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Cr Vaporization and Oxide Scale Growth on Interconnects in Solid Oxide Fuel Cells 

Hannes Falk Windisch 

Department of Chemistry and Chemical Engineering 

Chalmers University of Technology 

 

Abstract 

The vaporization of Cr(VI) species and the greater electrical resistance caused by a growing oxide scale are 

probably the two most detrimental degradation mechanisms associated with the use of Cr2O3-forming alloys as the 

interconnect material in a Solid Oxide Fuel Cell (SOFC). High electrical efficiency, clean emissions and the 

possibility to utilize several types of fuels, such as hydrogen, alcohols and hydrocarbons are some of the great 

advantages of SOFC technology. However, the limited lifetime and high production costs of a SOFC have limited 

the commercialization of this technology. Therefore, improving the component materials and reducing production 

costs is of great importance. This thesis has examined both mechanisms; Cr vaporization and oxide scale growth. 

The possibility to pre-coat large amounts of steel and deform the material to allow for gas distribution as an 

alternative method for reducing production costs was also investigated. To achieve these objectives, nano coatings 

of Co and Ce were applied to Cr2O3-forming ferritic stainless steels to decrease Cr vaporization and improve the 

oxidation resistance of the interconnect material. All exposures were carried out in a simulated cathode-side 

environment consisting of air-3% H2O. Cr vaporization was measured using a denuder technique and oxide-scale 

growth was studied mainly gravimetrically. For chemical, structural and microstructural analysis, SEM/EDX, FIB 

and XRD techniques were used.  

The results presented in this thesis show that high quality coatings that mitigate Cr vaporization are necessary, 

even if the SOFC operating temperature is decreased to temperatures as low as 650 ºC. By coating a ferritic 

stainless steel with 600 nm Co, the Cr vaporization rate can be decreased by almost 90 %, and by adding an extra 

10 nm layer of Ce, the high temperature corrosion resistance of the interconnect material can be significantly 

improved, and electrical oxide-scale resistance can be reduced. When the pre-coated steel was mechanically 

deformed to allow for gas distribution, large cracks formed in the coating. However, upon exposure, the cracks 

healed and formed a continuous surface oxide rich in Co and Mn. As an effect of this rapid healing, no increase in 

Cr vaporization was detected for the pre-coated material. 
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1. Introduction 

One of society’s greatest challenges is the need to simultaneously meet the rapidly increasing 

demand for energy while reducing the emissions of greenhouse gases. 

Fuel cells have emerged as a promising technology for the decentralized production of clean 

electricity. Fuel cells generate electricity by converting chemical energy stored in the fuel 

through a chemical reaction. Because of this, they are not limited to the Carnot cycle and, 

therefore, are able to reach higher electrical efficiencies than combustion engines [1]. The most 

common type of fuel cell today is the Proton Exchange Membrane Fuel Cell (PEMFC). This 

type of fuel cell; however, can only operate on hydrogen and needs platinum as a catalyst [2, 

3]. The Solid Oxide Fuel Cell (SOFC), in contrast, operates at high temperatures (600 – 800 

°C),thus, enabling the possibility to use not only hydrogen as a fuel, but also conventional fuels, 

such as biogas, natural gas, ethanol and even diesel, without need for platinum [4-7]. All fuel 

cells consist of three components: an anode, a cathode and an electrolyte. To design a fuel cell 

system with the desired voltage, several cells must be connected in series to form a fuel cell 

stack. Each cell in the stack is separated and electrically connected by means of an interconnect.  

The interconnect material in an SOFC must fulfil several requirements such as have a Thermal 

Expansion Coefficient (TEC) similar to the other ceramic parts in the cell, be gas tight, and 

have high electrical conductivity as well as low contact resistance with the electrodes. It must 

also be stable in both high pO2 (the air on the cathode side) and in low pO2 (the fuel on the 

anode side) environments, and it must be inexpensive to manufacture [8, 9]. Ferritic Cr2O3-

forming stainless steels have become the most popular choice for interconnect materials in 

SOFCs today. However, the vaporization of Cr(VI) species and oxide-scale growth are two 

detrimental degradation mechanisms in an SOFC associated with the Cr2O3-forming 

interconnect material [8]. During long-term operation, several µm-thick oxide scales are formed 

at the interconnect surface giving rise to a significant increase in electrical resistance, and, as a 

consequence, lower electrical output. Furthermore, Cr present at the interconnect surface forms 

volatile Cr(VI) species on the cathode side [10-13]. These volatile Cr(VI) species are 

transported to the cathode-gas-electrolyte interface and form a deposit that blocks the 

electrochemical oxygen reduction process [14-17]. For this reason, ferritic stainless steels are 

coated with either metallic or ceramic coatings to reduce the vaporization of Cr. The coating 

material should not increase the electrical resistance of the interconnect material; therefore, 

spinel- and perovskite-type coatings have been suggested as the most promising coating 

candidates. Today, the probably most frequently used coating system is the (Mn,Co)3O4 (MCO) 

coating. Such a coating can be applied using a variety of different techniques such as spray 

drying, dip-coating, screen printing, aerosol spray deposition, plasma spraying or with Physical 

Vapour Deposition (PVD) [18-24]. Another alternative is to coat the steel with metallic Co 

using PVD or electroplating [25-27]. In such a case, Co3O4 will be rapidly formed due to the 

oxidation of the coating when the SOFC is heated up in air. If the steel contains Mn, Co3O4 can 

turn into (Mn,Co)3O4 due to the outwards diffusion of Mn from the steel. It has been 

demonstrated that Co coatings less than 1 µm thick can effectively suppress Cr vaporization 
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[25, 28, 29]. Furthermore, corrosion resistance can also be improved by applying an additional 

layer of a reactive element such as Ce or La [29, 30].  

For SOFC technology to become economically attractive, the cost must be reduced 

significantly. Today, most coated interconnect materials are manufactured in two separate 

steps; (i) stamping the uncoated steel into the shape of the interconnect to allow for gas 

distribution, followed by (ii) coating the deformed steel plate in a second step. This two-step 

batch-coating concept is rather inefficient for mass production. By applying thin metallic 

coatings, large amounts of steel can be pre-coated and shaped into interconnects that allow for 

much more efficient large-scale production, and lower overall cost. 

1.1 Aim of this thesis 

The aim of this thesis is to better understand the two most important degradation mechanisms 

associated with ferritic stainless steels as the interconnect material in an SOFC, and how thin 

metallic coatings can be used to address these problems in a cost-effective way. 

Due to the very long lifetime of an SOFC, accelerated tests must be developed to study the 

component materials. The most commonly used method to accelerate corrosion is to expose the 

material at a higher temperature than the normal operating temperature. However, Cr 

vaporization and oxide scale growth are two separate degradation mechanisms. Therefore, the 

aim of Paper I is to study the influence of temperature on both mechanisms.  

To reduce Cr vaporization, ferritic stainless steels can be coated with thin Co coatings. Large 

amounts of steel can be pre-coated and shaped into interconnects. This would allow for efficient 

large-scale production, and could significantly decrease the overall costs of the interconnect 

material. However, large cracks can form within the coating due to the mechanical deformation 

process. The aim of Paper II is to investigate if deformation increases Cr vaporization.  

Earlier investigations have shown that thin films of the reactive element Ce could significantly 

increase the corrosion resistance of ferritic stainless steels. Improved corrosion resistance is 

only beneficial in an SOFC if it does not increase electrical resistance. For this reason, the aim 

of Paper III is to investigate if Ce/Co coatings can improve the electrical properties of the 

interconnect material. 
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2. Fuel Cells 

Fuel cells are devices that can generate electricity (and heat) by converting chemical energy 

stored in the fuel through a chemical reaction without combustion. They are not limited to 

Carnot efficiency, and have, therefore, the ability to reach higher electrical efficiencies than 

combustion engines [1]. They can also generate electricity as long as fuel is available, and they 

do not need to be recharged like batteries. These properties make fuel cells highly attractive for 

most electrical applications ranging from small portable devices to large MW power plants. 

 Each cell is composed of two electrodes (an anode and a cathode) separated by an electrolyte. 

Similar to batteries, the principle of a fuel cell is to force electrons through an external circuit 

by utilizing an electrolyte material which is permeable to ions but not to electrons. When the 

cathode and the anode are electrically connected via an external circuit, ion diffusion through 

the electrolyte will take place driven by the concentration gradient. To maintain charge balance, 

electrons give rise to a current in the external circuit [1].  

Since the type of electrode material determines which type of ions can diffuse across the 

electrolyte, a large variation of fuel cell types exist. These are generally classified according to 

the electrolyte material. Figure 2.1 illustrates the working principle of the most common fuel 

cell types. 

 

Figure 2.1: Some common types of fuel cells, their mobile ion and working temperature [31]. 

The most common fuel cell type today is the Polymer Exchange Membrane Fuel Cell (PEM-

FC), which operates at low temperature (~80 °C). The main disadvantages with this technique 

is that it is limited to H2 as a fuel, it is sensitive to contamination in the fuel (such as CO), and 

it requires expensive catalysts such as Pt [2, 3]. In contrast to the PEM-FC, the Solid Oxide 

Fuel Cell (SOFC), which operates at high temperatures (> 600 °C), can utilize a large variety 

of fuels (from H2 to complex hydrocarbons such as diesel) without the need for expensive and 

limited catalysts [4, 6, 7]. 



 

4 
 

2.1 Solid Oxide Fuel Cells (SOFCs) 

The Solid Oxide Fuel Cell (SOFC) is based on an oxide-ion-conducting ceramic material as the 

electrolyte. Figure 2.1.1 illustrates the working principle of an SOFC during operation using H2 

as the fuel. Oxidation of the fuel (half reaction 1) takes place on the anode side and forms water 

vapour (and CO2 if hydrocarbons are used as the fuel). At the same time, electrons are released 

and transferred through an external circuit to the cathode side where oxygen is reduced to 

oxygen ions (half reaction 2). The oxygen ions can then diffuse back through the oxygen-ion-

conducting electrolyte to the anode side and react with the fuel. The overall reaction, when 

hydrogen is used as the fuel, is shown in reaction 3. The theoretical electric potential for a single 

cell; therefore, depends on the type of fuel utilized [1]. 

 H2 + O2- → H2O + 2e-     (1) 

½O2 + 2e- → O2-      (2) 

½O2 + H2 → H2O     (3) 

 

Figure 2.1.1: Operational concept of a Solid Oxide Fuel Cell (SOFC) [32] 

The oxygen-ion-conducting electrolyte enables the use of several types of fuels such as H2, 

NH3, ethanol, natural gas, biogas and diesel. Furthermore, feedstocks, such as coal and biomass, 

can be gasified and utilized in an SOFC due to the high resistance towards impurities in the fuel 

[3, 6]. The possibility to utilize a broad variety of fuels has made the SOFC a possible candidate 

for a wide range of applications, ranging from a few kW in auxiliary power units to on-site 

power generation for residential and commercial applications and large scale MW power plants. 

Furthermore, very high electrical efficiencies ( > 60 %) have been achieved for SOFC systems 

in the kW range [5]. Although the advantages of the SOFC are many, a few disadvantages have 

so far limited its commercialization. All of them are linked to the high operating temperatures 

which cause chemical and mechanical degradation during long-term operation and a mismatch 

in the thermal expansion coefficient between the system components which may cause damage 
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during heating and cooling. It is generally stated that a lifetime of at least 40 000 h (~5 years) 

with a degradation rate of less than 0.5 % per 1000 h must be guaranteed to make SOFC 

commercially attractive for stationary applications. Decreasing the operating temperature, 

improving the component materials and finding more economical manufacturing processes are 

some of the most important steps towards real commercialization of the SOFC. 

2.2 Electrolyte and electrode materials 

As mentioned in the previous section, the electrolyte material in an SOFC is a ceramic oxygen-

ion-conducting material. The most common material today is Yttria or Scandia Stabilized 

Zirconia (YSZ respective ScSZ) [6]. Gadolina Doped Ceria (CGO) has also become a popular 

alternative enabling operation below 700 °C [3, 6, 7]. The electrolyte must be stable in both 

oxidizing and reducing atmospheres as well as gas tight [3, 6]. In contrast, the electrodes must 

be porous (and remain so during operation at high temperatures) to allow for gas flow and to 

increase the catalytic surface area. The anode must be a good electrical conductor and 

catalytically active, thus enabling oxidation of the fuel. A cermet consisting of nickel and the 

electrolyte material is considered to be the state of the art anode material today [3, 6]. As the 

anode material, the cathode material must be electrically conductive, but, at the same time, it 

needs to possess high oxygen-ion-conduction and be catalytically active towards oxygen 

reduction. Perovskite oxides, such as Strontium Doped Lanthanum Magnetite (LSM) and 

Lathanum Strontium Cobalt Ferrite (LSCF), are, therefore, frequently used as cathode materials 

[3, 6]. 

2.3 Interconnect 

To increase the voltage of a fuel cell system, several cells are connected in series. Such an array 

of single cells is called a fuel cell stack (Figure 2.3.1). The interconnect, or what is frequently 

called the bipolar plate, is a current collector that separates the individual cells in a fuel cell 

stack. The main function of the interconnect is to electrically connect the anode to the cathode 

of the neighbouring cell and to separate the anode and cathode gases. This requires a gas-tight 

and electrically conductive material.  The material must also be stable in both oxidizing as well 

as reducing atmospheres at high temperatures and have a Thermal Expansion Coefficient (TEC) 

similar to the other ceramic parts in the stack to avoid mechanical failure during start up and 

cooling down. Since cost is a major obstacle to the commercialization of SOFCs, this material 

must be economical to mass produce [8, 14].  

Traditionally, ceramic materials such as LaCrO3 have been used as the interconnect material. 

The development of new and thinner electrolyte and electrode materials has enabled a decrease 

in operating temperature below 800 °C, and the replacement of brittle and expensive ceramics 

with metallic interconnects. Replacing ceramics with metallic materials, such as stainless steels, 

significantly reduces large-scale production costs and increases both electrical and thermal 

conductivity. Today, ferritic stainless steels containing approximately 22 %wt. Cr, which has a 

thermal expansion coefficient close to the ceramic parts in the stack, have become the most 

popular choice as the interconnect material [8, 33]. 
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Although metallic interconnects have several advantages over ceramic ones, some challenges 

attributed to high temperature corrosion need to be improved to guarantee stable long-term 

performance. 

 

Figure 2.3.1: A planar SOFC stack consisting of four cells separated and electrically connected with interconnects 

[32]. 
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3. Oxidation of metals 

All metals, except a few noble metals, form metal oxides when they are exposed to an oxygen-

containing atmosphere according to reaction 4 [34]: 

𝑥𝑀(𝑠)  +  
𝑦

2
𝑂2(𝑔) ↔ 𝑀𝑥𝑂𝑦(𝑠)    (4) 

For this reason, the metal surface will immediately be covered by a metal oxide that separates 

the pure metal from the oxygen containing atmosphere. For further oxidation of the metal to 

occur, at least one of the reactants must penetrate the oxide scale [34]. Either the metal must be 

transported from the oxide-metal interface through the oxide scale to the oxide-gas interface or 

oxygen must be transported from the oxide-gas interface to the oxide-metal interface. Normally, 

both mechanisms take place simultaneously; however, one of them dominates. How fast a metal 

oxidizes is determined by the rate at which ions can penetrate the oxide scale. 

3.1 Thermodynamics 

Thermodynamics can predict if a metal will be oxidized or not at a certain temperature and in 

a certain environment as well as which type of metal oxide will be formed. At constant 

temperature and pressure, Gibbs free energy can be utilized to measure the stability of a system 

according to (5): 

G = H – TS      (5) 

Where G is the Gibbs free energy, H is the enthalpy, S the entropy and T the absolute 

temperature. The change in Gibbs free energy determines if the reaction is spontaneous (ΔG < 

0), in equilibrium (ΔG = 0) or non-spontaneous (ΔG > 0). Three phases are important to 

consider when a metal oxidizes, the metal, the metal oxide and the gas phase. The following 

equation can be utilized to reveal if a metal will oxidize or not (6): 

∆𝐺 = ∆𝐺0 + 𝑅𝑇 ln 𝐾𝑒𝑞 = ∆𝐺0 + 𝑅𝑇 ln  
𝑎(𝑀𝑥 𝑂𝑦)

(𝑠) 

𝑎𝑀(𝑠)
𝑥 𝑎𝑂2(𝑔)

𝑦
2

    (6) 

Where ΔG0 is the standard free energy change, R is the gas constant and Keq is the equilibrium 

constant for the reaction, which can be described in terms of quota of the activities for the 

products and reactants. Since the activity for pure solids can be considered to be 1 and the 

activity of a gas can be expressed as its partial pressure (𝑝𝑂2
), the change in Gibbs free energy 

at a certain temperature can be expressed as a function of oxygen partial pressure according to 

(7): 

∆𝐺 = ∆𝐺0 + 𝑅𝑇 ln
1

𝑝𝑂2

𝑦
2 (𝑔)

      (7) 

This means that temperature and oxygen partial pressure determine if a metal will oxidize or 

not and which type of oxide is the most stable [35]. The stability of a metal oxide at a certain 

temperature and oxygen partial pressure can be illustrated using an Ellingham/Richardson 

diagram (Figure 3.1.1) [36]. It should be pointed out that there is an oxygen partial pressure 

gradient across the oxide scale giving rise to the possibility of a multi-layered structure, as is 
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the case when pure iron oxidizes [37, 38]. Thermodynamics; however, can only predict if a 

phase can exist in a certain environment and at a specific temperature under equilibrium 

conditions. How corrosion-resistant a metal or alloy is under these conditions depends on the 

rate of oxidation.  

 

Figure 3.1.1: Ellingham/Richardson diagram for some metals and their metal oxides taken from [39]. 

 

 

 

 

 

 

 

 



 

9 
 

3.2 Formation and growth of oxide scales 

The formation and growth of an oxide scale can be separated into three steps (Figure 3.2.1) 

[34]. 

 

 

Figure 3.2.1: Schematic illustration of the formation (adsorption and oxide nucleation) and growth of an oxide 

scale. 

In the first step, oxygen or water vapour molecules in the atmosphere adsorb on the metal 

surface by means of weak Van der Waals (VdW) interaction. The gas molecule, e.g. O2, then 

dissociates into adsorbed O on the metal surface. This weak physical adsorption of O is 

followed by a charge transfer forming O2- and Men+ giving rise to an ionic bond between the 

oxygen and the metal. These chemisorbed oxygen ions then diffuse along the surface until a 

stable nucleus has been formed. Further adsorption followed by absorption leads to the growth 

of metal oxide nucleuses until a continuous layer of oxide covers the entire surface. From this 

stage on, further oxidation can only take place by means of solid state diffusion through the 

oxide scale [34]. For alloys containing several metals, all of the metals present at the surface 

will oxidize (if the oxide is thermodynamically stable).  Due to the fact that different metals 

also show different growth rates, the one with the highest growth rate will overgrow the other(s) 

(assuming the concentration is high enough). However, if the metal in the slow-growing oxide 

(A) is less noble than the metal in the fast-growing oxide (B), it will reduce the fast growing 

metal oxide (BO) according to following reaction (8): 

A (in alloy) + BO → AO + B (in alloy)    (8) 

This reaction will proceed until the less noble metal (A) has formed a continuous oxide layer 

(AO). From this moment on, the rate-limiting step for further oxidation is determined by solid 

state diffusion through the slow growing oxide (AO), consisting of the less noble metal (A) [35, 

38]. However, if the activity of the less noble metal (A) is too low, no continuous oxide layer 

will form, and solid state diffusion through the fast growing oxide (BO) will be rate limiting 

[38]. 

What determines if an oxide scale is fast- or slow-growing depends primarily on the 

concentration of defects within the oxide scale [38]. All crystalline materials contain defects at 

all temperatures due to the minimization of free energy caused by the introduction of a certain 

amount of disorder [40]. The defect concentration in a certain material is; however, largely 
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dependent on enthalpy (it costs to break the bounds), and temperature. At higher temperatures, 

more disorder is introduced to the oxide, and more defects will be created where diffusion can 

take place. These rules are true for all materials; however, fast-growing oxides contain more 

defects than slow-growing oxides. It is important to keep in mind that there are several different 

types of defects within a dense oxide scale, such as point defects, dislocations and grain 

boundaries, and all of these influence the oxidation rate [34, 38, 41].  

A defect can be a metal/oxygen vacancy or interstitial, or a substitutional impurity atom. 

Different oxides are classified according to the predominant type of point defect [34, 38]. The 

two most common slow-growing oxides, Al2O3 and Cr2O3, are classified as stoichiometric 

oxides. This is because the only stable oxidation state for both of them is III (e.g. Al3+ and Cr3+). 

As a consequence, the only significant types of defects are Schottky and Frenkel defects [34]. 

In comparison, iron (Fe) can be both Fe2+ and Fe3+. By reducing Fe3+ in Fe2O3 to Fe2+ oxygen 

vacancies must be introduced into the crystal lattice to maintain charge neutrality. Such oxides 

are often referred as anion-deficit oxides and tend to show much higher oxidation rates than 

stoichiometric oxides such as Cr2O3, Al2O3 and SiO2. Another example of increased lattice 

defect concentration when a metal is stable in two oxidation states, is nickel oxide (NiO). Nickel 

normally forms Ni2+ in NiO, but can also be oxidized to Ni3+. To maintain the charge balance, 

Ni2+ metal vacancies are created, and for this reason, this type of oxide is referred to as cation-

deficit oxides. The formation of defects, such as cation or anion vacancies, in non stoichiometric 

oxides can explain why alloys forming an oxide scale that consists of Fe or Ni-oxide tend to 

oxidize faster than alloys forming a oxide scale that consists of a stoichiometric oxide such as 

Al2O3 or Cr2O3. Furthermore, as mentioned above, non-lattice defects, such as dislocations and 

grain boundaries, have a large impact on the rate of oxide scale growth. The diffusivity in 

polycrystalline materials can be ordered according to (9) [41]: 

𝐷 ≪  𝐷𝑑 ≤ 𝐷𝑔𝑏  ≤ 𝐷𝑠     (9) 

Where D is the lattice diffusivity, Dd is the dislocation diffusivity, Dgb is the grain-boundary 

diffusivity and Ds is the diffusivity at the surface. This means that the quickest diffusion path 

through a dense oxide scale is via grain-boundary diffusion. For this reason, grain-boundary 

diffusion is commonly referred to as a short-circuit diffusion [34, 38]. Although grain-boundary 

diffusion is significantly faster than lattice diffusion, the volume in which grain-boundary 

diffusion can take place is very often small compared to the volume where lattice diffusion can 

take place. For this reason lattice diffusion will always be a part of the diffusion mechanism 

through the oxide scale. For the purpose of simplification, a general rule of thumb is that grain-

boundary diffusion is the dominant diffusion path at temperatures below 0.6 of the melting 

temperature of the oxide [41]. At higher temperatures, lattice diffusion is considered to be the 

dominant diffusion path. In this thesis, Cr2O3-forming alloys were investigated at 650-850 °C. 

Cr2O3 has a melting point above 2400 °C which means that grain boundary diffusion should be 

considered to be the main diffusion path.  

3.3 Oxidation kinetics 

The growth of an oxide scale on a metal or alloy surface can be rather complex and is, in most 

cases, a mixture of several different mechanisms such as outward cation diffusion and inward 
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oxygen diffusion. Not only do ions diffuse within the lattice (as discussed above), but the flux 

of ions through a dense oxide scale is the sum of diffusion via the bulk, dislocations and grain 

boundaries. For this reason, the combined oxidation process is generally illustrated as a plot of 

oxide scale thickness against exposure time [34, 35, 38]. However, this has some practical 

limitations. Instead, a more common way to describe the oxidation process is to plot mass gain 

as a function of time, assuming that the gain in mass corresponds to the growth of an oxide 

scale [35]. Depending on the shape of such a mass gain plot, the growth of the oxide scale is 

normally said to show linear, logarithmic or parabolic oxidation behaviour (Figure 3.3.1) [34, 

35, 38].  

 

Figure 3.3.1: Mass gain curves illustrating linear, parabolic and logarithmic mass gain behaviour. 

Linear rate law 

If the mass gain as a function of time is linear (Figure 3.1.1), the gain in mass can be described 

according to (10): 

Δm = klt      (10) 

Where Δm is the mass gain, kl is the linear rate constant and t is the exposure time. This 

behaviour is commonly observed under conditions where a surface or phase-boundary process 

is the rate-determining step [38]. In such a case, diffusion through the oxide scale is not the 

rate-limiting step, and, therefore, is commonly observed if the oxide is porous or very thin. 

Linear mass gain behaviour can also be observed if the thickness of the protective oxide scale 

is constant. 

Logarithmic rate law 

If the mass gain as a function of time shows logarithmic behaviour (Figure 3.3.1), the mass gain 

is described according to the following equation (11): 

∆𝑚 =  𝑘𝑙𝑜𝑔 log(𝑡 + 𝑡0) + 𝐴     (11) 
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Where Δm is the mass gain, klog is the parabolic rate constant, t is the exposure time and A is 

the integration constant. This is generally only observed at very low temperatures and on 

extremely thin oxide scales [34, 38]. Electrons can, in this case, be transferred from the metal 

to the gas-oxide surface by quantum mechanical tunnelling though the oxide scale. After a 

certain time period, the oxide scale will become too thick for this mechanism to proceed. Due 

to the low temperatures, solid state diffusion will be too slow for continued growth, and the 

result will be that the rate drops to almost insignificant levels [38].  

Parabolic rate law 

The most common oxidation behaviour for high temperature alloys is parabolic behaviour 

(Figure 3.3.1) [34]. If an alloy shows parabolic behaviour, the mass gain is described according 

to the following equation (12): 

Δm2 = kpt + A     (12) 

Where Δm is the mass gain, kp is the parabolic rate constant, t is the exposure time and A is the 

integration constant. Parabolic behaviour is observed when oxide-scale growth is controlled by 

solid-state diffusion through the scale [34, 35, 38]. The thicker the oxide scale becomes, the 

slower the diffusion though the scale, which leads to parabolic behaviour. Parabolic behaviour 

is generally observed if a metal or alloy forms a continuous, well-adherent and dense oxide 

scale. 

3.4 Cr Vaporization 

Some metals tend to form volatile species at high temperatures, enabling the breakdown of the 

protective oxide scale [35, 42]. Chromium is such a metal. It forms volatile Cr(VI) species in 

an oxidizing atmosphere. In dry oxygen, gaseous CrO3(g) will be formed according to reaction 

13. At temperatures below 1000 °C, the vapour pressure of CrO3(g) is rather low and the 

vaporization of the oxide scale will normally not be a critical issue [12]. However, if water 

vapour is present, as in air, volatile chromium oxyhydroxides can form. Several authors have 

shown that the most abundant volatile chromium oxyhydroxide specie is CrO2(OH)2 [10-13], 

which is formed according to reaction 14.  

𝐶𝑟2𝑂3(𝑠) +  3𝑂2(𝑔) → 2𝐶𝑟𝑂3(𝑔)    (13) 

𝐶𝑟2𝑂3(𝑠) +  2𝐻2𝑂(𝑔) +  
3

2
 𝑂2(𝑔) → 2𝐶𝑟𝑂2(𝑂𝐻)2(𝑔)  (14) 

CrO2(OH)2 (g) has a much higher vapour pressure in air at temperatures below 1000 °C than 

CrO3(g). Hilpert et al. [12] have shown that even if water vapour content was as low as 2 % in 

air, CrO2(OH)2(g) will still remain, by far, the most abundant Cr specie at temperatures below 

1000 °C (Figure 3.4.1). 
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Figure 3.4.1: Partial pressures of the most abundant Cr-containing species over Cr2O3(s) in humid air [p(O2) = 

2.13*104 Pa, p(H2O) = 2*103 Pa] at different temperatures taken from [12].  

The rate of Cr vaporization is dependent on the rate of gas flow. Figure 3.4.2 illustrates the 

effect of gas flow rate on Cr vaporization at 850 °C in air + 3% H2O from a 22% Cr steel. If the 

gas flow rate is low, Cr vaporization is in the equilibrium regime, meaning that volatilization is 

proportional to the rate of gas flow, and the result will be a linear region at low flow rates. 

Utilizing the slope of the curve at low flow rates the partial pressure of CrO2(OH)2 over the 

samples was calculated to 2*10-8 atm [28]. At higher flow rates, a plateau can be observed 

(~6000 sml min-1). This region is referred to as the flow-rate-independent region. At this stage, 

the rate of Cr vaporization is instead limited by the kinetics of forming CrO2(OH)2(g). 

  

Figure 3.4.2: Rate of Cr vaporization as a function of gas flow rate at 850 °C in air + 3% H2O on a 22% Cr steel 

[28]. 

3.4.1 Paralinear oxidation 

Vaporization of the oxide scale can have a significant influence on oxidation behaviour. 

Tedmon [42] has described the phenomenon when a metal or an alloy shows parabolic oxide 
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scale growth, but is simultaneously subjected to vaporization of the oxide scale. The total sum 

of the oxide scale thickness or mass gain is then a combination of two processes: (i) Parabolic 

oxide-scale growth by solid state diffusion through the oxide scale, and (ii) loss of the oxide 

scale due to volatilization. Initially, when the oxide scale is thin, scale growth is faster than 

vaporization giving rise to parabolic oxidation behaviour. However, after a certain oxide scale 

thickness, the oxide-scale growth rate is reduced to the same rate as the vaporization of the 

oxide scale. At this stage, the so called limiting scale thickness has been reached and the oxide 

scale thickness remains constant. This gives rise to a mass gain behaviour called paralinear 

behaviour (see Figure 3.4.1.1). Initially, mass gain behaviour is parabolic, but after a certain 

period of exposure, parabolic mass gain behaviour turns into a linear mass loss, according to 

equation 15:  

∆𝑚 =  𝑘𝑝√𝑡 −  𝑘𝑣𝑡      (15) 

Where Δm is the mass gain, kp is the parabolic rate constant, kv the vaporization constant and t 

is the exposure time. 

 

Figure 3.4.1.1: Paralinear mass gain behaviour illustrated as a combination of parabolic mass gain and linear mass 

loss due to vaporization.  

3.5 Corrosion related to ferritic steels as interconnect material in SOFC 

Good electrical conductivity is one of the main requirements for an interconnect material. Since 

an electric current will pass through the interconnect-electrode interface, the growth of an oxide 

scale is by far the largest contribution of the interconnect to electrical resistance if steels are 

used as the interconnect material. For this reason, steels that form a protective layer of 

electrically insulating Al2O3 or SiO2 cannot be used as the interconnect material in an SOFC. 

Instead, Cr2O3-forming steels which conduct fairly well at elevated temperatures have become 

the most popular choice of interconnect material for planar SOFCs operating at 600-800 °C. 

Moreover, steels that form a protective Cr2O3 scale are generally considered to possess good 

high-temperature corrosion resistance in air. The problem remains that SOFC systems must 

guarantee a lifetime of at least five years without major degradation rates. During such long 
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operating periods, Cr2O3-forming steels tend to form oxide scales in the µm-range. Although 

electrical conductivity is fairly high at elevated temperatures; such thick oxide scales will 

significantly increase electrical resistance and decrease the performance of the SOFC. For this 

reason, improving the high temperature corrosion resistance of Cr2O3-forming steels is crucial 

to enable stable long-term performance and to prevent the breakaway corrosion which leads to 

the rapid degradation of an SOFC.  

Oxide scale growth is not the only degradation mechanism associated with Cr2O3-forming steels 

as the interconnect material. Vaporization of Cr(VI) species, as described in Section 3.4, is also 

associated with rapid degradation in an SOFC. Cr at the interconnect surface can be transported 

to the electrolyte-cathode-gas interface called the Triple-Phase-Boundary (TPB), through 

vaporization as well as diffusion [17, 43-46]. The volatile Cr(VI) specie may then be reduced 

back to Cr(III) at the TPB, forming a deposit that blocks the electrochemical oxygen reduction 

process that takes place at the TPB [14-17]. For this reason, also mitigating the vaporization of 

Cr is crucial to enable stable long-term SOFC performance. 

3.5.1 Steels specially developed as interconnect material in SOFC Systems 

Chemical composition, steel microstructure and surface pre-treatment are some of the most 

important factors that determine if a steel will demonstrate protective behaviour (slow growing 

oxide) or not in a certain environment. Crofer 22 APU, Crofer 22 H, Sanergy HT and ZMG232 

G10 are four of the most common commercially available ferritic stainless steels, specially 

developed as interconnect material for SOFC systems. These steels have four things in 

common: (i) To ensure the formation and growth of a protective Cr2O3 layer during long-term 

operation of an SOFC system, these steels contain approximately 22 %wt Cr. A higher amount 

of Cr may further improve long-term corrosion resistance; however, a brittle sigma phase may 

form during operation which is undesirable. (ii) Due to the requirement for low electrical 

resistance, the formation of a continuous layer of SiO2 must be avoided. Si is, therefore, 

removed during the manufacture of the two steels Crofer 22 APU and ZMG232 G10. This 

process is expensive, therefore Nb and Mo or W is added to the two steels Sanergy HT and 

Crofer 22 H.   These alloying elements form Laves-phase precipitates which bind the Si. The 

formation of Laves-phase precipitates also increases the high temperature creep strength of the 

steel. (iii) Small amounts of Mn (0.3 - 0.5 %wt) are added for the formation of a continuous 

(Cr,Mn)3O4 top layer which reduces the vaporization of Cr species. (iv) All four steels contain 

small amounts of Reactive Elements (RE). The addition of reactive elements, such as Ce, La, 

Y, Hf and Zr, are known to significantly improve the high temperature corrosion resistance of 

Al2O3 and Cr2O3-forming steels [47, 48]. Several mechanisms have been proposed in an attempt 

to explain the reactive element effect, but the most frequently discussed effect is a change in 

the oxide growth mechanism, which often occurs as a direct result of reduced outward cation 

diffusion [49-53]. It has also been shown that treating the surface of a ferritic Cr2O3-forming 

stainless steel with reactive elements, or applying a reactive element coating, can further 

improve high-temperature corrosion resistance [29, 30, 54, 55].  

3.5.2 Reducing Cr vaporization 

As mentioned in Section 3.5.1, ferritic stainless steels alloyed with small amounts of Mn have 

been specially developed as the interconnect material in SOFC systems to promote the 
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formation of a continuous (Cr,Mn)3O4 top layer. This has been shown to reduce Cr vaporization 

by a factor 2-3 compared to alloys that form a top layer consisting of almost entirely Cr2O3 [46, 

56]. However, significant amounts of Cr are vaporized which poisons the cathode [16]. 

Therefore, the Cr vaporization rate must be decreased further to enable stable long-term 

performance. Today, the majority of all interconnect steels are coated with either a ceramic or 

a metallic coating. Metallic coatings are oxidized at elevated temperatures in air, and, thus, are 

turned into ceramic coatings (conversion coatings) [25]. Due to the requirement for low 

electrical resistance, the ceramic coating must be a good electrical conductor. Several 

electrically conductive spinel- and perovskite-type coatings have been suggested as promising 

coating candidates. Today, the most frequently used coating system is probably the (Mn,Co)3O4 

(MCO) coating, which is a good electrical conductor at high temperatures. Several studies have 

also shown that a (Mn,Co)3O4 coating significantly decreases Cr vaporization [25, 27-30, 57]. 

Several techniques can be utilized to apply such a coating. Spray drying, dip-coating, screen 

printing, aerosol spray deposition, plasma spraying or Physical Vapour Deposition (PVD) can 

be used to apply (Mn,Co)3O4 coatings [18-24]. However, a steel can also be coated with metallic 

Co using PVD or electroplating [25-27, 58]. In such a case, Co will oxidize when the SOFC is 

heated in air and forms Co3O4. If the steel contains Mn, Co3O4 can turn into (Mn,Co)3O4 due 

to the outward diffusion of Mn from the steel.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

17 
 

4. Materials and methods 

 

4.1 Materials 
In the present thesis, three different ferritic stainless steels specially developed as interconnect 

material for SOFCs were investigated. Table 4.1 shows the chemical composition of the three 

steels studied. 

 

TABLE 4.1.1: Composition of the studied steels in weight %. as specified by the manufacturer for the batches 

used. 

Material Manufacturer Fe Cr C Mn Si Mo W Nb Add 

Sanergy HT 

Batch: 531816 

AB Sandvik Materials 

Technology 

Bal. 22.4 0.01 0.25 0.07 0.93 <0.01 0.41 Zr 

Crofer 22H 

Batch: 161061 

ThyssenKrupp VDM Bal. 22.9 0.007 0.4 0.2  1.9 0.5 La 

Crofer 22 APU 

Batch: 4146 

ThyssenKrupp VDM Bal. 22.9 0.004 0.38 0.01    La 

 

All samples were cut into 15 x 15 mm2 coupons with a steel thickness of either 0.2 (Sanergy 

HT and Crofer 22 H) or 0.3 mm (Crofer 22 APU). All samples were exposed in an as-received 

state after being cleaned in acetone and ethanol using an ultrasonic bath. In Paper I only 

uncoated materials were studied. In Papers II and III; however, coated materials were 

investigated and compared to the uncoated material. The coatings were prepared at Sandvik 

Materials Technology using a Physical Vapour Deposition (PVD) process. Some of the 

materials investigated in Paper II were mechanically deformed. Mechanical deformation was 

conducted at Topsoe Fuel Cell where the steel foils were pressed into real interconnect shapes. 

Figure 4.1.1 shows the four types of samples studied in Paper II; (i) uncoated and undeformed, 

(ii) Co-coated and undeformed, (iii) deformed, and, subsequently, Co-coated as well as (iv) Co-

coated, and, subsequently, deformed. 
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Figure 4.1.1: Schematic drawing of the four different materials investigated in Paper II.  

 

4.2 Exposures 

All exposures were carried out in a horizontal tubular quartz reactor with an inner diameter of 

46 mm (Figure 4.2.1).  

 

Figure 4.2.1: Schematic drawing of the experimental setup [28]. 

The exposure environment was the same in all three papers; air-3% H2O atmosphere 

corresponding to the environment on the cathode side in an SOFC. 3% H2O was achieved by 

bubbling dried and cleaned air through a warm-water bath connected to a condenser, which was 

set at 24.4 °C. The flow rate was set to 6000 sml min-1 to ensure a flow-independent regime in 

the reactor, as can be seen in Figure 3.4.2 [28]. In order to minimize natural convection, and to 

ensure a more uniform flow pattern, a porous silicon carbide flow restrictor was placed in front 

of the samples. Figure 4.2.1 shows that a denuder tube made out of quartz was placed behind 

the samples to act as the reactor outlet. The inside of the denuder tube (6 mm ID) was coated 

with Na2CO3(s). Volatile Cr(VI) species formed at the sample surface were transported with 

the gas stream through the coated denuder tube where sodium chromate was formed according 

to reaction 16.  

CrO2(OH)2(g) + Na2CO3(s) → Na2CrO4(s) + H2O(g) + CO2(g)  (16) 

The advantage of this technique is that the denuder tube can be replaced regularly and rinsed 

with water, without affecting the samples. The amount of vaporized Cr was then quantified 

using spectrophotometry (Evolution 60S, Thermo Scientific). A more detailed description of 

the denuder technique can be found elsewhere [28]. 
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5. Analytical techniques 

Gravimetric measurements were made using a six-decimal balance. The average net mass gain 

(change in mass before and after exposure) was calculated from the samples exposed 

simultaneously. The microstructure and chemical composition of the samples were analysed 

using Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray analysis (EDX). In 

Paper II, Focused Ion Beam (FIB) milling was additionally used on one selected sample to 

prepare a thin lamella for EDX analysis. X-Ray Diffraction (XRD) was used in Paper I to 

identify the crystalline phases present in the oxide scale, and spectrophotometry was used in all 

paper I and II for the quantification of Cr vaporization. 

5.1 Scanning Electron Microscopy (SEM) 

Today Scanning Electron Microscopy (SEM) is a very common tool used for microstructural 

surface characterization. In contrast to optical light microscopy, SEM is not limited by the 

wavelength of optical light, and can, therefore, reach much higher resolutions than optical 

microscopy. A focused beam of electrons, called the primary beam, is created in the electron 

gun. When the electrons of the primary beam penetrate the surface of a material, the sample 

material gives up energy which is emitted from the sample surface in different forms such as 

secondary electrons (SE), backscattered electrons (BSE) and characteristic X-rays (EDX). By 

scanning the sample surface, a virtual SEM image of the sample surface can be constructed. 

Secondary Electrons (SE) 

When the primary beam penetrates the sample surface, electrons are ejected from the sample 

surface (Figure 5.1.1). These electrons are called secondary electrons. Secondary electrons tend 

to have very low energy, and, therefore, can only escape from the outer-most part of the sample 

(Figure 5.1.2) which is why they offer the best imaging resolution. 

 

Figure 5.1.1: Schematic drawing of how secondary electrons, backscattered electrons and characteristic X-rays 

are formed in an SEM [59]. 



 

20 
 

 

Figure 5.1.2: Interaction volume between the incoming electron beam and the specimen [60]. 

Backscattered Electrons (BSE) 

In contrast to secondary electrons, backscattered electrons are electrons from the primary beam 

that have been scattered back off the sample surface by means of elastic collisions with the 

nuclei of the atoms in the sample (Figure 5.1.1). They possess much higher energy than 

secondary electrons which results in a much larger interaction volume (Figure 5.1.2). For this 

reason, the resolution in a BSE image is not as good as in an SE image. However, the contrast 

in a BSE image is correlated to the atomic number of the sample atoms. More electrons are 

backscattered in materials with heavy elements. Thus a BSE image can give information about 

variations in the chemical composition of the sample surface.   

Energy Dispersive X-Ray analysis (EDX) 

X-Rays are generated when an electron with high energy ejects an inner shell electron from a 

sample atom. As a result, another electron with higher energy in an outer electron shell, will fill 

the vacancy and release energy as an X-ray photon (Figure 5.1.1). Each element has defined 

energy differences between their electron shells. These X-rays emitted from the sample material 

can be measured with an X-ray spectrometer. A spectrum can, thus, be constructed by plotting 

the amount of X-rays as a function of the energy. As with secondary and backscattered 

electrons, a virtual image, showing the elemental composition of the surface, can be constructed 

by scanning the sample surface. However, it is important to keep in mind that X-rays can escape 

from a much larger distance in the sample material than secondary and backscattered electrons, 

as is illustrated in Figure 5.1.2. 

5.2 Focused Ion Beam milling (FIB) 

Ions can be used for the preparation of a cross section, or to cut out a thin lamella for SEM/EDX 

analysis or Transmission Electron Microscopy (TEM). This is done by focusing a high current 

ion beam, most commonly gallium (Ga) ions, at the surface. The high energy of the ions will 

sputter away the sample material, and by moving the beam, a cross section can be created in a 

selected area. FIB milling and lift-out technique was used in paper II to prepare a thin (electron 

transparent) specimen for EDX analysis. Due to the much thinner specimen, the interaction 

volume decreases significantly (Figure 5.1.2) and much better EDX resolution can be achieved.  
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5.3 X-Ray Diffraction (XRD) 

X-Ray Diffraction (XRD) is a common analytical method utilized primarily to determine the 

phases present in a crystalline material. X-ray diffraction is based on the constructive 

interference of monochromatic X-rays and a crystalline material. When a material is hit with 

X-rays, these waves are scattered in all directions. Most of the scattered X-rays will not be in 

phase, and, as a consequence, will cancel each other out. However, some of them will be in 

phase (constructive interference). By stepwise changing the angle of the detector, increased 

intensity at angles specific for certain lattice parameters can be observed. Bragg´s law (Equation 

17) is a mathematical relation between the angles at which constructive interference occurs and 

the distance between the atomic planes in a crystal.  

2𝑑 sin 𝜃 = 𝑛𝜆     (17) 

Where d is the spacing between the planes in the atomic lattice, θ is the angle between the 

incident ray and the scattering planes, n is an integer and λ is the wavelength of the incident 

wave.  

By measuring the intensity of the scattered X-rays as a function of incident angle by utilizing 

monochromatic radiation, a diffraction pattern, specific for the lattice parameters of a material, 

can be observed. 

XRD is mainly used for phase analyses of bulk materials. For this purpose, the Bragg-Brentano 

setup is the most common setup in which both the X-ray source and the detector move around 

the sample, allowing the angle of incidence and the angle of reflection to be the same. However, 

for XRD characterization of thin films, the X-ray source must be fixed at a low angle, otherwise 

the signal from the thin film will be too weak. For this reason, another setup, called the Grazing-

Incidence setup is commonly used for thin film characterization. With this setup, the X-ray 

source is fixed at a specific angle (commonly < 5 ° depending on the thickness of the film), and 

only the detector moves around the sample.    

5.4 Spectrophotometry 

Spectrophotometry is an analytical technique which can be utilized to determine the 

concentration of light-absorbing ions or molecules in a solution. The basic principles of 

spectrophotometry is to allow monochromatic light pass through a cuvette containing a solution 

of light-absorbing ions or molecules, and measure the intensity of transmitted light with a 

photometer. The absorbance can then be calculated using the Beer-Lambert Law (18): 

𝐴 =  𝑙𝑜𝑔10
𝐼0

𝐼
      (18) 

Where A is the absorbance, I0 is the intensity of the transmitted light for a given wavelength 

using the pure solvent, and I is the intensity of transmitted light through the solution. In this 

thesis, spectrophotometry was used to determine the concentration of CrO4
2- ions in a water 

solution. Water solutions containing CrO4
2- ions show a strong absorption peak around 370 nm, 

and, for this reason, monochromatic light at this wavelength was used for concentration 

measurements. By measuring the absorbance of several well-known CrO4
2- ion standard 

solutions, an absorption factor could be calculated and used for the concentration analyses. 
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5.5 Area Specific Resistance (ASR) measurements 

Area specific resistance (ASR) measurement is a technique used to measure the electrical 

resistance associated with a thermally growing oxide scale. Today, there are no standards for 

how to measure scale resistance; instead, every research group has their own way of measuring 

ASR. The most commonly used electrode material for ASR measurements is Platinum (Pt), 

although the use of LSM (in cathode environment) is becoming more popular, since this 

material is frequently used as the cathode material in an SOFC. In Paper III, ASR measurements 

were conducted. All ASR measurements were carried out at SMN/FERMiO, University of Oslo 

in Oslo, Norway. Pt was used as the electrode material and ASR was measured ex-situ (on pre-

exposed samples). A DC Agilent 34401A nanovoltmeter was utilized for all measurements. 

Since there were two oxide scales on each sample coupon (one on each side), the ASR was 

calculated according to (19): 

ASR = Rmeasured * A/2     (19) 

Where Rmeasured is the measured electrical resistance and A is the contact area. 
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6. Results and discussion 

6.1 The influence of temperature on Cr vaporization and oxide scale growth 

Increased temperature is commonly used to accelerate high temperature corrosion mechanisms 

that are thermally activated such as oxide scale growth and Cr vaporization. Cr vaporization 

and oxide scale growth are; however, two separate mechanisms, and may, therefore, be 

influenced differently by an increase in temperature. The purpose of this study was, therefore, 

to separately investigate the influence of temperature on both mechanisms. Two commercially 

available ferritic stainless steels, Sanergy HT and Crofer 22 H, were selected and isothermally 

exposed for 24, 168 and 500 h at three temperatures (650, 750 and 850 °C).  At 850 ºC both 

steels show parabolic mass gain behaviour (see Figure 6.1.1).  

 

 

Figure 6.1.1: Net weight change for Sanergy HT (black) and Crofer 22 H (grey) isothermally exposed for 24, 168 

and 500 h at 650 (dots), 750 (triangles) and 850 °C (squares) in air containing 3% H2O (6000 sml min-1). 

Both steels had gained almost the same amount of mass after 24 h; however, with longer 

exposure time Crofer 22 H gained more mass than Sanergy HT. It is interesting to note that at 

lower temperatures (650 and 750 °C for Sanergy HT and 650 ºC for Crofer 22 H), negative 

mass gains were observed for both materials after 500 h. An increase in mass is generally 

correlated with oxygen reacting with the steel, and forming an oxide, i.e. scale growth. 

However, changes in net mass gain values may be misleading owing to factors such as 

vaporization or spallation of the oxide scale. None of the materials investigated showed any 

signs of spallation, and for this reason, the negative mass gain values seen at the lower exposure 

temperatures most probably is an effect of vaporization of the oxide scale. It should also be 

pointed out that both materials initially showed positive mass gain values at both 650 and 750 
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ºC. This behaviour, called paralinear behaviour, is commonly observed when a steel shows 

parabolic oxide scale growth, but is simultaneously subjected to vaporization of the oxide scale 

[42]. Cr vaporization measurements at the three exposure temperatures showed that a 

significant amount of Cr is vaporized during exposure at all three temperatures (Figure 6.1.2).  

 

Figure 6.1.2: Accumulated Cr vaporization as a function of time for (a) Sanergy HT and (b) Crofer 22 H at 650 

(dots), 750 (triangles) and 850 °C (squares) in air containing 3% H2O (6000 sml min-1). Filled and empty symbols 

represent the two individual isothermal exposures. 

 

Both steels exhibited similar vaporization behaviour however, the amount of vaporized Cr was 

on average, 20-30 % lower after 500 h of exposure for Crofer 22 H irrespective of exposure 

temperature. Moreover, by comparing the amount of evaporated Cr with the net mass gain, it 

can be seen that Cr vaporization is less influenced by temperature than oxide scale growth. The 

change in mass gain behaviour from parabolic at 850 ºC to paralinear at 750 and 650 ºC is, 

therefore, assumed to be related to the weaker temperature dependency of Cr vaporization than 

oxide scale growth. 

It can be concluded that a significant amount of the oxide scale had been vaporized during 

exposure at all three temperatures. By adding the amount of vaporized Cr (as Cr2O3) to the net 

mass gain values the gross mass gain (compensated for Cr vaporization) can be calculated 

(Figure 6.1.3). It can be concluded that when mass gain is compensated for Cr vaporization, 

both steels show positive mass gain values at all three temperatures, as would be expected. 

Furthermore, both steels behave parabolically at all three temperatures which indicates that 

solid state ion diffusion is the rate-determining mechanism for oxide scale growth. It is also 

interesting to note that both steels show more or less the same gross mass gain behaviour at 650 

and 750 ºC which indicates that the lower mass gain values for the steel Sanergy HT at 750 ºC 

are entirely an effect of the higher amount of vaporized Cr at this temperature. The lower mass 

gain values for Sanergy HT at 850 ºC; however, cannot entirely be explained by a higher amount 

of volatilized Cr. Instead, the main reason for the lower mass gain for Sanergy HT at 850 ºC is 

the thinner oxide scale (Figure 6.1.5). 
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Figure 6.1.3: Gross (corrected for Cr vaporization) weight change for Sanergy HT (black) and Crofer 22 H (grey) 

isothermally exposed for 24, 168 and 500 h at 650 (dots), 750 (triangles) and 850 °C (squares) in air containing 

3% H2O (6000 sml min-1). 

 

Figure 6.1.4: Rate of Cr vaporization as a function of time for Sanergy HT (Black) and Crofer 22 H (Grey) at 850, 

750 and 650 °C in air containing 3% H2O (6000 sml min-1). Filled and open symbols represent the two individual 

isothermal exposures. 

 

The rate of Cr vaporization is somewhat greater initially than after 500 h of exposure for both 

steels at all three temperatures (Figure 6.1.5). However, the amount of reduction as well as the 

time necessary to reduce the rate of Cr vaporization differed with exposure temperature and 

steel investigated.  

A reduction in the rate of Cr vaporization is expected, since both materials contain small 

amounts of Mn and are, therefore, expected to form a top layer consisting of (Cr,Mn)3O4, which 

would reduce Cr activity at the surface. For this layer to be formed, Mn ions must diffuse out 

from the steel to the surface oxide layer by means of solid state diffusion through the inner 

Cr2O3 layer. A higher concentration of Mn in the steel may, therefore, accelerate the formation 
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of a continuous (Cr,Mn)3O4 top layer. This would agree with the more rapid decrease in Cr 

vaporization rate at 850 °C for the Mn-richer steel Crofer 22 H. It should; however, be 

mentioned that Mn concentration is not the only factor that can influence the flux of Mn ions. 

Other alloying elements, steel microstructure and surface treatment, are important factors that 

may influence the outward flux of Mn ions. Interesting to note is; however, that after a certain 

period of exposure both steels showed the same vaporization rate. After 500 h of exposure at 

850 ºC had both steels formed a continuous oxide scale consisting of an inner Cr2O3 layer and 

an outer (Cr,Mn)3O4 top layer (Figure 6.1.5). 

 

Figure 6.1.5: SEM cross section and EDX elemental maps of (a) Sanergy HT and (b) Crofer 22 H exposed for 

500 h at 850 °C in air 3% H2O (6000 sml min-1). 

Moreover, the thickness of the (Cr,Mn)3O4 top layer was rather similar for the two steels, which 

would explain why both steels tended to vaporize at the same rate after a certain period of 

exposure. These images also show that the inner Cr2O3 layer was somewhat thicker for Crofer 

22 H after 500 h of exposure at 850 ºC which would explain the higher mass gain for this 

material at 850 ºC. Areas rich in both Cr and Mn, most probably (Cr,Mn)3O4, could additionally 

be observed at the steel-oxide interface for Crofer 22 H. Huczkowski et al. have also observed 

such areas and have proposed that these Mn-rich oxides are formed as a result of “crack-

healing” [61]. 

When the temperature was decreased to 750 °C, a notable difference was observed between the 

two steels (Figure 6.1.4). Crofer 22 H clearly showed a tendency to reduce the rate of Cr 

vaporization whereas Sanergy HT only showed a small reduction initially. The much slower 

decrease in Cr vaporization rate for Crofer 22 H at 750 °C than at 850 ºC is assumed to be 

correlated to a slower outward diffusion of Mn ions at the lower temperature. However, after 
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200-300 h, the rate levelled off to a value of 9*10-5 mg cm-2 h-1, which is much lower than the 

approximately 2*10-4 mg cm-2 h-1 for Sanergy HT at 750 °C. These oxide scales were too thin 

for accurate EDX analysis however according to the XRD analysis both steels formed Cr2O3 

and spinel-type oxide at 750 °C (see paper I). 

From the data available, it is proposed that the much lower rate of Cr vaporization for Crofer 

22 H than for Sanergy HT at 750 °C is due to differences in the (Cr,Mn)3O4 top layer thickness. 

It is assumed that vaporization of Cr takes place at the gas-oxide interface, and should, 

therefore, not be thickness-dependent if the chemical composition of the oxide scale is 

homogenous. However, since a growing oxide scale under the present conditions is not 

expected to be under equilibrium, a concentration gradient may be present within the oxide 

scale.  

Due to rapid Mn outward diffusion from the steel and the loss of Cr as an effect of Cr 

vaporization (reaction 20), a chemical gradient may be present within the (Cr,Mn)3O4 top layer.  

(𝟏 + 𝒙)𝑪𝒓𝟐𝑴𝒏𝑶𝟒(𝒔) + 𝟑𝒙𝑯𝟐𝑶(𝒈)  
𝟓𝒙

𝟐
𝑶𝟐(𝒈) → 𝑪𝒓𝟐−𝒙𝑴𝒏𝟏+𝒙𝑶𝟒(𝒔) + 𝟑𝒙𝑪𝒓𝑶𝟐(𝑶𝑯)𝟐(𝒈) (20) 

According to [62], is there great miscibility in (Cr,Mn)3O4 at elevated temperatures at which 

the Cr:Mn ratio can vary from 2:1 (Cr2MnO4) to 1:2  (Mn2CrO4). Canovic et al. [30] observed 

a chemical gradient for Sanergy HT in the (Cr,Mn)3O4 layer after 168 h in the same exposure 

environment as the present study. Froitzheim et al. [25] observed a thin outer Mn and Cr rich 

oxide, probably (Cr,Mn)3O4 as soon as after 1 h for Sanergy HT in the same exposure 

conditions. The rate of Cr vaporization at 850 ºC clearly decreased during this 168 h for Sanergy 

HT at 850 °C. It is, therefore, proposed that this reduction in the Cr vaporization rate is 

associated with the growth of a (Cr,Mn)3O4 top layer. A thickening of the (Cr,Mn)3O4 top layer 

may induce a chemical gradient in the (Cr,Mn)3O4 layer, consequently decreasing the Cr 

concentration on the outermost surface layer.  

Low voltage SEM images of FIB cross sections from Crofer 22 H and Sanergy HT after 500 h 

at 750 °C shows that the top layer, assumingly a spinel layer, is thicker for the Crofer 22 H than 

for the Sanergy HT at 750 °C (Figure 6.1.6). It is, therefore, suggested that the lower rate of Cr 

vaporization exhibited by the Crofer 22 H is associated with a lower Cr concentration in the 

outermost surface oxide as an effect of the thicker spinel top layer, as discussed above for the 

samples exposed at 850 °C.  
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Figure 6.1.6: Low voltage SEM images of FIB cross sections from Sanergy HT (left) and Crofer 22 H (right) 

exposed for 500 h at 750 °C in air 3% H2O (6000 sml min-1). 

When the exposure temperature was decreased even further to 650 °C, both steels showed 

similar vaporization rates (Figure 6.1.4). As at 750 °C, the oxide scales were too thin for 

accurate SEM/EDX analysis; however, both Cr2O3 and spinel-type oxide were detected on both 

steels oxidized at 650 °C for 500 h using the XRD technique (see paper I). 

To be able to compare the effect of temperature on the two degradation mechanisms, oxide 

scale growth and Cr vaporization, the activation energy for both reactions was calculated using 

Equation 21.  

 

ln(𝑘) =
−𝐸𝑎

𝑅𝑇
+ ln (𝐴)     (21) 

Where k is the rate constant of a chemical reaction (oxide scale growth respectively Cr 

vaporization), Ea is the activation energy, R is the universal gas constant, T is the absolute 

temperature and A is the pre-exponential factor. 

 

To calculate the activation energy for oxide scale growth, parabolic rate constants were 

calculated from the gross mass gain data (Figure 6.1.3). The relationship between mass gain 

and oxidation kinetics can be described using the Parabolic Rate Law (22). 

 

(
∆𝑚

𝐴
)

2

= 𝑘𝑝𝑡 + C     (22) 

Where, Δm is the mass gain, A is the sample surface area, t is the exposure time, C is the 

integration constant and kp is the parabolic rate constant. Both steels showed parabolic 

behaviour which indicates that scale growth is controlled by solid state diffusion. The calculated 

rate constants values at 650, 750 and 850 °C (see paper I) are within the typical order of Cr2O3-

forming materials [63-65]. From these values, activation energies of 261 and 283 kJ mol-1 for 

Sanergy HT and Crofer 22 H, respectively, were obtained. 

These values agree well with other published activation energy values for the high temperature 

oxidation of Fe-Cr alloys in air [63, 66-68]. Activation energy values obtained from such 

parabolic rate constants are probably a combination of several mechanisms and specific for the 

alloys and exposure conditions. Some authors [63]; however, have compared similar values to 
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the 255 kJ mol-1 reported by Hagel and Seybolt [69] for cation diffusion in Cr2O3, and suggest 

that the oxide scale predominantly grows by means of the outward diffusion of Cr ions. 

To calculate the activation energy for Cr vaporization, another type of exposure was carried out 

(Figure 6.1.7) which is described in paper I, since the isothermal exposures did not show 

Arrhenius-type behaviour. The non-Arrhenius-type behaviour is assumed to be due to 

differences in chemical composition and/or morphology at various temperatures. 

 

Figure 6.1.7: Rate of Cr vaporization for Sanergy HT (Black) and Crofer 22 H (Grey) at different temperatures in 

air containing 3% H2O (6000 sml min-1). The samples were initially exposed at 850 °C until the rate of Cr 

vaporization was constant. During the same exposure time period, Cr vaporization was also measured at 750 and 

650 °C.  

 

Using the rate of Cr vaporization obtained in these experiments, activation energies of 91 and 

92 kJ mol-1 for Sanergy HT and Crofer 22 H, respectively, were obtained. These values are in 

good agreement with the 83 kJ mol-1 for Cr vaporization on a Cr2O3 surface theoretically 

calculated by Panas et al [70]. Since the activation energy for scale growth was approximately 

3 times higher than the activation energy for Cr vaporization, it can be concluded that Cr 

vaporization is less influenced by temperature than by oxide scale growth. 

The results presented in this study show that by reducing the temperature 100 °C, the amount 

of vaporized Cr only decreases by a factor 2-3, whereas the gross mass gain decreases by a 

factor of five. This results in a change in oxidation kinetics from parabolic to paralinear 

oxidation kinetics when the temperature is reduced from 850 to 750 and 650 °C. To ensure 

stable, long-term performance in an SOFC stack, high quality coatings that inhibit Cr 

vaporization are necessary, even if the operating temperature is decreased to temperatures as 

low as 650 °C. 
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6.2 Activation energy measurements for Cr vaporization on Cr2O3 and Co-

coated Sanergy HT 

Cr vaporization can be decreased significantly by coating a ferritic stainless steel with a thin 

layer of metallic Co [25-30]. Upon oxidation at elevated temperatures, the Co will rapidly 

oxidize to Co3O4, and if the steel contains Mn, a top layer of (Co,Mn)3O4 will be formed due to 

the outward diffusion of Mn from the steel [25]. A significantly lower Cr activity at the surface 

[25] and/or a significant lower equilibrium constant when Cr is vaporized from (Co,Cr)3O4 than 

from Cr2O3 [71] has been proposed as an explanation for the effectiveness of Co-coatings in 

supressing Cr vaporization. The purpose of this study was to determine the activation energy 

for Cr vaporization from a Co-coated steel and compare this value to the activation energy value 

obtained from the uncoated material in the previous section (6.1). As a reference, the activation 

energy for pure Cr2O3 was determined and compared to the theoretically calculated activation 

energy value for Cr2O3 reported by Panas et al. [70]. Cr vaporization was measured, in a non-

isothermal manner (see paper I). The uncoated material (Sanergy HT), shown in the previous 

section, had formed a (Cr,Mn)3O4 spinel top layer before the temperature was reduced to 750 

and 650 °C, and the 640 nm Co-coated Sanergy HT material, exposed for one week before the 

temperature was reduced, had formed a (Co,Mn)3O4 top layer according to [25, 30] (Figure 

6.2.1).  

 

Figure 6.2.1: Illustration of the materials used for activation energy measurements. The uncoated and Co-coated 

materials were initially exposed at 850 º C until a continuous top layer of (Cr,Mn)3O4 respectively (Co,Mn)3O4 

was formed before the temperature was lowered to 750 and 650 ºC. 

As expected, pure Cr2O3 evaporated more Cr than the uncoated steel, and the Co-coated 

evaporated even less at all temperatures (Figure 6.2.2). The calculated activation energies were 

81, 91 and 70 kJ mol-1 for pure Cr2O3, uncoated Sanergy HT, and 640 nm Co-coated Sanergy 

HT, respectively. 
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Figure 6.2.2: Arrhenius plot showing the influence of temperature on Cr vaporization in air containing 3% H2O 

(6000 sml min-1) for pure Cr2O3 (green triangles), uncoated Sanergy HT (red squares), and 640 nm Co-coated 

Sanergy HT (Blue diamonds). 

The value of 81 kJ mol-1 obtained for the pure Cr2O3 material is very close to the theoretically 

calculated value of 83 kJ mol-1 obtained for Cr2O3 reported by Panas et al. [70]. Compared to 

the large difference in the activation energy between the two mechanisms, the Cr vaporization 

and oxide scale growth shown in the previous section (activation energy was approximately 

270 kJ mol-1 for oxide scale growth and 90 kJ mol-1 for Cr vaporization), this is a rather 

insignificant difference between the three materials. Based on these measurements, it is, 

therefore, assumed that the Cr vaporization mechanism is the same for all three materials. This 

would imply that the much lower Cr vaporization rate for the Co-coated steel is due to the 

significantly lower activity of the Cr in the outermost surface oxide than in the outermost 

surface oxide of the uncoated material.  

6.3 Self-healing mechanism of Co-coated and mechanically deformed 

interconnect steels 

The interconnect material must be mechanically deformed to allow for gas distribution. When 

the 600 nm Co-coated Crofer 22 APU material was pressed into a real interconnect shape cracks 

within the coating were formed (Figure 6.3.1).  
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Figure 6.3.1. SEM images from different areas along the surface of the pre-coated material after being pressed 

into a real interconnect shape.  

 

The extent of deformation varied over the interconnect surface and in some areas were cracks 

in the µm-range observed. All images shown hereinafter will be from the most severely 

deformed area (Area C). To investigate if the crack formation would increase high temperature 

oxidation and Cr vaporization the following four materials were studied (1) uncoated and 

undeformed, (2) Co-coated and undeformed, (3) deformed and subsequently coated (post-

coated) and (4) pre-coated and subsequently deformed (Figure 4.1.1). 

All Co-coated materials show a rapid gain in mass within the first minutes of exposure (Figure 

6.3.2) which corresponds to the oxidation of the 600 nm Co-coating [25]. Furthermore, all three 

coated materials showed very similar mass gain behaviour which indicates that the mechanical 

deformation process did not influence oxidation behaviour up to 336 h.  
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Figure 6.3.2: Mass gain as a function of time at 850 °C in air-3% H2O (6000 sml min-1). Uncoated undeformed 

(grey squares); coated undeformed (black squares); post-coated (black dots) and pre-coated (black triangles). 

 

The amount of vaporized Cr was significantly less when the steel Crofer 22 APU was coated 

with 600 nm Co (Figure 6.3.3). Furthermore, pre-coating the steel, and pressing it into the 

interconnect shape did not increase Cr vaporization, since all coated materials vaporized 

approximately 90% less Cr than the uncoated material, which is in good agreement with earlier 

studies on similar ferritic stainless steels coated with ~600 nm Co [25, 29].  

 

 

Figure 6.3.3: Accumulated Cr vaporization as a function of time at 850 °C in air-3% H2O (6000 sml min-1). 

Uncoated undeformed (grey squares); Coated undeformed (black squares); Post-coated (black dots) and Pre-coated 

(black triangles). 
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During exposure at high temperature, a Co and Mn rich oxide was formed within the cracked 

area. This “healing” of the oxide scale is most probably the reason no increase in Cr 

vaporization caused by the mechanical deformation process could be observed. After six 

minutes of exposure, the Co-coating had been turned into a Co-rich oxide [25] (Figure 6.3.4). 

The oxidation of the Co-coating is associated with a volume expansion (approximately the 

twice volume). This may have closed some of the smaller cracks; however, most of the cracks 

remain.  

 

Figure 6.3.4: SEM image and EDX elemental maps for the mechanically deformed Crofer 22 APU + 600 nm Co 

(pre-coated) after 6 minutes of exposure in air containing 3% H2O (6000 sml min-1). 

After 8 h of exposure (Figure 6.3.5), the cracked areas had become enriched in Mn, which 

suggests the formation of a (Cr,Mn)3O4 top layer, as observed by Sachitanand et al. [56] for 

uncoated Crofer APU in the same exposure environment.  

 

Figure 6.3.5: SEM image and EDX elemental maps for the mechanically deformed Crofer 22 APU + 600 nm Co 

(pre-coated) after 8 h of exposure in air containing 3% H2O (6000 sml min-1). 
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With continued exposure time a more homogenously distributed Cr, Mn and Co EDX signal is 

observed (Figure 6.3.6). The cracked areas remain rich in Mn after 24 h however, Co can partly 

be found within the cracked areas after 24 h. EDX mapping of a thin lamella from the sample 

exposed for 24 h (Figure 6.3.7) shows that the whole surface, including the cracked area, is 

covered with Co-oxide after only 24 h.  

 

Figure 6.3.6: SEM image and EDX elemental maps for the mechanically deformed Crofer 22 APU + 600 nm Co 

(pre-coated) after 24 h of exposure in air containing 3% H2O (6000 sml min-1). 

 

 
Figure  6.3.7: SEM image and EDX elemental maps of a thin lamella cut out by FIB milling from the mechanically 

deformed Crofer 22 APU + 600 nm Co (pre-coated) after 24 h of exposure in air containing 3% H2O (6000 sml 

min-1). 

The fact that a large fraction of the surface within the cracked area was covered with a thin Co-

rich oxide after only 24 h explains why no increase in Cr vaporization was observed during this 

time period. The morphology of the Co-oxide within the cracked area; however, differed 

significantly from the rest of the Co-oxide. The Co-oxide corresponding to the metallic Co 

coating before exposure was approximately 1-2 µm thick and contained large pores. The 

formation of rather large pores in thin metallic Co-coatings, probably as an effect of the fast 

oxidation of the Co-coating, has been observed earlier [25]. Since this Co3O4 was rather thick, 

it did not become enriched in Mn within 24 h of exposure. In contrast, the Co-oxide within the 

cracked area did not contain pores and was much richer in Mn. The thickness of the Co-oxide 
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within the cracked area varied significantly. This oxide consisted of a very thin continuous layer 

as well as a few large cubic crystals. The thin continuous (Co,Mn)3O4 layer was probably a thin 

(Cr,Mn)3O4 top layer, initially, which was then transformed into a (Co,Mn)3O4 top layer by 

means of solid state interdiffusion and/or surface diffusion. The large cubic (Co,Mn)3O4 crystals 

however, probably grew on the surface due to the diffusion of Co along the surface (surface 

and/or solid state interdiffusion) and the outward diffusion of Mn from the steel. With continued 

exposure time, all signs of cracks disappear (Figure 6.3.8). After 336 h of exposure the surface 

oxide had become homogenously rich in both Co and Mn (Figures 6.3.8 and 6.3.9). The growth 

of large (Co,Mn)3O4 crystals within the cracked area would explain why no signs of cracks 

could be observed after 336 h. 

 

 
Figure 6.3.8: SEM image and EDX elemental maps for the mechanically deformed Crofer 22 APU + 600 nm Co 

(pre-coated) after 336 h of exposure in air containing 3% H2O (6000 sml min-1). 

 
Figure 6.3.9: SEM image and EDX elemental maps of a cross section of the mechanically deformed Crofer 22 

APU + 600 nm Co (pre-coated) after 336 h of exposure in air containing 3% H2O (6000 sml min-1). 

The findings of this study indicate that pre-coated interconnect material can be utilized in an 

SOFC. The large cracks formed by the mechanical deformation process when a pre-coated 

material is pressed into an interconnect shape, can heal upon exposure at elevated temperatures. 

6.4 Ce/Co coating (pre-coated) 

To improve oxidation resistance, an additional layer of Ce was added between the steel and the 

600 nm Co coating.  
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Figure 6.4.1: Mass gain as a function of time at 850 °C in air-3% H2O (6000 sml min-1) shown in Figure 6.3.1 

including the pre-coated 10 nm Ce + 600 nm Co-coated material (red dots). Uncoated undeformed (grey squares); 

coated undeformed (black squares); post-coated (black dots) and pre-coated (black triangles). 

The Ce/Co-coated material showed the same initial rapid mass gain associated with the 

oxidation of the Co-coating (Figure 6.4.1). However, with longer exposure time, the Ce/Co-

coated material gained significantly less mass than the Co-coated (and the uncoated) material. 

This shows that adding a thin layer of 10 nm Ce to the Co-coated material effectively improves 

the oxidation resistance of the steel Crofer 22 APU.  

The addition of a Ce layer between the steel and the Co-coating does not hinder the self-healing 

effect of the Co-coating (Figure 6.4.2).  
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Figure 6.4.2: Accumulated Cr vaporization as a function of time at 850 °C in air-3% H2O (6000 sml min-1) shown 

in Figure 6.3.2 including the Ce/Co-coated material (red dots).  

 

6.5 Electrical characterization of Ce/Co-coated Sanergy HT 

In the previous section it was shown that a 10 nm thin layer of Ce significantly reduced the 

mass gain of the ferritic stainless steel Crofer 22 APU coated with 600 nm Co (Figure 6.4.2). 

Other published works on undeformed materials have also shown the positive effect of thin Ce 

coatings [27, 29, 30, 72]. However, decreasing the oxidation rate is only beneficial in an SOFC 

as long as electrical resistance does not increase. For this reason, the ferritic stainless steel 

Sanergy HT was coated with Ce/Co and exposed for up to 3000 h at 850 °C in an air 3% H2O 

environment. Co-coated and uncoated materials were also exposed for comparison. Area 

Specific Resistance (ASR) measurements were carried out on samples exposed for 1000, 2000 

and 3000 h 
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Figure 6.5.1: Mass gain as a function of time at 850 °C in air-3% H2O (6000 sml min-1). Uncoated (grey squares); 

Co-coated (black squares) and Ce/Co-coated (red dots). Each exposure (total of 2) initially contained six samples 

(two per material type). The exposure was interrupted at regular intervals and the samples were weighed to follow 

mass gain over time (empty symbols). After approximately 1000, 2000 and 3000 h, samples were removed for 

ASR characterization (filled symbols). 

 

The two coated materials showed a rapid gain in mass initially, corresponding to the oxidation 

of the Co-coating [25] (Figure 6.5.1). After this rapid initial increase in mass, the Ce/Co-coated 

material showed a much lower mass gain rate than both the Co- and the uncoated material. 

Furthermore, the additional 10 nm Ce layer did not only decreased mass gain, but also 

significantly reduced area-specific resistance (Figure 6.5.2). For all measured exposure times 

(1000 – 3000 h) the Ce/Co-coated material showed the lowest ASR values and the uncoated 

material showed the highest.   
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Figure 6.5.2: ASR values of pre-exposed samples (filled symbols in Figure 6.5.1) at 850 °C in air. Uncoated (grey 

squares); Co-coated (black squares) and Ce/Co-coated (red dots). 

The thickness of the inner Cr2O3 layer was approximately the same for the Co- and the uncoated 

material which would explain why these two materials showed a similar increase in ASR value 

with time (Figure 6.5.3). The (Co,Mn)3O4 top layer on the Co-coated sample can be expected 

to conduct much better than the (Cr,Mn)3O4 top layer on the uncoated material [73]. This is 

assumed be the main reason for the somewhat lower ASR values for the Co-coated material 

than for the uncoated material. The Ce/Co-coated material, on the other hand, had formed a 

much thinner Cr2O3 layer than the two other materials. It is, therefore, proposed that the 

significantly lower ASR values for the Ce/Co-coated material are mainly due to the Cr2O3 scale 

for this material, which was thinner than for the Co-coated and the uncoated material.  
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Figure 6.5.3: SEM (Backscattered) cross section images of the samples used for ASR measurements in Figure 

6.5.2. Layers from top to bottom: Pt current collector, spinel top layer, Cr2O3 sub layer and the steel substrate.  
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7. Summary and outlook 

The findings presented in this thesis address the two most common degradation mechanisms 

associated with the use of ferritic stainless steels as the interconnect material in SOFCs; Cr 

vaporization and oxide scale growth. 

It was found that temperature has a significantly greater effect on oxide scale growth than Cr 

vaporization. As the temperature was decreased from 850 to 750 and 650 °C, paralinear mass 

gain behaviour was observed due to the high rate of Cr vaporization in comparison to the rate 

of oxide scale growth. To ensure the stable, long-term performance of an SOFC stack, high 

quality coatings that inhibit Cr vaporization are necessary, even if the operating temperature is 

decreased to temperatures as low as 650 °C. 

By applying a metallic Co coating that is ~600 nm thick, the rate of Cr vaporization could be 

reduced by almost 90 %. Cr vaporization measurements at different temperatures were carried 

out to calculate the activation energy value for Cr vaporization from Cr2O3, uncoated and Co-

coated steel. Findings revealed that all three materials showed similar activation energy values 

for Cr vaporization, which indicates that the beneficial effect of the Co-coating is not a direct 

effect of any change in mechanism. Instead, it is proposed that the much lower rate of Cr 

vaporization achieved with a Co-coating is due to the much lower Cr activity within the 

outermost oxide scale.  

When Co-coated ferritic stainless steels are pressed into real interconnects, large cracks arise 

within the coating due to tensile deformation. It was found that the formation of these cracks; 

however, did not increase Cr vaporization. Due to fast Co diffusion, a top layer of (Co,Mn)3O4 

was established within the cracked area after only 24 h of exposure. The (Co,Mn)3O4 layer 

within the cracked area grew thicker with continued exposure time, and after 336 h the surface 

of the pre-coated material was homogenously covered by an oxide rich in Co and Mn. 

 

Furthermore, by applying a thin layer of 10 nm Ce between the steel and the Co coating 

corrosion resistance could be improved significantly without increasing Cr vaporization. Such 

a double-layered coating of Ce and Co not only improved the corrosion resistance of the steel, 

but also the electrical resistance of the steel was significantly reduced.    

It has been shown that thin metallic Ce/Co coatings on ferritic stainless steels can significantly 

reduce the degradation associated with oxide scale growth and Cr vaporization. Large amounts 

of steel can be pre-coated in a cost-effective way without increasing Cr vaporization due to 

crack formation when the material is deformed to allow for gas distribution.    

The results of this thesis have also shown that higher temperatures, as a method to accelerate 

corrosion, may lead to fundamental differences in chemical composition and morphology. 

Therefore, an important part of future research will be concentrated on lower temperatures. 

More fundamental research to understand the two degradation mechanisms, Cr vaporization 

and oxide scale growth, should be carried out. A better understanding of the Cr vaporization 

mechanism could help to develop new alternative coatings that reduce Cr vaporization. The 

beneficial effect of Ce is not fully understood and will be included in future research. 
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