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Kinetics of virus entry by endocytosis
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Entry of virions into the host cells is either endocytotic or fusogenic. In both cases, it occurs via reversible
formation of numerous relatively weak bonds resulting in wrapping of a virion by the host membrane with
subsequent membrane rupture or scission. The corresponding kinetic models are customarily focused on the
formation of bonds and do not pay attention to the energetics of the whole process, which is crucially dependent,
especially in the case of endocytosis, on deformation of actin filaments forming the cytoskeleton of the host
cell. The kinetic model of endocytosis, proposed by the author, takes this factor into account and shows that the
whole process can be divided into a rapid initial transient stage and a long steady-state stage. The entry occurs
during the latter stage and can be described as a first-order reaction. Depending on the details of the dependence
of the grand canonical potential on the number of bonds, the entry can be limited either by the interplay of bond
formation and membrane rupture (or scission) or by reaching a maximum of this potential.
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I. INTRODUCTION

Viruses are biological nanoparticles with diameter ranging
typically from 60 to 150 nm [1,2]. Their DNA or RNA genome
is protected by a protein capsid and sometimes also by a
lipid membrane envelope. The viral replication cycle includes
virion attachment to a host-cell lipid membrane, penetration,
uncoating and release of genome, genome replication, viral
protein synthesis, capsid assembly, and escape from the
host [1]. The understanding of the mechanistic details of these
steps is obviously important from the perspective of various
biomedical applications. In addition, this area is of consider-
able interest in the context of statistical and soft matter physics.
At the current state of the art, the kinetics models describing
various aspects of the viral replication cycle (see, e.g., [3,4]
and references therein) are inevitably coarse grained. The most
detailed models have been proposed for capsid assembly (see,
e.g., [5], recent review [6], and references therein).

Herein, we focus on the kinetics of virus entry into the host
cells (Fig. 1). This step is either endocytotic, with wrapping
of a virion by the host membrane and subsequent formation
of a vesicle covering a virion, or fusogenic, with fusion of
the virus membrane envelope with the cell membrane (the
corresponding experimental studies are reviewed in [2,7]).
In both cases, it occurs via formation of a large number
of relatively weak bonds between viral proteins, referred to
below as ligands, and appropriate host cell receptors (specific
membrane proteins, lipids, or glycans [8]).

Endocytosis is the most common pathway of entry of both
naked and membrane-enveloped viruses, because in principle
it does not require any specific virus counterparts except
the viral proteins mediating this process. Scrutinizing the
details of endocytosis, one can distinguish different channels
of this process [2,7,9]. One of the most common channels
includes formation of a clathrin (cytoplasmic protein) coat on
the cytoplasmic leaflet of the plasma membrane [2]. Another
channel, macropinocytosis, is induced by growth factors and
often involves the formation of membrane ruffling and large
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vacuoles [7]. Caveolar raft-mediated endocytosis depends
on cholesterol and a complex signaling pathway involving
tyrosine kinases and phosphatases [2]. There are also other
still poorly characterized channels [2,7,9]. At present, virus
entry can be studied at the level of single virions [10]. The
understanding of the mechanistic details of this process and
the physics behind it is, however, still limited.

The available kinetic models of virus entry can be divided
into two related groups. The first one includes the coarse-
grained models operating with the populations of virions
outside cells, at the cell membrane, and inside cells (see,
e.g., [11] and references therein). In such models, the virus-cell
interaction is described at the level of the rate constants of
virion attachment to, detachment from, and penetration of the
membrane. The models of the second category are focused
on the virus entry itself with emphasis on the formation of
the ligand-receptor bonds [12–16] or, more specifically, on
the interplay of virion diffusion and bond formation [12],
competition between fusion and endocytosis [13], diffusion
of receptors [14], membrane lipid segregation [15], virion
detachment [4], and inhibition of virion attachment [16]. In all
these models, the constants and/or rate constants describing the
ligand-receptor interaction are considered to be parameters,
and the energetics of the virion-cell contact is not taken
explicitly into account. The analysis of the energetics has
been performed [17,18] (see also related studies focused on
nanoparticles [19]) but without paying attention to the kinetics.

During endocytosis, the deformation of the host-cell
membrane and cytoskeleton below is appreciable, and the
corresponding changes in the energy are appreciable as
well [17,18]. This circumstance motivates explicit inclusion of
the energetics into the kinetic models describing this process.
Below, we show how it can be done and what can be learned
following this way.

II. PHENOMENOLOGY

A. In terms of the engulfment depth

The energy of interaction of a virion with the host-cell
membrane is usually calculated [17,18] as a function of the
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FIG. 1. (Color online) Scheme of virion engulfment into the host
cell due to the ligand-receptor interaction (adopted from [18]).

engulfment depth h (Fig. 1). For a spherically shaped virion
(with radius R), this energy can be represented at the generic
level as [18]

E(h) = Elr(h) + Eb(h) + Ec(h), with (1)

Elr(h) = −2παhR, (2)

Eb(h) = 4πκh/R, (3)

Ec(h) =
{

0 for h < h◦,
β(h − h◦)4 for h > h◦,

(4)

where Elr is the attractive ligand-receptor interaction (2πhR is
the contact area, and α is the interaction energy per unit area),
Eb is the membrane bending energy (κ is the corresponding
modulus), and Ec is the deformation energy of cytoskeleton
or, more specifically, of actin filaments (β is the corresponding
coefficient, and h◦ is the engulfment depth corresponding to
the beginning of deformation of actin filaments).

Expression (2) for Elr is phenomenological and does not
describe explicitly the statistics of formation of the ligand-
receptor bonds [17,18] [cf. Eq. (7) below]. The proportionality
of Elr to the contact area implies that the number of
ligand-receptor pairs is proportional to this area. The lateral
interaction between these pairs is considered to be weak
(compared to Elr) and neglected. [In principle, the latter
interaction can easily be taken into account in the mean-field or
quasichemical approximations [20] or by using Monte Carlo
simulations [4]. To keep our presentation compact, we do not
introduce the corresponding term into Eq. (2).]

Expression (3) represents the contribution of the contact
area into the membrane bending energy [17,18]. The con-
tribution of the membrane deformation near the rim (at the
boundary of this area) into the energy is neglected, because
quantitatively its role is minor [see, e.g., the results of detailed
numerical calculations shown in Figs. 3 and 4 in [19](d)], and
its addition does not change the analysis of the penetration pro-
cess and the main conclusions. Mechanistically, the role of the
rim appears to be crucial at the late stage of endocytosis when
the membrane near the rim can be viewed as a narrow neck. The
membrane curvature in this region becomes appreciable, and
one could expect that the corresponding bending energy would

be appreciable as well. In the phenomenological treatment of
the membrane deformation with the size-independent bending
modulus, this is, however, not the case, because the membrane
deformation for the neck is nearly catenoidal, which results
in vanishing mean curvature and small corresponding bending
energy [see, e.g., [19](d,e)]. On the other hand, the size of
virions is small and it is expected to result in deviations from
the conventional phenomenology [21]. For this reason, the
curvature-dependent membrane strain related to appreciable
bending near the neck is likely to facilitate the membrane
rupture or scission at this stage (in analogy with rupture of vesi-
cles on solid supports [22]; concerning the role of membrane
curvature in various membrane processes, see also, e.g., [23]).

The virion-induced deformation of the cytoskeleton is
often described using the conventional continuum theory of
elasticity without specification of its structure [17]. The size
of virions is, however, smaller than or comparable to the
length scale characterizing the cytoskeleton heterogeneity
(reviewed in [24]). On this length scale, the cytoskeleton
can be viewed as a actin filament network spanning the
cells interior as schematically shown in Fig. 2. This network
is stabilized by cross-linking proteins (the corresponding
models, e.g. [25], are reviewed in [26]). During diffusion on
the cell membrane, a virion can find regions where the distance
between actin filaments is comparable to its size and the
energetic barrier for endocytosis is reduced. In such favorable
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FIG. 2. (Color online) Scheme of virion engulfment into the host
cell with emphasis on the role of deformation of actin filaments
forming the cytoskeleton: (a) just before the engulfment (at h = 0 or
n = 1), (b) in the beginning of deformation of actin filaments (h = h◦
or n = h◦), and (c) at the maximal deformation (h = h∗ or n = n∗).
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cases, the underlying actin mesh impedes endocytosis only
when h becomes comparable to R, i.e., at h > h◦. The
corresponding filament deformation energy can be represented
as a sum of the stretching and bending energies [18] (note
that the elasticity theory should in this case be used at the
level of filaments). With increasing h, the stretching rapidly
becomes more important (see the analysis in [18]). Employing
expression (4), we take only the stretching energy into account.
(Note that the filaments are deformed by a virion in the
directions perpendicular to their axes. For this reason, the scale
of the filament strain is (h − h◦)2/l2

f , where lf is the filament
length. The stretching energy is proportional to the square of
the strain, i.e., to (h − h◦)4 [18].)

The applicability of expression (4) may be limited, because
during virion engulfment the filament stretching energy first
increases but then, with appreciable engulfment [Fig. 2(c)], the
filaments may start to contact the upper part of a virion, and
the filament deformation will start to decrease. In other words,
this means that after reaching the critical engulfment length
h∗, the stretching energy may start to decrease. This situation
can be described by replacing expression (4) at h > h∗ by

Ec(h) = β(2h∗ − h − h◦)4. (5)

The latter expression is of the same shape as (4) except that it
decreases with increasing h. [Note that at h � h∗ one can write
h = h∗ + �h, where �h ≡ h − h∗ � 0; accordingly Eq. (5)
can be rewritten as Ec(h) = β(h∗ − h◦ − �h)4, where h∗ −
h◦ > 0. For �h � 0, this expression is maximal at �h = 0
and then decreases with increasing �h.]

B. In terms of the number of bonds

If we are interested in the kinetics of endocytosis, the
suitable variable is the number of ligand-receptor bonds n,
between a virion and the host-cell membrane. To relate n with
h, we introduce the maximum number of bonds at given h,

N = 2πhR/s, (6)

where s is the contact area per receptor. With these variables,
the grand potential for a virion (this potential is convenient
because the number of bonds is not constant) can be set as

�(n,N ) = kBT [n ln(n/N ) + (N − n) ln(1 − n/N )]

− εn − μn + 8πκN/m + Ec(N ). (7)

The first and second terms at the right-hand side of this
expression represent the bond entropy and energy (ε > 0 is
the energy of a single bond; the entropy is calculated in the
conventional lattice-gas approximation taking the saturation
of bonds into account [20]).

The third term, accounting that the system is open with re-
spect to receptors, contains the chemical potential of receptors,

μ = kBT ln(ac), (8)

where c is the two-dimensional receptor concentration, and
a is the area comparable with that of the receptor cross
section. This expression for μ is correct because in vivo,
the number of specific receptors is much smaller than the
number of lipid molecules in the membrane. In particular,
the physiological cellular receptor density is considered to

be ∼1012mol/cm2 [12](b), or, in other words, about 0.5%
of the number of lipid molecules in the membrane leaflet.
For example, the total ganglioside content can reach up to
1%–2% [12](d).

The fourth term in (7) is the bending energy (3) rewritten
in terms of N . The last fifth term is the cytoskeleton energy
[(4) and (5)] also rewritten in terms of N ,

Ec(N ) = B

⎧⎨
⎩

0 for N < N◦,
(N − N◦)4 for N◦ � N � N∗,
(2N∗ − N − N◦)4 for N∗ � N � m,

where B is the parameter corresponding to β, N◦ and N∗ are
the parameters corresponding h◦ and h∗, and m = 4πR2/s is
the maximum number of bonds at full engulfment.

As already noticed, the concentration of receptors in the
host-cell membrane is usually not high, and the attachment and
detachment of receptors to a virion is expected to be slower
than the local relaxation of the membrane around a virion.
Mathematically, this means that potential (7) can be minimized
with respect to N at given n, i.e., ∂�/∂N = 0. This procedure
yields

−kBT ln(1 − n/N ) = 8πκ/m + dEc(N )

dN
. (9)

With realistic values of the parameters (e.g., Table I in [18]), the
right-hand side of this equation is appreciably larger than kBT

(taking, e.g., into account that κ � 25kBT [27] and using m =
60, one can obtain that the first term alone is about 10kBT ),
and accordingly N is close to n, i.e., n � N = 2πhR/s. In
this case, the entropic contribution in (7) can be neglected, N

can be replaced by n, and N∗ can be identified with n∗. With
these simplifications, potential (7) can be represented as

�(n) = −An + Bfc(n), (10)

where A = ε + μ − 8πκ/m, and

fc(n) =
⎧⎨
⎩

0 for n < n◦,
(n − n◦)4 for n◦ � n � n∗,
(2n∗ − n − n◦)4 for n∗ � n � m.

Expression (10) is compact and convenient in order to
form a basis for the analysis of the kinetics of endocytosis.
In fact, n can be considered as a coordinate for endocytosis,
and this process can be viewed as diffusion occurring along
this coordinate and governed by potential (10). The membrane
rupture or scission resulting in completion of the process can
be considered as reaction taking place provided n is larger
than the corresponding critical value, ncr (ncr is close to m),
i.e., n � ncr. Following this line, a few possible qualitatively
different scenarios of endocytosis can be distinguished. First
of all, the kinetics depend on whether the deformation energy
of cytoskeleton is fully repulsive [Figs. 3(a) and 3(b)], i.e.,
represented by (4) up to h = 2R [or by the corresponding
term in (10) up to n = m], or first increases at n � n∗ and
then decreases at n > n∗ [Fig. 3(c)]. In the former case, after
reaching a minimum, �(n) increases with increasing n up to
n = m, i.e., the states with n � ncr becomes statistically less
favorable with increasing n. In the latter case, after reaching
a minimum, �(n) first increases, then reaches a maximum at
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FIG. 3. (Color online) Qualitatively different dependencies of
the grand potential on the number of ligand-receptor bonds, n � m =
60, during virion engulfment: [(a) and (b)] the energy of cytoskeleton
deformation increases up to n = m; (c) the energy of cytoskeleton
deformation reaches maximum at n = n∗ < m. Rupture or scission
of the host-cell membrane is assumed to be possible at n > ncr = 55.
(These plots are not used for quantitative calculations below. For this
reason, we do not specify the parameters employed to construct the
figure. All the values are just to show their scale.)

n = n∗, and afterwards decreases with increasing n, i.e., the
states with n � ncr becomes statistically more favorable with
increasing n.

If the deformation energy of cytoskeleton is fully repulsive,
the situation depends on whether �(m) is above [Fig. 3(a)]
or below [Fig. 3(b)] zero (note that zero is associated with
detachment). In the former case, the grand potential in the
rupture or scission region (at n � ncr) may be appreciably or
slightly [as shown in Fig. 3(a)] above zero. This means that the
probability of membrane rupture or scission is, respectively,
much lower than or comparable to that of virion detachment,
because the barrier for detachment is lower than that for
reaching the region where the scission may take place. In
reality, this is usually not the case [2]. A more realistic situation
is when �(m) is below zero [Fig. 3(b)].

If the deformation energy of cytoskeleton first increases and
then decreases, the situation depends on whether �(n∗), i.e.,
the maximum of �(n), is above or below zero. In the former
case, the probability of membrane scission is comparable with
or lower than that of virion detachment. In the latter and more
likely case [Fig. 3(c)], the membrane scission dominates.

III. KINETICS

A. General kinetic equations

The kinetics of endocytosis can be described in terms
of the probabilities pn that a virion has n (1 � n � m)
ligand-receptor bonds. The process starts at t = 0 by formation
of the first bond, i.e., pn(0) = 1 and 0 for n = 1 and n > 1,
respectively. At t > 0, there is interplay of processes of forma-
tion and rupture of the ligand-receptor bonds with inclusion of
rupture (or scission) of the membrane neck at the late stage.
The corresponding kinetic equations for pn with n = 1, 1 <

n < ncr, ncr � n < m, and n = m are, respectively, as follows:

dp1/dt = −k1cp1 − κ1p1 + κ2p2, (11)

dpn/dt = kn−1cpi−1 − kncpn − κnpn + κn+1pn+1, (12)

dpn/dt = kn−1cpn−1 − kncpi − κnpi + κn+1pn+1 − rnpn,

(13)

dpm/dt = km−1cpm−1 − κmpm − rmpm, (14)

where kn, κn and rn are the rate constants of formation
and rupture of the ligand-receptor bonds and of rupture or
scission of the membrane neck, resulting in completion of
the whole process. (In reality, the scission often occurs with
participation of a special enzyme, e.g., Dynamin-2 [2]. Using
the rate constants rn, we do not describe explicitly this factor.)

The formation of new ligand-receptor bonds occurs pri-
marily near the circular rim at the contact area. The activation
energy of this step is expected to be low and its dependence on
n can be neglected. For these reasons, the corresponding rate
constant can be represented as

kn = l(n)k◦, (15)

where k◦ is the rate constant independent of n, and

l(n) = 2π1/2[n(1 − n/m)]1/2 (16)

is the rim length calculated in the units characterizing the size
of the contact area per receptor. [A similar approximation is
widely used for the protein-attachment rate constant in the
kinetic models of capsid assembly; see, e.g., [5](a,b,f).]

The detachment of receptors from a virion occurs at the
rim as well, and accordingly the corresponding rate constant
is also expected to be proportional to the rim length and can
be represented as

κn = l(n)χ (n), (17)

where χ (n) is the factor taking into account that the detachment
depends on the energetics of the interaction between a virion
and the host cell. To specify χ (n), we notice that equilibrium
between the formation and rupture of the bonds is described
as

l(n − 1)k◦cpn−1 = l(n)χ (n)pn. (18)

On the other hand, the grand canonical distribution with
potential (10) yields

pn

pn−1
= exp

(
−�(n) − �(n − 1)

kBT

)

= exp

(
ε + μ − 8πκ/m − �E(n)

kBT

)
, (19)
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where

�E(n) = B[fc(n) − fc(n − 1)]. (20)

Taking into account that the ratio pn/pn−1 given by (18)
and (19) should be identical and neglecting the difference
between l(n − 1) and l(n) in (18), we obtain

χ (n) = (k◦/a) exp{[−ε + 8πκ/m + �E(n)]/kBT }. (21)

Substituting this expression into (17), we have

κn = l(n)κ◦ exp{[−ε + 8πκ/m + �E(n)]/kBT }, (22)

where κ◦ ≡ k◦/a.
The rate constants of membrane rupture or scission rn

also depend on n. At present, this dependence can hardly
be accurately specified. The main point here is that this step
happens on the late stage of the virion engulfment. For this
reason, the details of the dependence of rn on n are not crucial
for the understanding of the kinetics of virus entry.

In addition to the steps described above, a virion can
degrade. In principle, the latter process can be easily taken
into account by including the corresponding terms into
Eqs. (11)–(14). In reality, however, the acts of penetration
of virions into cells are usually rather rapid. In the case of
clathrin-mediated endocytosis, for example, it often takes a
few minutes [2]. On this time scale, the virion degradation is
expected to be negligible, and we can use Eqs. (11)–(14).

B. Analytical results

As already noted, endocytosis can be viewed as potential-
driven diffusion in the space of n. Taking the shape of the
grand potential (Fig. 3) into account, the whole process can
be divided into two phases. The first phase occurring just
after virion attachment (with n = 1) to the host cell (or after
reaching a favorable region for engulfment during migration
along the host-cell membrane) represents downhill diffusion
towards the minimum of the grand potential. This very short
phase is controlled primarily by transitions from n to n + 1.
The time interval characterizing each transition is 1/knc, and
accordingly the duration of the whole phase can be estimated
as

τ1 �
∫ n�

n=1

dn

knc
, (23)

where n� is the number corresponding to the minimum of the
grand potential. Substituting (15) in combination with (16)
into (23) then yields

τ1 � m1/2 arcsin(n�/m)

π1/2k◦c
. (24)

After reaching the bottom of the grand potential, the
increase and decrease of n is statistically not favorable, and
the rates of transitions n → n + 1 and n + 1 → n are much
faster than the resulting rates of membrane penetration and
detachment. This situation is qualitatively similar to that
occurring in conventional chemical reactions. This means
that there is a long steady-state phase ending either by
membrane penetration by a virion or by its detachment.
During this important phase, endocytosis can be described
as a first-order process with a well-defined rate constant. In

particular, the corresponding rate constant γ can be calculated
by solving Eqs. (11)–(14) in the steady-state approximation.
Mathematically, Eqs. (11)–(14) are similar to those widely
used to describe chemical reactions, and the ways it can be
done are well known since the seminal article by Kramers [28]
(see, e.g., compilation in [29]). The final expressions for γ are
typically cumbersome and depend on various details.

In our context, as already noticed in Sec. II B, we are
interested in two qualitatively different situations [Figs. 3(b)
and 3(c)] when the detachment probability is relatively low. If
the grand potential depends on n as shown in Fig. 3(b), there
is an interplay at n > ncr between bond formation (activation)
and membrane rupture (reaction). Due to this interplay, there
exists a rate determining number of bonds n•, and the virus
entry rate constant can approximately be represented as

γ � rn• exp{−[�(n•) − �(n�)]/kBT }. (25)

If the grand potential behaves as shown in Fig. 3(c), there is
a well-defined potential barrier at n = n∗ for endocytosis, and
the entry rate constant is approximately given by

γ � kn∗−1 exp{−[�(n∗ − 1) − �(n�)]/kBT }. (26)

In both cases, the time scale of the second phase of the entry
is determined as

τ2 = 1/γ. (27)

In fact, this time scale characterizes the whole process, because
the first phase is negligibly short.

C. Results of calculations

To complement the analytical results given in the previous
subsection and to illustrate the predictions of the model more
explicitly, we have calculated the kinetics of virus entry in the
case when the grand potential (10) has a maximum as shown
in Fig. 4(a). The parameters used to construct the potential
were m = 60, n◦ = 10, n∗ = 50, ε − 8πκ/m = 3kBT , B =
10−5kBT , and ca = 0.1. Note that the chosen value of m is
typical for many viruses. The values of n◦ = 10 and n∗ = 50
are reasonable for the typical structures of filament networks
(see, e.g., [24]). The energetic parameters, ε − 8πκ/m and B,
are the most important. The former one depends primarily
on the binding energy per receptor. This energy is often
mentioned in the original experimental and theoretical studies
and reviews (see, e.g., theoretical treatments [12–14,17] and
references used there to validate the parameters) but its
accurate measurements are still rare. For orientation, we
mention that ε may be up to 10kBT [17](b) (if c is low, a
receptor can be efficient only provided ε is relatively large).
The value we use, ε − 8πκ/m = 3kBT , is comparable to that
estimated for glycosphingolipids [10](c) (concerning these
lipids, see also [30]). The value of B depends on the structure
and elastic constants of actin filaments (for the corresponding
data, see, e.g., [24,26]). The value we employ, B = 10−5kBT ,
is in line with the earlier estimates [18]. Concerning the
receptor concentration, we used ca = 0.1. [In fact, the results
of our calculations presented below depend on the combination
of ε − 8πκ and ca or, more specifically, on ε − 8πκ + ln(ca).
If one employs ca = 0.01, the results will be the same provided
ε − 8πκ/m = 5.3kBT .]
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FIG. 4. (Color online) Calculations illustrating the kinetics of virus entry: (a) grand potential (10) as a function of the number of the
ligand-receptor bonds (for the corresponding values of the parameters, see the text); (b) average value of n, 〈n〉 = ∑

n npn/
∑

n pn, as a
function of time in the very beginning of the process; (c) probability of finding a virion at the membrane, P = ∑

n pn; and (d) logarithm of
the normalized probabilities, ln(pn/P ), for the first and second phases of the kinetics at k◦ct = 4 and 4 × 104, respectively (during the second
phase, the distribution of these probabilities is close to the equilibrium one and nearly independent of time).

With the parameters above, the entry rate is limited by
crossing the potential barrier at n = n∗, and the details of
the mechanism of membrane rupture at n � ncr are of minor
importance. In fact, the steps at n � ncr can be replaced by
the absorbing boundary condition at n = ncr, i.e., pncr = 0.
To reduce the number of parameters, the virion detachment
was neglected by setting κ1 = 0. With this specification,
Eqs. (11)–(14) for pn with 1 � n � ncr − 1 were integrated
numerically as a function of k◦ct .

The results of calculations [Figs. 4(b)–4(d)] are in agree-
ment with the analysis in the preceding subsection. In
particular, Fig. 4(b) shows the average value of n,

〈n〉 =
∑

n

npn

/ ∑
n

pn, (28)

as a function of time. With increasing time, one can observe
a rapid transition from the first phase with downhill diffusion
in the space of n to the steady-state regime with 〈n〉 close
to that corresponding to the minimum of �. The time scale
characterizing the duration of the first stage, τ1 � 5/k◦c, is
in agreement with that predicted by Eq. (24). The virus entry
occurs during the second steady-state phase at t 
 τ1, and the

corresponding kinetics is exponential [Fig. 4(c)]. Note that
〈n〉 is calculated for remaining virions, and accordingly it
is constant under steady-state conditions [Fig. 4(b)] despite
the exponential decrease of the probability to find a virion at
the membrane [Fig. 4(c)]. Typical distributions of pn at these
two stages [Fig. 4(d)] are, as expected, far and close to the
equilibrium one, respectively.

IV. CONCLUSION

The analytical and numerical results of our study of the
kinetics of virus entry by endocytosis can be summarized as
follows. The process is governed by the dependence of the
grand potential on the number of ligand-receptor bonds which
in turn is crucially dependent on deformation of actin filaments
forming the cytoskeleton of the host cell [Eq. (10)]. It can be
divided into a rapid initial stage and a long steady-state stage.
The entry occurs during the latter stage and can be described as
a first-order reaction. Depending on the details of the behavior
of the grand potential, the process can be limited either by the
interplay of reversible bond formation and membrane rupture
(or scission) or by reaching a maximum of this potential.
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Finally, we note that some of the ingredients of our
analysis may be applicable also to the treatments of the
fusogenic mechanism of virus entry, because it is also
related to the formation of the ligand-receptor bonds,
membrane and actin-filament deformation, and subsequent
membrane rupture. In analogy with endocytosis, the virus
entry via this channel is expected to occur during the

steady-state stage and also can be described as a first-order
reaction.
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