (a)´
l (ã) dã

(7)

The posterior, which is given by (4), is then

q (x) =
l̃ (a) p (x)

ρ
(8)

where ρ =
´
l̃ (a) p (x) dx is the normalising constant.

The objective of this section is to design a derivative-
free method to obtain a Gaussian approximation to the
normalised likelihood:

l̃ (a) ≈ N
(
a; l,L

)
(9)

where N
(
a; l,L

)
is the Gaussian PDF evaluated at a with

mean l and covariance matrix L. It should be noted that
l and L depend on z in general but this is omitted in the
notation for the sake of simplicity.

Using (7) and (3), the mean of the normalised likeli-
hood is given by

l =

ˆ
al̃ (a) da (10)
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=

´
apη (z− h (a)) da´
pη (z− h (a)) da

(11)

=

´
aN (z; h (a) ,R) da´
N (z; h (a) ,R) da

(12)

where z is known. Equivalently, the covariance matrix of
the normalised likelihood is

L =

ˆ (
a− l

) (
a− l

)T
l̃ (a) da

=

´ (
a− l

) (
a− l

)T N (z; h (a) ,R) da´
N (z; h (a) ,R) da

(13)

Because of A1, we can make the change of variable
a = h−1 (y) in (12) and (13) and write

l =

´
h−1 (y) |det h′I (y)| N (y; z,R) dy´
|det h′I (y)| N (y; z,R) dy

(14)

L =

´ (
h−1 (y)− l

) (
h−1 (y)− l

)T |det h′I (y)| N (y; z,R) dy´
|det h′I (y)| N (y; z,R) dy

(15)

where h′I (·) represents the Jacobian of the inverse of the
measurement function and det A denotes the determinant
of matrix A.

The integrals in (14)-(15) can be approximated using
the unscented transformation (UT) [2]:

l ≈ l1 =

∑Ns

j=1 ω
jAj

∣∣det h′I
(
Yj
)∣∣∑Ns

j=1 ω
j |det h′I (Yj)|

(16)

L ≈ L1 =

∑Ns

j=1 ω
j
(
Aj − l1

) (
Aj − l1

)T ∣∣det h′I
(
Yj
)∣∣∑Ns

j=1 ω
j |det h′I (Yj)|

(17)

where
Aj = h−1

(
Yj
)
, j = 1, ..., Ns (18)

and theNs sigma points Y1, ...,YNs and weights ω1, ..., ωNs

match the mean z and covariance matrix R. How to select
these sigma points and weights is explained in [2].

The UT approximation is not very convenient in this
case because it requires the calculation of the Jacobian of
the inverse of the measurement function. Therefore, we
use the following approximation to calculate l1 and L1:

• AP1

l1 ≈ l2 =

Ns∑
j=1

ωjAj (19)

L1 ≈ L2 =

Ns∑
j=1

ωj
(
Aj − l2

) (
Aj − l2

)T
(20)

The calculations of l1 and L1 under Approximation AP1
are much simpler than without AP1, see (16)-(17), as they

Table 1: Steps of the update phase of the UGLAF

- Select sigma points Y1, ...,YNs matching the moments z and R.
- Compute the transformed sigma points A1, ...,ANs using (18).
- Compute the Gaussian approximation to the likelihood, whose mo-
ments are l and L, using (19) and (20).

- Compute the UGLAF approximation to the posterior, whose mo-

ments are u1 and U1, using (24) and (25).

do not require the calculation of the Jacobian. We are es-
pecially interested in UGLAF if the measurement noise is
low as otherwise the KF is expected to work well [9]. It is
proved in AppendixA that l1 and l2 and, L1 and L2 are
alike as the measurement noise tends to zero. In addition,
it is shown in Section 2.3 that both likelihood approxi-
mations tend to be optimal for low enough measurement
noise, which justi�es the use of AP1. One possible inter-
pretation of AP1 is that we are approximating the Jaco-
bian of h−1 (·) as constant for all sigma points.

2.2. Gaussian approximation to the posterior

The Gaussian likelihood approximation, which is given
by (9), can also be written as

l̃ (a) ≈ N
(
Ax; l,L

)
= N

(
l; Ax,L

)
(21)

where
A = [Ina

,0nb
] (22)

and In is the identity matrix of size n and 0n is the square
zero matrix of size n. Then, substituting (21) into (8)
and using the Gaussian product formula [12], the posterior
approximation q̂1 (·) becomes

q (x) ≈ q̂1 (x) = N (x; u1,U1) (23)

where

u1 = x + ΨS−1
(
l− l̂

)
(24)

U1 = Σ−ΨS−1ΨT (25)

l̂ = Ax (26)

S = AΣAT + L (27)

Ψ = ΣAT (28)

Finally, the algorithm is summarised in Table 1.

2.3. Asymptotic convergence

Let us write the measurement noise covariance matrix
as R = R̃/ñ. In this section, we show the convergence of
UGLAF as ñ→∞. For simplicity, we write the proof for
the case that x = a although it can be generalised to the
case x =

[
aT , bT

]T
. The UGLAF approximation to the

normalised likelihood is denoted as

l̂ (a) = N
(
a; li,ñ,Li,ñ

)
(29)
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where i = 1 if we use (16) and (17), and i = 2 if we use (19)
and (20). As proved in AppendixA, regardless of whether
we use AP1 or not, we can write

li,ñ =a? +O
(
ñ−1

)
Li,ñ =ñ−1L̃ +O

(
ñ−3/2

)
where L̃ = HIR̃HT

I . We can then obtain (30) and (31).
Using (B.1) in AppendixB, we get

l̂ (a) =
exp

(
−ñ (a− a?)

T
L̃−1 (a− a?)

[
1 +O

(
ñ−1/2

)]
/2
)

∣∣∣2πL̃/ñ
∣∣∣1/2 [1 +O

(
ñ−1/2

)]
(32)

Applying (B.2) and (B.3) in AppendixB to the numerator
and denominator, respectively, of (32) gives

l̂ (a) = N
(
a; a?, L̃/ñ

) [
1 +O

(
ñ−1/2

)]
(33)

The posterior approximation can be written as

q̂1 (a) ∝ l̂ (a) p (a)

= N
(
a; a?, L̃/ñ

)
N (a; a,Σa)

[
1 +O

(
ñ−1/2

)]
∝ N

(
a; a? + Kñ (a− a?) , L̃/ñ−KñL̃/ñ

)
[
1 +O

(
ñ−1/2

)]
where Kñ = L̃

(
L̃ + ñΣa

)−1
. Since Kñ = O

(
ñ−1

)
we

can argue as in the proof of (33) that

q̂1 (a) = N
(
a; a?, L̃/ñ

) [
1 +O

(
ñ−1/2

)]
(34)

In [13], it is indicated that the true posterior density
converges to (34). That is, the true posterior is asymp-
totically normal distributed with mean a? and covariance
matrix L̃/ñ with a remainder O

(
ñ−1/2

)
if ñ→∞. A proof

of this result is given in [14]. This shows that the posterior
density obtained by the UGLAF asymptotically converges
to the true posterior as ñ → ∞, i.e., as the measurement
noise variance decreases to zero. As a result, if the mea-
surement noise is low enough, the UGLAF approximation
to the posterior is accurate.

2.4. Generalisations of UGLAF

The UGLAF has been presented for bijective measure-
ment functions h (·) : Rna → Rna . We did this for the sake
of clarity as in this case the inverse function h−1 (·) exists
for all possible values of the measurement. Nonetheless,
UGLAF can be generalised for other types of measure-
ment functions. The most direct generalisation is for in-
jective measurement functions, which is described in Sec-
tion 2.4.1. Other generalisations are beyond the scope of
this paper but we want to brie�y comment on them in the
next paragraph.

If we perform the update step in several phases, UGLAF
can be applied more generally. For example, 2-D tar-
get tracking using a sensor that measures range, bear-
ings and Doppler shift can be handled by updating �rst
the range and bearings measurements using UGLAF and
then the Doppler shift using a UKF. As with the mixture
TUKF [15], if the likelihood is multimodal, a Gaussian
mixture approximation based on UGLAF is possible. In
this case, the measurement function must meet some con-
ditions, e.g., its domain and codomain can be partitioned
such that the measurement function is injective in some
regions.

2.4.1. Injective measurement function

In this section, we use the fact that an injective func-
tion induces a bijection by constraining its codomain by
its image to apply UGLAF. Let us assume that the do-
main Rna of h (·) is partitioned as II ∪ IN = Rna , where
II and IN denote the regions where h (·) is and is not injec-
tive, respectively. If we replace the domain and codomain
of h (·) by II and its image h (II), the resulting function
h (·) : II → h (II) is bijective and its inverse function
h−1 (·) : h (II) → II exists. For example, if h(x) = x2

x > 0 and h(x) = 0 x ≤ 0, we get II = {x : x > 0} and
h(II) = {y : y > 0}. The idea developed in the rest of the
section is that we can apply UGLAF if all the sigma points
belong to region h (II).

If the measurement noise PDF were a truncated Gaus-
sian with bounded support Iη, the mean of the normalised
likelihood, which is given by (11), would be written as

l =

´
z−h(a)∈Iη apη (z− h (a)) da´
z−h(a)∈Iη pη (z− h (a)) da

(35)

The equation for the covariance matrix of the normalised
likelihood is analogous and is not written here. We can
apply UGLAF to approximate (35) if we can perform the
change of variable a = h−1 (y) in the integrals, see Section
2.1. This can be done if the image II of h−1 (·) contains the
region of integration {a : z− h (a) ∈ Iη}. Using the fact
that y = h (a), we can equivalently say that we can apply
UGLAF if h (II) contains the set z−Iη , {y : z− y ∈ Iη},
i.e., z−Iη ⊂ h (II) or Iη ⊂ z−h (II). That is, the support
of the measurement noise PDF must be contained in the
set z− h (II).

In practice, the support of the measurement noise is not
bounded but if the inverse function exists for the values of
the PDF of the measurement noise that are non-negligible,
we can still use the UGLAF approximation. This condition
can be written as:

I =

ˆ
χz−h(II) (η) pη (η) dη ≈ 1

=

ˆ
χz−h(II) (η)N (η; 0,R) dη ≈ 1 (36)

where χA (·) is the indicator function on the subset A.
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l̂ (a) =

exp

(
−
[
a− a? +O

(
ñ−1/2

)]T [
ñ−1L̃ +O

(
ñ−3/2

)]−1 [
a− a? +O

(
ñ−1/2

)]
/2

)
∣∣∣2π [ñ−1L̃ +O

(
ñ−3/2

)]∣∣∣1/2 (30)

=
exp

(
−ñ
[
a− a? +O

(
ñ−1/2

)]T [
L̃−1 +O

(
ñ−1/2

)] [
a− a? +O

(
ñ−1/2

)]
/2
)

∣∣∣2π [L̃ +O
(
ñ−1/2

)]
/ñ
∣∣∣1/2 (31)

Using the change of variable y = z− η in (36), we get

I =

ˆ
χh(II) (y)N (y; z,R) dη ≈ 1 (37)

The UT can also be used to integrate discontinuous func-
tions [2, Sec. VII]. Therefore, as in Section 2.1, we can use
the UT with sigma points Y1, ...,YNs , which are drawn
with mean z and covariance matrix R to approximate (37)

I ≈
Ns∑
j=1

ωjχh(II)

(
Yj
)

(38)

Consequently, if Yj ∈ h (II) : j ∈ {1, ..., Ns} then I ≈ 1,
we meet condition (36) and UGLAF can be applied. Oth-
erwise, UGLAF cannot be applied but a UKF approxi-
mation can be used instead. Approximation (38) is quite
useful as it does not require extra computational burden in
UGLAF. Drawing sigma points Yj , j ∈ {1, ..., Ns} comes
at no extra computational burden as we already need them
in the �rst step of UGLAF, see Table 1. If the inverse func-
tion exists for all of them (this is what Eq. (38) checks),
we continue with the steps of UGLAF.

3. Comparison with existing �lters

In this section, we compare the methodology and con-
ceptual motivation of UGLAF with other Gaussian ap-
proximations.

3.1. UGLAF vs KF

In this section, we discuss the di�erences between the
UGLAF and the KF. We �nd it convenient to use the
following example to illustrate our reasoning. Consider a
prior p (x) = N (x; 3, 4) and the measurement equation

z = 0.01x3 + η (39)

where η is zero-mean Gaussian with variance 0.1.
In order to obtain an approximation to the posterior,

the KF approximates the joint PDF of the measurement
and the state as Gaussian

p (z |a ) p (x) ≈ N
([

xT , zT
]T

;
[
xT , ẑT0

]T
,

[
Σ Ψ0

ΨT
0 S0

])
(40)

where ẑ0 = E [z], Ψ0 = cov [x, z] and S0 = cov [z] are the
KF moments. In general, these moments cannot be calcu-
lated exactly so the KF must be approximated. The ap-
proximations to the KF use linearisation (EKF) or sigma
points matching the moments of the prior (UKF, CKF) to
approximate these moments [11]. Once the joint PDF is
approximated as Gaussian, the posterior can be calculated
analytically for any value of the measurement. Therefore,
the only enabling approximation to have a Gaussian pos-
terior is (40). This is illustrated in Figures 1 (a) and (b),
where we show the contour plots of the true joint posterior
and its KF approximation, respectively. In our example,
the KF moments are calculated exactly, see [16] for de-
tails. The following discussion applies to the KF and its
approximations so the term KF encompasses the KF and
its approximations for simplicity.

If the KF moments are calculated exactly, (40) is, in a
sense, the best Gaussian approximation to the joint PDF
as it matches its �rst two moments2. However, the prob-
lem at hand is not to calculate a Gaussian approxima-
tion to the joint PDF but to approximate the posterior.
As the KF approximates the joint PDF by (40), it does
not take into account the value of z (which is known) in
performing the enabling approximation to obtain a Gaus-
sian posterior. This is unimportant if the measurement
noise is large enough as the Gaussian approximation to
the joint PDF is accurate [9], recalling that both the noise
and prior are Gaussian. However, it becomes important
for low measurement noise in nonlinear scenarios as the
Gaussian approximation to the joint PDF is not accurate
in such cases [9]. As a result, there will be values of z for
which the posterior approximation is extremely poor. This
is evident in Figures 1 (a) and (b). Because the joint PDF
is not accurately approximated by (40), there are clearly
measurement values for which the posterior approximation
provided by the KF is poor, particularly those which are
far from the prior mean of the measurement.

Let us assume we measure the value z = 1.5 in our
example. Once we know the measurement, we have a like-
lihood and we can calculate the posterior using (4). Unlike
the KF, the only enabling approximation UGLAF makes
is to represent the normalised likelihood as a Gaussian. As

2It is best in the sense that it minimises the KLD D (p ‖ p̂) where
p (·) represents a PDF and p̂ (·) its approximation [10].
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Figure 1: Comparison between the UGLAF and KF (a) True
joint PDF (b) KF approximation (c) True normalised likelihood
(solid) and UGLAF approximation (dashed). (d) True posterior
(solid) and UGLAF (dashed) and KF (dot-dashed) outputs.

shown before, sigma points should be chosen matching the
moments z and R so the UGLAF uses knowledge of z to
construct an enabling approximation to obtain a Gaussian
posterior. The true normalised likelihood and its UGLAF
approximation are plotted in Figure 1 (c). We can see that
the UGLAF approximates the likelihood very accurately.
This results in a posterior approximation which is much
closer to the true posterior than the KF approximation
shown in Figure 1 (d).

3.2. Use of analytical linearisation instead of the UT

UGLAF approximates the �rst two moments of the
likelihood using the UT. However, these moments can also
be approximated by analytical linearisation of the mea-
surement function around the point ã (z) that maximises
the likelihood. This method is referred to as linearised
GLAF (LGLAF).

Using a �rst order Taylor series expansion of h (·) around
ã (z) = h−1 (z), it can be shown that

l =ã (z) (41)

L−1 =H̃TR−1H̃ (42)

where H̃ is the Jacobian of h (·) evaluated at ã (z). The
rest of the algorithm would remain unaltered. Under the
assumptions stated in this paper, the LGLAF coincides
with the method3 described in [17]. However, using the
UT to calculate the �rst two moments of the likelihood

3The name of LGLAF in [17] is Gaussian mixture �lter new1.

is more accurate than using linearisation [2]. In addition,
the adaptive selection between UKF or UGLAF approx-
imation to the posterior, which is explained in Section 4
and has a major e�ect on performance, was not considered
in [17]. The better performance of UGLAF over LGLAF
is demonstrated by simulations in Section 5.

4. Adaptive UGLAF

In this section, we propose the adaptive UGLAF (AUGLAF).
As proved in Section 2.3, the UGLAF has high perfor-
mance if the measurement noise covariance R is low. The
KF and its approximations have the opposite behaviour.
Their approximations to the true posterior PDF are ac-
curate for large R and inaccurate for small R if the mea-
surement function is not linear [9]. Therefore, AUGLAF
uses the KF or UGLAF approximation to the posterior
in an adaptive fashion depending on the accuracy of the
approximations.

The Kullback�Leibler divergence (KLD) is a common
way to measure the closeness between two PDFs [10]. We
propose a method that estimates the KLD between sev-
eral approximations to the posterior and the true posterior.
The approximation that has the lowest KLD is expected to
be the most accurate representation of the posterior. The
procedure presented here is general but we use it specif-
ically to choose between the UKF and UGLAF approxi-
mations, here denoted as q̂0 (·) = N (·; u0,U0) and q̂1 (·),
respectively.

It is shown in AppendixC that the KLD between the
posterior approximation q̂i (·) and the posterior q (·) is

D
(
q̂i ‖ q

)
= c+Dl

i +Dn
i (43)

c = log

ˆ
l (a) p (x) dx− nx

2
+

1

2
log |Σ|

+ log (2π)
nz/2 +

1

2
log |R| (44)

Dl
i = −1

2
log |Ui|

+
1

2
tr
[
Σ−1

(
Ui + (ui − x) (ui − x)

T
)]

(45)

Dn
i =

1

2

ˆ
(z− h (a))

T
R−1 (z− h (a)) q̂i (x) dx

(46)

=
1

2

ˆ
tr
[
(z− h (a))

T
R−1 (z− h (a))

]
q̂i (x) dx

=
1

2
tr

[
R−1

ˆ
(z− h (a)) (z− h (a))

T
q̂i (x) dx

]
(47)

There are some important aspects to highlight in (43).
First, c does not depend on q̂i (·). Thus, it does not have
to be calculated to select the posterior approximation that
minimises the KLD. Second, Dl

i can be calculated analyt-
ically so it poses no problem. Third, in general, Dn

i can
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Table 2: Steps of the update phase of the AUGLAF

- Calculate the UKF approximation to the posterior, whose moments
are u0 and U0 [2].
- Calculate the UGLAF approximation to the posterior, whose mo-
ments are u1 and U1, as indicated in Table 1.
- Calculate Dl0 using (45).

- Draw sigma-points U1
0 , ...,U

Ns
0 matching the moments ua0 and Ua

0 ,
see (48) and (49).
- Approximate Dn0 using (50).
- Calculate Dl1 using (45).

- Draw sigma-points U1
1 , ...,U

Ns
1 matching the moments ua1 and Ua

1 ,
see (48) and (49).
- Approximate Dn1 using (50)

- Calculate the AUGLAF approximation to the posterior, whose mo-

ments are u2 and U2, using (51).

be well approximated by the UT due to the fact that UT
approximations of integrals of the type (47) appear in the
UKF update step. For usual measurement functions, the
UT provides reasonable approximations to these integrals
with low computational burden [2]. We want to mention
that we do not consider the KLD D

(
q ‖ q̂i

)
instead of

D
(
q̂i ‖ q

)
because it cannot be computed accurately using

the UT as we require the calculation of an integral w.r.t.
the true posterior, which is unknown and not Gaussian in
general.

As the function to integrate with respect to q̂i (·) in (46)
only depends on a, we only need to draw sigma points in
this variable. If the �rst two moments are written as

ui =
[
(uai )

T
,
(
ubi
)T ]T

(48)

Ui =

[
Ua
i Uab

i(
Uab
i

)T
Ub
i

]
(49)

where uai ∈ Rna , ubi ∈ Rnb and the sigma points U1
i , ...,U

Ns
i

are selected to match the moments uai and Ua
i [2], the UT

approximation to Dn
i is

Dn
i ≈

1

2

Ns∑
j=1

ωj
(
z− h

(
U ji
))T

R−1
(
z− h

(
U ji
))

(50)

In short, the �rst two moments of the AUGLAF approxi-
mation to the posterior are

(u2,U2) =

{
(u0,U0) if Dl

0 +Dn
0 < Dl

1 +Dn
1

(u1,U1) otherwise
(51)

The steps of the algorithm are given in Table 2. We also
want to remark that if the measurement equation is linear
and the measurement noise is Gaussian, the UGLAF and
AUGLAF provide the �rst two moments of the posterior
exactly.

5. Simulations

In this section, the performances of UGLAF and AUGLAF
are analysed in a ballistic target tracking case using range-
bearing measurements obtained from a radar as in [2]. We
compare them with: UKF, CKF, EKF, TUKF, LGLAF
and a sampling importance resampling (SIR) PF [1], in
which the importance density is the prior. The prediction
step of LGLAF is performed using the UT. All these �lters
have a low computational burden except the PF.

We use the following parameters for the algorithms.
The UKF uses Ns = 2nx + 1 sigma points and the weight
of the sigma point located on the mean is 1/3. The PF uses
10000 particles. The parameter γ of the TUKF is set to
0.1 [16, 15]. The performances of the algorithms are anal-
ysed using Monte Carlo simulations with 20000 runs and
common random numbers to generate the measurements.

The state vector at time step k is xk =
[
ak,bk

]T
where

ak =
[
pkx, p

k
y

]T
is the position vector with respect to the

center of the Earth and bk =
[
vkx, v

k
y , γ

k
]T

includes the
velocity vector of the target and ballistic coe�cient [2].
The measurement model is:

zkr =

√
(pkx − ξx)

2
+
(
pky − ξy

)2
+ ηr (52)

zkθ = atan2
(
pky − ξy, pkx − ξx

)
+ ηθ (53)

where atan2 (·, ·) is the four-quadrant inverse tangent, [ξx, ξy]
T

is the position vector of the radar, zk =
[
zkr , z

k
θ

]T
, ηr is

the measurement noise for the range with variance σ2
r , ηθ

is the measurement noise for the bearing with variance σ2
θ

and these noises are considered zero-mean Gaussian dis-
tributed and independent. The measurements are taken
with a sampling period T . The measurement function is
injective so UGLAF can be applied checking condition (37)
using (38). That is, sigma points Yj , j = 1, ..., Ns must
have the �rst component (distance) greater than 0 as the
function is bijective if the codomain is constrained to dis-
tances greater than 0.

The dynamic model is given by a set of nonlinear dif-
ferential equations [2]. We discretise the di�erential equa-
tions using the Euler approximation as in [2]. Thus, each
sampling period is split into J subintervals and the state
at the jth subinterval at time step k is denoted as xk,j =[
pk,jx , pk,jy , vk,jx , vk,jy , γk,j

]T
where xk,0 = xk and xk,J =

xk+1. The nonlinear process function that relates xk,j+1

to xk,j is

pk,j+1
x =pk,jx +

T

J
vk,jx (54)

pk,j+1
y =pk,jy +

T

J
vk,jy (55)

vk,j+1
x =vk,jx +

T

J

(
Dk,jvk,jx +Gk,jpk,jx

)
(56)

vk,j+1
y =vk,jy +

T

J

(
Dk,jvk,jy +Gk,jpk,jy

)
(57)
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Table 3: Dynamic model parameters

Parameter Value

T 5 s

J 100

β0 0.59783 s−1

H0 13.406 km

Gm0 3.986 · 105 km3/s2

R0 6374 km

q 10−6 km2/s2

γk,j+1 =γk,j (58)

where

Dk,j =− β0 exp

(
γk,j +

R0 −Rk,j

H0

)
V k,j

Rk,j =

√(
pk,jx

)2
+
(
pk,jy

)2
V k,j =

√(
vk,jx

)2
+
(
vk,jy

)2
Gk,j =− Gm0

(Rk,j)
3

where R0 is the radius of the Earth and β0, Gm0 and
H0 are parameters that re�ect environmental and target
characteristics [2]. Let f (·) denote the nonlinear function
that relates xk+1 and xk using (54)-(58) recursively. Then,
the dynamic equation is

xk+1 = f
(
xk
)

+ vk+1 (59)

where we have introduced a process noise vk+1, which is
zero-mean Gaussian noise with covariance matrix Q =
diag ([0, 0, q, q, 0]), that accounts for random accelerations.
The prior at time zero is Gaussian

p
(
x0
)

= N
(
x0; x0,Σ0

)
(60)

We consider two scenarios to evaluate the performance
of the algorithms. In both scenarios the radar is located at
[ξx, ξy]

T
= [R0, 0]

T and we use the same dynamic model
parameters, which are given in Table 3. The number of
time steps is 80. The target trajectory is shown in Fig-
ure 2. Its initial state and covariance matrix are x0 =
[6600 km, 15 km, 0 km/s, 0.2 km/s, 0.6932]

T and

Σ0 = diag
([

Σ0
x,Σ

0
y,Σ

0
vx ,Σ

0
vy ,Σ

0
γ

])
. The measurement

model and prior at time 0 parameters for both scenarios
are shown in Table 4.

In each Monte Carlo run, x0 is drawn from a Gaussian
PDF whose mean is the true state and covariance matrix
Σ0. In both scenarios, the EKF performs quite badly and
diverges in all the Monte Carlo runs so the EKF is not
considered in the rest of the section.

In Scenario 1, the PF does not work well because the
measurement noise is low and therefore requires a larger

Table 4: Scenario 1 and 2 parameters

Scenario 1 Scenario 2

Σ0
x

(
km2

)
1600 160

Σ0
y

(
km2

)
300 30

Σ0
vx

(
km2/s2

)
0.1 0.1

Σ0
vy

(
km2/s2

)
0.01 0.01

Σ0
γ

(
s−2

)
8 · 10−3 8 · 10−3

σ2
r

(
km2

)
1 10

σ2
θ

(
rad2

) (
π/180 · 10−5

)2
(20 · π/180)2

6350 6400 6450 6500 6550 6600

0

10

20

30

40

50

60

x position (km)

y 
po

si
tio

n 
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m
)

Figure 2: The trajectory of the target is represented as a blue
line. The position of the target every ten time steps is repre-
sented as a circle. Its initial position is represented as a �lled
blue circle. The radar position is represented as a black cross.
The surface of the Earth is represented as a red line.

sample size. The root mean square (RMS) position er-
rors of the rest of the algorithms for Scenario 1 are shown
in Figure 3. The �lters with highest performance are
UGLAF, AUGLAF, TUKF and LGLAF. The UKF and
CKF fare much worse due to the low measurement noise
and high prior uncertainty. Here, AUGLAF selects UGLAF
with probability one up to time 30. This probability de-
creases to 0.2 at around time step 50 to slowly increase
again to 1, which is reached at time step 70. Nevertheless,
the improvement of UGLAF over the UKF approximation
in the AUGLAF e�ectively happens at the initial time
steps, in which the prior uncertainty is large.

The execution times in milliseconds of our Matlab im-
plementation of the algorithms are AUGLAF (98), UGLAF
(61), LGLAF (56), TUKF (89), UKF (65), CKF (65) and
PF (60000). It can be clearly seen that the big improve-
ment of AUGLAF only implies a 50% increase in the com-
putational burden with respect to the UKF.

The RMS position errors for Scenario 2 are shown in
Figure 4. LGLAF is the �lter with worst performance
followed by UGLAF and the TUKF. The �lters with high-
est performance are: AUGLAF, UKF and CKF. The PF
works as well as these three �lters at the beginning but
its performance deteriorates slightly later on. AUGLAF
selects the UKF at all time steps. In Scenario 2, the prior
uncertainty is reasonably low and measurement noise high.
This is the reason why KF-type algorithms work well [9]
and the AUGLAF selects the UKF at all time steps.

To sum up, these two examples show the importance

8



10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

14

16

18

20

Time step

R
M

S
 p

os
iti

on
 e

rr
or

 (
km

)

 

 
UKF
CKF
LGLAF
TUKF
UGLAF
AUGLAF

Figure 3: Scenario 1 RMS position error: The lines of UGLAF,
AUGLAF, LGLAF and TUKF are indistinguishable and they
obtain highest performance among the �lters.

10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

14

16

18

20

Time step

R
M

S
 p

os
iti

on
 e

rr
or

 (
km

)

 

 
UKF
CKF
LGLAF
TUKF
UGLAF
AUGLAF
PF

Figure 4: Scenario 2 RMS error in position: The lines of
AUGLAF, UKF and CKF are indistinguishable. These �lters
have the highest performance.

of using an adaptive rule to select between the UKF and
UGLAF approximations. As mentioned before, these �l-
ters perform well in di�erent situations so AUGLAF se-
lects the best one according to the KLD. The adaptive
rule enables AUGLAF to be the algorithm with highest
performance in both scenarios.

6. Conclusions

We have proposed the UGLAF, which is based on ap-
proximating the normalised likelihood by a Gaussian PDF
using the unscented transformation. An important prop-
erty of UGLAF is that it is asymptotically optimal as the
measurement tends to zero. As a result, the direct applica-
tion of UGLAF is expected to outperform the KF and its
approximations, such as the EKF, UKF and CKF, if the
measurement noise is low enough and the measurement
function is nonlinear.

In order to provide good performance in a wider va-
riety of situations, we have also devised the AUGLAF,
which chooses the best approximation to the posterior be-
tween UKF or UGLAF. This selection algorithm follows a
principled approach based on the KLD and can be applied

whenever there are several approximations to the poste-
rior.

The drawback of the developed methods is that they
require the measurement function to be bijective or in-
jective. Nevertheless, more complex measurement models
can also be handled following the same principles. In this
respect, an interesting line of future research is to provide
the generalisation of AUGLAF to multimodal likelihoods.
In principle, this can be done following similar ideas as in
the mixture TUKF [15].
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AppendixA.

Let us write the measurement noise covariance matrix
as R = R̃/ñ. In this appendix, we prove that Approxima-
tion AP1 is increasingly accurate as ñ→∞. The UGLAF
approximation to the normalised likelihood is denoted as

l̂ (a) = N
(
a; li,ñ,Li,ñ

)
(A.1)

where i = 1 if we use (16) and (17), and i = 2 if we
use (19) and (20). In the following, we show that both
approximations are alike as ñ→∞.

With AP1

We consider the Taylor expansion of the inverse of the
measurement function around z

h−1
(
Yj
)

= a? + HI

(
Yj − z

)
+ J

(
Yj
)

(A.2)

where a? = h−1 (z), HI is the Jacobian of h−1 (·) eval-
uated at z, and J

(
Yj
)
is the remainder. We recall that

R = R̃/ñ and sigma points Yj j = 1, ..., Ns match the mo-
ments z and R. Therefore, according to how sigma points
are selected [2], Yj−z is O

(
ñ−1/2

)
and J

(
Yj
)
is O

(
ñ−1

)
.

Using (A.2) in (18) and (19), we get

l2,ñ =

Ns∑
j=1

ωj
[
a? + HI

(
Yj − z

)
+ J

(
Yj
)]

= a? +O
(
ñ−1

)
(A.3)

as
∑Ns

j=1 ω
jYj = z. Using a similar derivation for (20), we

have

L2,ñ = ñ−1L̃ +O
(
ñ−3/2

)
(A.4)

where L̃ = HIR̃HT
I .
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Without AP1

We consider the Taylor expansion of the determinant
of the Jacobian of the measurement function around z∣∣det h′I

(
Yj
)∣∣ = |det h′I (z)|+ Θ

(
Yj − z

)
+O

(
ñ−1

)
(A.5)

where Θ is the Jacobian of |det h′I (·)| evaluated at z.
Substituting (A.2) and (A.5) into (16), we have

l1,n =
a? |det h′I (z)|+O

(
ñ−1

)
|det h′I (z)|+O (ñ−1)

= a? +O
(
ñ−1

)
(A.6)

where we have used that Yj − z is O
(
ñ−1/2

)
and (B.3) in

AppendixB.
Substituting (A.2) and (A.5) into (17), we have

L1,ñ =
ñ−1HIR̃HT

I |det h′I (z)|+O
(
ñ−3/2

)
|det h′I (z)|+O (ñ−1)

= ñ−1L̃ +O
(
ñ−3/2

)
(A.7)

Equations (A.3), (A.4), (A.6) and (A.7) prove that the
e�ect of Approximation AP1 becomes negligible for a low
enough measurement noise.

AppendixB.

In this appendix, we include some relationships used
in the derivation of UGLAF optimality. From matrices P
and C with |P| 6= 0 it can be shown that [18]∣∣∣P + C/

√
ñ
∣∣∣ = |P|

(
1 + tr

(
CP−1

)
/
√
ñ
)

+O
(
ñ−1

)
= |P|+O

(
ñ−1/2

)
(B.1)

For any b ∈ R, c ∈ R and ñ ∈ N, using a Taylor series
expansion about b we have

exp
(
b+ c/

√
ñ
)

= exp (b)
[
1 + c/

√
ñ+O

(
ñ−1

)]
= exp (b)

[
1 +O

(
ñ−1/2

)]
(B.2)(

b+ c/
√
ñ
)−1

= b−1 − cb−2/
√
ñ+O

(
ñ−1

)
= b−1 +O

(
ñ−1/2

)
(B.3)

AppendixC.

The KLD between the posterior approximation q̂i (·) =
N (·; ui,Ui) and the true posterior q (·) is derived. We
make use of (4).

D
(
q̂i ‖ q

)
=

ˆ
q̂i (x) log

q̂i (x)

q (x)
dx

= log

ˆ
l (a) p (x) dx +

ˆ
q̂i (x) [logN (x; ui,Ui)

− log l (a)− log p (x)] dx

= log

ˆ
l (a) p (x) dx− nx

2
− 1

2
log |Ui|+

1

2
log |Σ|

+
1

2
tr
[
Σ−1

(
Ui + (ui − x) (ui − x)

T
)]

+ log (2π)
nz/2 +

1

2
log |R|

+
1

2

ˆ
(z− h (a))

T
R−1 (z− h (a)) q̂i (x) dx
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