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Algorithms for Joint Phase Estimation and Decoding
for MIMO Systems in the Presence of Phase Noise

and Quasi-Static Fading Channels
Rajet Krishnan, Student Member, IEEE, Giulio Colavolpe, Senior Member, IEEE

Alexandre Graell i Amat, Senior Member, IEEE, and Thomas Eriksson

Abstract—In this work, we derive the maximum a posteriori
(MAP) symbol detector for a multiple-input multiple-output system
in the presence of Wiener phase noise due to noisy local oscillators,
and quasi-static fading channels. As in single-antenna systems, the
computation of the optimum receiver is an analytically intractable
problem and is unimplementable in practice. In this purview, we
propose three suboptimal, low-complexity algorithms for approxi-
mately implementing the MAP symbol detector, which involve joint
phase noise estimation and data detection. Our first algorithm
is obtained by means of the sum-product algorithm, where we
use the multivariate Tikhonov canonical distribution approach.
In our next algorithm, we derive an approximate MAP symbol
detector based on the smoother-detector framework, wherein the
detector is properly designed by incorporating the phase noise
statistics from the smoother. The third algorithm is derived based
on the variational Bayesian framework. By simulations, we evaluate
the performance of the proposed algorithms for both uncoded
and coded data transmissions, and we observe that the proposed
techniques significantly outperform the other important algorithms
from prior works, which are considered in this work.

Index Terms – Maximum a posteriori (MAP) detection, phase
noise, sum-product algorithm (SPA), variational Bayesian (VB)
framework, extended Kalman smoother (EKS), MIMO.

I. INTRODUCTION

EMPLOYING multiple-input multiple-output (MIMO) sys-
tems has been shown to significantly enhance performance

in terms of data rate and link reliability in wireless fading
environments [1]. In general, the analysis and design of MIMO
system is based on the assumption that the carrier phase is
perfectly known at the receiver, and that there is no phase noise in
the system. The phase noise manifests in a MIMO system as the
random, time-varying phase differences between the oscillators
connected to the antennas at the transmitter and the receiver.
Practical designs of MIMO systems based on this assumption
can result in significant performance losses and have to be ad-
dressed appropriately [2]. The detrimental effects of phase noise
can be even more pronounced in scenarios where independent
oscillators are connected to each transmit and receive antenna
(or a subset of them). This scenario is particularly relevant for
line-of-sight MIMO systems that operate at carrier frequencies of
around 10 GHz or lesser. Here, separate oscillators are needed
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for each antenna [3], since the antennas are placed far from
each other [4]. The scenario under consideration also corresponds
to a massive MIMO system [5], [6], where a large number of
antennas are placed at the base station and each user terminal is
equipped with a single antenna.

The problem of designing receiver algorithms in the presence
of random, time-varying phase noise due to noisy local oscil-
lators has been studied extensively for single-antenna systems.
We refer the readers to [7]–[10] and the references therein.
To address the problem of designing receiver algorithms for
joint phase noise estimation and data detection, the expectation-
maximization (EM) framework is applied in [7], resulting in a
code-aided synchronization technique. In [8], receiver algorithms
are developed based on the sum-product algorithm (SPA) by
constraining the probability density functions (pdfs) computed
by the SPA to be in a certain canonical family (for e.g., the
exponential family). This method of constraining the pdfs is
referred to as the canonical distribution approach [11], and in
particular, using the Tikhonov canonical distribution in [8] results
to be the most convenient and effective choice. The variational
Bayesian (VB) framework is adopted in [9] to develop efficient
algorithms for joint phase noise estimation and data detection.
In [10], receiver algorithms are derived by using a smoother-
detector structure based on the maximum a posteriori (MAP)
symbol detector derived in [12], where the detector is properly
designed by incorporating the phase noise statistics from the
smoother.

The effect of phase noise on MIMO systems has been in-
vestigated in some recent work [2], [6], [13], [14], where the
impact of phase noise on the MIMO channel measurements and
the estimated capacity is studied. In [3], data-aided estimation
of phase noise is studied using a Wiener filter. In [13], the
problem of joint channel and phase noise estimation in a MIMO
system is explored, and bounds on the estimation performance
are derived. Soft-symbol aided estimation using an extended
Kalman Smoother (EKS) and relevant estimation bounds are
investigated in [15]. However, these works do not consider the
problem of designing receiver algorithms for joint phase noise
estimation and data detection. One of the few works investigating
this problem can be found in [16], where the VB framework
is employed. In general, MIMO receiver design has focused
on developing algorithms for joint channel estimation and data
detection (refer to [19], [20] and the references therein)—it is
perceived that the phase noise can be handled by existing channel
estimation-data detection algorithms since it can be regarded to
be a part of the channel [2].

In this paper, we consider the problem of designing receiver
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algorithms for joint phase noise estimation and data detection
in a MIMO system, where each transmit and receive antenna
is connected to an independent noisy oscillator. We focus on
the scenario where the phase noise process is a discrete Wiener
process [18] and drifts much faster than the channel [6], [16].
This implies that the phase noise in the system cannot be handled
by moving it into the channel matrix and then compensating
it by means of channel estimation—this is a typical scenario
when noisy oscillators are used in the system and the channel is
essentially quasi-static fading. For instance, in the case of fixed
access networks like microwave backhaul networks, where the
channel essentially remains a constant for a long period of time
(quasi-static fading), the phase noise changes much faster than
the channel [17]. Separate phase noise estimators are also crucial
in line-of-sight (LoS) MIMO systems, where a full-rank channel
matrix is achieved by a careful placement of the antennas. In this
case, the channel is almost constant and it varies much slower
than phase noise. Finally, for the scenarios considered above,
as the carrier frequency increases, the phase noise innovation
variance will increase significantly, and the phase noise will be
required to be tracked symbol-by-symbol.

For the MIMO system under consideration, we derive the
MAP symbol detector which minimizes the symbol error prob-
ability. This receiver structure explicitly involves the estimation
of the a posteriori pdf of the phase noise and data detection. The
computation of the a posteriori phase noise pdf is analytically
intractable for the Wiener phase noise process. This motivates
the need for investigating practical, low complexity receiver
algorithms for joint phase noise estimation and data detection
that also have a good performance. To this end, we propose
three new algorithms based on the sum-product algorithm (SPA),
the smoother-detector framework from [10], [12], and the VB
framework in [9], respectively, for arbitrary number of transmit
and receive antennas. We evaluate the performance of the pro-
posed algorithms in strong phase noise scenarios in the presence
of Rayleigh fading. We consider both uncoded and coded data
transmissions, and compare the performance of the proposed
algorithms with that of those available in the literature. We
observe that the proposed algorithms significantly outperform
those from literature, which are considered in this work.

The remainder of the paper is as follows. In Section II,
the MIMO system model under study is presented. We derive
the optimal MAP symbol detector in Section III. In Sections
IV, V, and VI, we derive the SPA-based, smoother-detector-
based, and VB-based algorithms, respectively. The computational
complexity of the receivers is studied in Section VII. We present
our simulation results in Section VIII. Finally, we summarize our
key findings in Section IX.

Notation: the expectation and variance operators are denoted
as E[·] and Var(·), respectively. The conjugate of a complex
number is denoted as [·]∗, and ȷ =

√
−1. ℜ{·}, ℑ{·}, | · |,

and ∠· are the real, imaginary part, magnitude, and angle of
a complex number, respectively. The pdf and probability mass
function (pmf) of a random variable are denoted as p(·) and
P (·), respectively.

II. SYSTEM MODEL

We consider a MIMO system with Nt transmit antennas and
Nr receive antennas. Data is transmitted as frames consisting

of L symbols, and we consider both coded and uncoded trans-
mission. The channel between the transmit-receive antennas is
assumed to be a constant over the length of a frame, and is known
(or estimated). Each antenna is equipped with an independent
free-running oscillator that is perturbed by a random phase noise
process, which varies much faster than the channel [16], and
conforms to the model in (1) and (2). Specifically, the phase
noise process from the oscillators is assumed to be varying
from symbol-to-symbol as in (2). We assume that for given
frame, the channel and phase noise are first jointly estimated as
in [13]. This is done by first transmitting a training sequence
that is used to estimate the channel and the phase noise by
means of a least square estimator. The training sequence is then
followed by the transmission of data symbols, during which an
autonomous phase noise estimation algorithm is used to track the
time-varying phase noise followed by data detection. The joint
channel and phase noise estimates obtained from the training
sequence are used as the true channel values in the (autonomous)
phase noise estimation and data detection algorithm.

Assuming square-root Nyquist pulses for transmission, and
matched filtering followed by sampling at symbol period Ts, the
received signal in the kth time instant at the nth receive antenna
is

r
(n)
k =

Nt∑
m=1

h(m,n)c
(m)
k eȷ(θ

(m)
t,k +θ

(n)
r,k ) + w

(n)
k

,
Nt∑

m=1

c
(m,n)
h,k eȷθ

(m,n)
k + w

(n)
k , (1)

where perfect timing and frequency synchronization is as-
sumed [8]. In (1), c

(m)
k ∈ M is the symbol transmitted from

the mth transmit antenna at the kth time instant and drawn
equiprobably from an M -ary signal constellation set M, h(m,n)

represents the known (or estimated) channel realization between
the mth transmit and nth receive antenna, c(m,n)

h,k , c
(m)
k h(m,n),

and w
(n)
k ∼ CN (0, N0) denotes the zero-mean additive white

Gaussian noise (AWGN) at the nth receive antenna. The phase
noise in the (m,n)th link, θ

(m,n)
k , is defined as the sum of

the discrete Wiener phase noise process from the oscillators
connected to the mth transmit and the nth receive antenna,
respectively, at time instant k, i.e., θ(m,n)

k , θ
(m)
t,k + θ

(n)
r,k , where

θ
(m)
t,k = θ

(m)
t,k−1 +∆

(m)
t,k

θ
(n)
r,k = θ

(n)
r,k−1 +∆

(n)
r,k .

(2)

In (2), ∆(m)
t,k ∼ N (0, σ2

t ), ∆
(n)
r,k ∼ N (0, σ2

r ), and θ
(m)
t,0 and θ

(n)
r,0

are uniformly distributed in [0, 2π). We remark that the values
of σ2

t and σ2
r determine the quality of the oscillators used at the

transmitter and the receiver, respectively.
Based on the received signal model in (1) and (2), we define

the following vectors: Θk , [θ
(1)
t,k , . . . , θ

(Nt)
t,k , θ

(1)
r,k , . . . , θ

(Nr)
r,k ]T ,

Θ̄ , [Θ1, . . . ,ΘL]
T , ck , [c

(1)
k , . . . , c

(Nt)
k ]T , c̄ ,

[c1, . . . , cL]
T , rk , [r

(1)
k , . . . , r

(Nr)
k ]T , r̄ , [r1, . . . , rL]

T ,
h , [h(1,1), . . . , h(Nt,Nr)]T , and wk , [w

(1)
k , . . . , w

(Nr)
k ]T .

III. MAP SYMBOL DETECTOR

In this section, we derive the MAP symbol detector. Based
on the received signal model in (1), the optimum receiver is
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obtained as

ĉk = argmax
ck

∑
c̄\{ck}

P (c̄|̄r,h) (3)

= argmax
ck

P (ck |̄r,h) (4)

∝ argmax
ck

P (ck)p(r̄|ck,h) (5)

= argmax
ck

∫
Θk

P (ck)p(r̄|ck,Θk,h)p(Θk|ck,h)dΘk

= argmax
ck

∫
Θk

P (ck)p(rk|ck,Θk, r̄k,h)p(r̄k|ck,Θk,h)

· p(Θk|ck,h)dΘk (6)

= argmax
ck

∫
Θk

P (ck)p(rk|ck,Θk,h)p(r̄k|ck,h)

· p(Θk|ck, r̄k,h)dΘk (7)

∝ argmax
ck

∫
Θk

P (ck)p(rk|ck,Θk,h)p(Θk |̄rk)dΘk. (8)

In (3), we express the MAP symbol detector for the symbols
transmitted in the kth time instant as the marginalization of the
a posteriori pmf of c̄ with respect to all the symbols but ck. In
(5), P (ck) represents the a priori probability of the transmitted
symbols in the kth time instant, and we apply that h is indepen-
dent of ck. We define r̄k , [r1, . . . , rk−1, rk+1, . . . , rL] in (6).
In (7), it is applied that, given ck, h and Θk, r̄k is independent of
rk. It is assumed in (8) that ck and r̄k are independent of each
other, which holds in the case of uncoded data transmission,
implying that we can omit p(r̄k|ck,h) = p(r̄k|h). Furthermore,
we apply that ck,h and Θk are independent of each other.

The detector obtained in (8) is a vector extension of the MAP
symbol detector derived by Kam et al. in [12] – it detects ck
based on the conditional pdf of Θk, p(Θk |̄rk), which is com-
puted using all received signals outside the kth time instant. The
integral in (8) represents the a posteriori pmf of the transmitted
symbols that is obtained after the marginalization of the phase
noise. In uncoded systems, the transmitted symbols are detected
based on (8). For the Wiener phase noise process, determining
p(Θk |̄rk) is analytically intractable, which also makes the MAP
detector intractable and unimplementable in practice [12].

The MAP detector presented in (8) can also be obtained by
applying the SPA based on the factor graph framework [21].
This analysis forms the basis of the algorithm that is presented
in Section IV. In order to derive the MAP detector using the
SPA, we rewrite (3) as

ĉk = argmax
ck

∑
c̄\{ck}

P (c̄|̄r,h)

= argmax
ck

∑
c̄\{ck}

∫
Θ̄

P (c̄, Θ̄|̄r,h)dΘ̄, (9)

Factorizing the integrand, we obtain

P (c̄, Θ̄|̄r,h) ∝ P (c̄)p(Θ̄|c̄)p(r̄|c̄, Θ̄,h),

= P (Θ0)
L∏

k=1

P (ck) p(Θk|Θk−1)︸ ︷︷ ︸
p∆(Θk−Θk−1)

p(rk|Θk, ck,h).

(10)

To factorize the function in (10) we exploit the fact that Θk is a
discrete Wiener process as in (2). Furthermore, in the sequel, we
refrain from conditioning with respect to h since it is known,.

The FG associated with (10) is drawn in Fig. 1. With reference
to the messages in the figure, we have

P
(c)
d (ck) = P (ck) (11)

p
(θ)
d (Θk) =

∑
ck

P
(c)
d (ck)p(rk|ck,Θk) (12)

p
(θ)
f (Θk) =

∫
Θk−1

p
(θ)
f (Θk−1)p

(θ)
d (Θk−1)

· p∆(Θk −Θk−1)dΘk−1 (13)

p
(θ)
b (Θk) =

∫
Θk+1

p
(θ)
b (Θk+1)p

(θ)
d (Θk+1)

· p∆(Θk+1 −Θk)dΘk+1 (14)

P (c)
u (ck) =

∫
Θk

p
(θ)
f (Θk)p

(θ)
b (Θk)p(rk|ck,Θk)dΘk. (15)

Note that in the case of uncoded transmission the FG in Fig.
1 is a tree, and thus applying the SPA on this graph renders the
exact MAP symbol detector (8). In this view, p(θ)b (Θk)p

(θ)
f (Θk)

is equal to the a posteriori pdf p(Θk |̄rk) in (8). Thus, the detector
in (8) can be expressed in terms of P (c)

u (ck) as

ĉk = argmax
ck

P (c)
u (ck)P

(c)
d (ck)

∝ argmax
ck

P (c)
u (ck), (16)

where (16) simplifies since P (ck) is uniform in an uncoded
transmission. In coded systems, the same messages in (11)-(15)
will be used, but now the message P

(c)
d (ck) is not the a priori

pmf P (ck), but rather the extrinsic symbol pmf provided by
the decoder. Also, the message P

(c)
u (ck) in (15) is used for

computing the bit log-likelihood ratios (LLRs) for soft decoding
[10].

The messages in (11)-(15) form the core of the SPA for the
implementation of the MAP detector. The implementation of the
exact SPA is impractical because it involves the computation of
the continuous pdfs of Θk in (11)-(14), which are analytically
intractable. The intractability of the exact MAP symbol detector
in (8) and (16) motivates the need to explore practical, low
complexity receiver algorithms. In the sequel, we present three
receiver algorithms that are approximations of the exact MAP
detector presented in (4), (8) and (16).

IV. MULTIVARIATE TIKHONOV-PARAMETERIZATION BASED
SUM-PRODUCT ALGORITHM FOR APPROXIMATE MAP

DETECTION

In the following, we derive a low-complexity SPA for the
approximate implementation of the MAP symbol detector based
on the canonical distribution approach suggested in [11]. This
approach involves constraining the messages on the FG to a
specific family of pdfs that can compactly and completely be
described by a finite number of parameters. Thus, the task of
computing the exact pdf is reduced to computing the parameters
of the pdf. More specifically, we adopt the Tikhonov canonical
distribution approach introduced by Colavolpe et al. in [8]; we
constrain p

(θ)
f (Θk) and p

(θ)
b (Θk) to be multivariate Tikhonov

pdfs in order to obtain a practical algorithm with good perfor-
mance.
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Fig. 1: Factor Graph and the SPA messages based on (10)

Without loss of generality we consider the case where Nt = 2

and Nr = 1, hence Θk = [θ
(1)
t,k , θ

(2)
t,k , θ

(1)
r,k ] and ck = [c

(1)
k , c

(2)
k ].

The generalization of the algorithm to arbitrary values of Nt

and Nr is straightforward and is presented in Section IV-D. The
received signal model in the kth time instant is

r
(1)
k = c

(1,1)
h,k ej(θ

(1)
t,k+θ

(1)
r,k) + c

(2,1)
h,k ej(θ

(2)
t,k+θ

(1)
r,k) + w

(1)
k . (17)

Then (10) can be expressed as

P (c̄, Θ̄|̄r) ∝ P (c̄)p(θ
(1)
t,0 , θ

(2)
t,0 , θ

(1)
r,0 )

∏
k

p∆(Θk −Θk−1)∏
k

p(r
(1)
k |c(1)k , c

(2)
k , θ

(1)
t,k , θ

(2)
t,k , θ

(1)
r,k ), (18)

where

p(r
(1)
k |c(1)k , c

(2)
k , θ

(1)
t,k , θ

(2)
t,k , θ

(1)
r,k )

∝ exp

−

∣∣∣r(1)k − c
(1)
h,ke

ȷ(θ
(1)
t,k+θ

(1)
r,k) − c

(2)
h,ke

ȷ(θ
(2)
t,k+θ

(1)
r,k)
∣∣∣2

N0

 . (19)

We first seek to determine the functional form of the message
p
(θ)
d (Θk) which is used to determine the messages p(θ)f (Θk) and

p
(θ)
b (Θk). From (12),

p
(θ)
d (Θk)=

∑
c
(1)
k

∑
c
(2)
k

P
(c)
d (c

(1)
k , c

(2)
k )p(r

(1)
k |c(1)k , c

(2)
k , θ

(1)
t,k , θ

(2)
t,k , θ

(1)
r,k )

=p(rk|θ(1)t,k , θ
(2)
t,k , θ

(1)
r,k ). (20)

As we shall see in the sequel, p
(θ)
d (Θk) is a mixture of

Tikhonov pdfs in θ
(m)
t,k , θ

(n)
r,k , or a mixture of Gaussian pdfs in

r
(1)
k when the transmitted symbol is unknown to the receiver.

Deriving a low complexity algorithm mandates the approxima-
tion of this mixture. As in [8], [19], we approximate p

(θ)
d (Θk)

as a single mode pdf in r
(1)
k . Specifically, we approximate

p(rk|θ(1)t,k , θ
(2)
t,k , θ

(1)
r,k ) by the Gaussian pdf that is closest in

terms of the Kullback Leibler (KL) divergence measure. This is
achieved by moment matching, since the Gaussian pdf belongs to
the exponential family of distributions [22]. The meaningfulness

of this approximation stems from the fact that in many interesting
scenarios, the sum of Gaussians constituting p

(θ)
d (Θk) has a

dominant term. This is particularly true when the a priori
information about the transmitted symbols is reliable as in coded
systems [23]. In this case, p(θ)d (Θk) can have a pronounced mode
or peak. However, as the size of the constellation is increased
or the pilot density is reduced, this approximation can be lossy
[24].

The mean and variance of the closest Gaussian pdf are

E{r(1)k |θ(1)t,k , θ
(2)
t,k , θ

(1)
r,k} = α

(1,1)
k eȷ(θ

(1)
t,k+θ

(1)
r,k) + α

(2,1)
k eȷ(θ

(2)
t,k+θ

(1)
r,k)

Var{r(1)k |θ(1)t,k , θ
(2)
t,k , θ

(1)
r,k} = β

(1,1)
k + β

(2,1)
k +N0 −

∣∣∣α(1,1)
k

∣∣∣2
−
∣∣∣α(2,1)

k

∣∣∣2 , γ
(1)
k , (21)

respectively, having defined

α
(m,1)
k =

∑
c
(m)
k ∈C

c
(m,1)
h,k P

(c)
d (c

(m)
k ) (22)

β
(m,1)
k =

∑
c
(m)
k ∈C

∣∣∣c(m,1)
h,k

∣∣∣2 P (c)
d (c

(m)
k ), for m = {1, 2}. (23)

Therefore,

p
(θ)
d (Θk)

≈ N (r
(1)
k ;E{r(1)k |θ(1)t,k , θ

(2)
t,k , θ

(1)
r,k}, γ

(1)
k ) (24)

∝ exp

−

∣∣∣r(1)k − α
(1,1)
k eȷ(θ

(1)
t,k+θ

(1)
r,k) − α

(2,1)
k eȷ(θ

(2)
t,k+θ

(1)
r,k)
∣∣∣2

γ
(1)
k


∝ exp

{
2ℜ
γ
(1)
k

[
r
(1)
k α

(1,1)
k

∗
e−ȷ(θ

(1)
t,k+θ

(1)
r,k) + r

(1)
k α

(2,1)
k

∗
e−ȷ(θ

(2)
t,k+θ

(1)
r,k)

− |α(2,1)
k α

(1,1)
k

∗
|eȷ(∠α

(2,1)
k α

(1,1)
k

∗
+θ

(2)
t,k−θ

(1)
t,k)
]}

= exp

{
2ℜ
γ
(1)
k

[
r
(1)
k α

(1,1)
k

∗
e−ȷ(θ

(1)
t,k+θ

(1)
r,k) + r

(1)
k α

(2,1)
k

∗
e−ȷ(θ

(2)
t,k+θ

(1)
r,k)

− |α(2,1)
k α

(1,1)
k

∗
|eȷ(∠r

(1)
k α

(1,1)
k

∗
−∠r

(1)
k α

(2,1)
k

∗
+θ

(2)
t,k−θ

(1)
t,k)
]}
(25)

, exp
{
ℜ
[
(x

(1)
k e−ȷθ

(1)
t,k + x

(2)
k e−ȷθ

(2)
t,k )e−ȷθ

(1)
r,k

− x
(3)
k e−ȷ(θ

(1)
t,k−θ

(2)
t,k)
]}

(26)

= exp
{
ℜ
[
x
(1)
k e−ȷθ

(1,1)
k + x

(2)
k e−ȷθ

(2,1)
k

− x
(3)
k e−ȷ(θ

(1,1)
k −θ

(2,1)
k )

]}
. (27)

In (25), we exploit that ∠α(2,1)
k α

(1,1)
k

∗
= ∠r(1)k α

(1,1)
k

∗
−

∠r(1)k α
(2,1)
k

∗
, and in (26) we define

x
(1)
k , 2

γ
(1)
k

∣∣∣r(1)k α
(1,1)
k

∗∣∣∣ eȷ∠r
(1)
k α

(1,1)
k

∗

x
(2)
k , 2

γ
(1)
k

∣∣∣r(1)k α
(2,1)
k

∗∣∣∣ eȷ∠r
(1)
k α

(2,1)
k

∗

x
(3)
k , 2

γ
(1)
k

∣∣∣α(2,1)
k α

(1,1)
k

∗∣∣∣ eȷ(∠r
(1)
k α

(1,1)
k

∗
−∠r

(1)
k α

(2,1)
k

∗
). (28)
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In (27), the message p
(θ)
d (Θk) is re-expressed as the cosine

variant of the unnormalized bivariate Tikhonov distribution of
θ
(1,1)
k , θ

(2,1)
k [25]. The distribution is completely characterized by

x
(1)
k , x

(2)
k , x

(3)
k and its parameters are the following. ∠x(1)

k and
1/|x(1)

k | are the mean and variance of θ(1,1)k , respectively, ∠x(2)
k

and 1/|x(2)
k | are the mean and variance of θ(2,1)k , respectively, and

x
(3)
k is related to the correlation between θ

(1,1)
k and θ

(2,1)
k , which

can have an arbitrary magnitude and has to satisfy the constraint
∠x(3)

k = ∠x(1)
k −∠x(2)

k . The estimates of θ(1,1)k , θ
(2,1)
k and their

covariance mentioned are based on the received signal r(1)k . In
our algorithm, we exploit the functional form of p

(θ)
d (Θk) in

(26) to determine the other messages.

A. Forward Recursion

In the sequel, based on p
(θ)
d (Θk) and motivated by the

choice of the cannonical pdf in [8], we determine the message
p
(θ)
f (Θk), which is constrained to be a bivariate Tikhonov pdf.

Computation of the parameters of p(θ)f (Θk) renders the estimates
of θ(1,1)k , θ

(2,1)
k and their covariance based on the received signals

[r
(1)
1 , . . . , r

(1)
L ] in the forward direction – this is referred to as

the forward recursion. The message is evaluated as

p
(θ)
f (Θk) =

∫
Θk−1

p
(θ)
f (Θk−1)p

(θ)
d (Θk−1)p∆(Θk −Θk−1)dΘk−1.

(29)

Assume that p
(θ)
f (Θk−1) is the cosine variant of the bivariate

Tikhonov distribution and is given as

p
(θ)
f (Θk−1) ∝ exp

{
ℜ
[
(a

(1,1)
f,k−1e

−ȷθ
(1)
t,k−1 + a

(2,1)
f,k−1e

−ȷθ
(2)
t,k−1)

· e−ȷθ
(1)
r,k−1 − ã

(1,2)
f,k−1e

−ȷ(θ
(1)
t,k−1−θ

(2)
t,k−1)

]}
,

(30)

where ∠ã(1,2)f,k−1 = ∠a(1,1)f,k−1 −∠a(2,1)f,k−1. In (30), ∠a(1)f,k−1, ∠a(2)f,k−1

and 1/|a(1)f,k−1|, 1/|a
(2)
f,k−1| correspond to the predicted estimates

and the variances of θ
(1,1)
k−1 , θ

(2,1)
k−1 , respectively, based on the

received signals [r
(1)
1 , . . . , r

(1)
k−1], and ℜ{ã(1,2)f,k } is the predicted

correlation between θ
(1,1)
k−1 , θ(2,1)k−1 .

From the bivariate Tikhonov pdf-based approximation en-
forced as ∠ã(1,2)f,k−1 = ∠a(1,1)f,k−1 −∠a(2,1)f,k−1, we have that the corre-
lation, ℜ{ã(1,2)f,k−1}, changes with ∠a(1,1)f,k−1 − ∠a(2,1)f,k−1. Intuitively,
this makes sense for the problem setup that we have: consider
that the phase noise at the transmitter is very small compared to
the receiver phase noise, i.e., θ(2,1)k−1 = θ

(2)
t,k−1 + θ

(1)
r,k−1 ≈ θ

(1)
r,k−1,

θ
(1,1)
k−1 = θ

(1)
t,k−1+θ

(1)
r,k−1 ≈ θ

(1)
r,k−1 . Then, ∠a(1,1)f,k−1−∠a(2,1)f,k−1 ≈ 0,

and the correlation between θ
(1,1)
k−1 and θ

(2,1)
k−1 is maximized.

However, as the phase noise at the transmitter becomes more
severe, ∠a(1,1)f,k−1 − ∠a(2,1)f,k−1 becomes more divergent, and the
correlation between θ

(1,1)
k−1 and θ

(2,1)
k−1 reduces.

Now compute the product p(θ)f (Θk−1)p
(θ)
d (Θk−1) in (29) as

p
(θ)
f (Θk−1)p

(θ)
d (Θk−1)

=exp
{
ℜ
[
((x

(1)
k−1 + a

(1,1)
f,k−1)e

−ȷθ
(1)
t,k−1 + (x

(2)
k−1 + a

(2,1)
f,k−1)e

−ȷθ
(2)
t,k−1)

· e−ȷθ
(1)
r,k−1 − (x

(3)
k−1 + ã

(1,2)
f,k−1)e

−ȷ(θ
(1)
t,k−1−θ

(2)
t,k−1)

]}
, exp

{
ℜ
[
(y

(1)
k−1e

−ȷθ
(1)
t,k−1 + y

(2)
k−1e

−ȷθ
(2)
t,k−1)e−ȷθ

(1)
r,k−1

− y
(3)
k−1e

−ȷ(θ
(1)
t,k−1−θ

(2)
t,k−1)

]}
. (31)

In (31), ∠y(1)k−1, ∠y(2)k−1 and 1/|y(1)k−1|, 1/|y(2)k−1| correspond
to the predicted estimates and the variances of θ

(1,1)
k−1 , θ

(2,1)
k−1 ,

respectively, based on the received signals [r
(1)
1 , . . . , r

(1)
k ], and

y
(3)
k−1 gives a measure of the predicted correlation between θ

(1,1)
k−1 ,

θ
(2,1)
k−1 .

Note that bivariate Tikhonov distributions are not closed under
the product operation [26], i.e., the product of two bivariate
Tikhonov distributions is not another bivariate Tikhonov distri-
bution. However in [26], it was conjectured that the product is
approximately another bivariate Tikhonov pdf. The quality of this
approximation cannot be assessed analytically. As we shall see
in Section VIII, the performance of the SPA-based receiver that
is developed in this section is better than the other algorithms
available in literature, implying that the approximations made are
meaningful. This pragmatic approach of motivating the quality
of the approximations by performance analysis of the algorithm
is a common and well-accepted method in the Bayesian filtering
literature [27]–[29]

Based on the conjecture in [26], we approximate the product in
(31) as a bivariate Tikhonov distribution, where we impose that
∠y(3)k−1 ≈ ∠y(1)k−1 − ∠y(2)k−1, as required for a bivariate Tikhonov
distribution. Using this assumption, we compute p(θ)f (Θk) in (29)
as

p
(θ)
f (Θk)

=

∫ 2π

0

∫ 2π

0

∫ 2π

0

exp
{
ℜ
[
(y

(1)
k−1e

−ȷθ
(1)
t,k−1 + y

(2)
k−1e

−ȷθ
(2)
t,k−1)

· e−ȷθ
(1)
r,k−1 − y

(3)
k−1e

−ȷ(θ
(1)
t,k−1−θ

(2)
t,k−1)

]}
· p∆(θ(1)t,k − θ

(1)
t,k−1)p∆(θ

(2)
t,k − θ

(2)
t,k−1)

· p∆(θ(1)r,k − θ
(1)
r,k−1)dθ

(1)
t,k−1dθ

(2)
t,k−1dθ

(1)
r,k−1. (32)

For the discrete Wiener phase noise process considered, we
show in Appendix A that p(θ)f (Θk) is approximately a bivariate
Tikhonov distribution given by

p
(θ)
f (Θk) ∝ exp

{
ℜ
[
(a

(1,1)
f,k e−ȷθ

(1)
t,k + a

(2,1)
f,k e−ȷθ

(2)
t,k )e−ȷθ

(1)
r,k

− ã
(1,2)
f,k e−ȷ(θ

(1)
t,k−θ

(2)
t,k)
]}

, (33)

where it is assumed that ∠ã(1,2)f,k = ∠a(1,1)f,k − ∠a(2,1)f,k . The
parameters a

(1,1)
f,k , a

(2,1)
f,k , ã

(1,2)
f,k are recursively updated in the
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forward direction as

a
(m,1)
f,k =

¯̄a
(m,1)
f,k

1 + σ2
t

∣∣∣∣∣∣¯̄a(m,1)
f,k

∣∣∣− ∣∣∣˜̃a(1,2)f,k

∣∣∣∣∣∣ , m ∈ {1, 2}

ã
(1,2)
f,k =

˜̃a
(1,2)
f,k

2∏
m=1

(
1 + σ2

t

∣∣∣∣∣∣¯̄a(m,1)
f,k

∣∣∣− ∣∣∣˜̃a(1,2)f,k

∣∣∣∣∣∣) , (34)

where

¯̄a
(m,1)
f,k =

ā
(m,1)
f,k

1 + σ2
r

∣∣∣∣∣∣ā(1,1)f,k

∣∣∣+ ∣∣∣ā(2,1)f,k

∣∣∣∣∣∣ .
ā
(m,1)
f,k = a

(m,1)
f,k−1 +

2

γ
(1)
k−1

r
(1)
k−1α

(m,1)
k−1

∗

˜̃a
(1,2)
f,k = ã

(1,2)
f,k−1 +

2

γ
(1)
k−1

α
(2,1)
k−1 α

(1,1)
k−1

∗
(35)

B. Backward Recursion

The parameters of p
(θ)
b (Θk) are computed based on the

received signals [r
(1)
L , . . . , r

(1)
1 ] in the backward direction. The

message p
(θ)
b (Θk) in (14) is evaluated as

p
(θ)
b (Θk) ∝ exp

{
ℜ
[
(a

(1,1)
b,k e−ȷθ

(1)
t,k + a

(2,1)
b,k e−ȷθ

(2)
t,k )e−ȷθ

(1)
r,k

− ã
(1,2)
b,k e−ȷ(θ

(1)
t,k−θ

(2)
t,k)
]}

, (36)

where it is assumed that ∠ã(1,2)b,k = ∠a(1,1)b,k − ∠a(2,1)b,k . The
parameters of p(θ)b (Θk) are recursively updated in the backward
direction as

a
(m,1)
b,k =

¯̄a
(m,1)
b,k

1 + σ2
t

∣∣∣∣∣∣¯̄a(m,1)
b,k

∣∣∣− ∣∣∣˜̃a(1,2)b,k

∣∣∣∣∣∣ , m ∈ {1, 2}

ã
(1,2)
b,k =

˜̃a
(1,2)
b,k

2∏
m=1

(
1 + σ2

t

∣∣∣∣∣∣¯̄a(m,1)
b,k

∣∣∣− ∣∣∣˜̃a(1,2)b,k

∣∣∣∣∣∣) , (37)

where

¯̄a
(m,1)
b,k =

ā
(m,1)
b,k

1 + σ2
r

∣∣∣∣∣∣ā(1,1)b,k

∣∣∣+ ∣∣∣ā(2,1)b,k

∣∣∣∣∣∣
ā
(m,1)
b,k = a

(m,1)
b,k+1 +

2

γ
(1)
k+1

r
(1)
k+1α

(m,1)
k+1

∗

˜̃a
(1,2)
b,k = ã

(1,2)
b,k+1 +

2

γ
(1)
k+1

α
(2,1)
k+1 α

(1,1)
k+1

∗
. (38)

C. Computation of P (c)
u (ck)

Based on the messages p
(θ)
f (Θk) and p

(θ)
b (Θk), we compute

P
(c)
u (ck) in (15) as

P (c)
u (ck) =

∫
Θk

p
(θ)
f (Θk)p

(θ)
b (Θk)p(rk|ck,Θk)dΘk

∝ exp

(
−
|c(1,1)h,k |2 + |c(2,1)h,k |2

N0

)

·
∫
Θk

exp
{
ℜ
[
(z

(1,1)
k e−ȷθ

(1)
t,k + z

(2,1)
k e−ȷθ

(2)
t,k )e−ȷθ

(1)
r,k

− z̃
(1,2)
k e−ȷ(θ

(1)
t,k−θ

(2)
t,k)
]}

dΘk

∝ exp

(
−
|c(1,1)h,k |2 + |c(2,1)h,k |2

N0

)
I0

(∣∣∣z(1,1)k

∣∣∣+ ∣∣∣z(2,1)k

∣∣∣)
· I0
(∣∣∣z̃(1,2)k

∣∣∣) , (39)

where I0(·) is the zeroth order modified Bessel function, and we
define

z
(m,1)
k , a

(m,1)
f,k + a

(m,1)
b,k +

2

N0
r
(1)
k c

(m,1)
h,k

∗
, m ∈ {1, 2}

z̃
(1,2)
k , ã

(1,2)
f,k + ã

(1,2)
b,k +

2

N0
c
(2,1)
h,k c

(1,1)
h,k

∗
. (40)

D. Generalization to Arbitrary Nt and Nr values

Based on (34), we can generalize the forward recursions for
the case of arbitrary Nt and Nr values as

a
(m,n)
f,k =

¯̄a
(m,n)
f,k

1 + σ2
t

∣∣∣∣∣∣
Nr∑
n=1

∣∣∣¯̄a(m,n)
f,k

∣∣∣− Nt∑
l=1
l̸=m

∣∣∣˜̃a(m,l)
f,k

∣∣∣
∣∣∣∣∣∣

ã
(m,l)
f,k =

˜̃a
(m,l)
f,k

Nt∏
m=1

1 + σ2
t

∣∣∣∣∣∣
Nr∑
n=1

∣∣∣¯̄a(m,n)
f,k

∣∣∣− Nt∑
l=1
l̸=m

∣∣∣˜̃a(m,l)
f,k

∣∣∣
∣∣∣∣∣∣
 , (41)

where m, l ∈ {1, . . . , Nt} and n ∈ {1, . . . , Nr} and

¯̄a
(m,n)
f,k =

ā
(m,n)
f,k

1 + σ2
r

Nt∑
m=1

∣∣∣ā(m,n)
f,k

∣∣∣
ā
(m,n)
f,k = a

(m,n)
f,k−1 +

2

γ
(n)
k−1

r
(n)
k−1α

(m,n)
k−1

∗

˜̃a
(m,l)
f,k = ã

(m,l)
f,k−1 +

2Nr

γ
(n)
k−1

α
(l,n)
k−1 α

(m,n)
k−1

∗
. (42)

Similarly, we can generalize the backward recursion as

a
(m,n)
b,k =

¯̄a
(m,n)
b,k

1 + σ2
t

∣∣∣∣∣∣
Nr∑
n=1

∣∣∣¯̄a(m,n)
b,k

∣∣∣− Nt∑
l=1
l̸=m

∣∣∣˜̃a(m,l)
b,k

∣∣∣
∣∣∣∣∣∣

ã
(m,l)
b,k =

˜̃a
(m,l)
b,k

Nt∏
m=1

1 + σ2
t

∣∣∣∣∣∣
Nr∑
n=1

∣∣∣¯̄a(m,n)
b,k

∣∣∣− Nt∑
l=1
l̸=m

∣∣∣˜̃a(m,l)
b,k

∣∣∣
∣∣∣∣∣∣
 , (43)
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where

¯̄a
(m,n)
b,k =

ā
(m,n)
b,k

1 + σ2
r

Nt∑
m=1

∣∣∣ā(m,n)
b,k

∣∣∣
ā
(m,n)
b,k = a

(m,n)
b,k+1 +

2

γ
(n)
k+1

r
(n)
k+1α

(m,n)
k+1

∗

˜̃a
(m,l)
b,k = ã

(m,l)
f,k+1 +

2Nr

γ
(n)
k+1

α
(l,n)
k+1 α

(m,n)
k+1

∗
. (44)

Note that the MAP estimate of phase noise
processes at each time instant k is given as
argmaxΘk

p
(θ)
f (Θk)p

(θ)
b (Θk)p

(θ)
d (Θk), and is not used

in the receiver algorithm explicitly. The generalization of
P

(c)
u (ck) is given as

P (c)
u (ck) ∝ exp

(
−Nr

Nt∑
m=1

|c(m,n)
h,k |2

N0

)
Nr∏
n=1

I0

(
Nt∑

m=1

∣∣∣z(m,n)
k

∣∣∣)
Nt∏

m=1,

l>m

I0

(∣∣∣z̃(m,l)
k

∣∣∣) , (45)

where

z
(m,n)
k , a

(m,n)
f,k + a

(m,n)
b,k +

Nr∑
n=1

2

N0
r
(n)
k c

(m,n)
h,k

∗

z̃
(m,l)
k , ã

(m,l)
f,k + ã

(m,l)
b,k +

Nr∑
n=1

2

N0
c
(l,n)
h,k c

(m,n)
h,k

∗
. (46)

For future reference, we refer to the SPA-based algorithm
for approximate MAP detection as SPA-MAP. This algorithm
is a generalization of the algorithm presented for single-antenna
systems in [8]. We summarize one iteration of the SPA-MAP
algorithm as follows.
Step 1) Evaluate the coefficients α

(m,n)
k , β

(m,n)
k in (22) using

the a priori probabilities P (c)
d (ck) of the transmitted symbols

c
(i)
k ∀ k ∈ {1, . . . , L} and m ∈ {1, . . . , Nt}, n ∈ {1, . . . , Nr}.

Step 2) Recursively update the parameters in (41)
in the forward direction using the received signals
[r

(n)
1 , . . . , r

(n)
L ]∀n ∈ {1, . . . , Nr}.

Step 3) Recursively update the parameters in (43) in
the backward direction using the received signals
[r

(n)
L , . . . , r

(n)
1 ]∀n ∈ {1, . . . , Nr}.

Step 4) Evaluate P
(c)
u (ck) in (45) ∀ k ∈ {1, . . . , L}.

Step 5) Update P
(c)
d (ck) using P

(c)
u (ck), if a soft-input soft-

output decoder is used ∀ k ∈ {1, . . . , L}.

V. APPROXIMATE MAP DETECTION BASED ON THE
SMOOTHER-DETECTOR STRUCTURE

In this section, we present a receiver algorithm that uses the
smoother-detector structure, as in [10], to approximate the MAP
symbol detector. As required by this structure, a smoother like
the EKS is used to track the discrete Wiener phase noise process.
Then the a posteriori pdf from the smoother is used for deriving
the approximate MAP detector in (8). Specifically, let p(Θk |̄r)
denote the a posteriori phase noise pdf provided by the smoother.
We approximate p(Θk |̄r) by constraining it to a specific family
of pdfs that renders the integral in (8) tractable.

We first consider the case where Nt = 2 and Nr = 1, and, with
a slight abuse of notation, we let Θk = [θ

(1,1)
k , θ

(2,1)
k ] and ck =

[c
(1)
k , c

(2)
k ]. The pdf p(Θk |̄r) is modeled as a bivariate Gaussian

pdf, i.e., p(Θk |̄r) = N (Θk; Θ̂k,Pk,n), where θ̂
(m,n)
k ∈ Θ̂k and

P
(m,l)
k,n ∈ Pk, with

θ̂
(m,n)
k = Ep(Θk |̄r){θ

(m,n)
k },

P
(m,l)
k,n = Ep(Θk |̄r){(θ

(m,n)
k − θ̂

(m,n)
k )(θ

(l,n)
k − θ̂

(l,n)
k )}.

for n = 1 and m, l ∈ {1, 2} (47)

Thus, the approximate MAP detector is written as

ĉk = argmax
ck∈C

∫
Θk

p(rk|ck,Θk)p(Θk|ck, r̄k)dΘk, (48)

≈ argmax
ck∈C

∫
Θk

p(rk|ck,Θk)p(Θk |̄r)dΘk (49)

= argmax
ck∈C

∫
Θk

p(rk|ck,Θk)N (Θk; Θ̂k, P̂k)dΘk (50)

≈ argmax
ck∈C

exp

{
−
|c(1,1)h,k |2 + |c(2,1)h,k |2

N0

}
· I0
(
|u(1,1)

k |+ |u(2,1)
k | − |ũ(1,2)

k |
)
. (51)

We refer the reader to Appendix B for the derivation of the result
in (51). In (50), we define

u
(m,1)
k , 2

N0
r
(1)
k c

(m,n)
h,k

∗
+

eȷθ̂
(m,1)
k

P
(m,1)
k,1

, m ∈ {1, 2}

ũ
(1,2)
k , 2

N0
c
(2,1)
h,k c

(1,1)
h,k

∗
+
∣∣∣˜̃u(1,2)

k

∣∣∣ eȷ(θ̂(1,1)
k −θ̂

(2,1)
k ), (52)

where
∣∣∣˜̃u(1,2)

k

∣∣∣ is obtained by solving [25]

P 1,2
k,1 =

−|˜̃u(1,2)
k |√(

P
(1,1)
k,1

−1
− |˜̃u(1,2)

k |
)(

P
(2,2)
k,1

−1
− |˜̃u(1,2)

k |
) . (53)

The generalization of the approximate MAP detector in (51)
to arbitrary Nt and Nr values is given as

ĉk = argmax
ck

exp

(
−Nr

Nt∑
m=1

|c(m,n)
h,k |2

N0

)
Nr∏
n=1

I0

 Nt∑
m=1

|u(m,n)
k | −

Nt∑
m=1,

l>m

|ũ(m,l)
k |

 . (54)

For future reference, we refer to the smoother-detector al-
gorithm for approximate MAP detection in (51) based on the
Gaussian pdf assumption for phase noise as Gauss-MAP. When
the a posteriori pdf p(Θk |̄rk) is considered to be a Dirac Delta
function, δ(Θk − Θ̂k), then the symbol detector in (50) reduces
to the Euclidean distance-based detector that treats the phase
noise estimate as the true value of the phase noise at the kth
time instant, i.e.,

ĉk = argmax
ck∈C

∫
Θk

p(rk|ck,Θk)δ(Θk − Θ̂k)dΘk

= argmax
ck∈C

p(rk|ck, Θ̂k). (55)
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In the sequel, we refer to the symbol-by-symbol detector com-
prising the smoother and the Euclidean distance-based detector
in (55) as EUC-MAP.

For implementing the Gauss-MAP and the EUC-MAP, the
EKS [32] is used to compute the estimate of the phase noise
in each link and its respective variance as in (47). It is known
from [13], that in a MIMO setup, the EKS achieves the Cramér-
Rao lower bound (CRLB) in the data-aided estimation setup. In
order to determine the linearized state space model for deriving
the EKS, we model the symbol transmitted by the mth transmit
antenna in the kth time instant as

c
(m)
k = c

(m)
k + w

(m)
c,k , (56)

where c
(m)
k is the symbol average from the detector and w

(m)
c,k

is the error associated with it, which is assumed to be Gaussian
distributed, i.e., w(m)

c,k ∼ N (0, σ2
c ) [33], [34]. Define an Nr ×

NtNr matrix Ck as

Ck =


ck 01×Nt . . . 01×Nt

01×Nt ck . . . 01×Nt

...
. . . . . .

...
01×Nt 01×Nt . . . ck

 , (57)

ck = [c
(1)
k . . . c

(Nt)
k ]. (58)

Thus the observation and the state space model considering
the received signal at the nth receive antenna and the kth time
instant for Nt transmit and Nr receive antennas is given as

r
(n)
k =

Nt∑
m=1

eȷθ
(m,n)
k (c

(m)
k + w

(m)
c,k )h(m,n) + w

(n)
k

≈
Nt∑

m=1

eȷθ̂
(m,n)
k (1 + ȷ(θ

(m,n)
k − θ̂

(m,n)
k ))c

(m,n)
h,k + w̃

(n)
k

θ
(m,n)
k = θ

(m,n)
k−1 +∆

(m)
t,k +∆

(n)
r,k ,

, θ
(m,n)
k−1 +∆

(m,n)
k , (59)

where c
(m,n)
h,k , c

(m)
k h(m,n), w̃

(n)
k ∼ N (0, N0 + σ2

c ). The
unknown state vector is Θk and its estimate is Θ̂k, the state
noise vector is [∆

(1,1)
k , . . . ,∆

(Nt,1)
k , . . . ,∆

(Nt,Nr)
k ], all of which

are of size NtNr×1. The state noise covariance matrix, denoted
as Q, is an NtNr ×NtNr matrix, which is written as

Q =

 Q1,1 . . . Q1,Nr

...
. . .

...
QNr,1 . . . QNr,Nr

 ,

Qa,b =

{
σ2
r1Nt×Nt + σ2

t INt×Nt , if a = b
σ2
t INt×Nt

, otherwise.

Let W = σ2
t INr×Nr . Define the Jacobian matrix of size Nr ×

NtNr for the observation model in (59) as

H(Θ̂k) =


h1 01×Nt . . . 01×Nt

01×Nt h2 . . . 01×Nt

...
. . . . . .

...
01×Nt 01×Nt . . . hNr

 , (60)

hn = [ȷc
(1,n)
h,k eȷθ̂

(1,n)
k . . . ȷc

(Nt,n)
h,k eȷθ̂

(Nt,n)
k ]. (61)

Then the EKS equations are given in (62)-(67). Kk is the
NtNr ×Nr Kalman gain in the kth time instant. In the forward
recursion, Θ̂

f

k and Pf
k denote the estimate of the mean and

covariance of Θk, respectively, based on the received signals
[r1, . . . , rL]. These are used in the backward recursion to obtain
the smoothed estimate of the mean and covariance of Θk,
denoted as Θ̂k and Pk, respectively.

VI. VB FRAMEWORK-BASED ALGORITHM FOR
APPROXIMATE MAP DETECTION

In this section, we develop a receiver algorithm for approxi-
mating the MAP symbol detector based on the VB framework
as in [9] (see [30] for a nice tutorial on the VB framework).
We consider arbitrary Nt and Nr, and with a slight abuse
of notation, we define Θk = [θ

(1,1)
k , . . . , θ

(m,n)
k , . . . , θ

(Nt,Nr)
k ]

and ck = [c
(1)
k , . . . , c

(Nt)
k ]. Based on this framework, we first

compute the log likelihood of r̄ as

log p(r̄) = log
∑
c̄

∫
Θ̄

p(c̄, Θ̄, r̄)dΘ̄

= log
∑
c̄

∫
Θ̄

Q(c̄, Θ̄)
p(c̄, Θ̄, r̄)

Q(c̄, Θ̄)
dΘ̄

(a)

≥
∑
c̄

∫
Θ̄

Q(c̄, Θ̄) log
p(c̄, Θ̄, r̄)

Q(c̄, Θ̄)
dΘ̄. (68)

In (68), the Jensen’s inequality is applied to lower bound the log
likelihood; so when Q(c̄, Θ̄) is set to P (c̄, Θ̄|̄r), the lower bound
is achieved. Thus, our objective is to search over the various pdfs
Q(c̄, Θ̄) can assume, such that the bound in (68) is as tight as
possible. This procedure helps to approximate the MAP detector
presented in (4) and (5). In order to reduce the search space,
as in [9], [30], we constrain Q(c̄, Θ̄) to a family of factorized
pdfs, i.e., we assume that Q(c̄, Θ̄) = qc(c̄)qθ(Θ̄). This also
corresponds to the assumption that c̄ and Θ̄ are independent of
each other given r̄. On one hand, some structure of the original
problem is lost with this assumption. On the other hand, the
optimization space is tremendously simplified thereby enabling
to search for a pdf that would minimize the KL divergence
measure with respect to P (c̄, Θ̄|̄r). Note that it is difficult to
provide a rigorous mathematical analysis on the quality of this
approximation. However, the VB framework has been used in
many prior works in order to design efficient receivers [9], [31].

The lower bound in (68) is rewritten as

log p(r̄) ≥
∑
c̄

∫
Θ̄

qc(c̄)qθ(Θ̄) log
p(c̄, Θ̄, r̄)

qc(c̄)qθ(Θ̄)
dΘ̄

, H(qc(c̄), qθ(Θ̄), r̄), (69)

where H(qc(c̄), qθ(Θ̄), r̄) is referred to as the variational free
energy – its maximization results in the minimization of the KL
divergence between qc(c̄)qθ(Θ̄) and p(c̄, Θ̄|̄r). To determine the
factorized pdf, qc(c̄) and qθ(Θ̄), that maximize H, a coordinate
ascent routine is used that maximizes with respect to one pdf
while keeping the other fixed, in an alternating manner. Based
on the functional derivatives of H with respect to the factorized
pdf [9], the coordinate ascent routine involves the iterative
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Kk = (Pf
k−1 +Q)H∗(Θ̂

f

k−1)
(
H(Θ̂

f

k−1)(P
f
k−1 +Q)H∗(Θ̂

f

k−1) +W
)−1

(62)

Θ̂
f

k = Θ̂
f

k−1 + ℜ
{
Kk

[
rk−1 −Cke

ȷΘ̂
f

k−1

]}
(63)

Pf
k = ℜ

{
(Pf

k−1 +Q)−KkH
∗(Θ̂

f

k−1)(P
f
k−1 +Q)

}
(64)

Jk = Pf
kINrNt×NrNt(P

f
k +Q)−1 (65)

Θ̂k = Θ̂
f

k + Jk(Θ̂k+1 − Θ̂
f

k) (66)
Pk = Pf

k + Jk(Pk+1 − (Pk +Q))J∗
k (67)

computation of

qθ(Θ̄) ∝ p(Θ̄)e

∑̄
c
qc(c̄) logP (r̄|c̄,Θ̄)

qc(c̄) ∝ P (c̄)e
∫
Θ̄

qθ(Θ̄) logP (r̄|c̄,Θ̄)dΘ̄. (70)

The coordinate ascent routine is ensured to converge to a fixed
point [30], but global optimality is not guaranteed.

We can immediately see that the coordinate ascent routine
results in a receiver algorithm that iteratively computes the a
posteriori phase noise pdf and the symbol pmf as given in
(70). To derive their respective functional forms, we consider
the received signal model in (1). Based on (70), the factorized
pdf of Θ̄ is derived as

qθ(Θ̄) ≈ p(Θ̄|̄r, c), where,
Eqc{ck} = ck, c = [c1, . . . , cL],Varqc{ck} ≈ 0, (71)

where c denotes the sequence of symbol averages transmitted by
all transmit antennas and is used for computing the factorized
pdf qθ(Θ̄). Furthermore, these symbol averages are treated as the
true transmitted symbols as imposed by the variance constraint.
We refer the reader to Appendix C for the proof of this result.

The factorized pmf of c̄ is given by

qc(c̄) = Cc

L∏
k=1

P (ck) exp{C(1)
temp}

C
(1)
temp = − 1

N0


Nr∑
n=1

∣∣∣∣∣r(n)k −
Nt∑

m=1

c
(m,n)
h,k eȷθ̂

(m,n)
k

∣∣∣∣∣
2

−
Nt∑

m=1

∣∣∣c(m,n)
h,k

∣∣∣2

·P (m,m)
k,n −

Nt∑
m=1

Nt∑
l=1
l̸=m

c
(m,n)
h,k c

(l,n)
h,k

∗
P

(m,l)
k,n eȷ(θ̂

(m,n)
k −ȷθ̂

(l,n)
k )

 . (72)

In (72), we assume that the a priori symbol sequence proba-
bility factorizes fully, under the assumption that the symbols
are independent as in an uncoded transmission. The constant
Cc normalizes the pmf and is independent of the transmitted
symbols. The estimates of the phase noise in each link and the
covariance matrix Pk,n are obtained by using an EKS [32].

Thus, the approximate MAP detector based on the VB frame-
work is

ĉk = argmax
ck

P (ck) exp{C(1)
temp} (73)

where qc(c̄) corresponds to the symbol pmf to which the
coordinate ascent routine in (70) converges. For future reference,
we refer to the approximate MAP detector that is derived based
on the VB framework as VB-MAP.
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Fig. 2: BER performance for uncoded data transmission in different MIMO
systems using the different receiver algorithms for σt = σr = 4◦.

VII. COMPLEXITY ANALYSIS

In this section, we analyze the computational complexity of
the proposed algorithms, namely the SPA-MAP (39), Gauss-
MAP (51) and VB-MAP (72). The computational complexity of
the algorithms is evaluated as the total number of additions and
multiplications required to form the a posteriori symbol pmf, i.e.,
(45), (54) and (72), for all possible combination of the transmit
symbols, plus the computations involved in the decoder (in the
presence of a channel code).

Let the number of iterations between the decoder and the
detector be denoted as LDet, and let the number of iterations
within the LDPC decoder be denoted as LDec. Furthermore,
let the total number of addition and multiplication operations
involved in the mapping and demapping functions and in the
computation of the soft symbol for the detector be denoted as
κ
(T)
map. Consider that an LDPC code is used for coded trans-

mission, and let κ
(T)
dec represent the total number of operations

involved in one iteration within the LDPC decoder. Assume that
the exponential function, the Bessel function, and the square
root operations are implemented by means of a lookup table.
For the SPA-MAP, denote the number of multiplications and
additions involved as κ(M)

spa and κ
(A)
spa , respectively. Then, the total

computational complexity for the SPA-based receiver is written
as [36], [37] κ

(T)
spa = LDet

(
κ
(M)
spa + κ

(A)
spa + LDecκ

(T)
dec + κ

(T)
map

)
,
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where1

κ(M)
spa = 2N3

t + 2N2
r Nt + 8N2

t + 12NtNr︸ ︷︷ ︸
(41),(42),(43),(44)

+ MNt

2N2
r Nt + 2NtN

2
r +Nt +Nr + 1︸ ︷︷ ︸

(45),(46)

 (74)

κ(A)
spa = 8N2

t + 4NrNt + 2NrN
2
t + 2N3

t + 4N2
t Nr + 2N2

r Nt︸ ︷︷ ︸
(41),(42),(43),(44)

+ MNt

2N2
r Nt + 2NrN

2
t +NrNt + 2Nt︸ ︷︷ ︸

(45),(46)

 (75)

κ(T)
map = MNt

(
M

2
log2 M +

M

2
− 1 +Nt

)
(76)

κ
(T)
dec = (2wc + 3wr − 3wrrc + 1) log2 M

Nt , (77)

where wc, wr are the column and row weights of the LDPC
parity check matrix, and rc is the rate of the LDPC code.

The total computational complexity for the
Gauss-MAP receiver is written as κ

(T)
gauss =

LDet

(
κ
(M)
gauss + κ

(A)
gauss + LDecκ

(T)
dec + κ

(T)
map

)
, where the number

of multiplication operations κ
(M)
gauss and addition operations

κ
(A)
gauss are determined as

κ(M)
gauss = 2NtNr︸ ︷︷ ︸

(60)

+2N2
r Nt(NtNr +Nr) +N3

r︸ ︷︷ ︸
(62)

+ 2NtN
2
r︸ ︷︷ ︸

(63)

+N3
r N

2
t (1 +Nt)︸ ︷︷ ︸

(64)

+3N3
r N

3
t︸ ︷︷ ︸

(65)

+ N2
r N

2
t︸ ︷︷ ︸

(66)

+2N3
r N

3
t︸ ︷︷ ︸

(67)

+MNt

Nr + 4N2
t + 4NrNt︸ ︷︷ ︸
(54)


(78)

κ(A)
gauss = N2

t N
2
r +Nr(NrNt − 1)(2NrNt +Nr)︸ ︷︷ ︸

(62)

+ N2
r (1 +Nt(Nr − 1)) +N3

r︸ ︷︷ ︸
(62)

+ 4Nr(NtNr − 1) + 2Nr +NrNt︸ ︷︷ ︸
(63)

+ N2
r N

2
t (Nr(Nt − 1)− 1)︸ ︷︷ ︸

(64)

+ N3
r N

3
t +N2

r N
2
t + 2N2

r N
2
t (NrNt − 1)︸ ︷︷ ︸

(65)

+ 2NrNt +NrNt(NrNt − 1)︸ ︷︷ ︸
(66)

+ 2N2
r N

2
t + 2N2

r N
2
t (NrNt − 1)︸ ︷︷ ︸

(67)

+ MNt

2N2
t + 2NrNt +Nt − 2Nr − 1︸ ︷︷ ︸

(54)

 (79)

1Each term indicates the equations from which the computations arise.
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Fig. 3: FER performance of a 2× 1 system using different receiver algorithms
for code rate = 1/2, σt = σr = 4◦.

The computational complexity due to the EKS in the VB-
MAP algorithm is the same as that in Gauss-MAP. Thus the total
computational complexity for the VB-MAP receiver is κ

(T)
vb =

LDet

(
κ
(M)
v + κ

(A)
vb + LDecκ

(T)
dec + κ

(T)
map

)
, where

κ
(M)
vb = 2NtNr︸ ︷︷ ︸

(60)

+2N2
r Nt(NtNr +Nr) +N3

r︸ ︷︷ ︸
(62)

+ 2NtN
2
r︸ ︷︷ ︸

(63)

+N3
r N

2
t (1 +Nt)︸ ︷︷ ︸

(64)

+3N3
r N

3
t︸ ︷︷ ︸

(65)

+ N2
r N

2
t︸ ︷︷ ︸

(66)

+2N3
r N

3
t︸ ︷︷ ︸

(67)

+MNt

2N2
t Nr + 4NrNt︸ ︷︷ ︸

(72)

 (80)

κ
(A)
vb = N2

t N
2
r +Nr(NrNt − 1)(2NrNt +Nr)︸ ︷︷ ︸

(62)

+ N2
r (1 +Nt(Nr − 1)) +N3

r︸ ︷︷ ︸
(62)

+ 4Nr(NtNr − 1) + 2Nr +NrNt︸ ︷︷ ︸
(63)

+ N2
r N

2
t (Nr(Nt − 1)− 1)︸ ︷︷ ︸

(64)

+ N3
r N

3
t +N2

r N
2
t + 2N2

r N
2
t (NrNt − 1)︸ ︷︷ ︸

(65)

+ 2NrNt +NrNt(NrNt − 1)︸ ︷︷ ︸
(66)

+ 2N2
r N

2
t + 2N2

r N
2
t (NrNt − 1)︸ ︷︷ ︸

(67)

+ MNt

4NrNt + 2NrN
2
t︸ ︷︷ ︸

(72)

 (81)

VIII. SIMULATION RESULTS

In this section we study the performance of the receiver
algorithms proposed in the previous sections, namely the SPA-
MAP (39), Gauss-MAP (51) and VB-MAP (72), and those from
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Fig. 4: FER performance of a 2× 1 system using different receiver algorithms
for code rate = 3/4 and σt = σr = 4◦.

prior work, namely the EUC-MAP (55). The error performance
curve corresponding to the case of no phase noise is used as the
benchmark.

For implementing the Gauss-MAP, VB-MAP and EUC-MAP,
the EKS is used to compute the estimate of the phase noise
in each link and its respective variance. These estimates and
their variances are used by the detector to compute the a
posteriori symbol pmf, which we denote as Pc(ck). For the
Gauss-MAP, EUC-MAP and VB-MAP, Pc(ck) is computed
using (51), (55) and (72), respectively. In uncoded transmission,
the detector computes the symbol average and its variance as
EPc{ck} = ck, VarPc{ck} = σ2

c . These symbol statistics are
conveyed back to the EKS, and we perform 2 iterations between
the smoother and the detector. The transmitted symbols are
decided as ĉk = argmaxck

Pc(ck). In coded transmission, the
symbol pmf computed by the detector is used by the decoder
for computing the bit LLRs, and in all, LDet = 2 global
iterations are performed between the detector and the decoder.
After the maximum number of iterations is reached, Pc(ck) is
used by the decoder to make hard decisions on the information
bits. The number of decoder iterations per global iteration is
set to LDec = 30. In coded transmissions, the EUC-SPA
corresponds to the turbo-synchronization algorithm for MIMO
systems proposed in [15], [35].

We consider data transmission in a strong phase noise scenario
that corresponds to σt = σr = 4◦ [8]. The channel is considered
to be Rayleigh fading, and is assumed to be known (estimated)
and constant over a data frame. Different channel realizations are
generated for each data frame. In uncoded data transmission, the
length of a data frame is L = 10000 symbols, and we consider
the transmission of binary phase-shift keying (BPSK) symbols
unless otherwise stated. In coded data transmission, we consider
that the information bits are encoded with rate-1/2 and rate-
3/4 LDPC code of length L = 4000, and the coded symbols
are distributed over all the transmit antennas – i.e., the coded
symbols at odd and even positions in the codeword (or the
frame) are demultiplexed into different transmit antennas. For
both transmission modes, we place 10 consecutive pilot symbols
at the beginning of each frame, and 1 pilot symbol every 20 data
symbols yielding a pilot density of around 5.1%.
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Fig. 5: SER performance of a 2 × 1 system for 16-QAM transmission using
different receiver algorithms for σt = σr = 4◦.

First, we investigate the performances of the proposed algo-
rithms for different values of Nt and Nr. In Fig. 2, the bit error
probability (BER) performance of the proposed algorithms is
illustrated for 2×2 and 4×4 systems for uncoded transmission.
For the 2×2 system, we note that all the proposed algorithms out-
perform the EUC-MAP for all values of SNR per bit (Eb/N0).
We observe that the SPA-MAP performs better than the Gauss-
MAP and the VB-MAP especially for low values of Eb/N0 by
around 1 dB. For high Eb/N0 values, it can be seen that the
Gauss-MAP and SP-MAP render almost similar performance.

As both Nt and Nr are increased to 4, the gap between the
proposed algorithms and the EUC-MAP widens. Furthermore,
we observe that the gap in the performance between the bench-
mark algorithm, the proposed algorithms and the EUC-MAP also
increases. In particular, the gap between the proposed algorithms
and the EUC-SPA is around 2 dB for high values of Eb/N0. This
can be attributed to higher amplitude distortions due to phase
noise experienced by the transmitted symbols as the number
of antennas increases [16]. The superior performance of SPA-
MAP confirms that the approximations made in Sec. IV are
meaningful.

Next, in Fig. 3, we investigate the frame error rate (FER)
performance of the proposed algorithms for the coded trans-
mission mode considering rate-1/2 LDPC code and a 2 × 1
system. We observe that the SPA-MAP performs better than all
the other algorithms. Specifically, we observe that the SPA-MAP
outperforms the second-best algorithm (Gauss-MAP) by 0.8 dB.

In Fig. 4, we evaluate the FER performance of all algorithms
for rate-3/4 LDPC code considering a 2× 1 system in order to
study the dependence of the performance of the algorithms on
the code rate. We observe that the SPA-MAP outperforms the
second-best algorithm (Gauss-MAP) by around 0.4 dB, and the
gap in the performance between SPA-MAP and the EKS-based
detectors decreases with increasing code rate (as compared to
Fig. 3). This is because the pilot symbols have higher energy
when the code rate is higher and are thus more reliable resulting
in a better performance of the EKS.

We now analyze the performance of the algorithms for differ-
ent constellation sizes. The symbol error rate (SER) performance
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Fig. 6: FER performance of a 2× 1 system for 16-QAM transmission, for code
rate = 3/4 using different receiver algorithms for σt = σr = 4◦.
TABLE I: Computational Complexity of the Receivers for Nt = 2, Nr =
1,M = 2, rc = .5, wc = 3, wr = 6.

Ldet, Ldec SPA-MAP Gauss-MAP VB-MAP EUC-MAP
10,1 3314 3491 3406 3382
15,1 4825 4980 4923 4902
2,30 3376 3538 3475 3424
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SPA-MAP, LDet = 2, LDec = 30
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Fig. 7: FER performance of a 2 × 1 system using SPA-MAP and Gauss-MAP
for rc = 1/2, σt = σr = 4◦ for different Ldet, Ldec values.

of the algorithms is presented in Fig. 5 for uncoded 16-QAM
transmission. We observe that the Gauss-MAP and the VB-MAP
outperform the SPA-MAP significantly. This owes to the approx-
imation of the Tikhonov mixture to a single mode Tikhonov pdf
in (24) using uniform a priori information for the transmitted
symbols in P

(c)
d (ck). As stated before, this approximation can

be highly erroneous for large non-equal energy constellations
particularly when reliable a priori information of the transmitted
symbols is not available to the detector. However, for the case of
coded transmission considering rate-3/4 LDPC code in Fig. 6,
the FER performance of the SPA-MAP algorithm is seen to be
superior to all the other algorithms. This is because the LDPC
decoder provides a more reliable a priori information in P

(c)
d (ck)

of the transmitted symbols rendering the single mode Gaussian
pdf approximation more accurate.

Finally, in order analyze the complexity of the receivers, we
study the case where we iterate between the detector and the
decoder by setting LDec = 1 for rate-1/2 LDPC code of length
L = 4000, σt = σr = 4◦ and a pilot density of around 5.1%. For
the SNRs considered, we observe that Ldet ≈ 15 iterations are
required for convergence for the EKF-based detectors and SPA-
MAP. We compare the computational complexity of the receivers
in Table I for different values of LDec, LDet such that similar
FER performances are attained. For the purpose of clarity, in
Fig. 7 we only demonstrate the performance of the SPA-MAP
and Gauss-MAP for different values of Ldec and Ldet. We can
see that when Ldec = 1, Ldet = 15, the performance of the
receiver is the same as that when Ldec = 30, Ldet = 2, but the
complexity is higher in the former case. However, with a small
loss in performance, choosing Ldec = 1, Ldet = 10 gives an
advantage in terms of complexity with respect to the case where
Ldec = 30, Ldet = 2. Clearly, the optimal choice of Ldec, Ldet

(in terms of complexity) depends on Nt, Nr,M, rc, wc, wr.

IX. CONCLUSIONS

In this paper, we derived the optimum MAP symbol detector
that involves the joint estimation of the a posteriori phase noise
pdf and data detection. The optimum receiver structure is seen
to be intractable and unimplementable in practice. In this regard,
we proposed three suboptimal, low-complexity algorithms that
were observed to outperform the other algorithms available in
the literature, which are considered in this work. In particular,
the receiver based on the sum-product algorithm, SPA-MAP,
was found to perform better than all the other algorithms for
both uncoded and coded transmission of BPSK symbols. For
higher-order constellations (16-QAM), the algorithms based on
the smoother-detector structure, Gauss-MAP, and the variational
Bayesian framework, VB-MAP, were observed to perform the
best in the case of uncoded transmission. However, for coded
16-QAM transmission, the SPA-MAP algorithm was seen to be
superior to all the other algorithms considered.

APPENDIX A
DERIVATION OF THE SPA MESSAGES AND COMPUTATION OF

THEIR PARAMETERS

The message p
(θ)
f (Θk) is derived for the case of the Wiener

phase noise process by evaluating (32) using the approximation
[8, eq. (42)]

1√
2πσ2

∫ 2π

0

eℜ[ze
−ȷφ]e

−(φ−ϕ)2

2σ2 dφ
∼∝ exp

{
ℜ
[

ze−ȷϕ

1 + |z|σ2

]}
(82)

for z ∈ C, σ2 ∈ R+, and φ, ϕ ∈ R. We first evaluate

A
(1)
temp

=

∫ 2π

0

exp
{
ℜ
[
(y

(1)
k−1e

−ȷθ
(1)
t,k−1 + y

(2)
k−1e

−ȷθ
(2)
t,k−1)e−ȷθ

(1)
r,k−1

− y
(3)
k−1e

−ȷ(θ
(1)
t,k−1−θ

(2)
t,k−1)

]}
· p∆(θ(1)r,k − θ

(1)
r,k−1)dθ

(1)
r,k−1 (83)

= exp
{
−ℜ

[
y
(3)
k−1e

−ȷ(θ
(1)
t,k−1−θ

(2)
t,k−1)

]}
·
∫ 2π

0

exp
{
ℜ
[(

y
(1)
k−1e

−ȷθ
(1)
t,k−1 + y

(2)
k−1e

−ȷθ
(2)
t,k−1

)
e−ȷθ

(1)
r,k−1

]}
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· p∆(θ(1)r,k − θ
(1)
r,k−1)dθ

(1)
r,k−1

∝ exp
{
−ℜ

[
y
(3)
k−1e

−ȷ(θ
(1)
t,k−1−θ

(2)
t,k−1)

]}
· exp

ℜ


(
y
(1)
k−1e

−ȷθ
(1)
t,k−1 + y

(2)
k−1e

−ȷθ
(2)
t,k−1

)
e−ȷθ

(1)
r,k

1 + σ2
r

∣∣∣y(1)k−1e
−ȷθ

(1)
t,k−1 + y

(2)
k−1e

−ȷθ
(2)
t,k−1

∣∣∣
 (84)

≈ exp
{
−ℜ

[
y
(3)
k−1e

−ȷ(θ
(1)
t,k−1−θ

(2)
t,k−1)

]}
· exp

ℜ


(
y
(1)
k−1e

−ȷθ
(1)
t,k−1 + y

(2)
k−1e

−ȷθ
(2)
t,k−1

)
1 + σ2

r

(
|y(1)k−1|+ |y(2)k−1|

) e−ȷθ
(1)
r,k

 . (85)

In (84), we used the approximation in (82), and to obtain the
result in (85) we applied the approximation∣∣∣y(1)k−1e

−ȷθ
(1)
t,k−1 + y

(2)
k−1e

−ȷθ
(2)
t,k−1

∣∣∣
=
∣∣∣∣∣∣y(1)k−1

∣∣∣ eȷ(∠y
(1)
k−1−θ

(1)
t,k−1−θ

(1)
r,k−1)

+
∣∣∣y(2)k−1

∣∣∣ eȷ(∠y
(2)
k−1−θ

(1)
r,k−1−θ

(2)
t,k−1)

∣∣∣ (86)

≈
∣∣∣y(1)k−1

∣∣∣+ ∣∣∣y(2)k−1

∣∣∣ , (87)

where it is assumed that ∠y(2)k−1 − θ
(1)
r,k−1 − θ

(2)
t,k−1 and ∠y(1)k−1 −

θ
(1)
r,k−1−θ

(1)
t,k−1 are very small, i.e., we assume that the difference

between the phase noise in each link and its (predicted and
updated) estimate is small. Now, define

ỹ
(1)
k−1 ,

y
(1)
k−1e

−ȷθ
(1)
r,k

1 + σ2
r

(
|y(1)k−1|+ |y(2)k−1|

)
ỹ
(2)
k−1 ,

y
(2)
k−1e

−ȷθ
(1)
r,k

1 + σ2
r

(
|y(1)k−1|+ |y(2)k−1|

) . (88)

Then compute
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(2)
temp ,
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0
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(1)
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=
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ℜ
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ℜ
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ℜ
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ℜ
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ℜ


(
ỹ
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ℜ


(
ỹ
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 , (90)

where in (89), the approximation from (82) is used. In (90), we
apply

∣∣∣ỹ(1)k−1 − y
(3)
k−1e

ȷθ
(2)
t,k−1
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=
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(91)

where in (91), it is considered that θ
(1)
r,k + θ

(2)
t,k−1 − ∠y(2)k−1 is

very small2. This is reasonable, since practically strong phase
noise refers to scenarios where σ2

∆ ≈ 10−3 − 10−2 rad2 or
σ∆ ≈ 2 − 6◦ and weak-to-moderate scenarios correspond to
σ2
∆ ≈ 10−5 − 10−4 rad2 or σ∆ ≈ 0.18− 0.6◦.
Finally, we compute
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=
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ℜ
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∣∣∣∣∣∣ỹ(1)k−1

∣∣∣− ∣∣∣y(3)k−1

∣∣∣∣∣∣e−ȷθ
(1)
t,k


· p∆(θ(2)t,k − θ

(2)
t,k−1)dθ

(2)
t,k−1

= exp

ℜ

 ỹ
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 , where (92)

˜̃y
(2)
k−1 , ỹ

(2)
k−1 −

y
(3)
k−1

∗
eȷθ

(1)
t,k

1 + σ2
t

∣∣∣∣∣∣ỹ(1)k−1

∣∣∣− ∣∣∣y(3)k−1

∣∣∣∣∣∣ .
To obtain (92), we apply the approximation from (82), and
further we apply an approximation similar to that used in (91).

2Here, we assume that the difference between the phase noise in each link
and its (predicted and updated) estimate is small in the sense that we expect
the phase noise to be tracked by the algorithm with reasonable accuracy. This
assumption works well in the phase noise context. Note that a similar assumption
is used to perform linearization about a phase noise estimate in an EKS
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Observe that the message p
(θ)
f (Θk) = A

(3)
temp, and hence
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(θ)
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≈ exp

ℜ
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. (93)

From the result in (93), we arrive at the forward recursions
presented in (34). Computation of the message p

(θ)
b (Θk) to

determine the backward parameter update equations in (37)
proceeds similarly.

For computing the message P
(c)
u (ck) in (39), define

A
(4)
temp ,

∫
exp
{
ℜ
[
(z

(1,1)
k e−ȷθ

(1)
t,k + z

(2,1)
k e−ȷθ

(2)
t,k )e−ȷθ

(1)
r,k

− z̃
(1,2)
k e−ȷ(θ

(1)
t,k−θ

(2)
t,k)
]}

dΘk. (94)

The integral in (94) is evaluated as
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≈
∫ 2π

0

∫ 2π

0

exp
{
−ℜ

[
z̃
(1,2)
k e−ȷ(θ

(1)
t,k−θ

(2)
t,k)
]}

·I0
(∣∣∣∣∣∣z(1,1)k

∣∣∣+ ∣∣∣z(2,1)k

∣∣∣∣∣∣)dθ(2)t,kdθ
(1)
t,k (96)

∝ I0

(∣∣∣z̃(1,2)k

∣∣∣) I0 (∣∣∣∣∣∣z(1,1)k

∣∣∣+ ∣∣∣z(2,1)k

∣∣∣∣∣∣) , (97)

where in (95) the result follows from (82), and the result in
(96) is obtained by applying the approximation in (86). Further,
applying the Tikhonov normalization constant, the result in (97)
is obtained. The result in (97) is used in (94) to yield P

(c)
u (ck)

in (39).
The generalizations presented in (41) and (43) are obtained

by first identifying that p(θ)d (Θk) fully factorizes in terms of the
receive antenna index. Further, the Gaussian pdf that minimizes
the KL divergence with respect to p

(θ)
d (Θk) is obtained by

performing moment matching with each of its factors [22]. Fol-
lowing this, the remaining steps proceed similarly as presented
in (83)-(97).

APPENDIX B
DERIVATION OF THE APPROXIMATE MAP DETECTOR BASED

ON THE SMOOTHER–DETECTOR STRUCTURE

The approximate MAP detector based on the smoother-
detector structure in (50) is rewritten as
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(2,1)
k )

]}
· exp

{
ℜ

[
eȷθ̂

(1,1)
k

P
(1,1)
k,1

e−ȷθ
(1,1)
k +

eȷθ̂
(2,1)
k

P
(2,1)
k,1

e−ȷθ
(2,1)
k

−
∣∣∣˜̃u(1,2)

k

∣∣∣ e−ȷ(θ
(1,1)
k −θ

(2,1)
k )

]}
dΘk (99)

≈ argmax
ck

B
(1)
temp, (100)

where, in (99), we approximate the bivariate Gaussian pdf as
a bivariate Tikhonov distribution [25]. This is a reasonable ap-
proximation for variances of around 10−1 or smaller associated
with θ

(1,1)
k , θ

(2,1)
k [25], which encompass practical scenarios of

weak-to-strong phase noise. Note that a similar approximation
holds in the case of univariate Gaussian and Tikhonov pdfs and
has been widely used in the literature [10].

We simplify B
(1)
temp as

B
(1)
temp

, exp

{
−
|c(1,1)h,k |2 + |c(2,1)h,k |2

N0

}
exp
{
ℜ
[
u
(2,1)
k e−ȷθ

(2,1)
k

]}
·
∫
Θk

exp
{
ℜ
[
u
(1,1)
k e−ȷθ

(1,1)
k − ũ

(1,2)
k e−ȷ(θ

(1,1)
k −θ

(2,1)
k )

]}
dΘk (101)

∝ exp

{
−
|c(1,1)h,k |2 + |c(2,1)h,k |2

N0

}
I0
(
|u(1,1)

k − ũ
(1,2)
k e−ȷθ

(2,1)
k |

)
·
∫
Θk

exp
{
ℜ
[
u
(2,1)
k e−ȷθ

(2,1)
k

]}
dΘk (102)

≈ exp

{
−
|c(1,1)h,k |2 + |c(2,1)h,k |2

N0

}
I0
(
||u(1,1)

k | − |ũ(1,2)
k ||

)
· I0
(
|u(2,1)

k |
)

(103)

≈ exp

{
−
|c(1,1)h,k |2 + |c(2,1)h,k |2

N0

}
I0
(
|u(1,1)

k |+ |u(2,1)
k | − |ũ(1,2)

k |
)
,

(104)
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where we use the definitions from (52) in (101) and the Tikhonov
pdf normalization constant in (102). In (103), we use the
approximation from (91) where it is assumed that the difference
between the predicted and updated estimates and the states is
very small. Finally, in (104) we approximate I0(x) ≈ ex for large
x and assume |u(1,1)

k |−|ũ(1,2)
k | > 0. The generalization presented

in (54) is a straightforward extension of the computations from
(98)-(104) for arbitrary values of Nt and Nr.

APPENDIX C

DERIVATION OF THE FACTORIZED PDFS FOR THE VB
FRAMEWORK

From (70), the factorized pdf of Θ̄ is derived as

qθ(Θ̄) = Cθp(Θ̄)
L∏

k=1

exp
{
C

(2)
temp

}
,where

C
(2)
temp , Eqc {log p(rk|ck,Θk)}
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)
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∗
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e
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(
θ
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k
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∗ Nt∑
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)
.

(105)

= Cθp(Θ̄)
L∏

k=1

exp


Nr∑
n=1

−
∣∣∣∣r(n)k −

Nt∑
m=1

c
(m,n)
h,k eȷθ

(m,n)
k

∣∣∣∣2
N0


= CθP (Θ̄)

L∏
k=1

p(rk|Θk, ck), (106)

= Cθp(r̄, Θ̄|c). (107)

In (105), c
(m,n)
h,k is defined as in (71), and for obtaining the

result in (106) we apply the approximation that Varqc =

Eqc

{
c
(m,n)
h,k c

(m,n)
h,k

∗
− c

(m,n)
h,k c

(m,n)
h,k

∗}
is very small. This implies

that the estimation algorithm assumes that the a posteriori pmf
of the transmitted symbols has a prominent peak. The quality
of this approximation depends on the reliability of the a priori
information available about the transmitted symbols. In particu-
lar, this approximation can be conjectured to be fairly accurate

in coded systems. The constant Cθ is the pdf normalizing factor
such that qθ integrates to unity. Its value can be determined as

Cθ =
1

p(r̄|c)
.

Plugging Cθ in (107), the factorized pdf of Θ̄ is obtained as

qθ = p(Θ̄|̄r, c). (108)

From (70), the factorized pmf of c̄ is derived as

qc = Cc

L∏
k=1

P (ck) exp
{
C

(3)
temp

}
, where (109)

C
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temp ,
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 .

(110)

Upon plugging the result from (110) into (109) we obtain the
result in (72).
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