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ABSTRACT  

We present a GaAs-based VCSEL structure, BCB bonded to a Si3N4 waveguide circuit, where one DBR is substituted by 

a free-standing Si3N4 high-contrast-grating (HCG) reflector realized in the Si3N4 waveguide layer. This design enables 

solutions for on-chip spectroscopic sensing, and the dense integration of 850-nm WDM data communication transmitters 

where individual channel wavelengths are set by varying the HCG parameters. RCWA shows that a 300nm-thick Si3N4 

HCG with 800nm period and 40% duty cycle reflects strongly (>99%) over a 75nm wavelength range around 850nm. A 

design with a standing-optical-field minimum at the III-V/airgap interface maximizes the HCG’s influence on the 

VCSEL wavelength, allowing for a 15-nm-wide wavelength setting range with low threshold gain (<1000 cm
-1

). 

Keywords: silicon photonics, silicon nitride waveguide, vertical cavity surface emitting laser, integration, high contrast 

grating 

 

1. INTRODUCTION  

Si photonics technology is rapidly gaining attention in various fields due to its high index contrast and compatibility with 

standard complementary metal-oxide semiconductor (CMOS) technology. However, due to the absorption in silicon 

below a wavelength of 1.1 μm, silicon is not suitable for waveguide circuits in the visible or near-infrared (VIS-NIR). In 

recent years silicon nitride (Si3N4) is emerging as a promising material platform for such applications due to its VIS-NIR 

transparency, compatibility with CMOS fabrication technology, tight confinement and lower temperature sensitivity 

compared to silicon [1]. For spectroscopic applications the VIS-NIR (500–950 nm) wavelength window is of interest due 

to minimal photodamage to living cells, negligible water absorption, large Raman scattering cross-section etc. Also to 

meet the demands of optical interconnects in future datacom applications, there is a need for dense integration of low-

cost, high-bandwidth, and power-efficient WDM transmitters using photonic integrated circuits (PICs). However, the 

realization of CMOS compatible light sources is considered to be the biggest challenge in the silicon photonics world. 

Even though silicon can route light very efficiently it cannot be used as a light emitter since it has an indirect bandgap. 

An attractive approach is to use hybrid solutions, in which III-V semiconductor materials are either transferred by 

bonding or heteroepitaxially grown on silicon. There are different techniques to transfer III-V material such as direct 

bonding and adhesive bonding, each with its own advantages and disadvantages [2]. Recent developments in adhesive 

bonding show that a very reliable homogeneous ultrathin benzocyclobutene (BCB) bonding is possible, making it 

attractive as it is tolerant to surface roughness, defects and contamination of the semiconductor surfaces [3]. An 

attractive light source in III-V materials is the GaAs-based vertical-cavity surface-emitting laser (VCSEL), which has 

several advantages compared to edge-emitting lasers such as on-wafer level testing, low threshold current and efficient 

high-speed modulation at low currents. Recently a high-reflectivity broadband mirror constituting of a high-index-

contrast subwavelength grating (HCG) has been proposed to replace the traditional DBR structure in VCSELs [4, 5,]. 

The origin of the ultra-broadband high reflectance in such a grating is explained to be a destructive interference effect 

between two grating modes [6]. These HCG mirrors can provide several advantages over DBRs such as substantial 

thickness reduction, high polarization sensitivity. In addition, the use of a HCG in a resonator configuration, can offer 
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suppression of higher order transverse modes and the post-epitaxial growth resonator wavelength setting by changing the 

grating parameters [4, 5]. 

The basic idea here is to realize an integrated VCSEL in which a half GaAs VCSEL is integrated on a Si3N4 

HCG mirror using polymer adhesive bonding using BCB [7], thereby substituting one of the distributed Bragg reflectors 

by a free-standing Si3N4 high-contrast-grating (HCG) reflector made in the Si3N4 waveguide layer.  

2. HIGH CONTRAST GRATING DESIGN 

High contrast gratings (HCG) are structures with a period less than but near to the optical design wavelength, and a high 

refractive index contrast between the grating bars and the surrounding medium. They have many interesting properties 

such as very broadband high reflectance and narrow high Q factor resonances [8]. In recent years, HCGs with broadband 

high reflectivity have been reported to replace top DBRs of VCSELs and tuning of the lasing wavelength have also been 

achieved by electrostatic actuation of the HCG [4]. Typically, HCGs are realized in high index materials such as Si and 

GaAs, and it is still to be explored if Si3N4, which has a lower refractive index (n ≈ 2 @ 850nm), can yield HCGs with 

similar performance. Figure 1 shows the cross-sectional schematic view of an HCG and the definitions of the grating 

parameters. 

 

 

 

 

 

Figure 1. Cross-sectional schematic view of an HCG. 

 

To efficiently simulate the diffraction of electromagnetic waves by a periodic structure such as the HCG, Rigorous 

Coupled-Wave Analysis (RCWA) can be used [9]. We used the in-house developed RCWA software named RODIS 

[10]. Optimization of the grating parameters are performed by computing the maximum variation range of the grating 

parameters for which the HCG reflects >99% for TE polarization at 850 nm. These grating parameters are the period of 

the grating (ᴧ), the duty cycle (DC = width of high index material/period of grating), and the thickness of the silicon 

nitride layer. The optimized grating parameters are chosen such that a maximum tolerance on these parameters is 

obtained, while at the same time giving high reflection bandwidth. The optimized parameters are a grating period (ᴧ) of 

800nm, a duty cycle of 0.40 and a thickness of the nitride layer of 300 nm giving a reflection bandwidth of 75 nm (>99% 

reflectivity) centered at 850nm, yielding a 9% stopband-to-center-wavelength ratio as shown in Figure 2 [7].  The high 

reflectivity band arises due to the presence of two leaky grating modes shown as two transmission dips inside the high 

reflection band in Figure 2.  These transmission dips correspond to a guided mode resonance at which the transmittance 

approaches zero [11].  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Reflectivity (black curve) and transmission on a logarithmic (blue curve) scale as a function of wavelength for TE 

polarization for a grating with the following parameters: period 800nm, DC=40%, Si3N4 thickness 300nm. 
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3. VCSEL DESIGN 

We present a novel design of a GaAs-based VCSEL, bonded to a Si3N4 waveguide platform using BCB, where one of 

the distributed Bragg reflectors is completely substituted by a free-standing Si3N4 HCG reflector made in the Si3N4 

waveguide layer. A schematic of the VCSEL design is shown in Figure 3. The device consists of a GaAs-based half 

VCSEL (one DBR + active region) that is positioned on top of a free standing Si3N4 grating acting as the bottom mirror. 

The half VCSEL has a p-doped DBR (24 mirror pairs of Al0.12Ga0.88As/Al0.9Ga0.1As), an active region (five 

Al0.37GaAs/In0.1GaAs quantum wells), and an n-doped current spreading layer for intra-cavity contacting. For lateral 

current and optical confinement an oxide aperture is located in the p-doped DBR just above the active region.    

 

 

 

 

 

 

 

 

 

 

Figure 3. Schematic cross-sectional view of the VCSEL, consisting of a half VCSEL on top of a free-standing Si3N4 grating. 

 
3.1 Principle of wavelength setting 

By altering the grating parameters of the HCG both the reflectivity spectrum as well as the phase of the reflection can be 

changed, as exemplified in Figure 4. The VCSEL emission wavelength depends on the round trip phase condition of the 

laser cavity. Hence by slightly changing the grating period or duty cycle, the VCSEL emission wavelength can be 

altered, allowing the realization of VCSELs with different emission wavelengths within one VCSEL array chip.  
 

Figure 4. (a) Power reflectance and (b) phase of the reflected wave for two different grating periods. 
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3.2 Wavelength setting range  

To theoretically investigate the possible wavelength setting range, a 1D-wave transfer matrix method is applied to 

simulate the detailed VCSEL epitaxial layer structure, where the HCG is replaced by an “artificial” interface having the 

spectral reflectance/transmittance properties obtained from the RCWA calculations. All other important cavity properties 

(longitudinal confinement factor, absorption loss, top and bottom mirror loss) are extracted. We compare the VCSEL 

wavelength setting performance of a design where the internal optical field standing-wave has a maximum at the III-

V/airgap interface to one where the standing wave is minimum at the same interface. In the following we refer to those 

two cases as resonant and non-resonant half-VCSEL design, where the only physical difference is a one quarter-

wavelength thick layer.  

An anti-reflection coating (ARC) using a low refractive index material such as SiON with proper thickness at 

the III-V/airgap interface can increase the wavelength setting range of VCSELs [12]. However, the deposition of an 

extra ARC layer on the III-V epitaxy makes the fabrication of the whole device complicated, as selective etching of SiO2 

to the ARC is difficult. An extra thickness of λ/4n in the n-doped current spreading layer of the resonant half-VCSEL 

design, yields a non-resonant half-VCSEL design, and has a similar effect on the wavelength tuning range as adding an 

ARC. By having a minimum in the optical field standing-wave at the III-V/airgap interface the optical reflection at this 

boundary is minimized and the bottom mirror reflectivity will mainly be determined by the HCG, giving the HCG a 

bigger influence on setting the resonance wavelength which should in turn also yield a larger wavelength setting range. 

Figure 5 shows numerical results for the resonant half-VCSEL design case. As can be seen in Figure 5(left) for a grating 

with period between 780 and 840nm and a duty cycle between 33% and 47%, the threshold gain is below 1000 cm
-1

, 

which is typically required for achieving acceptable VCSEL output performance. The resonance wavelength for those 

grating parameters ranges only 4nm, see Figure 5(right). For the corresponding non-resonant half-VCSEL design case, 

shown in Figure 6, the possible wavelength setting range is 15 nm, even though for a smaller duty cycle range. We 

clearly find that a design with a standing-wave minimum at the III-V/airgap interface will maximize the HCG’s 

influence on determining the VCSEL resonance wavelength, and thereby allowing for a 15-nm-wide wavelength setting 

range with low threshold gain (<1000 cm
-1

) .    

 

 

 
  

 

 

 

 

 

 

 

 

 

 

Figure 5. Resonant half-VCSEL design case. (left) Threshold gain as function of grating period and DC, and (right) 

gresonance wavelength as function of grating period and DC. 
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Figure 6. Non-resonant half-VCSEL design case. (left) Threshold gain as function of grating period and DC, and (right) 

resonance wavelength as function of grating period and DC. 

 

4. GRATING FABRICATION AND EVALUATION  

In the full VCSEL process, the idea is to use adhesive BCB bonding to join the GaAs-based half VCSEL epitaxial 

material to the already fabricated Si3N4 HCG. To facilitate the bonding the HCG has to be planarized with SiO2 before 

the bonding, and thus the bonding interface will be between BCB and SiO2. After the bonding, the GaAs substrate is 

completely removed by mechanical grinding and a wet etch process. The VCSELs will then be fabricated in a standard 

VCSEL process, followed by a release of the HCG from the backside of the Si wafer using KOH to etch the Si substrate 

and buffered hydrofluoric acid (BHF) to etch the SiO2 which surrounds the Si3N4 grating beams.  

 So far, we have focused on the fabrication of the Si3N4 HCGs and tested the release from the backside of the Si 

wafer. For a successful fabrication, the Si3N4 must have a low built-in stress and at the same time have a large etch 

persistence to BHF compared to SiO2. The Si3N4 can be deposited using either plasma-enhanced chemical vapor 

deposition (PECVD) or low-pressure chemical vapor deposition (LPCVD). PECVD deposited Si3N4 offers films with 

lower stress, but with lower wet etch selectivity to SiO2 in BHF. LPCVD Si3N4 on the other hand provides good wet etch 

selectivity to SiO2, an excellent control of the homogeneity of material index and thickness, but a high built-in stress, 

particularly in thicker films (>300 nm), due to the high temperature deposition process (>700C) [1]. Due to the higher 

wet etch selectivity we have chosen to work with LPCVD Si3N4.  

 The grating fabrication process is done at IMEC and starts with the deposition of a 1.6μm thick SiO2 layer by 

PECVD followed by a 300nm thick LPCVD Si3N4 layer on 200mm Si wafers. The gratings are then defined by 193 nm 

optical lithography, etched by inductive coupled fluorine-based etching [1] and planarized by PECVD deposited SiO2. 

The release of the grating beams is then done from the backside of the silicon wafer by KOH etching of the Si and BHF 

etching of the SiO2. Critical point drying in a Leica EM CPD300 is used to avoid sticktion and collapse of the grating 

beams. Figure 7 shows the microscopic and SEM images of the fabricated free standing gratings. The grating beams 

show no bending, but have a slightly trapezoidal cross-section, which to some extent will degrade the grating’s 

reflectivity characteristic. 

(b) 
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(a)                                           (b)       (c)              (d) 

Figure 7. Fabricated free standing Si3N4 grating (a) Microscopic image taken from the backside of the Si wafer (b) SEM 

image taken from the top of the grating. (c) a 52o tilted SEM view of the grating  (d) cross-sectional SEM view of the Si3N4 

waveguide showing the topology of the grating bars. 

Reflection spectra of the fabricated gratings were measured using a set-up consisting of a fiber coupled supercontinuum 

light source, a fiber collimator, a beamsplitter, a microscope objective (NA=0.8) and an output fiber connected to an 

optical spectrum analyser. The measured reflection spectrum from the grating is normalized to that of a calibrated gold 

mirror (Thorlabs). A comparison between the experimentally measured reflectance spectrum and that obtained from 

FDTD simulations of a finite grating of 30 periods are shown in Figure 8. The absolute reflectance values do not match 

completely, but the spectral characteristics are in good agreement.  

 

 

 

 

 

 

 

 

 

Figure 8. Measured and simulated reflection spectra from a Si3N4-based HCG. 

 

5. CONCLUSIONS 

We present a novel design of a half GaAs-based VCSEL, bonded to a Si3N4 waveguide platform using BCB, where one 

of the DBRs is completely substituted by a free-standing Si3N4 HCG. The wavelength setting properties are explored 

numerically where the use of a resonant and non-resonant GaAs-based half-VCSEL designs are compared. We show that 

a non-resonant design maximizes the HCG’s influence on setting the VCSEL resonance wavelength, allowing for a 15-

nm-wide wavelength setting range with a low threshold gain (<1000 cm
-1

). The first initial results of fabricated Si3N4 

HCG are also presented, showing free-standing grating bars with no bending and a slight trapezoidal cross-section. 

Measured reflectivity spectra show good agreement with those obtained from FDTD simulations of finite gratings.     
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