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Abstract

The use of composite materials is increasing in many fields of production. Com-
posite manufacturing, as well as other fields of production, suffers from uncer-
tainties resulting in products that deviate from the specification. Geometry
assurance is a common procedure used to keep the variations in product as-
semblies under control. However, the methods used to simulate the variation
are not developed for composites. In this thesis, two methods are presented
that address typical uncertainties within composite production.

The method presented in Paper I focuses on the variation of fiber orientation
and ply thickness within fibrous laminae. Variation simulation for the fiber
orientation and ply thickness parameters is combined with a traditional such
method. The combined variation simulation is carried out so that it is possible
to study the effects of including perturbations in these composite parameters.

In Paper II, a method that captures a special type of deviation common for
composites, called spring-in, is presented. These deviations are seen especially
in T-beam structures and occur during the curing step of production, i.e.,
hardening in an oven. A FEM thermal expansion simulation is performed
on the anisotropic composite laminate as a part of the traditional variation
simulation method. The curing temperature is one parameter, along with the
standard geometric parameters, within the proposed method.

The two methods proposed are tested on subassemblies originating from au-
tomotive and aviation industry, respectively. Applying the method presented
in Paper I to the test case gives a resulting variation where the variance is
increased by a factor of 10%. No structural differences are seen. Hence, these
results indicate that traditional variation simulation is sufficient with the inclu-
sion of a correction factor for composites. The method presented in Paper II is
a new contribution to the field of geometry assurance. In addition, the results
show an increase by a factor 4 in the resulting variation for the test case be-
tween keeping the curing temperature fixed at nominal value and letting it vary.

Keywords: Geometry assurance, FEM, Composites, Shell model, Process
variation, Method of Influence Coefficients, Monte Carlo, Orthotropic mate-
rial, Manufacturing, Tolerance analysis, Variation simulation, Spring-in
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Nomenclature

Abbreviations

CFRP Carbon Fiber Reinforced Polymer

CTE Coefficients of Thermal Expansion

dof degree of freedom

FE Finite Element

FEM Finite Element Method

LSL Lower Specification Limit

MC Monte Carlo

MIC Method of Influence Coefficients

RMS Root Mean Square

USL Upper Specification Limit

Geometry assurance

(x, y, z) Point in R3

α Geometric direction

µ Mean value of normal distribution

σ Standard deviation of normal distribution

M Number of Monte Carlo iterations

N Number of FE nodes

ntol Number of input parameters to the variation simulation
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t Displacement

v Direction vector of locator

A1,A2,A3,B1,B2,C1 Locators, i.e., points in locating scheme

Geometry assurance, sub- and superscripts

i FE node no

k Monte Carlo iteration no

Finite element method

(ξ, η, ζ) Point in unit cube

(x1, x2, x3) Point in R3

ε Strain tensor

σ Stress tensor

δ Dirac delta

Γ Boundary of geometry domain

S Trial space

V Test space

D Matrix of elastic coefficients

e Basis vector

f Body force vector

h Surface force vector, traction vector

I Identity matrix

J Jacobi matrix

n Normal vector

p Point in R3

q Point in R3

T Transformation matrix
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U Displacement of point in shell reference surface

u Displacement

v Interior part of u

w Test function

X Point in shell reference surface

x Point in the FE shell

ū Displacement of director

x̄ Director

ν Poisson’s ratio

Ω Geometry domain of solid continuous body

θ Rotation of the director

ϕ Test function

c elastic coefficient

d Number of space dimensions

E Young’s modulus

G Shear modulus

g Prescribed boundary displacement

h Prescribed traction

I Index set

n Normal

NA Finite element shape function for node A

nen Number of element nodes

neq Number of finite elment equations

s Tensor, general nonsymmetric

t Tensor, general symmetric

zA Thickness function in node A
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Finite element, sub- and superscripts

α, β, γ, λ Subscript index assumed to belong to {1, 2} unless otherwise stated

A Superscript denoting FE node

h Superscript denoting discrete function or set

i, j, l, k Subscript index assumed to belong to {1, 2, 3}, unless otherwise stated

l Superscript denoting lamina coordinates
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Chapter 1

Introduction

A short description of the field of application is presented (Section 1.1), followed
by a specification of the focus of interests within this field (Section 1.2). Re-
search previously done related to the focus problem is mentioned to understand
the context. The mathematical parts is then emphasized (Section 1.3).

1.1 Product and production development

In manufacturing industry design, quality, durability and cost are important
factors. The problem is that no production process is perfect, e.g., there are
variations and deviations from specifications. Hence there must be strategies
on how to deal with this. Geometric errors of this kind need to be kept under
control and specifications need to be met. The concept of geometry assurance
is further described in Chapter 2. Understanding and knowledge of geometric
variation will help to keep the cost low while maintaining good product quality.
Therefore, to develop a rewarding production process, it is crucial to have
realistic informative simulation tools.

The manufacturing process can be divided into three phases, see the product
realization loop in Figure 1.1:

• The concept phase where the design of the product and the production
process are formulated by means of virtual simulations. In this phase it is
possible to test and easily evaluate a number of different concepts using
the virtual simulation tool.

1



2 1. Introduction

• The verification phase in which smaller batches with prototypes are
produced and evaluated along with the virtual simulation results.

• The production phase where product and production process specifi-
cations are established and the real production with larger batches are
started. Real measurements are still made to control the process and
they are also compared with simulation results in order to improve the
simulation tool for later purposes.

−→
−→

←−
Product
realiza-
tion loop

Concept

robust
design

loca-
ting

schemes

virtual
simu-
lation

Verifi-
cation

evalua-
tion

proto-
types

Produc-
tion

quality
control

feed-
back

Figure 1.1: The three main phases of the manufacturing process described by
the product realization loop.

There may be conflicting goals between design of the product and the required
precision of the production process. A design that is insensitive to variation is
desired. A robust design concept allows for some production process variations
while the product still meets the requirements. In contrast, in a non robust
design concept variations need to be kept very low otherwise requirements will
not be fulfilled. Demanding small variations is in most cases possible but very
expensive and hence not desirable.
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1.2 Problem description

Usage of composite materials in manufacturing industries, such as aviation and
automotive industry, is increasing. Evaluation of the applicability of existing
virtual simulation tools on composite materials is therefore needed. Further, it
may then be necessary to modify the models or develop new models customized
for composites.

A lot of research has been done in the field of variation simulation, for both
metallic and plastic parts. A comprehensive review is given in [10]. In addition
much research has been carried out on the mechanics of composites and their
production processes. A review of this field is found in [7]. Simulation of parts
of composite production processes have also been done, see e.g. [6]. However,
these fields of research, variation simulation and composite simulations, need to
be studied in combination. Research about integration of composite production
process simulations into the field of variation simulations will help to improve
many manufacturing processes.

The two appended papers treat two aspects of the inclusion of composite spe-
cific features in geometry assurance. First, the effect of variation in fiber ori-
entation and ply thickness of the composite material is studied in Paper I.
Secondly, a method where process variation, occurring in the completion phase
of composite production, is integrated into traditional variation simulation.
The method is developed, tested and evaluated in Paper II.

1.3 The mathematics of this problem

Variation simulation is the theoretic tool within geometry assurance giving the
opportunity to test features in a virtual factory and understand how the geo-
metric variation on single parts propagates through production and affects the
final product assembly. This is a typical problem within the field of uncertainty
quantification.

In variation simulation parts are considered as rigid or compliant. In both
appended papers only compliant geometries are used. Compliant geometries are
discretized using finite element meshes and the deformation occurring during
the assembly process is solved using the finite element method (FEM). Parts
are often thin and hence modeled by shell elements. Thin composite parts are
modeled by layered orthotropic shell elements. For the composites, it is also
possible to use layered solid elements, i.e., wedge or hexahedral elements.
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The Monte Carlo (MC) method is used to perform the variation simulations.
Further, some basic statistics is used in the analysis of the results from simu-
lations.

The combination of the FEM and the MC method is computationally demand-
ing and give very long simulation times. Therefore, to reduce simulation time
a model reduction is applied via the method of influence coefficients (MIC),
[16], further described in Section 2.3.2.



Chapter 2

Geometry assurance

The term Geometry assurance is used for the process of keeping variation in
production assemblies under control to guarantee a final product with good
quality.

In manufacturing industry, products are produced by joining together parts or
subassemblies into larger assemblies that constitute the finished product. A
door of a car, or a wing of an aircraft, are typical such finished products where
geometry assurance is applicable.

The geometry assurance procedure starts with the choice of a suitable locating
scheme (Section 2.1) for the parts and subassemblies. Then input parameters
and tolerances for them are defined (Section 2.2). Next variation simulation
is performed (Section 2.3) to simulate how the assembly process deforms the
parts causing them to deviate from specification. The simulation results are
analyzed and the defined tolerances are examined using, e.g., the root mean
square (RMS) as a measure of variation (Section 2.4). If needed, adjustments
are made and the simulation is rerun until a satisfying result is reached.

2.1 Locating schemes

When the parts of a product are assembled during production they need to
be kept locked in fixtures while joined together. These fixtures have different
designs and functionality. In the simulations we model the fixture by alocating
scheme. Except for locking the part in space, a locating scheme should con-

5



6 2. Geometry assurance

tribute to a robust design concept. The design concept includes the choice of
locating system, the design of the geometry of the parts, the choice of materi-
als etc. A robust design concept suppresses variation, i.e., small errors in e.g.
part geometry or fixture give small resulting variations in the assembly. The
opposite of a robust design concept is a sensitive design concept, where small
errors are amplified giving large resulting variations.

Robustness is only one parameter influencing the choice of locating scheme.
Certain practical factors may also be important to consider. In [17] it is shown
how to find the optimal locating scheme with respect to robustness. An exten-
sive discussion on how to choose a suitable locating scheme in general is given
in [27].

A rigid part has 6 degrees of freedom (dof ) in space, 3 translations and 3
rotations. All degrees of freedom need to be locked by the locating scheme
so that the part is fixed in space. To lock all dof, 6 points, at which the
part is locked from movement in one direction, is defined. These 6 points are
called the main locators. So, to define a locating scheme we need to specify
6 points together with a direction vector for each point. One main difference
between different types of locating schemes is whether these direction vectors
are orthogonal or not. The most common types of locating schemes include:

• The 3-2-1 locating scheme consists of three groups of points and di-
rection vectors, see Figure 2.1. First, the A-group consists of three points,
A1, A2 and A3, with equal direction vectors, vA. Second, the B-group
include two points, B1 and B2 having direction vector vB orthogonal to
vA. Finally the C-group consists of one point, C1, with direction vector
vC orthogonal to both vA and vB . By the A-points, the part is prevented
from movement in the translation dof equal to vA as well as two rotation
dof. The B-points prevent movement in the translation dof equal to vB
and one rotation dof. The C-point prevent the part from moving in the
final translation dof equal to vC .

• The 3-point locating scheme is a special case of the 3-2-1 locating
scheme. The points and direction vectors are defined in the same way
with the only difference that A1=B1=C1 and A2=B2.

• The 3-direction locating scheme is a locating scheme where the di-
rection vector need not be orthogonal. It is defined in the same way
as the 3-2-1 locating scheme, but the condition that vA, vB and vC are
orthogonal is removed.

• The 6-direction locating scheme is another non-orthogonal locating
scheme, see Figure 2.2. In this locating scheme the locators are not
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grouped as in the preceding since all six points (D1,. . . ,D6), have different
direction vectors that need not be orthogonal to each other.

Note that when defining a non-orthogonal locating scheme, such as the 3-
direction or 6-direction locating schemes, caution need to be taken to not end
up with a part than is still free to move in some dof.

For compliant parts these locating schemes might need to be extended by
adding some extra support points.

A1

A3

A2
B2

B1

C1

A

B
C

Figure 2.1: 3-2-1 locating scheme.

Figure 2.2: 6-direction locating scheme.

2.2 Input and output parameters with tolerances

In practice, parts are non-nominal, i.e., the geometry deviates from the spec-
ification. The fixtures holding the parts also have deviations. Further, there
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are uncertainties in process parameters. The real sources of variation are many
and may even be impossible to describe or specify completely by parameters.
Instead, those parameters that are selected are said to represent the sources of
variation. They are adjusted accordingly by e.g. tuning their magnitude. Input
parameters commonly defined are:

• Displacement of locators.

• Displacement of joining points.

• Displacement of contact points.

• Process parameters; e.g., fiber orientation, ply thickness, curing temper-
ature.

For each input parameter a tolerance is specified, i.e., an upper and a lower
specification limit (USL and LSL). The tolerances may have a large effect on
the variation depending on how robust the design concept is. Smaller tolerances
give smaller variation. However, smaller tolerances are more expensive because
the production needs to be more precise. A well chosen locating scheme may
allow for looser tolerances which keeps costs low.

As output parameters from a variation simulation we get:

• The displacement of each finite element (FE) node in each direction in
each MC iteration, i.e., the variation in each FE node.

• The displacement in predefined measures, e.g., the displacement of a cer-
tain point or the relative displacement between two points on different
parts of the assembly.

2.3 Variation simulation

The term variation simulation here refers to the virtual assembly procedure of
a product. There are three main objectives commonly seen within variation
simulation [32]:

• Tolerance allocation/synthesis: How should tolerances be distributed
to individual parts with the requirement that the final assembly meets
specifications?
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• Tolerance optimization: How could manufacturing costs be decreased
but still assure that assemblies are within specifications?

• Tolerance analysis/accumulation: How does part tolerances accu-
mulate and affect the final assembly?

Often these objectives more or less coincide and may be hard to distinguish
between in the analysis of a case.

Before the non-rigid variation simulation can be carried out, the case to be
simulated need to be specified. This is done by the following steps, where
items in italic are not always needed:

1. Define the FE mesh for all the compliant parts.

2. Choose a locating scheme and specify the locators for each part.

3. Specify the joining points.

4. Specify the contact points/surfaces.

5. Define the process parameters.

6. Specify the tolerances for each input parameter.

7. Define the measures where variation is of special interest.

After this set up, variation simulation can be carried out using e.g. the Monte
Carlo (MC) method (Section 2.3.1). The MC method, used here, is one of
two common approaches to variation simulation. Deterministic methods, often
based on Taylor expansion, constitutes the other common approach.

For the variation simulations performed, the Monte Carlo based software and
research tool RD&T is used, [25]. Examples of other software products where
variation simulation is implemented are 3DCS [1] and VSA [29].

When the MC method is used together with the FEM (discussed in Chapter 4),
simulation time gets indefensibly long even for small problems and geometries.
To overcome this issue the method of influence coefficients (MIC) is introduced
(Section 2.3.2).

2.3.1 Monte Carlo

In simulations using the Monte Carlo method a random variable is defined
for each input parameter. In the following, we assume independent, normally
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distributed random variables. Given the tolerances for each input parameter we
choose the mean value, µ, and standard deviation, σ, for the random variables
to be

µ =
1

2
(USL + LSL) (2.1)

σ =
1

6
(USL− LSL) (2.2)

The quantity 6σ is commonly used in production industry as the specification
interval value [22]. This gives 99.7% of the samples within specification limits.
For an even higher percentage being within limits, 8σ is also frequently used.

When a value for each input parameter has been sampled, the assembly process
is simulated. As output, we get the resulting displacement in each finite element
node or predefined measure. To get accurate results, this is repeated a large
number of times. So, one variation simulation consists of a number of Monte
Carlo iterations.

2.3.2 MIC - method of influence coefficients

The method of influence coefficients (MIC) is presented in [16] and it is applied
to shorten simulation time significantly. A linear behavior is assumed making
the MIC valid for small deformation problems.

In this method, solutions to the finite element problem are precomputed for
certain input settings. These solutions are then stored in a matrix and used as
a basis. From this basis a new solution can be computed very fast by matrix
vector multiplication instead of solving the complete finite element problem
again. Since the MC method requires a finite element solution in each iteration,
the gain in simulation time is multiplied by the number of MC iterations.

To set up the basis of solutions each input parameter is perturbed by a unit
displacement one at a time. Each unit perturbed parameter results in a vector
with displacements for all finite element nodes. These vectors make up the
columns of the basis. Hence, for ntol input parameters, the matrix of precom-
puted solutions, i.e., the basis, will be of size N×ntol, where N is the number of
finite element nodes. For a more detailed description of all steps of the method
we refer to [16]. The method has been further developed in [4] and [30] to also
handle contact points and joining points.
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2.4 Measures of variation

In general when variation simulation is done as part of the geometry assurance
process, there are certain critical areas or points of the geometry where the
resulting variation is measured. However, since we are testing and evaluating
new variation simulation methodologies we are interested in how much variation
we get in total for a part, subassembly or the complete assembly. Values
will be compared between variation simulation procedures including composite
specific features and the traditional methods. It is therefore reasonable to have
a measure that gives one value for the total assembly. The root mean square
(RMS) of the variance gives one such measure and the maximum displacement
in the assembly gives another such a measure. These two measures will be
derived and explained further in this section. We assume here that the assembly
of interest consists of compliant parts with defined finite element (FE) meshes.

Since we assume a normal distribution for the input data and since we assume
a linear response, the resulting output data will also be normally distributed.
Hence we can compute the variance and the mean value for the output param-
eters, i.e., the displacement in each space direction (x, y, z) in each FE node.
The sample variance in node i = 1, . . . , N in the direction α = x, y, z, where N
is the number of finite element mesh nodes, is given by

σ2
iα =

1

M − 1

M∑
k=1

(tiαk − t̄iα)2, (2.3)

where tiαk is the displacement in direction α in Monte Carlo iteration k for
node i, and t̄iα is the mean displacement in direction α over all M Monte
Carlo iterations for node i. A measure of total variation in each node is

σ2
i = σ2

ix + σ2
iy + σ2

iz. (2.4)

From this we can compute the RMS as a global measure of the total variation

σRMS =

√√√√ 1

N

N∑
i=1

σ2
i . (2.5)

If the variation in a certain direction, α, is of specific interest we can use the
global directional measure

σαRMS =

√√√√ 1

N

N∑
i=1

σ2
iα . (2.6)
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Since the quantity 6σ is commonly used as the specification limit for acceptable
geometric perturbation, we will use, 6σRMS and 6σαRMS as measures of total
variation.

To capture possibly large local variation behavior in the assembly the maximum
node variance can be used as a measure. It is calculated simply by taking the
maximum over all nodes of the square root of (2.4), i.e.,

σmax = max
i∈{1,...,N}

σi = max
i∈{1,...,N}

√
σ2
ix + σ2

iy + σ2
iz. (2.7)



Chapter 3

A brief introduction to
composites

The aim with this section is to introduce terminology together with some basic
knowledge about composite materials (Section 3.1) and the production pro-
cesses used (Section 3.2). Further, some issues likely to affect the result of
variation simulation will be discussed (Section 3.3). An extensive description
of composites may be found in [3].

3.1 Materials

Composite materials are materials compound of two or more single materials
with different engineering properties. The idea is that the composition of the
materials should have different properties compared to the components them-
selves. In the finished composite the components are suitably arranged and
still distinguishable. A simple generic example of a composite is concrete that
is compound of rocks and clay. Though, when talking about the huge increase
in use of composite materials in industries it is rather fibrous composites or
laminated composites that are discussed.

Fibrous composites consists of a matrix of e.g. polymer, metal or ceramic,
reinforced with fibers of e.g. glass, boron, carbon, organic or alumina. Further,
there exist different lengths of fibers, short and long fibers. The short fibers are
randomly oriented whereas the long fibers, i.e., continuous fibers, are structured

13



14 3. A brief introduction to composites

along one direction, see Figure 3.1. In the following, when fibrous composites
are discussed, it is assumed to be long fibers. Another type of composites are
granulated composites, i.e., the matrix reinforcement has the shape of spheres.
However fibrous composites, have shown to be stronger and therefore much
more frequently used. One of the most common such composite is carbon fiber
reinforced polymer (CFRP) with epoxy as the matrix material.

Laminated composites are compound of two or more plies of e.g. fibrous or
granulated composites. A laminate consisting of plies of fibrous composites
with different fiber orientation are common. The ply itself is orthotropic with
three symmetry planes. The laminate, with such plies, have properties closer
to isotropic materials.

The benefit of using composite materials instead of traditional materials such
as different metals is that they are highly customizable. Differences between
composites and metals are, above all, seen in the engineering properties such as
weight, thermal expansion, stiffness, strength and fatigue resistance. A great
advantage of the composites, compared to metals, is the stiffness to weight
ratio. Further, in composites, stiffness and strength can be prioritized and
gained where needed.

fibers

matrix

Figure 3.1: Fibrous composite with continuous fibers.

3.2 Production processes

Production of fibrous composites could, somewhat simplified, be divided into
two categories. In the first category, fibers are placed first, either by hand layup
or by automatic fiber placement, and then matrix resin is added. In the second
category both fibers and resin are placed simultaneously either by automatic
tape laying or by hand using prepregs, i.e. preimpregnated fibers.

After fibers and resin has been put into place the composite part need to be
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cured for the matrix resin to harden. This can be done in room temperature
but usually it is done in an autoclave, an oven, that could be pressurized. The
temperature is often around 80 − 150◦ C, but could be as high as 200◦ C.
Curing time is negatively proportional to the curing temperature.

For a complete description of the production processes available we refer to
literature, see e.g. [9].

3.3 Uncertainties in composite production

The many different types of composites and their production processes suffer
from various problems that may affect the geometric variation of an assembly.
It could be hard to say beforehand how much the composite assembly variation
is affected by these problems. One way to find out is to include them into the
variation simulation. If the production process variations cause the mechan-
ical properties of the composite part to change, the geometric variation will
probably be affected.

Here we discuss the deviation from nominal ply thickness and the deviation
in the fiber orientation (Section 3.3.1), that both are included in the model
presented in Paper I, as well as the Spring-in phenomena (Section 3.3.2), that
is captured in the model presented in Paper II.

3.3.1 Ply thickness and fiber orientation

In laminate composite production the thickness of each ply is not exact. In fact
the ply thicknesses can vary as much as 20% from specification [8]. Further,
the process of putting together a laminae involve perturbations causing the
fiber orientations to deviate from specification, [2]. These perturbations in
ply thickness and fiber orientation can cause the mechanical properties of the
composite product to change. Then the variation simulation will probably be
inaccurate.

3.3.2 Spring-in phenomena

During the curing process the composite part is kept in a fixture. Due to its
anisotropic properties, such as the difference in coefficients of thermal expansion
(CTE) between fibers and matrix as well as a chemical transition occurring only
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in the matrix, stresses are built up when the part is cooled to room temperature.
Hence, when released from the fixture these stresses cause a spring-back effect
resulting in deformation of the part.

For certain types of geometries this spring-back effect is more significant than
for others. In angled structures, such as T-beams and L-beams, the spring-back
deformation cause a decrease of the angle between the flange and the web of
the geometry, see Figure 3.2. In these special cases the effect is called spring-in.
In Paper II we propose a method to include the process variation from curing
by solving the FEM thermal expansion problem for the cooling after curing.

Spring-in angle

Flange

Web

Figure 3.2: The spring-in phenomenon shown on an L-beam.



Chapter 4

FEM for composite shells

In this chapter we present the finite element method (FEM) used for solving
the deformation of the composite parts. The main purpose of the chapter is to
define concepts and terminology needed to understand the papers. In Paper
I we include variations in the composite fiber directions as well as the ply
thicknesses and in Paper II we solve a FEM thermal expansion problem. In this
chapter we will state the equations describing the composite fiber directions,
the ply thicknesses, as well as the thermal expansion. This should give an
understanding to the process parameter variations performed in the papers.

Since we only consider small deforamtions in the calculations for the papers,
we here present only the linear structural mechanics theory. First we give the
analytic equations and derive the variational formulation and the finite element
formulation for the solid elements (Section 4.1) including thermal expansion for
these. Then we give a general idea on how shell element theory can be derived
from reducing the solid element theory (Section 4.2). Finally, we state the
composite material specific parts of the equations (Section 4.3).

Terminology

There are some notational conventions used in this Chapter:

The summation convention uhi ei :=
∑ndim

i=1 uhi ei
Derivative notation: ui,j := ∂ui

xj

Symmetric derivatives: u(i,j) := 1
2 (ui,j + uj,i)

Indices: latin indices, i, j, k, l = 1, 2, 3 and
greek indices, α, β, γ, λ = 1, 2

17
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4.1 Solid elements

In this section we will introduce the concept of deformation, strain, stress and
the constitutive relation between these. First, assume we have a body, Ω, in
d = 2 or 3 dimensions with boundary Γ. Further we assume that there are two
kind of forces acting on it; body forces, f and surface forces, h. Surface forces
are considered both on the external surface Γ as well as on internal surfaces of
sections of the body.

Stress

The vector of surface forces, h, often referred to as the traction vector, for a
given point is related to a normal vector, n, of the surface and a stress tensor,
σ, such that

h = σn, (4.1)

where

σ =

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 (4.2)

A component σij is the stress acting in the direction xj on a surface with normal
parallell to the xi axis. The components σ11, σ22 and σ33 are called normal
stresses whereas σ12, σ13, σ21, σ23, σ31 and σ32 are termed shear stresses. It
can be shown that σ is symmetric.

Within the body Ω, we need to make sure equilibrium of forces are satisfied,
i.e. ∫

Γ

σn dΓ +

∫
Ω

f dΩ = 0 (4.3)

By Gauss’ divergence theorem this can be reformulated to a single integral
on Ω. Then we get the equilibrium condition that is part of the differential
equation problem stated later in this section.

Strain

Next we consider the deformation of the body, the strain. A deformation is
recognised by a change of distance between two neighbouring material points
or a change of angle between two intersecting lines.
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The strain is described by the strain tensor ε with components εij . Similar to
the stresses, there are normal strain and and shear strain components.

To derive the normal strain, take two points p and q infinitesimally close with
coordinates (x1, x2, x3) and (x1 +dx1, x2 +dx2, x3 +dx3). Let u = u(x1, x2, x3)
be a displacement function. Let p′ and q′ be the points p and q after defor-
mation, i.e.

p′ = u(x1, x2, x3) (4.4)
q′ = u(x1, x2, x3) + du(x1, x2, x3) (4.5)

where the vector du(x1, x2, x3) is defined as

du =

u1,1dx1 + u1,2dx2 + u1,3dx3

u2,1dx1 + u2,2dx2 + u2,3dx3

u3,1dx1 + u3,2dx2 + u3,3dx3

 (4.6)

Now let pq denote the line between p and q and p′q′ the line between p′

and q′. First, assume that both pq and p′q′ are parallell to the x1-axis, i.e.
dx2 = dx3 = 0. We want to calculate the relative elongation of pq after
deformation, i.e.

|p′q′| − |pq|
|pq|

. (4.7)

We have

|pq| = dx1 (4.8)

|p′q′| = |u(q′)− u(p′)|

= dx1

√
(1 + u1,1)2 + u2

2,1 + u2
3,1 (4.9)

Since we consider small deformations here we can assume that

|u1,1| � 1, |u2,1| � 1, |u3,1| � 1, (4.10)

so that
|p′q′| = dx1(1 + u1,1). (4.11)

Then the relative elongation is

|p′q′| − |pq|
|pq|

=
1

dx1

(
dx1(1 + u1,1)− dx1

)
= u1,1. (4.12)

This is the normal strain in the x1-direction denoted ε11. Analoguously we get
the normal strain in the directions of the x2- and x3-axis denoted ε22 and ε33.
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To derive the shear strain the angle between two intersecting lines should be
considered. Again the small deformation assumption is used to get the shear
strain components ε12, ε13 and ε23. For this derivation we refer to e.g. [24].

So, the strain components are given by

εij =
1

2
u(i,j) :=

1

2
(ui,j + uj,i) (4.13)

The strain tensor ε is symmetric.

Constitutive relation

The constitutive relation is the relation between the stress and the strain and
depends on the material properties. Examples of constitutive relations are
elasticity, plasticity, viscoelasticity. The simplest relation is linear elasticity
which in one dimension is exactly Hooke’s law

σ = Eε (4.14)

where the elastic coefficient E is Young’s modulus. Elasticity means that mate-
rial response is history independent, i.e. there is a one-to-one relation between
stress and strain. More generally this relation is described by

σij = cijklεkl, (4.15)

where cijkl are elastic coefficients assumed to satisfy symmetry:

cijkl = cklij [major symmetry] (4.16a)
cijkl = cjikl [minor symmetry] (4.16b)
cijkl = cijlk [minor symmetry] (4.16c)

and positive definiteness

cijkl(x)ψijψkl ≥ 0 (4.16d)
cijkl(x)ψijψkl = 0 ⇒ ψij = 0 (4.16e)

Having this relation we are now able to formulate the deformation problem, i.e.,
the differential equation problem:
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Given fi : Ω→ R, gi : Γgi → R, hi : Γhi
→ R, find ui : Ω̄→ R such that

∂σij
∂xj

+ fi = 0, in Ω (4.17a)

ui = gi, on Γgi (4.17b)
σijnj = hi, on Γhi

(4.17c)

where gi is prescribed boudary displacement, hi is traction and Γgi , Γhi are
boundary segments such that Γgi ∪ Γhi = Γ and Γgi ∩ Γhi = ∅. The equation
(4.17a) is called the equilibrium condition. The properties (4.16) will assure
that the deformation problem (4.17) have a unique solution.

Weak form

Multiply (4.17a) by the test function wi and integrate over Ω:∫
Ω

wiσij,j dΩ︸ ︷︷ ︸
I1

+

∫
Ω

wifi dΩ = 0. (4.18)

For the first integral, I1, using integration by parts and that wi = 0 on γgi we
get

I1 = −
∫

Ω

wi,jσij dΩ +

∫
Γ

wiσijnj dΓ

= −
∫

Ω

wi,jσij dΩ +

d∑
i=1

∫
Γhi

wiσijnj dΓhi

= −
∫

Ω

wi,jσij dΩ +

d∑
i=1

∫
Γhi

wihi dΓhi
(4.19)

Now, moving constants to the right hand side, the weak form is

∫
Ω

wi,jσij dΩ =

∫
Ω

wifi dΩ +

d∑
i=1

∫
Γhi

wihi dΓhi (4.20)

We will further rewrite the left hand side slightly. To do this, observe that a
general nonsymmetric tensor sij can be decomposed into a sum of a symmetric
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tensor and a skew-symmetric tensor;

s(ij) :=
1

2
(sij + sji) [symmetric] (4.21)

s[ij] :=
1

2
(sij − sji) [skew-symmetric] (4.22)

so that
sij = s(ij) + s[ij]. (4.23)

Then for a general non symmetric tensor sij and a general symmetric tensor
tij we have

sijtij = s(ij)tij . (4.24)

To show this, first by (4.23)

sijtij = s(ij)tij + s[ij]tij . (4.25)

Then

s[ij]tij = −s[ji]tij = −s[ji]tji (4.26)

which implies that s[ij]tij = 0 and hence gives the result.

Using the result (4.24) with sij = wi,j and tij = σij gives

wi,jσij =
1

2
(wi,j + wj,i)σij (4.27)

so that (4.20) becomes∫
Ω

w(i,j)σij dΩ =

∫
Ω

wifi dΩ +

d∑
i=1

∫
Γhi

wihi dΓhi
(4.28)

We introduce the abstract notation for this

a(w,u) =

∫
Ω

w(i,j)cijklu(k,l) dΩ (4.29a)

(w, f) =

∫
Ω

wifi dΩ (4.29b)

(w,h)Γ =

d∑
i=1

(∫
Γhi

wihi dΓ

)
(4.29c)

Define the trial space S = {u ∈ H1(Ω)d; ui = gi on Γgi} and the test space
V = {w ∈ H1(Ω)d; wi = 0 on Γgi}. Further to simplify notation let Γg =
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Γg1 × · · · × Γgd and Γh = Γh1
× · · · × Γhd

. Then the deformation problem in
weak form is:

Given f ∈ L2(Ω)d : Ω → Rd, g ∈ L2(Γg)d : Γg → Rd and h ∈ L2(Γh)d : Γh →
Rd, find u ∈ S such that for all w ∈ V

a(w,u) = (w, f) + (w,h)Γ (4.30)

Discrete form

Now to take the step to a FEM-formulation we first assume a triangulation
of the domain Ω. Based on this finite element representation we define the
discrete spaces Sh = {uh ∈ H1(Ω)d; uh continuous piecewise linear with uhi =
ghi on Γgi} and Vh = {wh ∈ H1(Ω)d; wh continuous piecewise linear with whi =
0 on Γgi}. Further we will consider the decomposition

uh = vh + gh,

where vh ∈ Vh and gh is the (known) prescribed boundary displacement. The
FEM problem then reads;

Given f ∈ L2(Ω)d : Ω → Rd, g ∈ L2(Γg)d : Γg → Rd and h ∈ L2(Γh)d : Γh →
Rd, find vh ∈ Vh such that for all wh ∈ Vh

a(wh,vh) = (wh, f) + (wh,h)Γ − a(wh,gh) (4.31)

uh = vh + gh (4.32)

Matrix-vector form

Next we want to write (4.31) on matrix form. Let NA denote the shape func-
tions corresponding to the triangulation of Ω where A ∈ I = {1, 2, . . . ,n},
where n is the number of nodes in the triangulation. Define also the index set
Igi = {A ∈ I; uhi = gi}, i.e. the set of nodes at which a dirichlet boundary
condition in the direction i = 1, . . . , d is present.
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Now with the shape functions we can write

vhi =
∑

A∈I\Igi

NAdAi (4.33a)

ghi =
∑
A∈Igi

NAgAi (4.33b)

where dAi , gAi ∈ R and gAi is the right hand side function of the dirichlet
boundary condition (4.17b) evaluated at xAi . Further letting ei denote basis
vectors in Rd we have

vh = vhi ei (4.34a)

gh = ghi ei (4.34b)

For a fix i, use the shape functions as test function, i.e.

wh = NAei, A ∈ I \ Igi (4.35)

and substitute (4.34) into (4.31) which gives

a
(
NAei,

∑
B∈I\Igj

NBdBj ej

)
=
(
NAei, f

)
+
(
NAei,h

)
Γ
− a
(
NAei,

∑
B∈Igj

NBgBj ej

)
(4.36)

And from bilinearity of a(·, ·) we get further∑
B∈I\Igj

a(NAei, N
Bej)d

B
j

= (NAei,f) + (NAei,h)Γ −
∑
B∈Igj

a(NAei, N
Bej)g

B
j (4.37)

This should hold for all A ∈ I \ Igi and i = 1, . . . , d. Therefore we get a system
of equations

Kd = f . (4.38)

The number of equations in this system is

neq =
d∑
i=1

|I \ Igi |. (4.39)

The stiffness matrix K consists of d-by-d blocks KAB for each node pair AB
without boundary condition in any direction. If a boundary condition exist
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in either node A or B or both in some direction the block is correspondingly
smaller. The row and column corresponding to a boundary condition could
instead be found in the right hand side. A general block looks like

KAB = a(NAem, N
Ben) =

∫
Ω

(NAem)(i,j)cijkl(N
Ben)(k,l) dΩ, (4.40)

for m,n = 1, . . . , d, where A ∈ I \ Igm and B ∈ I \ Ign . The vector f is built up
of corresponding d-by-1 pieces (or smaller if a boundary condition is present)

fA = (NAem, f) + (NAem,h)Γ −
∑
B∈Ign

a(NAem, N
Ben)gBn

=

∫
Ω

NAfm dΩ +

∫
Γhm

NAhm dΓ

−
∑
B∈Ign

(∫
Ω

(NAem)(i,j)cijkl(N
Ben)(k,l) dΩ

)
gBn , (4.41)

for m = 1, . . . , d. Similarly for the solution vector d

dB = dBn , n = 1, . . . , d (4.42)

For an isotropic body the elastic coefficients cijkl are

cijkl(x) = µ(x)(δikδjl + δilδjk) + λ(x)δijδkl (4.43)

where λ and µ are Lamé parameters related to the engineering constants E,
Young’s modulus, and ν, Poisson’s ratio, such that

µ =
E

2(1 + ν)
, λ =

νE

(1 + ν)(1− 2ν)
(4.44)

In the isotropic case then

KAB =

∫
Ω

(
µ(∇NB ⊗∇NA +∇NA · ∇NBI) + λ∇NA ⊗∇NB

)
dΩ (4.45)

where ⊗ and · is the outer product and scalar product respectively, I is the
identity matrix and ∇NA = [NA

,1 , . . . , N
A
,d ]>.

4.2 Shell model

There are many approaches to reach a linear finite element shell formulation,
see e.g. [24, 13]. Here we will derive a linear shell formulation by reduction of
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the solid elements into shell elements with the middle surface as a reference
surface, see [11]. With this approach the geometry for the shell mesh can be
described by

x(ξ, η, ζ) = X(ξ, η) + x̄(ξ, η, ζ) (4.46)

where ξ, η, ζ ∈ [0, 1], x ∈ R3 is arbitrary point in the shell, X is a point in the
reference surface and x̄ is a direction vector, referred to as the director, from
X to x.

To be able to formulate the FEM equations for the shell we will need two
types of local coordinate systems defined relative to the shell element. First
the lamina coordinate system, which is defined in each integration point (i.e.,
the element points used for the numerical integration). Second, the director
coordinate system, which is defined in each FE node. For the exact definition
and how to compute these bases we refer to [11].

The lamina coordinate system with basis vectors el1, e
l
2, e

l
3, is created such that

el3 is the unit normal to the lamina. The two other basis vectors, el1 and el2,
are defined such that they are as close to the gradient vectors X,ξ and X,η as
possible respectively in some sense.

The basis for the director coordinate system, eA
1 , e

A
2 , e

A
3 , is defined such that

eA
3 is tangent to the director. Then eA

1 and eA
2 are defined as close to the global

coordinate basis vectors e1 and e2 as possible respectively in some sense.

The displacements of the shell element is described by the kinematic equations
formulated in the global coordinate system

u(ξ, η, ζ) = U(ξ, η) + ū(ξ, η, ζ) (4.47)

where u ∈ R3 is displacement of arbitrary point in the shell, U is displacement
of a point on the middle surface and ū is displacement of the director. The finite
element discretization of u(ξ, η, ζ) and the test function w(ξ, η, ζ) is formulated
as

u(ξ, η, ζ) =

nen∑
A=1

NAUA + zA(ζ)NA(θA
2 e

A
1 − θA

1 e
A
2 ) (4.48)

w(ξ, η, ζ) =

nen∑
A=1

NAwA + zA(ζ)NA(ϕA
2 eA

1 − ϕA
1 e

A
2 ) (4.49)

where NA = NA(ξ, η) is the shape function for node A, UA and wA are nodal
coefficients, zA is a thickness function, θA

1 and θA
2 , with test functions ϕA

1 and
ϕA

2 respectively, are rotation of the director about the eA
1 and eA

2 respectively.
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By this discretization of u we have assumed that displacements are constant
through the thickness, i.e., the directors can not stretch.

To derive the finite element shell formulation we start with the variational equa-
tion for the solid elements, (4.28), and for simplicity we assume no Neumann
boundary condition. So we start with∫

Ω

w(i,j)σij dΩ =

∫
Ω

wifi dΩ (4.50)

and replace the volume integral
∫

Ω
· dΩ by an integral over the shell thick-

ness inside an integral over the shell elements in lamina coordinates, i.e.,∫
S

∫ 1

−1
· dζ dξdη, where S is the two-dimensional unit square. For all vari-

ables written in lamina coordinates, the superscript l is used for convenience.
Further, we assume the zero normal stress condition holds. This means that
the stress component along the lamina 3-direction, σl33 is set to be zero. This
assumption implies that we can derive an expression for the strain component
εl33 and eliminate it. Hence, the constitutive equation is given by

σlαβ = clαβγλ(ζ)εlγλ = clαβγλ(
1

2
(ulγ,λ + uλ,γ)) (4.51)

σlα3 = clαβ(ζ)εlβ3 = clαβ(u3,β + uβ,3) (4.52)

Now with this assumption the shell equivalent of (4.50) is

∫
S

∫ 1

−1

(
wl(α,β)σ

l
αβ︸ ︷︷ ︸

I1

+ 2wl(α,3)σ
l
α3︸ ︷︷ ︸

I2

)
det(Jx) dζdS =

∫
S

∫ 1

−1

wlif
l
i det(Jx) dζdS

(4.53)

where Jx = J(X(ξ, η)) is the jacobi matrix of the position vector x. To expand
the terms I1 and I2 further we need the derivative of ul with respect to lamina
directions

uli,j =

3∑
m=1

elim

nen∑
A=1

(
NA
,jU

A
m + (zANA),j(θ

A
2 e

A
1m − θA

1 e
A
2m)
)

(4.54)

The symmetry of σαβ gives that w(α,β)σαβ = wα,βσαβ . Hence, for the first
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integral term, I1, we have

πA
1 =

∫
S

∫ 1

−1

wAl
α,βσ

l
αβ det(Jx) dζdS

=

∫
S

∫ 1

−1

wAl
α,βc

l
αβγλε

l
γλ det(Jx) dζdS

=

∫
S

∫ 1

−1

[
wA
i e

l
αiN

A
,β + (zANA),βe

l
αi(ϕ

A
2 e

A
1i − ϕA

1 e
A
2i)
]
clαβγλ[

elγjN
B
,λU

B
j + (NBzB),λe

l
γj(θ

B
2 e

B
1j − θB

1 e
B
2j

]
det(Jx) dζdS (4.55)

For the second term, I2, we have

πA
2 =

∫
S

∫ 1

−1

2w(α,3)σα3 det(Jx) dζdS

=

∫
S

∫ 1

−1

2w(α,3)c
l
αβε

l
β3 det(Jx) dζdS

=

∫
S

∫ 1

−1

[
elαiN

A(ϕA
3 e

A
1i − ϕA

1 e
A
2i)

+ el3i
(
NA
,αw

A
i + (zANA),α(ϕA

3 e
A
1i − ϕA

1 e
A
2i)
)]
clαβ[(

elβjN
B(θB

2 e
B
1j − θB

1 e
B
2j)

+ el3j
(
NB
,βU

B
j + (zBNB),β(θB

2 e
B
1j − θB

1 e
B
2j)
))]

det(Jx) dζdS (4.56)

Now we have reached the FEM formulation for the left hand side of the shell
formulation (4.53).

πA
1 + πA

2 =

∫
S

∫ 1

−1

wlif
l
i det(Jx) dζdS (4.57)

Since the composite material definitions, that we are interested in looking closer
at, are contained in this part, we will not derive the FEM formulation for the
right hand side, it can be found in e.g. [11].

We will make further assumptions which reduces the complexity of the expres-
sions and allows an analytic integration through the thickness. Namely, assume
that we have constant thickness, flat elements and three rotational dof (i.e., six
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dof in total). Then we will arrive at

πA
1 =

∫
S

wA
i e

l
αiN

a
,βc

n
αβγδe

l
γjN

B
,δU

B
j J dS︸ ︷︷ ︸

membrane part

+

∫
S

ϕA
i A

l
αiN

A
,βc

m
αβγδN,δA

l
γjθ

B
j J dS︸ ︷︷ ︸

bending part

(4.58)

πA
2 =

∫
S

(
wA
i N

A
,αe

l
3i + ϕA

i N
AAlαi

)
csαβ

(
el3jN

B
,βU

B
j +NBAlβjθ

B
j

)
J dS (4.59)

where we have defined (× denotes the cross product)

Alαi = elα × el3 (4.60)

and

cnαβγδ =

∫ 1

−1

clαβγδ(ζ) dζ (4.61a)

cmαβγδ =

∫ 1

−1

clαβγδ(ζ)z2(ζ) dζ (4.61b)

csαβ =

∫ 1

−1

clαβ(ζ) dζ (4.61c)

which are computed before the assembly of the stiffness matrix starts. It is in
the definition of the elastic coefficients, (4.61), we see what kind of material we
have.

4.3 Composite shells

In this section we will show how the compliance matrix (or the inverse of it) is
defined, i.e., how the elastic coefficients (4.61) are defined for composites.

4.3.1 Orthotropic material models

An orthotropic material is an anisotropic material which has three orthogonal
symmetry planes. In this section we will see what the constitutive relation look
like for an orthotropic material. That is, we will look at the definition of the
elastic coefficients cαβγδ.
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To siplify notation, we will use the voigt notation, i.e., the stress and strain
tensors will be written on vector form. With the zero normal stress condition
we define

σ̄ =


σ11

σ22

σ12

σ13

σ23

 , ε̄ =


ε11

ε22

2ε12

2ε13

2ε23

 (4.62)

The coefficients of elasticity for orthotropic materials including plane stress
written on voigt notation is, first for the part corresponding to cαβγλ

D1 =

D11 D12 0
D12 D22 0

0 0 D66

 =

c1111 c1122 0
c1122 c2222 0

0 0 c1212

 (4.63)

and for the part corresponding to cαβ it is

D2 =

[
D44 0

0 D55

]
=

[
c11 0
0 c22

]
(4.64)

The complete matrix D is

D =


D11 D12 0 0 0
D12 D22 0 0 0

0 0 D44 0 0
0 0 0 D55 0
0 0 0 0 D66

 (4.65)

So the constitutive equation is
σ̄ = Dε̄ (4.66)

The elements of the matrix D are related to the six engineering constants:
E1, E2, the Young’s modulus along the material axes 1 and 2, ν12, Poisson’s
ratio being the contraction in direction 2 when extended in direction 1, and
G12, G13, G23, the shear modulus in direction j (for Gij) on the plane with
normal in direction i. So,

D11 = E1

1−ν12ν21 , D12 = ν12E2

1−ν12ν21 , D22 = E2

1−ν12ν21

D44 = G23, D55 = G13, D66 = G12

(4.67)

where ν12
E1

= ν21
E2

, i.e., ν21 = E2

E1
ν12.
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Including also thermal expansion we have
σ11

σ22

σ12

σ13

σ23

 =


E1

1−ν12ν21
ν12E2

1−ν12ν21 0 0 0
ν12E2

1−ν12ν21
E2

1−ν12ν21 0 0 0

0 0 G23 0 0
0 0 0 G13 0
0 0 0 0 G12



ε11 − α1∆T
ε22 − α2∆T

2ε12

2ε13

2ε23

 (4.68)

where ∆T is the change in temperature and α1, α2 are CTE.

Computing the inverse of D, often called the compliance matrix C = D−1 gives
ε11 − α1∆T
ε22 − α2∆T

2ε12

2ε13

2ε23

 =


1
E1

−ν21E2
0 0 0

−ν12E1

1
E2

0 0 0

0 0 1
G23

0 0

0 0 0 1
G13

0

0 0 0 0 1
G12



σ11

σ22

σ12

σ13

σ23

 (4.69)

The definition of the matrix D here is written in material coordinates, i.e.,
the axis of symmetry. If we think of a fibrous composite the 1-direction would
correspond to the fiber orientation. A transformation matrix T can be applied
to transform D into lamina coordinates as needed in (4.61). The transformation
matrix is defined as, see e.g. [11],

T =


cos2 θ sin2 θ 0 0 0 − sin 2θ
sin2 θ cos2 θ 0 0 0 sin 2θ

0 0 1 0 0 0
0 0 0 cos θ sin θ 0
0 0 0 − sin θ cos θ 0

sin θ cos θ − sin θ cos θ 0 0 0 cos2 θ − sin2 θ

 (4.70)

where θ is the angle representing the rotational difference between the material
and the lamina coordinate systems. Then we can compute

Dl = TDT> (4.71)

Finally, this matrix Dl is used to compute the elastic coefficients (4.61).

Here we have derived the orthotropic material model for shells, but also solids
could have orthotropic material. The derivations is similar, but there are six
stress and strain components. With six strain components we also get a third
CTE.
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4.3.2 Laminae of orthotropic materials

To define a laminate of orthotropic plies, each ply is specified by setting the
ply thickness and the fiber orientation. The fiber orientation is specified by
an angle relating the material coordinates to the lamina coordinate system.
For a laminate consisting of a number of plies with specified thickness and
fiber orientation, we need to compute the matrix Dl for each ply. Then in the
integrals for the elastic coefficients (4.61), cαβγλ(ζ) and cαβ(ζ) are piecewise
constants.



Chapter 5

Summary of papers

The variation simulations performed in the papers is the Monte Carlo based
method implemented in the software RD&T [25].

In both papers, to discretize the part geometries, a finite element shell mesh
is used. For the composite parts, layered shell meshes are used. The mesh
consists mainly of quadrilateral elements but also of some triangular elements.
As an intermediate step in the method presented in Paper II, the shell mesh
is expanded into a solid mesh consisting of hexahedral elements together with
some wedge elements.

For the FEM simulations carried out, the implementation in the software
LaStFEM is used, [15]. This implementation is based on the shell formulation
stated in [26, 12, 14, 13]. For other applications see also [20, 19, 18, 21, 23, 28].

A summary, with focus on describing the methods used in the two papers, is
given here, (Paper I in Section 5.1 and Paper II in Section 5.2).

5.1 Paper I: Variation simulation for composite
parts and assemblies including variation in
fiber orientation and thickness

In Paper I, a new method for performing variation simulation with composite
parts is presented. In this method traditional variation simulation is extended

33
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with variation simulation for uncertainties in ply thicknesses and fiber orienta-
tions. A summary of the method is given first (Section 5.1.1), then the testcase
used to demonstrate the method (Section 5.1.2) and the results (Section 5.1.3)
are presented in summary.

5.1.1 Method

In the method proposed in Paper I, variation simulation is carried out in two
levels, the traditional variation simulation and the new part with variation in
ply thickness and fiber orientation.

The input parameters in the model are divided into two groups:

• Material parameters

– Fiber orientation.

– Ply thickness.

• Geometric parameters

– Locators.

– Joining points.

– Contact points.

First, we have studied what happens when the material parameters are at their
extreme values (= LSL,USL). This is not likely to happen in practice, but the-
oretically it is interesting to see how this extreme setting affect the geometric
variation. For each setting of the material parameters, a traditional variation
simulation is performed where the geometric parameters with specified toler-
ances are the input, see Figure 5.1.

Material parameter
setting no 1, generated

either by chosing
extreme values, or by

the MC method

Geometric parameter
setting no 1, generated

by the MC method
· · ·

Geometric parameter
setting no M ,

generated by the MC
method · · ·

Material parameter
setting no Mmat,

generated either by
chosing extreme

values, or by the MC
method

Geometric parameter
setting no 1, generated

by the MC method
· · ·

Geometric parameter
setting no M ,

generated by the MC
method

Figure 5.1: Variation simulation in two levels.
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Second, we have performed variation simulation for the material parameters,
i.e., the input setting is chosen by the MC method. Again for each material pa-
rameter setting a traditional variation simulation for the geometric parameters
is performed.

The reason for the variation simulation in two levels is to see how the material
parameter variation affects the traditional variation simulation. Keeping the
variation simulations separate makes it easier to do this analysis.

5.1.2 Test case

The test case used to demonstrate the proposed method in the Paper is a
subassembly from automotive industry consisting of two composite parts, see
Figure 5.2. The parts are referred to as the lower part and the upper part
as stated in Figure 5.2. Both parts are assumed to be laminae of fibrous
composites, including 8 plies for the lower part and 6 plies for the upper part.
It is assumed that the nominal thickness of each ply is equal, 2mm. The
nominal fiber orientation of each ply is shown in Figure 5.3.

Figure 5.2: The subassembly used as test case in Paper I.

The number of input parameters for this test case is 28, each ply has one repre-
senting fiber orientation and one representing the ply thickness. The tolerances
for the input parameters are stated in Table 5.1.
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Figure 5.3: The composition of plies for the two composite parts in the test
case showing the fiber orientation of the respective plies.

description tolerance, (LSL,USL at ±4σ)

Material parameters Fiber orientation ±13◦

Ply thickness ±20%

Geometric parameters Locators ±0.1mm
Joining points ±0.1mm*

Table 5.1: Input parameters and tolerances. *Relative individual tolerance,
there is also a total tolerance for the group of joining points.

5.1.3 Results

The results presented in the paper, indicate that the inclusion of variation in the
fiber orientations and ply thicknesses affect the standard variation simulations
in such a way that the variance of the output distributions is approximately
10% larger. However, the results show no structural changes in the output
distribution. Hence, according to these results, it is sufficient to use a correction
factor to the traditional variation simulation results.

5.2 Paper II: Geometry assurance integrating pro-
cess variation with simulation of spring-in for
composite parts and assemblies

In Paper II we present a method where process variations from the composite
curing process are captured. This method is then combined with the traditional
variation simulations.
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5.2.1 Method

To simulate the curing process we set an initial temperature, common to all
parts in the assembly, and simulate the cooling by solving a FEM thermal
expansion problem for each part. If the assembly consists of both metal and
composite parts, which is possible, this is of course only done for the composites.
The shrinkage occurring when the part is cooled to room temperature cause
the composite part to deviate from nominal geometry. The thermal expansion
simulation is done as a prestep to the traditional variation simulation, i.e., the
initial geometry is deformed.

The input parameters we included in the model are:

• Process parameters

– Curing temperature.

• Geometric parameters

– Locators.
– Joining points.
– Contact points.

The displacement due to the thermal shrinkage is linearly dependent on the
initial temperature. Hence, the process parameter for the temperature can be
included in the precalculation of a solution basis according to the MIC method.

For the thermal expansion simulation we need to have a solid mesh to be able to
capture also the shrinkage through the thickness. The solid mesh is achieved
by expanding the shell mesh equally on bottom and top sides of the shell.
Basically the opposite of how a shell mesh is generated from a solid mesh.

This procedure does not work for the T-beam structures. For these structures
a special procedure is proposed in the paper. To capture the spring-in behavior
the T-beams need to have a curved corner with radius in the transition between
flange and web. Hence, a new solid three-parted mesh is created as close to
the shell mesh as possible. Then the resulting displacements from the thermal
expansion simulation is mapped back to the shell mesh.

5.2.2 Test case

A subassembly of an aircraft wing box is used to demonstrate the method
proposed in Paper II. This wing box is a modified version of a case that is part
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of the EU FP7 project LOCOMACHS. The subassembly consists of 15 parts,
3 of them are aluminum and the rest are composite laminae, CFRP to be more
specific, see Figure 5.4. Among the composite parts there are T-beams, L-
beams and C-shaped beams. Those are parts typically showing the spring-in
behavior after the production process.

Aluminium parts

Figure 5.4: The test case used in Paper II.

The composite parts are assumed to be 10mm thick and consist of three plies
with equal thickness and the fiber orientations 90◦/0◦/90◦.

As input parameters we have the curing temperature and the standard geo-
metric parameters, locators, joining points and contact points. We assume a
nominal curing temperature equal to 120◦C and the room temperature 20◦C,
hence ∆T = 100◦C. Further, the tolerance for the curing temperature is cho-
sen such that we get the desired spring-in angle limit. In this way we capture
also the chemical transition occurring during curing by adjusting the modeled
parameter accordingly as done in [5, 31]. The tolerances for all parameters are
stated in Table 5.2.

5.2.3 Results

When using the proposed method we get, for the test case, the total variation
magnitude 6σMAG

RMS = 1.36 and in the y-direction 6σY
RMS = 0.83. With the

tolerance of the curing temperature set to zero we get 6σMAG
RMS = 0.31 and

6σY
RMS = 0.14.
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description tolerance, LSL, USL at ±3σ

Process parameters Curing temperature ±30◦

Spring-in angle* ±0 .195 ◦

Geometric parameters
Locators ±0.1mm
Joining points 0mm
Contact points 0mm

Table 5.2: Input parameters and tolerances. *Indirect tolerance totally depen-
dent on the tolerance of the curing temperature.

According to these results, the total geometric variation is approximately four
times larger when variation for the curing temperature is included, compared
to when it is kept fixed at nominal temperature.
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