

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering

Göteborg, Sweden, June 2013

Efficient Test Case Generation for

AUTOSAR Basic Software Code Generators

Master of Science Thesis
in the Computer Science and Software Engineering Programmes

Ger Garrigan, Daniel Ivan

The Author grants to Chalmers University of Technology and University of Gothenburg the
non-exclusive right to publish the Work electronically and in a non-commercial purpose
make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party
to let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

Efficient Test Case Generation for AUTOSAR Basic Software Code Generators

Ger Garrigan, Daniel Ivan

© Ger Garrigan, June 2013.

© Daniel Ivan, June 2013.

Examiner: Christian Berger

Supervisor: Matthias Tichy

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering

SE-412 96 Göteborg, Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering

Göteborg, Sweden June 2013

2

Table of Contents

Abstract.. 7

Acknowledgements .. 8

1. Introduction .. 9

1.1. AUTOSAR ... 9

1.1.1 Basic Software ... 10

1.2. The Generators ... 11

1.2.1. The Random Generator .. 11

1.2.2. The Pairwise Generator .. 12

1.3. Comparison of Generators... 12

1.4. Experiments .. 13

1.5 Outline .. 14

2. Background .. 15

2.1. AUTOSAR Layered Software Architecture ... 15

2.2. ECU Configuration Parameter Definition Metamodel ... 20

2.2.1. Containers ... 21

2.2.2. Parameters ... 22

2.2.3. References .. 23

2.3. ECU Configuration Parameter Values Metamodel ... 23

2.4. Limitation Files... 25

2.5. Valid and Working Configurations .. 26

2.6. Constraints .. 26

2.7. Source Code Generators ... 26

2.8. Software Product Lines .. 27

2.9. Pairwise Testing .. 28

3. Research Methods ... 29

3.1. Research Methods .. 29

4. Architecture .. 31

3

4.1. Architecture Description ... 31

5. Algorithms .. 34

5.1. Example .. 34

5.2. Random Generator Algorithm .. 36

5.3. Pairwise Generator Algorithm .. 48

5.3.1 Pairwise Algorithm Description ... 49

5.3.2 Pairwise Example ... 53

6. Experiments ... 65

6.1. Experiment 1: Number of crashes based on set number of configurations 68

6.1.1. Design ... 69

6.1.2. Results .. 69

6.1.3. Discussion ... 70

6.2. Experiment 2: Number of crashes based on set amount of time 70

6.2.1 Design .. 71

6.2.2. Results .. 71

6.2.3 Discussion.. 72

6.3. Experiment 3: Overhead of time taken to generate configurations 72

6.3.1 Design .. 73

6.3.2 Results ... 73

6.3.3. Discussion ... 73

6.4. Conclusion ... 75

7. Related Work ... 77

7.1. Software Product Lines .. 77

7.2. Pairwise Algorithms ... 79

7.3. Random Generation .. 81

8. Conclusion and Future Work .. 83

9. References .. 86

Appendices .. 88

4

Appendix A: Det module Parameter Definition .. 88

Appendix B: Experiment Data ... 91

Figures

Figure 1 - High Level View of AUTOSAR Layered Architecture. .. 10

Figure 2 - Basic Software modules (4.0). .. 11

Figure 3 - AUTOSAR SW-C and AUTOSAR Services connected to the VFB. 15

Figure 4 - The Layers of the Basic Software ... 16

Figure 5 - The functional groups of the Basic Software. .. 17

Figure 6 - Basic Software modules grouped into functional groups. 18

Figure 7 - Development Error Tracer Parameter Definition Structure. 19

Figure 8 - Development Error Tracer Configuration Structure. .. 20

Figure 9 - The top-level structure of a ECU Configuration Parameter Definition. 21

Figure 10 - The structure of a container‟s definition. .. 21

Figure 11 - The structure of a parameter‟s definition. .. 22

Figure 12 - The structure of a reference‟s definition. ... 23

Figure 13 - The top-level structure of an ECU Configuration Value. 24

Figure 14 - The structure of a parameter in a configuration. .. 24

Figure 15 - The structure of a reference in a configuration. ... 25

Figure 16 - Source Code Generator Input and Output. .. 27

Figure 17 - Software product line example. ... 27

Figure 18 – The Det module as a software product line. ... 28

Figure 19 - Research steps. .. 29

Figure 20 - Overall Architecture. ... 31

Figure 21 - The structure of the Dsm and the Drm modules. ... 34

Figure 22 - Random Generator Algorithm Activity Diagram. .. 36

Figure 23 - The first Configuration Element and its Definition Element. 37

Figure 24 - The first Configuration Element in a more compact view. 37

Figure 25 - Algorithm 5: Process Parameters activity diagram. ... 38

5

Figure 26 - Configuration Element List structure after step 5.4. ... 39

Figure 27 - Algorithm 6: Process References activity diagram. ... 40

Figure 28 - Algorithm 7: Process Sub-Containers activity diagram. 41

Figure 29 - Configuration Element list structure after step 7.3. .. 42

Figure 30 - Configuration Element List structure after step 7.7. ... 42

Figure 31 - Configuration Element List structure after step 7.4. ... 43

Figure 32 - Configuration Element List structure after step 7.5. ... 44

Figure 33 - Algorithm 8: Add references values activity diagram. .. 45

Figure 34 - Configuration Element List after step 8.8... 47

Figure 35 - Configuration Element List structure after step 8: .. 48

Figure 36 - Pairwise Generator Algorithm. .. 50

Figure 37 - The parameter definition structure of the Det module. 67

Tables

Table 1 - Definition Element Table. ... 54

Table 2 - All Pairs for setRef and configRef. .. 55

Table 3 - Configuration Element Table with first two elements paired. 55

Table 4 - All valid pairings between setRef and configSet and configRef and configSet. 56

Table 5 - List of already covered pairs for configSet and setRef and for configRef and
configSet. .. 56

Table 6 - List of uncovered pairs for configSet and setRef and configRef and configSet. 56

Table 7 - Configuration Element Table after processing configSet. 57

Table 8 - All valid pairs for id and setRef, configRef and configSet. 57

Table 9 - Configuration Element Table with first set of id pairings satisfied. 58

Table 10 - Uncovered pairs for id after selecting first value. .. 58

Table 11 - Configuration Element Table after processing three rows for id. 59

Table 12 - Table of pairings with id that are not yet covered. ... 59

Table 13 - Vertical Processing of unsatisfied pairs for id. .. 60

Table 14 - Vertical Processing of covering all unsatisfied pairs for id. 60

Table 15 - Configuration Element Table after processing the id element. 61

6

Table 16 - All valid pairs with the information element. .. 61

Table 17 - All uncovered pairs for the information element. ... 62

Table 18 - Configuration Element Table after processing the information element. 62

Table 19 - All valid pairs for the data element. .. 63

Table 20 - Configuration Element Table after processing the data element. 63

Table 21 - Final Configuration Element Table for the Dsm example. 64

Table 22 - Configuration Element Table generated by pairwise for Det. 68

Table 23 - Averaged Crash Data for each module in experiment 1. 69

Table 24 - Averaged Crash Data for each module in experiment 2. 71

Table 25 - Averaged generation and SCG times for each module. 73

Table 26 - Configuration Types for modules. ... 75

Table 27 - Averaged number of elements covered by each generator. 75

7

Abstract

In the contemporary automotive industry, the complexity of software architectures for
electronic control units (ECUs) has increased drastically. Aiming to improve the complexity
management of these architectures, a worldwide partnership of car manufacturers and
suppliers has created a standardized approach called AUTOSAR (AUTomotive Open System
ARchitecture) (AUTOSAR Basics, 2012). At the highest abstraction level, the architecture of
AUTOSAR contains three software layers which run on a Microcontroller. These three layers
are Application Layer, Runtime Environment (RTE) and Basic Software (BSW) (AUTOSAR
Layered software architecture, 2011). The BSW layer is further divided into multiple software
modules which provide basic services such as memory management and bus communication
(Mecel, 2013). These software modules can be configured to satisfy the needs of the
customer. Testing these configurations requires a large amount of effort and time, especially
since they are manually generated. This thesis deals with the automatic generation of these
test cases, the configurations of the BSW modules. Two test case generation approaches
were developed and compared. The first is random generation where elements to be added to
the test case are chosen in a random manner. The second is pairwise generation where
elements are added to the test case based on satisfying all pairs of element values. The
experiments conducted to compare the two generation techniques ran the configurations
created for three BSW modules through their SCGs (Source Code Generators) and showed
that both techniques have the ability to uncover problems within a SCG. This thesis was
conducted as a case study at Mecel AB in Gothenburg.

8

Acknowledgements

We would like to thank our university supervisor Matthias Tichy for his dedication and
enthusiasm throughout this thesis. We would also like to thank Mecel AB for providing a
productive and friendly work environment, especially our supervisor Samuel Sveningsson for
his guidance, Christian Lidberg and the other members of the Picea team for the help they
gave us.

Ger would like to thank his parents for their unfailing encouragement and support.

Daniel would like to thank his parents for their support.

9

1. Introduction

Manual integration testing is fraught with issues. When considering the integration of different
components and their parameters, the combinatorial complexity can become too large to
make manual testing feasible. Edge cases can easily be missed. Manual testing relies heavily
on humans, is prone to error and is a time intensive process. According to Claessen et al., test
automation allows for faster completion of testing or using the time allocated for more
thorough tests. Testing accounts for up to 50% of the cost of software development.
(Claessen et al., 2000).

So it is time to automate the generation of integration tests cases. This is the area in which our
thesis lives. This thesis was carried out in Mecel AB, a company who develops automotive
software. They are members of AUTOSAR, a collaborative initiative that facilitates structured
development of automotive software driven by a common schema, the AUTOSAR schema
(Honekamp, 2009). Using this schema Mecel configure AUTOSAR Basic Software (BSW)
modules. Each module has a Source Code Generator (SCG). The BSW configurations are
then fed into their SCG to generate code to be run in the vehicles.

Our thesis is comprised of three main parts. First is research into test case generation
techniques by analysis of literature in the areas of integration testing, test case generation and
software product lines. Second is the development of some of the identified techniques with
the aim of automating the creation of AUTOSAR configurations. These generated AUTOSAR
configurations are the test cases for the SCG. Third is the comparison of the techniques
through experimentation. The techniques to be compared are random generation and
generation using the pairwise method which is based on combinatorial mathematics. The aim
of the test case generation is to produce configurations likely to cause the SCG to crash and
thus uncover unhandled issues within the SCG or test cases likely to identify bugs in the SCG.

1.1. AUTOSAR

"AUTOSAR (AUTomotive Open System ARchitecture) is a worldwide development
partnership of car manufacturers, suppliers and other companies from the electronics,
semiconductor and software industry." (AUTOSAR Home, 2012)

The increasing usage of software within vehicles results in more complex architectures and
with the increase in requirements comes an increase in conflicting requirements. AUTOSAR
provides a common platform for defining the architecture and software to meet the varied
requirements. This common platform leads to a structured and clearly defined architecture
(AUTOSAR Motivation and Goals, 2012). Unless otherwise stated the following description of
AUTOSARs layered architecture is based on the reference (AUTOSAR Layered Software
Architecture, 2011). The layered architecture defined by AUTOSAR can be seen in figure 1.

10

Figure 1 - High Level View of AUTOSAR Layered Architecture.

Figure 1 shows the four layers that make up the AUTOSAR architecture. The top layer, the
Application Layer contains software components (SW-C). These SW-Cs contain software
which runs in the AUTOSAR system. Software that controls the brightness of the headlamps
according to external stimulus is an example of the type of software that is contained within
the application layer (AUTOSAR Technical Overview, 2008). These software components are
connected to each other via the Virtual Functional Bus (VFB). These connections are
hardware independent. The Runtime Environment (RTE) realizes these connections thus
providing concrete connections between components within the application layer and between
the application and Basic Software layers (AUTOSAR VFB, 2011). The Basic Software
(BSW) layer is composed of standard software modules for areas such as OS communication,
memory, hardware drivers, diagnostics etc. The Microcontroller is the Electronic Control Unit
(ECU) hardware layer on which the software is run.

1.1.1 Basic Software

The BSW is configured using parameter definition files. These files define the structure that
the BSW configuration must conform to. The parameter definition files contain elements such
as containers, parameters and references. For example the Development Error Tracer (Det)
(AUTOSAR Det, 2011) module has a general mandatory container containing such
parameters as DetForwardToDlt which indicates if the Dlt (Diagnostic Log and Trace) interface
is required and when set to true, Det will forward its call to a function called
Dlt_DetForwardErrorTrace. It also contains an optional notification container which when
selected contains a parameter called DetErrorHook for defining calls to error hooks in code.
References allow a parameter to reference a different container within the same module or
within an external module. The BSW modules in AUTOSAR 4.0 are contained in figure 2.

11

Figure 2 - Basic Software modules (4.0).

When the BSW configurations have been created they are run through a Source Code
Generator (SCG) in order to generate C code. The focus of this thesis is to compare methods
for automated creation of test configurations for the BSW. Before conducting this study all
configurations that were processed by the SCG were created manually. The motivation behind
automation is to test the SCG with configurations that may not have been considered
previously. These configurations conform to the parameter definitions. The SCG should be
able to handle any configuration conforming to the parameter definition without crashing.

1.2. The Generators

Two comparable approaches have been identified for generating the configurations, a random
configuration generator and a pairwise configuration generator.

1.2.1. The Random Generator

The random generator takes in the parameter definition and randomly selects the multiplicities
and values to be output to the configuration. The random generator is used as the baseline
against which the pairwise generator can be compared.

Random test generation has the advantages that it is relatively cheap and fast to generate test
cases. It can detect a large number of errors, is most likely to mimic real world scenarios and
can be used to see how reliable a program is (Oriat, 2005). We see additional advantages, the
first being that there is a greater likelihood of testing unusual configurations due to its random
nature when compared with manually creating configurations. This is because manual
configurations are usually created based on customer requirements whereas the random
approach is not choosing the contents of the configurations based on any preconceptions.
Second, the random generator can also generate many configurations for testing the SCG.

It has the disadvantage that a lot of the produced tests can be deemed irrelevant (Oriat,
2005). Following on from Oriat we see that the random generator is not aware of previously
created configurations and so may produce duplicates. We also see that the number of

12

possible configurations that can be created from a parameter definition is so large as to make
their creation infeasible.

1.2.2. The Pairwise Generator

The use of software product lines involves identifying common features that can be used
across an organization's product range. The use of a common base allows for increased
quality and faster development time. When a product requires a feature that is specific to just
that product a variability point is introduced. Each variation point increases combinatorial
complexity and the adding of variation points is carefully controlled. Software product lines can
be tested using a technique derived from combinatorial mathematics called pairwise
(McGregor, 2010).

The parameter definitions for the BSWs contain mandatory and optional elements. For
example the Det module introduced earlier has one mandatory container and one optional
container. The parameter definitions can be considered as a self-contained software product
line. As the pairwise technique is used for testing software product lines, this indicates that it
can also be used for testing when working with parameter definitions.

The pairwise testing approach uses combinatorial theory to significantly reduce the number of
configurations required that can still find 90% of the faults that exhaustive methods can find
(McGregor, 2010). Pairwise considers that most faults occur with single values or between
pairs of values and so reduces the configurations to just those that cover all pairs (Cohen et
al., 1996). A definition containing 120 binary parameters requires 10 test cases (configurations
in our case) using pairwise as opposed to 2120 using exhaustive testing (Cohen et al., 1996).

We see the advantages that fewer configurations are needed as test cases, which are still
likely to produce a crash. Also, it does not produce duplicate configurations since each
configuration covers at least one new pair. The pairwise approach is also deterministic, so the
configurations will not change from one run to the next for the same input. This means that
pairwise can be run once and its configurations reused many times.

We see a disadvantage in that pairwise does not have 100% fault coverage. Also, it is
possible to use n-wise testing where n can be higher than 2. We used pairs due to the
indications of its benefits from the literature referenced above.

1.3. Comparison of Generators

In order to compare the two generators, we considered three different criteria. The first was
the number of crashes found based on a set number of configurations. So both the pairwise
generator and the random generator created the same number of configurations and ran them
through the SCG for the same module and the number of crashes produced was recorded.
The reason for this comparison is that pairwise produces a set number of configurations so we
were eager to see how the generators compare when the random generator was also given a
set number of configurations.

The next comparison was to record the number of crashes identified when both generators
are allowed to generate configurations and run them through the SCG for a set amount of
time. The reason for this comparison is that the pairwise approach only requires a set number
of configurations whereas random may prove beneficial if it can continue to generate as many
configurations as it can and run them through the SCG in a given amount of time.

Finally we looked at the overhead of the time taken to generate the configurations introduced
by pairwise when considering the time needed to run them through the SCG. It is interesting to

13

see if there is an extra overhead for the pairwise generator to create the configurations when
compared with the random generator and whether this overhead is noteworthy when
considering the time it takes to run the configurations through the SCG.

1.4. Experiments

The scope of the experimentation was to analyse the process of taking parameter definitions
as input to the generators and using the resulting configurations to try and find crashes or
bugs in the SCG. The SCG has the ability to produce code but analysis of the code produced
is outside the scope of this thesis. The reason for this is that of the unit tests that Mecel AB
create there are currently none that exist for testing the code we produce.

The pairwise and random generators were run on a nightly builder. Three BSW modules were
used in the experimentation. These were:

● Development Error Tracer (Det): A module with 7 elements (2 containers and 5
parameters) and low complexity. This module has low complexity as the only
dependencies that need to be considered are parent-child relationships. The pairwise
generator has a certain amount of overhead when creating its test cases. This
overhead should be minimal with the Det module and the number of test cases created
by pairwise should be small due to the small number of elements and low complexity.

● Function Inhibition Manager (FiM): A medium sized module with 35 elements (8
containers and sub-containers, 1 choice container with 2 choices, 15 parameters and 9
references). The FiM module has greater complexity than Det as it uses references,
choices and has more levels in the parent-child hierarchy. As the complexity increases
the pairwise generator could identify crashes or bugs more effectively than the random
generator as it requires many less configurations. At this stage maybe the time taken
to run the pairwise generator will have an effect on its ability to produce the
configuration test cases within a suitable timeframe e.g. one run of a nightly builder.

● Diagnostic Event Manager (Dem): A large module with 195 elements (34 containers
and sub-containers, 2 choice-containers with 3 choices each, 120 parameters and 33
references). The complexity is higher than FiM due to the larger number of references
and choices. Here the time taken for pairwise to produce the configuration test cases
could become more prominent. As random produces one configuration test case at a
time it is interesting to see if pairwise can achieve its goals within one nightly build run.

The configuration test cases that were generated for these modules were run through their
SCGs. The following metrics were recorded:

● The number of pairwise configurations created and run through the SCG.

● The number of random configurations created and run through the SCG.

● The number of times the SCG crashed using the pairwise configurations.

● The number of times the SCG crashed using the random configurations.

● The number of errors the SCG produced using the pairwise configurations.

● The number of errors the SCG produced using the random configurations.

● The time taken for the pairwise generator to create all of its configurations.

14

● The time taken for the pairwise generator to create all of its configurations and for the
SCG to process these configurations.

● The time taken for the random generator to create a given number of configurations.

● The time taken for the random generator to create a given number of configurations
and for the SCG to process these configurations.

● The number of parameter definition elements covered by each generator.

These metrics were recorded over a number of nightly builds. The data was collected and
analysed and it was determined that both generators were successful at finding issues. We
also looked at the overhead introduced by the pairwise generator when creating the
configurations and the impact of this overhead when considering the time it takes to run the
configurations through the SCG. We compared these times with the times needed by the
random generator. We saw that there was an overhead introduced by the pairwise generator
when creating configurations, but when considering the SCG time, this overhead decreased
dramatically.

1.5 Outline

Section 2 of this document provides more detailed background information for the thesis.
Section 3 provides details on how the research was conducted. Section 4 describes the
architecture containing the random and pairwise generators developed as part of the thesis.
Section 5 describes the algorithms developed for the random and pairwise generators.
Section 6 describes the experiments conducted and their results. Section 7 presents
academic literature related to this thesis. Section 8 provides a conclusion of the thesis and
presents ideas on future work to be conducted following this thesis and limitations to this
thesis. The references used throughout the report are provided in Section 9.

15

2. Background

This chapter provides background information about AUTOSAR, its layered software
architecture and the Basic Software modules. It also contains detailed information about the
parameter definition files and the limitation files which we use as an input to our generators.
Information regarding the output of our generators, the configuration files, is also provided in
this chapter. We discuss the difference between a valid and a working configuration and the
expected results of the Source Code Generators. We provide background information about
software product lines and one of the testing techniques that we decided to apply in this
thesis, called pairwise.

2.1. AUTOSAR Layered Software Architecture

As mentioned briefly in the introduction and described in figure 1, the software architecture of
AUTOSAR has on the highest level of abstraction an Application Layer, a Runtime
Environment Layer and a Basic Software Layer. They run on a microcontroller (usually 16 or
32 bit), where internal devices such as Internal EEPROM, Internal CAN controller and Internal
ADC (Analogue Digital Converter) are located (AUTOSAR Layered Software Architecture,
2011).

In the Application Layer the architecture changes from „layered‟ to „component style‟. An
application running on the AUTOSAR infrastructure consists of interconnected AUTOSAR
Software Components (SW-C), therefore the AUTOSAR Software Components are located in
the Application Layer. These AUTOSAR Software Components have standardized AUTOSAR
interfaces, they can be mapped to an Electronic Control Unit (ECU) and each one
encapsulates a part of the application‟s functionality. An example of an AUTOSAR Software
Component is the Automatic Light Control which together with other interconnected
AUTOSAR Software Components can be used to control the vehicle lights depending on the
luminosity coming from outside the vehicle. A special type of AUTOSAR Software
Components is the Sensor/Actuator Software Component, which is dependent on different
sensors or actuators (AUTOSAR Technical Overview, 2008).

Figure 3 - AUTOSAR SW-C and AUTOSAR Services connected to the VFB (AUTOSAR Technical Overview,
2008).

16

The implementation of the AUTOSAR Software Components is independent of the underlying
hardware. This independence is realized by the Virtual Functional Bus (VFB) which represents
the abstraction of the communication mechanisms between the AUTOSAR Software
Components and also includes interfaces to the Basic Software Layer. It enables the virtual
integration of the AUTOSAR Software Components in an early phase of the development
process. Figure 3 shows how different AUTOSAR Software Components and different parts of
the Basic Software such as Complex Device Drivers, the ECU Abstraction and AUTOSAR
Services are connected to the Virtual Functional Bus. While the ECU Abstraction and the
Complex Device Drivers are ECU specific, the AUTOSAR Services Interface is standardized
(AUTOSAR Technical Overview, 2008).

The Runtime Environment implements the functionality of the Virtual Functional Bus on a
specific ECU. It makes the communication between the AUTOSAR Software Components
independent of the communication channels and mechanisms. The implementation of an
AUTOSAR Software Component cannot use the communication layer directly and it cannot
access the Basic Software directly. To communicate with other AUTOSAR Software
Components, it uses ports and client-server or sender-receiver communication. To access the
Basic Software it uses ports and AUTOSAR Interfaces. The responsibility of the RTE is to
generate the appropriate APIs for allowing access for the AUTOSAR Software Components
(AUTOSAR Technical Overview, 2008).

The Basic Software Layer is used to run the functional part of the software. As described in
figure 4 the Basic Software Layer is divided into four different layers: Services, ECU
Abstraction, Complex Drivers and Microcontroller Abstraction. The Services and the
Microcontroller Abstraction layers contain standardized components, while the ECU
Abstraction and Complex Drivers layers contain ECU specific components (AUTOSAR
Layered Software Architecture, 2011).

Figure 4 - The Layers of the Basic Software (AUTOSAR Layered Software Architecture, 2011).

The Services Layer is the most important layer for the application software as it provides basic
services for the application and Basic Software modules to abstract the ECU hardware and
the microcontroller from the layers above them. It offers operating system functionality,
memory management services, vehicle network communication and management services,
diagnostic services and mode management (AUTOSAR Technical Overview, 2008). As

17

described in figure 5, the Services Layers is further divided into three functional groups:
System Services, Memory Services and Communication Services.

The ECU Abstraction Layer is used to abstract the ECU Layout from the above layer. It
abstracts the access to peripherals and devices and offers an API to access them
independently of their location and their connection to the microcontroller (AUTOSAR
Technical Overview, 2008). The ECU Abstraction Layer is further divided into four functional
groups: Onboard Device Abstraction, Memory Hardware Abstraction, Communication
Hardware Abstraction and I/O Hardware Abstraction.

The Complex Drivers Layer offers the possibility to integrate special functionality such as
drivers for AUTOSAR external devices and it meets the special requirements for handling
complex sensors and actuators. It can also be used to implement drivers for hardware that is
not supported by AUTOSAR (AUTOSAR Technical Overview, 2008).

The lowest layer of the Basic Software is the Microcontroller Abstraction Layer (MCAL). It
makes the upper layers independent on the microcontroller. It contains drivers that have
access to the internal peripherals of the microcontroller and to the external devices mapped to
the microcontroller (AUTOSAR Technical Overview, 2008). As described in figure 5 the MCAL
is further divided into four functional groups: Microcontroller Drivers, Memory Drivers,
Communication Drivers and I/O Drivers.

Figure 5 - The functional groups of the Basic Software (AUTOSAR Layered Software Architecture, 2011).

The functional groups described in figure 5 are further divided into Basic Software modules.
There are over 70 modules defined, as described in figure 2. In figure 6 some of these
modules are represented and grouped into functional groups.

18

Figure 6 - Basic Software modules grouped into functional groups (AUTOSAR Layered Software Architecture,
2011).

Each one of the Basic Software modules is defined by a specific parameter definition file. The
parameter definition file is an ARXML file and it conforms to an AUTOSAR standardized
metamodel, called ECU Configuration Parameter Definition metamodel. The Basic Software
modules are configured by creating a configuration file. This configuration file is also an
ARXML file and it conforms to another AUTOSAR standardized metamodel, called ECU
Configuration Parameter Values metamodel (AUTOSAR ECU, 2011).

Before continuing with the structure of these two metamodels, we present an example of a
Basic Software module, called Development Error Tracer (Det). This module is used during
the development of Software Components and other Basic Software modules to detect and
trace errors. It evaluates the messages received from the other modules and components
(AUTOSAR Det, 2011).

The structure of the parameter definition for a vendor specific Det module is described in
figure 7 and it consists of containers and parameters. A container from the parameter
definition is used to group several other elements such as sub-containers, parameters or
references.

The first container in this example is called General and it contains the generic parameters of
the Det module. The parameter Version API is a boolean parameter which is used to enable
or disable the API to read the information about the modules version (AUTOSAR Det, 2011).
This parameter is mandatory and it can only have the values 0 (false, disable) and 1 (true,
enable). Another parameter contained by General is called Dlt. This parameter is optional and
is also a boolean parameter with the possible values 0 and 1. If it is present and enabled (set
to 1) the Det requires the interface of the Dlt module and forwards its call to a function called
Dlt_DetForwardErrorTrace (AUTOSAR Det, 2011). The other two parameters included in the
General container, Platform and ForeignModule, are vendor specific parameters so they are
not mentioned in the AUTOSAR specification of the Det module (AUTOSAR Det, 2011).

The second container in this example is called Notification and it contains the configuration of
the notification functions (AUTOSAR Det, 2011). The only parameter contained by Notification
is called ErrorHook and it is a function name parameter. The multiplicity of this parameter is

19

infinite, so a configuration may contain as many ErrorHooks as needed. They represent a list
of functions to be called by the Det module when it is required to report an error (AUTOSAR
Det, 2011).

Notes:

● The names of the containers and parameters of the Det module have been slightly
modified for this example in order for the reader to get a better understanding of this
module. For example the Dlt parameter is called DetForwardToDlt in the Det
specification.

Figure 7 - Development Error Tracer Parameter Definition Structure.

To configure this Det module, a configuration file needs to be created. To be valid, this
configuration has to conform to the parameter definition previously described. It has to contain
one and only one General container which has to have exactly one VersionAPI, one Platform
and one ForeignModule parameter. The General Container may also contain maximum one
Dlt parameter. The values of these parameters have to be assigned according to their value
range. The configuration file may also include a Notification container which may have as
many ErrorHooks as needed. A valid configuration is described in figure 8.

20

Figure 8 - Development Error Tracer Configuration Structure.

2.2. ECU Configuration Parameter Definition Metamodel

As described in figure 9, the top-level structure of a parameter definition file (ECU
Configuration Parameter Definition) contains a Definition Collection (EcucDefinitionCollection)
or a Module (EcucModuleDef) which are both derived from an AUTOSAR Element
(ARElement). A Definition Collection contains at least one Module to be defined in the
parameter definition file. Each Module has at least one Container (EcucContainerDef) whose
structure is defined in figure 10.

21

Figure 9 - The top-level structure of a ECU Configuration Parameter Definition (AUTOSAR ECU, 2011).

2.2.1. Containers

Figure 10 - The structure of a container’s definition (AUTOSAR ECU, 2011).

As described in figure 10, an EcucChoiceContainerDef and an EcucParamConfContainerDef
are both derived from a Container (EcucContainerDef). An EcucChoiceContainerDef allows
for the selection of one and only one EcucParamConfContainerDef from different choices. An
EcucParamConfContainerDef is a logical grouping of many Sub-Containers
(EcucContainerDef), many Parameters (EcucParameterDef) and many References
(EcucAbstractReferenceDef).

A Parameter is an attribute (EcucCommonAttributes) of a certain type (e.g. boolean, integer,
float, string, function name, etc.), while a Reference is an attribute (EcucCommonAttributes)
that is used to create a link to another EcucParamConfContainerDef.

In order to specify how many times a specific container, parameter or reference may be
included in a configuration, both the EcucContainerDef and EcucCommonAttributes inherit
from the EcucDefinitionElement class. This class has attributes that can define a lower, a finite
upper multiplicity and an infinite upper multiplicity. For example, a container can have a lower
multiplicity set to 0 and an upper multiplicity set to 5, which means that the container is
optional and that the maximum number of times this container can be included in a
configuration is 5.

22

2.2.2. Parameters

Figure 11 - The structure of a parameter’s definition (AUTOSAR ECU, 2011).

As described in figure 11, a parameter is contained in an EcucParamConfContainerDef and it
can be a boolean (EcucBooleanParamDef), an integer (EcucIntegerParamDef), a float
(EcucFloatParamDef), an addInfo (EcucAddInfoParamDef), a string
(EcucAbstractStringParamDef) or an enumeration (EcucEnumerationParamDef). Each of
these different types of parameters has attributes. For example, an integer and a float can
have a minimum, a maximum and a default value. A string parameter can have a regular
expression that it needs to conform to, a minimum length, a maximum length and a default
value. An enumeration parameter has a list of literals it can choose its value from.

23

2.2.3. References

Figure 12 - The structure of a reference’s definition (AUTOSAR ECU, 2011).

As described in 12, there can be five types of references and they are contained in an
EcucParamConfContainerDef. EcucReferenceDef is a reference that has one destination to
another ParamConfContainer within the same configuration. A choice reference
(EcucChoiceReferenceDef) has multiple destinations to choose from and they are all referring
to other ParamConfContainers within the same configuration. A symbolic name reference
(EcucSymbolicNameReferenceDef) has a destination to a ParamConfContainer within the
same configuration that contains a parameter with the symbolic name boolean value set to
true. Only one of the parameters of a certain ParamConfContainer can have the symbolic
name boolean value set to true. Elements outside the configuration can be referenced using
instance references (EcucInstanceReferenceDef) or foreign references
(EcucForeignReferenceDef). The foreign reference can be used when the referenced element
has been specified in a different AUTOSAR template, while the instance reference can be
used using the instanceRef semantics defined in the Generic Structure Template (AUTOSAR
ECU, 2011).

2.3. ECU Configuration Parameter Values Metamodel

As described in figure 13, the top-level element of a configuration file (ECU Configuration
Parameter Values) is the value collection (EcucValueCollection). It needs to reference the
System description, provided as an ecuExtract. A value collection also references at least one
configuration module (EcucModuleConfigurationValues), provided as an ecucValue. The
configuration module is defined by one module from the parameter definition file. It contains at
least one container (EcucContainerValue) which is defined by a container (EcucContainerDef)
from the parameter definition file. The configuration module can also have a module
description referring to a BSW Implementation.

24

Figure 13 - The top-level structure of an ECU Configuration Value (AUTOSAR ECU, 2011).

A container from a configuration can include the same type of elements as in the parameter
definition file, i.e. sub-containers, parameters and references. The structure of a parameter
(EcucParameterValue) in a configuration is described in figure 14. A parameter is contained in
an EcucContainerValue and it can be a numerical (EcucNumericalParamValue), textual
(EcucTextualParamValue) or addInfo parameter (EcucAddInfoParamValue). A numerical
parameter is used for booleans, integers and floats, while a textual parameter is used for
enumerations and strings. Each configuration parameter has its definition referring to a
parameter (EcucParameterDef) from the parameter definition file.

Figure 14 - The structure of a parameter in a configuration (AUTOSAR ECU, 2011).

25

According to figure 15, the references (EcucAbstractReferenceValue) of a configuration are
also contained in an EcucContainerValue and they are of two types:
EcucInstanceReferenceValue and EcucReferenceValue. The EcucInstanceReferenceValue is
defined by an EcucInstanceReferenceDef from the parameter definition file, while the
EcucReferenceValue can be defined by any of the other types of references from the
parameter definition file, i.e. EcucReferenceDef, EcucChoiceReferenceDef,
EcucForeignReferenceDef and EcucSymbolicNameReferenceDef.

Figure 15 - The structure of a reference in a configuration (AUTOSAR ECU, 2011).

2.4. Limitation Files

A requirement from Mecel AB was to be able to limit the parameter definition file. Say for
example we have a parameter called ErrorHook that has a lower multiplicity of 0 and an upper
multiplicity of 65000. The tester responsible for the generators may not wish to run
configurations with 65000 instances of ErrorHook. They may know that in reality 5 ErrorHooks
are sufficient for testing. They can use the limitation definition to define the new multiplicity.
Another common attribute to define limitations for is the value range that a parameter may
contain. Limitations can be defined for all parameter and reference attributes. With the
exception of the short name any part of these elements can be modified using the limitation
file. For containers only the multiplicities need to be limited. The user may also make sure that
an element is not configured by setting both its lower and upper multiplicity to 0.

The limitation definition conforms to the AUTOSAR XML schema and is a subset of the
parameter definition file, i.e. the limitation file includes everything that is in the parameter
definition file with the exception that it can exclude unmodified elements and the elements it
does include can be modified.

26

2.5. Valid and Working Configurations

When discussing about the configuration files of a Basic Software module we make a
difference between a valid and a working configuration. A valid configuration conforms to the
ECU Configuration Parameter Values Metamodel and to the AUTOSAR XML schema. A
working configuration, as defined by Mecel AB, is a valid configuration that satisfies all the
AUTOSAR and vendor specific constraints defined for the Basic Software module. More
details about these constraints can be found in the next section. A working configuration is a
configuration that can be used by a Source Code Generator to generate code. A valid but not
working configuration cannot be used to generate code, but it can be used to test if the Source
Code Generator rejects it and prints a descriptive error message. More details about the
Source Code Generators can be found in section 2.7.

2.6. Constraints

There are many different constraints for every module of the Basic Software Layer. These
constraints can be vendor specific or they can be defined by AUTOSAR. Only some of the
AUTOSAR/vendor defined constraints can be handled in the parameter definition files. For
example, if a constraint is that the integer parameter called „Id‟ needs to be configured for the
container called „Event‟, then the lower multiplicity of this parameter is set to „1‟ in the
parameter definition file. If this is the only constraint in a certain module, then a valid
configuration, i.e. which conforms to the parameter definition file, is also a working
configuration. Some vendor specific constraints can also be specified in a vendor specific
parameter definition file or in the limitation file. For example, an enumeration parameter that
can have as a value one of the literals „WIN32‟ or „VAST‟ could be constrained by a vendor
that does not support one of the literals. In this case, the vendor could create a specific
parameter definition file and remove the unsupported literal or it could use the limitation file to
do the same thing.

The most interesting constraints are the ones that cannot be specified in a parameter
definition or a limitation file, so they are specified in natural language in the AUTOSAR or
vendor specific module specifications. For example, all instances of an integer parameter
called „id‟ could be constrained to have consecutive values, i.e. the configuration parameter
„id_first‟ has the value 0, „id_second‟ has the value 1 and so on.

2.7. Source Code Generators

There is one vendor specific SCG (Source Code Generator) for each of the modules of the
Basic Software Layer. As described in figure 16, a SCG takes in a configuration of a specific
module and its parameter definition file. The SCG checks if all the constraints have been
satisfied for the given configuration and only if this test passes it generates code in format of .c
and .h files. This generated source code, together with a static source code, is used to build
executables. An invalid configuration is rejected straight away by the SCG, while a valid
configuration needs to pass the constraints check in order to be considered a working
configuration. From here there are only two possible scenarios. The most probable one is that
the SCG generates source code, while the other scenario is that the SCG encounters
problems and throws an error or it may just crash. Considering the first scenario, the
generated source code is then tested and compiled to make sure that it is valid. For this study,
of the unit tests created by Mecel AB there was no unit test suite for verifying the source code
we produce so this verification was considered as out of scope.

27

Figure 16 - Source Code Generator Input and Output.

2.8. Software Product Lines

As stated in the Introduction section, the use of software product lines involves identifying
common features that can be used across an organization's product range. The use of a
common base allows for increased quality and faster development time. When a product
requires a feature that is specific to just that product a variability point is introduced. Each
variation point increases combinatorial complexity and the adding of variation points is
carefully controlled (McGregor, 2010). A simple, yet incomplete, example of a product line for
a car is described in figure 17, where a car has a common feature representing an engine and
a variable feature representing a navigation system. The engine has four common features for
ignition, induction, emission and compression. The navigation system has only one variable
feature called Voice command. Any car product resulting from this product line has to have at
least the engine with all it common features and it may include a navigation system with or
without a voice command.

Figure 17 - Software product line example.

The parameter definition files also contain mandatory and optional elements. For example, in
figure 18 we have a module called „Det‟ that has one mandatory container called „General‟ and
one optional container called „Notification‟. The mandatory container includes 4 mandatory
parameters, while the optional container includes an optional parameter. Comparing this
example with the one described in figure 17, we can conclude that a parameter definition file
can be considered as a self-contained software product line.

28

Figure 18 – The Det module as a software product line.

One technique used for testing software product lines is pairwise testing which we also apply
in this thesis.

2.9. Pairwise Testing

Considering a system that contains multiple parameters which can have many different
values, a test case for this type of system includes all or only some of the parameters of the
system, each one having a value assigned to it. A medium size system with hundreds of
parameters can have a very large number of test cases. Generating and testing all these test
cases require a large amount of allocated resources and time (Cohen et al., 1996).

The combinatorial design method is a way to reduce the number of test cases of a system.
This method generates tests that cover all pairwise, triple up to n-way combinations of
parameters of a system (Cohen et al., 1996). The n-way testing requires that for each set of n
parameters, every combination containing the values of these n parameters is covered at least
once in a test case (Lei et al., 2002).

Pairwise testing, i.e. 2-way testing, is one case of the n-way testing strategy, where n is equal
to 2. Pairwise testing requires that for each pair of parameters of a system, every combination
containing the values of these pairs is covered in at least one test case (Lei et al., 2002). The
pairwise approach is discussed in many articles related to software testing (Cohen et al.,
1996) (Colbourn et al., 2004) (Czerwonka, 2008) (Lei et al., 2002) (Williams, 2000). Several
algorithms for implementing this approach have been published. There are two main pairwise
techniques that can be applied when generating test cases. These are the “All Pairs”
approach and the “Orthogonal and Covering Arrays” approach.

In this thesis, we decided to mainly adapt one of the pairwise techniques to our requirements.
This uses the “All Pairs” approach and is called in-parameter-order, or IPO (Lei et al., 2002).

29

3. Research Methods

In this chapter we discuss about the case study as a research method and about the literature
study.

3.1. Research Methods

For this research, we chose to conduct a case study. This section describes what a case
study is, what other research methods exist and why we chose to use a case study as the
research method. This section is mostly based on Robert K. Yin‟s book (Yin, 2009).

A case study is one of the several methods of conducting a research. Other research methods
are survey, archival analysis, history, experiments and action research. The case study is
described in Yin‟s book as a way to “illuminate a decision or set of decisions: why they were
taken, how they were implemented, and with what result.” A case study is, according to the
same author, an “empirical inquiry that investigates a contemporary phenomenon in depth and
within its real-life context”.

For this study we aimed to investigate automatic generation of AUTOSAR configurations, and
we planned to discover why it is needed, how we can implement it and what the results are of
the implementation in a real-life context, at Mecel AB. There are variations between case
studies as a research method. Yin‟s book describes three types of case studies used for
research:

1. Explanatory or causal case studies.

2. Descriptive case studies.

3. Exploratory case studies.

An exploratory case study tendency is to find out what can be done, by seeking ideas or
generating new ones and by testing new hypotheses (Runeson et al., 2009). Among the three
types of case studies, the exploratory one is what is best suited to this thesis and it is the one
we used as the research method for this study.

Figure 19 - Research steps.

30

Figure 19 illustrates the steps we went through during this study. The first step included in our
process was Literature review. In order to gain the domain knowledge that was necessary to
conduct this case study, we had to read related literature papers. The University of Chalmers
library was our main resource for finding these papers. We first started to look for literature
containing keywords such as: integration testing, random testing, test input generation,
software product line testing, pairwise testing and pairwise algorithms. The papers we read
gave us enough domain knowledge about efficient techniques to generate test cases. Next,
we had to gain knowledge about AUTOSAR, the Basic Software modules, the parameter
definition and configuration files. The main source we used to gather this data was the
AUTOSAR website (AUTOSAR Home, 2012).

The next steps were to implement the solutions and conduct experiments to compare them.
The last step described in this diagram was done continuously throughout our process and it
involved writing this document.

31

4. Architecture

This chapter describes the architecture of the system. The architecture is represented as a
diagram showing the existing artefacts and components used as part of this thesis and the
artefacts and components developed over the course of the thesis and how these interact.
The diagram is followed by a more detailed explanation of the architecture. At a high level we
have two separate generators, the random generator and the pairwise generator. The random
generator takes in an AUTOSAR parameter definition(s) and creates an internal
representation of an AUTOSAR configuration that relates to one AUTOSAR BSW
configuration. The random generator randomly chooses which elements to add by
randomising the multiplicities and values of the elements. The pairwise generator also takes in
an AUTOSAR parameter definition(s) but it creates a table where each row is an internal
representation of an AUTOSAR configuration. The configuration creator takes the internal
representation of the AUTOSAR configurations and produces an AUTOSAR BSW
configuration for each. These configurations are then provided as input to the SCG for the
purpose of testing.

4.1. Architecture Description

Figure 20 - Overall Architecture.

Figure 20 shows the complete flow of the system. The artefacts and components within the
box were developed as part of the thesis work. The artefacts and components outside of the
box provide the inputs for our generators and show how the results of the generators are
used.

The parameter definition contains all the elements for the module(s) that are required by the
generators. The parameter definition conforms to the AUTOSAR schema. An example of a
parameter definition file can be seen in Appendix A. Multiple parameter definitions can be
provided. There are two types of parameter definition, primary and secondary. Primary
parameter definitions are those which the user wants to generate configurations for.
Secondary parameter definitions are those which are referenced by the primary definitions
and which do not require complete generation.

Primary parameter definitions can be limited for the purpose of generation. This is used to
reduce the scale of what is being generated. For example if a container has an upper
multiplicity as a value so high as to cause the state space to become infeasible to generate
within a realistic time frame, then these values can be changed using a limitation definition file.
The parameter definition and limitation definition are merged to create a merged parameter

32

definition with the limitations applied. The definitions are merged by finding matching elements
in the limitation definition to those that appear in the parameter definition. Only elements that
require limitation are included in the limitation definition so if a matching element is found then
the element in the limitation definition is given precedence over the corresponding parameter
definition element and it is this element that will appear in the merged parameter definition.
This merged parameter definition is provided to the generators. Multiple merged parameter
definitions can be provided to the generators as the primary parameter definitions.

The random generator takes in the merged parameter definitions for all primary modules and
the parameter definitions for the secondary modules. It applies the random algorithm and
produces one row in a table of Configuration Elements that will be converted to an ARXML
configuration.

A Configuration Element is an internal representation of an element that can later be added
to the configuration ARXML file. The Configuration Element contains its value and its
parameter definition information. The parameter definition information consists of the module it
belongs to, its short name, its parent, its children, its type (e.g. parameter, reference,
container) and its index. The index relates to where it should be positioned in the
Configuration Element row. If the Configuration Element is a reference, then information is
also stored about the referenced element and if the reference is in a secondary module.

If multiple primary definition files are provided as input each module will be run through the
random algorithm. If one of the primary parameter definitions references a container in a
secondary parameter definition then Configuration Elements need to be included for the
secondary module. A complete representation of the secondary module is not required, just
the referenced container, its parameters and its parent hierarchy. The algorithm used by the
random generator is described in section 5.2.

The pairwise generator has the same requirements with respect to the primary and
secondary parameter definitions. The data from the primary parameter definitions is converted
into an internal structure, the Definition Element Table, in order to prepare the elements in a
suitable manner for pairwise generation. Unlike the random generator which produces one
row of Configuration Elements corresponding to one configuration, the pairwise generator
produces multiple rows of Configuration Elements, each corresponding to one configuration.
The pairwise algorithm is described in the section 5.3

Based on Mecel AB requirements we define two types of configurations. The first is a valid
configuration. A valid configuration is one that conforms to the structure defined in the
parameter definition and also to the AUTOSAR schema.

A working configuration is a configuration that is valid and conforms to additional constraints
not available in the parameter definition. These constraints are defined by AUTOSAR and
Mecel AB and when a developer is creating configurations manually they ensure that their
configurations do not violate the constraints. The following is an example of a type of
constraint. The example contains a mandatory container C1 with two boolean parameters P1
and P2. It also contains and an optional container called C2. An example of a constraint could
be that in order for C2 to be enabled P2 must be set to true.

● Container1: C1 (mandatory container)

○ Parameter1: P1

○ Parameter2: P2

● Container2: C2 (optional container)

33

The Configuration Element Table that is produced by the random and pairwise generators
contains rows that correspond to valid configurations. In order to turn these configurations into
working configurations the Configuration Element Table is provided as input to the
constraints handler. Each module has its own constraints handler which has the ability to
identify violated constraints and update a row in the Configuration Element Table to ensure
that the constraints are no longer violated. In this thesis we have implemented this for the FiM
module and any of the rows the FiM constraints handler updates have no effect on the
pairings covered by the pairwise algorithm.

The configuration creator takes in a table containing rows of Configuration Elements, the
Configuration Element Table. Each row corresponds to one configuration. As a
Configuration Element contains the value, type and module of the element and its parent/child,
reference and choice information the configuration creator can loop through each element in a
row and write to ARXML maintaining the correct relationships, types and values. The resulting
AUTOSAR configuration conforms to the AUTOSAR schema.

When configurations have been created by the configuration creator they are then run through
a source code generator (SCG). The source code generator is the system under test. Each
module has its own SCG. It should accept valid configurations without crashing. A crash is an
unhandled exception that is thrown when validating the input files or when generating code
from the configuration.

Internally the SCG has two main components. The first component runs the AUTOSAR and
Mecel AB defined constraints against the configuration to make sure that it is a working
configuration. This constraint checking component can be tested by providing working and
valid configurations. When the SCG has determined the configuration is a working
configuration it passes it to the second component which generates C code from the
configuration. This second component can only be tested by working configurations.

The constraints checker in the SCG identifies three types of violations. The first are warnings,
a configuration can be a working configuration and have warnings. Warnings do not prevent
the SCG from generating code. The second type of violation is errors. Working configurations
do not contain errors. The constraints component will continue to run even in the presence of
errors so valid configurations can test this component fully. Errors are accumulated and if
present stop the SCG from trying to generate code. The errors are then displayed.

The third and final type of violation is critical errors. These critical errors will stop the
constraints component immediately. Working configurations are free from critical errors. Valid
configurations that contain critical errors will only test the SCG constraints component up to
the point that the critical error is encountered.

The SCG produces code when it completes successfully for a working configuration.
Currently, of the unit tests provided by Mecel AB there is no unit test suite for verifying the
code we produce so this verification is out of scope for the thesis.

34

5. Algorithms

This section describes the algorithms used in the implementation part of this project. Both
algorithms are described using a common example.

5.1. Example

This section describes the parameter definitions of two modules. The modules we chose had
to be complete enough to contain many of the different types of elements, but also quite
compact and easy to understand. Some of the Basic Software modules are small enough for
this example, but they do not contain a complete set of different elements. For example, the
Det module (Development Error Tracer) does not contain elements such as Choice
Containers or References. The larger modules, such as the Dcm module (Diagnostic
Communication Manager), are far too complex to be used as an example in this chapter.

We decided to create our own modules called Dsm (Diagnostic Sample Module) and Drm
(Diagnostic Referenced Module). The Dsm module is the primary module for this example,
while Drm is used as a secondary module because it is referenced by Dsm. The structure of
the two modules is described in figure 21.

Figure 21 - The structure of the Dsm and the Drm modules.

As described in figure 21 the Dsm module has two containers. One of them, the „configSet‟
container, is mandatory, while the other one, called „general‟, is optional. The „configSet‟
container has one optional integer parameter used to set an id with a value between 0 and
65000. It also has a mandatory choice sub-container that contains more information about the
module. The two choices of this „information‟ sub-container are called „data‟ and „event‟ and
they are both optional. The „data‟ sub-container has a mandatory float parameter used for
setting a frequency between 0.0 and 128.0, while the „event‟ sub-container has a mandatory
String parameter with an upper multiplicity of two and a maximum length of 256. The ‟general‟
container of the Dsm module has a mandatory enumeration parameter used to set the

35

platform with the values „WIN32‟ or „VAST‟. The upper multiplicity of this „platform‟ parameter
is two. The „general‟ container also has an optional sub-container called „connection‟ which
has two optional references. The first one, „setRef‟, is used to reference a container from the
Drm module. The second one is a choice reference called „configRef‟ and it is an internal
reference since it is used to connect to the „configSet‟ container of the Dsm module or to the
„event‟ sub-container from the same module. The secondary module used in this example,
called „Drm‟ has a mandatory container „settings‟ which includes a mandatory boolean
parameter called „isConfigured„.

36

5.2. Random Generator Algorithm

The random generator creates one configuration at a time for each one of the primary
modules given as an input. The algorithm we used in its implementation is described using an
activity diagram in figure 22. It uses a pseudorandom-number generator from java.util.Random
for choosing between multiplicities and values for each element. This pseudorandom-number
generator was deemed sufficiently random for our purpose. More detailed activity diagrams
are included for the main steps. The algorithm is explained in this section using the example
described in section 5.1.

The algorithm includes steps for processing all the elements of the primary modules, such as
containers, sub-containers, references and parameters. After all the elements are processed,
values are added to the references and a List of Configuration Elements is passed to the
Configuration Creator.

Figure 22 - Random Generator Algorithm Activity Diagram.

37

The first step of this algorithm is to get from the input arguments all the primary modules that
need to be included in the configuration. In this example, there is only one primary module, so
this step results in getting the Dsm module.

In step 2, the generator gets all the containers from the current primary module, which in our
case results in getting both containers of the Dsm module, called „configSet‟ and „general‟.
Next, the steps from 3 to 7 are repeated for each of these containers.

Step 3 is used to randomly choose a multiplicity between the lower and the upper multiplicity
for the current container, so in our example a multiplicity is chosen for the „configSet‟
container. This multiplicity can only be 1 since both the lower and the upper multiplicities are
equal to 1.

In step 4, a new Configuration Element is created. As described in the Architecture chapter, a
Configuration Element contains its value and its parameter definition information. The
parameter definition information consists of the module it belongs to, its short name, type,
definition object and other information. When an element needs to be created, the random
generator creates one Definition Element which holds the information related to the parameter
definition file and one Configuration Element which holds the information related to the
configuration. The Configuration Element contains one and only one Definition Element.

In this example the newly created Configuration Element has a value set to „On‟ and a
Definition Element with the type attribute set to „container‟, a module attribute set to the name
of the current module „Dsm‟ and a name attribute set to „configSet_0‟. It also contains a
definitionObject attribute set to „Dsm/configSet‟. The definitionObject attribute points to the
element in the parameter definition file. The relation between the Configuration Element and
the Definition Element is illustrated in figure 23.

Figure 23 - The first Configuration Element and its Definition Element.

For the purpose of readability and a more compact view of the configuration, the Configuration
Elements and the Definition Elements are illustrated in the rest of this section as one single
element, as described in figure 24. Since all the elements of the parameter definition file have
unique names in this example, the short name is sufficient to identify its definition object.

Figure 24 - The first Configuration Element in a more compact view.

The algorithm continues with step 5 where the parameters of the current container are
processed. Step 5 is described in figure 25.

38

Figure 25 - Algorithm 5: Process Parameters activity diagram.

When processing parameters, the step 5.1. is getting all parameters of the current container.
This time it results in getting the „id‟ integer parameter of the „configSet‟ container.

In step 5.2. a multiplicity between the upper and the lower multiplicity is randomly chosen. In
this case the generator has to choose between 0 and 1. If value 0 is chosen, this parameter is
not included in the configuration. In case the multiplicity 1 is chosen, only one instance of this
parameter is added to the configuration. We assume that the chosen multiplicity in this step is
1.

The next step is 5.3. where a new Configuration Element of type Parameter is created. This
time the generator creates a new Configuration Element with the type attribute set to

39

„parameter‟ and the name set to „id_0‟. This new Configuration Element is added as a child of
the „configSet_0‟ Configuration Element and its module attribute is set to „Dsm‟.

Next, in step 5.4. the generator has to randomly choose and assign a value to the current
parameter. The process of choosing this value depends on the parameter type. For a boolean
parameter, the generator has to choose a value between 0 (false) and 1 (true). For an integer
and a float parameter, the generator randomly picks a value between the minimum and the
maximum values defined for these parameters in the parameter definition file. For a parameter
of type enumeration, the generator randomly chooses one of the literals defined for the
parameter. For a string parameter, a random string is generated that conforms to the regular
expression defined for the parameter. This is done by using a java library called Xeger (Xeger,
2009). If this regular expression is not defined, a value equal to the default value or the short
name is assigned.

In our example, since the parameter „id_0‟ is an integer and its value can be between 0 and
65000, we assume that the chosen value in this step is 100. After adding this new
Configuration Element and setting a value for it, the configuration‟s structure looks like in
figure 26.

Figure 26 - Configuration Element List structure after step 5.4.

Since no more instances of the „id‟ parameter can be added to the configuration and there are
no more parameters in the „configSet‟ container, the algorithm will continue with step 6 where
the references of the current container are processed. This step is divided into several other
steps as described in figure 27.

40

Figure 27 - Algorithm 6: Process References activity diagram.

When processing references, the first thing the generator does is to get all references of the
current container. Since in this example the „configSet‟ container does not have references,
the algorithm does not continue with steps 6.2. and 6.3. where a multiplicity should be chosen
for each reference and a new Configuration Element of type Reference should be created.
These steps are explained later in this section, when processing the references included in the
„connection‟ sub-container.

The next step in the algorithm is number 7 where all the sub-containers of the current
container are processed. This step is divided into several other steps as described in figure
28.

41

Figure 28 - Algorithm 7: Process Sub-Containers activity diagram.

When processing sub-containers, the first step is to get all the sub-containers included in the
current container. In our example, this step results in getting the only sub-container, called
„information‟ according to figure 21. In step 7.2. a random multiplicity has to be chosen for the
current sub-container, but in our case in can only be equal to 1.

42

Next, during step 7.3., a new Configuration Element of type sub-container is created. In our
case, the new element is a child of the „configSet_0‟ Configuration Element. The value is set
to „On‟, the module to „Dsm‟, the type is „sub-container‟ and the name given is „information_0‟.
The new structure of the Configuration Element List is illustrated in figure 5.8.

Figure 29 - Configuration Element list structure after step 7.3.

Steps 7.4. and 7.5. are used to process the parameters and the references of the current sub-
container. In our example these steps are skipped since our current sub-container
„information‟ does not have any parameters or references to process.

For a choice sub-container, which is the case for the „information‟ sub-container, the algorithm
continues with step 7.6. where a choice is randomly chosen to be included in the current sub-
container. As described in figure 21, the „information‟ sub-container has two choices: a „data‟
sub-container and an „event‟ sub-container. At this point the algorithm has to randomly choose
only one of the two sub-containers to process. We assume that it chooses the „data‟ sub-
container before continuing to step 7.7. Therefore, this Configuration Element List will not
include the „event‟ sub-container or its „displayText‟ parameter.

Step 7.7. is a recursive call of the step 7, so it is processing the sub-containers included in the
current sub-container. In our example the current sub-container is „information‟. Since this part
of the algorithm has already been explained in this example, we are just taking a quick look at
what is happening in this step. Firstly, the generator gets the sub-containers of the
„information‟ sub-container. In this case it just gets the sub-container it chose in the previous
step, called „data‟. A new Configuration Element is created since once a choice is picked, it
has to be added to the configuration indifferent what its lower multiplicity is. The name given to
this Configuration Element is „data_0‟. It is a child of the „information_0‟ Configuration Element
and it includes a child „frequency_0‟ with a randomly chosen value of 75.5. The structure of
the Configuration Element List is illustrated in figure 30.

Figure 30 - Configuration Element List structure after step 7.7.

After processing the first container of the Dsm module, the algorithm continues, according to
figure 22, with repeating the steps 3-7 for the second container, called „general‟. Step 3
generates a multiplicity between 0 and 1. We assume the value 1 is chosen. Therefore, step 4
creates a new Configuration Element of type „container‟ with the name „general_0‟. In step 5
the only parameter of the general container, called „platform‟, is processed. This time step 5.2.
can choose a multiplicity up to 2. For this example, we assume that value 2 is chosen, so the

43

algorithm will create 2 instances of the same parameter and assign a random value for each
one. The name of the first Configuration Element of type „parameter‟ is „platform_0‟ and the
name of the second one is „plaftform_1‟. The algorithm continues then with step 6, where no
references can be processed, since the „general‟ container does not have any references.
Step 7 processes the only included sub-container, called „connection‟ and it creates a new
Configuration Element of type „sub-container‟, assuming that its randomly chosen multiplicity
is 1. The name of the new Configuration Element is set to „connection_0‟. Step 7.4. is skipped
since this sub-container does not have any parameters and the algorithm continues with step
7.5. where the references are processed. Before continuing with step 7.5. we can define the
structure of the list of Configuration Elements as described in figure 31.

Figure 31 - Configuration Element List structure after step 7.4.

When processing references in step 7.5. the process is the same as in step 6 which is divided
into several other steps as described in figure 27. The first sub-step is to get all the references
included in the current sub-container. This time there are two optional references contained in
„connection‟ and they are called „setRef‟ and „configRef‟. The next sub-steps included in this
process are repeated for each one of the two references.

First time, the generator has to choose a random multiplicity for the „setRef‟ reference and we
assume that it is equal to 1. Next, a new Configuration Element of type reference needs to be
created. The new Configuration Elements added it named ‟setRef_0‟. The values for the
Configuration Elements of type reference are added later, in step 8, after all elements have
been processed.

The second time, the generator has to choose a multiplicity for the „configRef‟ reference. In
this case it chooses a random multiplicity which we assume it is equal to 1 and creates a new
Configuration Element of type „reference‟ and name „configRef_0‟. The list of Configuration
Elements has now the structure defined in figure 32.

44

Figure 32 - Configuration Element List structure after step 7.5.

Since the „connection‟ sub-container is not a choice sub-container, the algorithm continues
with step 7.7. where the included sub-containers of the current „connection‟ sub-container
need to be processed. This step is skipped since the „connection‟ sub-container does not
include any sub-containers of its own. Next, since all the elements of the primary module
„Dsm‟ have been processed, the algorithm continues with step 8, where values are being
added to the created Configuration Elements of type „reference‟ as described in figure 33.

45

Figure 33 - Algorithm 8: Add references values activity diagram.

46

When adding values to the Configuration Elements of type „reference‟, the step 8.1. is to get
all these elements, so basically the algorithm loops over all Configuration Elements created
and finds the ones that are of type „reference‟. According to figure 32, there are two
Configuration Elements of this type defined so far „setRef_0‟ and „configRef_0‟. The steps
from 8.2. to 8.8. are repeated for each one of these elements.

First time, since „setRef_0‟ is not defined as a choice reference, the algorithm continues with
step 8.3. where it gets the destination of the current reference element. In this example, this is
an external destination pointing to the „settings‟ container in the Drm module.

Next, in step 8.4., the generator tries to find an existing Configuration Element equal to the
destination. In our case, it looks for a Configuration Element that is defined by the „settings‟
container of the Drm module. Since we have not processed the Drm module yet, this
Configuration Element is not found, therefore the algorithm continues with step 8.5.

In step 8.5. all the Configuration Elements that need to exist in order for the destination to be
created, i.e. the entire parent hierarchy, are added to the configuration. In this example, the
destination is the „settings‟ container, which is not a child of another container, so the
generator does not need to create any other Configuration Elements, i.e. parents. This step is
skipped and the algorithm continues with step 8.6.

In step 8.6. a new Configuration Element equal to the destination needs to be created. In our
case this step results in creating a new Configuration Element of type „container‟, called
„settings_0‟. The algorithm also processes its parameters and creates another Configuration
Element of type „parameter‟, called „isConfigured_0‟.

Since the new Configuration Elements are not part of the „Dsm‟ module, but of the „Drm‟
module, their module attribute is set to „Drm‟, i.e. a new module has been added to the
configuration. After all attributes are set for the two new Configuration Elements, the algorithm
continues with step 8.8. where a value is set for the Configuration Element of type „reference‟
pointing to the newly created Configuration Element. In this example, the value of the
„setRef_0‟ Configuration Element is set to refer to „settings_0‟. Following this step, the
Configuration Element List has the structure as described in figure 34.

47

Figure 34 - Configuration Element List after step 8.8.

The second time the algorithm comes to step 8.2. it is processing the second Configuration
Element of type reference called „configRef_0‟. Since this element is defined by a choice
reference, in step 8.3. one of the two possible destinations is chosen. According to figure 21,
the two possible destinations are „Dsm/configSet‟ and „Dsm/configSet/information/event‟. We
assume that the chosen destination in this step is „Dsm/configSet‟.

Next, in step 8.4., the algorithm searches through all the Configuration Elements created so
far and finds only one that matches the selected destination. This is the „configSet_0‟
Configuration Element which has its module attribute set to „Dsm‟.

Because a matching element was found, the algorithm continues with step 8.7. where it
randomly chooses between all elements found. Having only one such element, the algorithm
chooses it and continues with step 8.8. where it assigns the value to the „configRef_0‟
Configuration Element. The structure of the final Configuration Element List is described in
figure 35.

48

Figure 35 - Configuration Element List structure after step 8:

Now that the random generator has created a Configuration Element List, it has to pass it to
the Configuration Creator, which creates the actual configuration in the format of an ARXML
file.

5.3. Pairwise Generator Algorithm

This section describes the pairwise algorithm, first as an activity diagram with text explaining
the diagram. It then goes on to explain restrictions that must be handled by the pairwise
algorithm and use of optimisations within the algorithm. The section ends by reinforcing and
clarifying the initial details by way of example.

The example will start by building the Definition Element Table which is a data structure
representing the content of the parameter definition. The contents of the Definition Element
Table are used for creating all pairs. The pairs are identified by pairing up all values of a given
element in the table with all values of the preceding elements in the Definition Element Table.
For example if the second element is being processed, all pairs between the values of the first
and second element are calculated. If the third element is being processed, all pairings are
computed between the values of the third element and the values of the first element and
between the values of the third element and the values of the second element. This all pairs
calculation is conducted for all elements in the Definition Element Table so that all existing pair
combinations are addressed.

When the algorithm computes all pairs for a given element it then adds them to the
Configuration Element Table. This is a data structure and each row is an internal
representation of an AUTOSAR configuration.

There are two main strategies for adding pairs to the table. These are adding vertically and
adding horizontally. Given a Configuration Element Table and a pair that needs to be added to

49

the table, if the pair cannot be added to any of the existing rows because there are already
elements of the same type occupying all of the rows then the algorithm needs to add vertically
to satisfy the pair. This means that a new row will be added and the unsatisfied pair will be
added to this row. The addition of this new row is equivalent to adding a new AUTOSAR
configuration.

When the algorithm is finished processing an element from the Definition Element Table it
then moves horizontally to the next element i.e. it selects the next element from the Definition
Element Table and ensures that the pairs of its values and the previous elements‟ values are
covered in the Configuration Element Table.

The algorithm continues its processing until all identified pairs have been represented in at
least one of the rows of the Configuration Element Table. As a result all rows are to be
considered together to be complete with respect to covering all possible pair combinations.

5.3.1 Pairwise Algorithm Description

The following activity diagram in figure 36 shows the process that the pairwise algorithm
follows in processing all the pairs. First it builds the Definition Element Table. All elements
from the parameter definition are converted into Definition Elements and added to the table. If
an element has an upper multiplicity greater than or equal to 1, then the corresponding
number of instances of that element will be added to the Definition Element Table. If an
element has a lower multiplicity of 0 then a value called None will be added for all instances of
that element in the Definition Element Table. A value of None means that this element
instance will not exist in the final AUTOSAR configuration. If the lower multiplicity is greater
than 0, for example 2, then all instances of that element above the lower multiplicity will also
have a value of None whereas the first two instances will not. Along with the None value, the
elements‟ values from the parameter definition will be added.

When the Definition Element Table is complete, the elements of the first two elements are
paired up and for each valid pairing a new row is added to the Configuration Element Table.
More detail of what constitutes an invalid pair follows after this description of the activity
diagram.

When rows have been created satisfying all pairs for the first two elements the next element is
read from the Definition Element Table. All pairs that are not covered in the Configuration
Element Table between the values of the previous elements and the values of the element
being processed are identified. If there is an empty slot for the new element in an existing row
in the Configuration Element Table then the pairwise algorithm will find which valid value for
the new element will cover most uncovered pairs if added to the row. If there are no empty
slots then a new row is added that will satisfy an uncovered pair. It is possible to add multiple
uncovered pairs to the same row if they are paired up with different elements and they are
valid within the row.

These steps are repeated until all the pairs have been added to the Configuration Element
Table. Any empty slots from the first column up to the current column are assigned a valid
value for completion. Then the next element is selected and the process repeated until all
elements from the Definition Element Table have been processed and the pairings of all their
values are represented within the Configuration Element Table.

50

Figure 36 - Pairwise Generator Algorithm.

51

Invalid Pairs and Values

When describing the activity diagram in figure 36, the concept of valid pairs was introduced. In
its simplest form the pairwise algorithm pairs up all the values of the elements it is provided
and builds a table to cover all of these pairs. As our case study was conducted using
AUTOSAR parameter definitions there were certain pairings that become invalid due to the
implicit dependencies between the elements of the parameter definition. These invalid pairs
can be split into two types, those that are invalid at all times and will not be covered by the
pairwise algorithm and those that are invalid in a given row due to values that already exist
in the row but must be covered by pairwise. For the second type it can be just a single
individual value that the algorithm is trying to add that causes the row to become invalid.

The following lists the cases where pairs are invalid at all times.

1. Any pairings where a value that is not None is provided to a Configuration Element but
its parent or any element in its parent hierarchy has a value of None. For example if
the pair contains a parameter called „frequency‟ with a value of 60.0 but its parent
„data‟ has a value of None then this parent will not exist in the final AUTOSAR
configuration. The „frequency‟ parameter also cannot exist in this case so pairs such as
these are removed.

2. Pairs between a choice container and values within the choice container. The value of
the choice container has an impact on the value of the choices so they are considered
one element by pairwise and not something to process pairs for. For example, if we
have a choice container called „information‟ that has chosen the „data‟ sub-container
then the „data‟ sub-container must have a value of On. The opposite is also true, if the
„data‟ sub-container has a value of On then the „information‟ choice container must
have a value of data. Their pairings do not need to be considered as they have this
direct relationship.

3. If both elements of a pair are siblings within a choice then their pairs are removed as
the siblings cannot co-exist within a choice. Pairs where one of the siblings has a value
of None are covered implicitly as a sibling must have a value of None if its sibling has a
value that is not None.

4. If a reference has a value referencing a container but it is being paired with a container
that is in the parent hierarchy of the referenced container and has a value that is None
then this pair is invalid. For example if a reference called „childRef‟ is referencing a
container called „childContainer‟ but it is being paired with an element called
„parentContainer‟ where „parentContainer‟ is the parent of „childContainer‟ and the
value of „parentContainer‟ is None then this pairing is not valid.

5. If a reference refers to an element within a choice but it is being paired with another
container within the same choice container, but in a different choice, then this pair is
invalid. For example if we have a choice container with two choices „choice1‟ and
„choice2‟ and the pair includes a reference referring to a parameter in „choice1‟ but the
other side of the pair gives „choice2‟ a value of On then this pair is invalid as it would
result in both choices being added to the configuration when only one choice can be
added.

6. If the pair contains a reference that does not have a value of None and the container
being referenced, but the container being referenced has a value of None then this is
an invalid pair. For example, if one side of the pair is a reference called „containerRef‟
which references a container called „container1‟ and the other side of the pair is

52

„container1‟ with a value of None then this pair is invalid. In this case the resulting
configuration would have a reference to a container that does not exist.

7. If there is an optional container referenced by a mandatory reference then if there is
only one instance of the optional container the value of the container cannot be None.
If there are only two instances a pair with both instances set to None is invalid.

8. If there are any pairings where a reference has been given a value other than None
and it references a choice or any element within the choice when the choice has not
been chosen, and the choice container is the other element in the pair then this pair is
invalid. For example if one side of the pair is a reference to a choice called „choice1‟
but the other side of the pair is the choice container with a value of „choice2‟ then the
pair is invalid. „choice1‟ and „choice2‟ cannot co-exist in the configuration.

The second type of invalid pairs/values are those that are invalid within a row due to the
values that have already been added to the row. The following list contains these type of
restrictions when adding pairs/values.

1. If the row contains a parent or container within the parent hierarchy that is set to None
then the child value can only be set to None.

2. If attempting to add an element that exists within a choice but another choice was
chosen by the choice container then this element can only be set to None.

3. If trying to reference an element within a choice but the choice container has made a
different choice, then the reference cannot refer to this element.

4. If referencing an element then the referenced element must exist.

5. When adding a value for an element that is not None, the parent hierarchy for the
element must also be added. If the element is a reference then the referenced element
also needs to be added along with the parent hierarchy of the referenced element.

6. When adding a referenced container and a reference to your type of container is
mandatory and you are the last of your type to be assigned a value and the reference
has not yet been created then your container must be added to the row along with the
reference.

7. If the reference is a symbolic name reference then when the referenced element is
added the symbolic name parameter it contains must also be added. More detail about
this type of reference can be seen in section 2.2.3.

8. A container must be given a value of On if the row contains a choice container that has
chosen it.

9. If adding a reference that is a mandatory reference but within an optional parent
hierarchy then if the value of the reference is None its parent hierarchy must also be
None all the way up the hierarchy up to and including the optional parent. This is is to
avoid the invalid state where the parent is On but the mandatory reference has been
given a value of None and so will not exist in the resulting AUTOSAR configuration.

10. When adding the parent for a container if the parent is a choice container it must
choose the container being added to the row.

53

These restrictions introduced by the parameter definition dependencies have an impact on the
performance of the pairwise algorithm. Firstly it requires additional processing when creating
the pairs to add and when adding values to rows in the Configuration Element Table to ensure
that invalid elements are not added.

Secondly the addition of one value to a row in the Configuration Element Table can result in
adding many other values, for example if a child is added its entire parent hierarchy must be
added so the pairwise algorithm loses the ability to choose what values to select in these
cases.

Optimizations were added to the pairwise algorithm to counteract the impact of the
restrictions. The following are the optimizations that were implemented. Firstly, when
processing all pairs between elements there are no dependencies between different elements
in the Definition Element Table so it is possible to carry out this processing on multiple cores.
We had access to dual cores, so we split this processing over both cores.

Next, when references are looking for the element they reference instead of looking through
the entire Definition Element Table a smaller table is used that just contains containers and
sub-containers.

Finally, unnecessary looping over the Definition Element Table is reduced. For example there
are restrictions that need to know about mandatory references. The list of mandatory
references is built once and reused throughout the algorithm.

5.3.2 Pairwise Example

This example uses the modules from figure 21 which were also used for explaining the
random algorithm. The numbered steps in the activity diagram in figure 36 are referenced
throughout the example. The pairwise algorithm first reads the parameter definition file and
creates a Definition Element Table (Steps 1 and 2). In this case it will read the Dsm parameter
definition. The Drm parameter definition is used for external references and as the external
containers are not part of pairwise then the pairwise algorithm does not make use of this
parameter definition. The Definition Element Table contains the elements short name, its
values, the type of the element and the relationships between the elements. The „id‟ element
in table 1 has a lower multiplicity of 0 so it is given a value of None along with its values from
the parameter definition (Steps 4 and 5). This is to cover pairs where this element is not
available. The „id‟ element is an integer element with a value range from 0 - 65000. As testing
for all values would create a huge number of pairings to consider it was discussed with Mecel
AB that a limitation of taking the min, the max and randomly choosing a number between the
min and the max is an acceptable limitation.

If the element has an upper multiplicity greater than 1 then multiple instances of that element
are added to the Definition Element Table to cover pairings with all multiplicities (Step 3). This
can be seen in the „displayText1‟ and „displayText2‟ elements below. „displayText2‟ is also
given a value of None as the lower multiplicity of displayText is 1 so the second instance is not
mandatory. Containers are given a value of On which means that the container is available in
the configuration.

References are added to the start of the table. This is to ensure that if a reference is to be
included in a configuration then its parents and referenced element must also be included. If
there was a mandatory reference to an optional container then one instance of that container
must be available. The pairwise algorithm also caters for the addition of containers before
references. It needs to do this when adding a new row to satisfy a pair. The pair may not

54

contain references but the mandatory references associated with the pair need to be added to
the row of the Configuration Element Table.

The pairwise algorithm processes all internal references in one manner and all external
references in another. For internal references the values are a list of all instances of the
container(s) they reference. In the example the shortname of the containers are provided as
the values. In reality a unique id is also used to ensure the correct containers are being
referenced. This detail has been omitted from the example to avoid clutter. The „configRef‟
element below is an internal reference.

External references contain the value On to indicate that the external reference should be
included. The pairwise technique is applied to the primary modules and not to the secondary
modules. As we are not applying the pairwise technique to the external parameter definition it
is enough for the pairwise algorithm to say that the external reference is On or None if the
reference is optional. The referenced external container and its hierarchy can be added after
the pairwise processing has completed. The element „setRef‟ is an example of an external
reference.

The Definition Element Table for the example described in section 5.1. is as follows.

Table 1 - Definition Element Table.

Although it cannot be seen in the table above, the Definition Element data structure contains
information about parent child relationships. It also maintains information about references
and their referenced elements and about choices. This information is required by the pairwise
algorithm in order to build valid sets of Configuration Elements. As the example progresses we
will explore these relationships in more detail.

Once the Definition Element Table has been constructed, step 7 begins and the pairwise
algorithm then takes the first two elements and creates all pair combinations between the
values of those elements. Table 2 contains all pair combinations between the first two
elements „setRef‟ and „configRef‟. Both of these elements are references.

55

Table 2 - All Pairs for setRef and configRef.

The elements being paired in table 2 have no relationship to each other so all of the pairs are
valid. If for example „setRef‟ was a parent of „configRef‟ then the pairing (None, event) would
be an example of an invalid pair as it is not possible to have a value for a child when the
parent is None. As this is not the case, pairwise can start to build the Configuration Element
Table covering all of these pairs. As there are 6 new pairs and no rows have been added to
the Configuration Element Table, the pairwise algorithm will add the pairs vertically creating 6
new rows.

Table 3 - Configuration Element Table with first two elements paired.

In the first row of table 3, „setRef‟ and „configRef‟ are both None so a row has been added to
cover this pair. No other element in this row is set as the references do not exist. In the
second row „configRef‟ has a value of „configSet‟. This means that „configRef‟ is referencing
the container „configSet‟. This referenced container needs to exist so „configSet‟ has been
given a value of On. The parent of „configRef‟ needs to exist in order for „configRef‟ to exist so
its parent, „connection‟, has been given a value of On. In turn the parent of „connection‟ also
needs to exist. So „general‟ has been given a value of On. The addition of these extra
elements satisfies the relationships and dependencies implicit in the parameter definition.
Rows 3 to 6 have been built in the same manner. In row 3 „configRef‟ references the „event‟
container. The „event‟ container is one possible choice within the „information‟ container so
you can see that „information‟ has been given a value of „event‟. As „information‟ is a choice
container the choice must match with the referenced element. The empty spaces in the table
are configuration values that have not been set yet. „setRef‟ in row 4 is an external reference.
As pairwise does not need to process the externally referenced container, „setRef‟ has been
given a value of On as have its parents „general‟ and „connection‟.

56

In step 8 the algorithm takes the third element, „configSet‟, from the Definition Element table,
table 1. In step 9 it creates all valid pair combinations between the values of „configSet‟ and
„setRef‟ and the values of „configSet‟ and „configRef‟. The resulting all valid pairs list is
contained in table 4.

Table 4 - All valid pairings between setRef and configSet and configRef and configSet.

It may be the case that some of these pairs are already covered in the Configuration Element
Table, table 3, when adding the first set of pairs. The algorithm begins step 10 by checking for
any covered pairs resulting in the list of covered pairs in table 5.

Table 5 - List of already covered pairs for configSet and setRef and for configRef and configSet.

The algorithm then removes the covered pairs from the list of all possible pairs to establish a
list of uncovered pairs. Table 6 contains the list of uncovered pairs.

Table 6 - List of uncovered pairs for configSet and setRef and configRef and configSet.

In this case there is only one pair that is not currently covered in the Configuration Element
Table. The algorithm now looks to see if this pair can be added to one of the existing rows that
contains empty slots. In table 3, the first row contains the value None for „configRef‟ and an
empty slot for „configSet‟. Based on steps 11-14 and 16 the algorithm will put the value On into
this „configSet‟ empty slot and satisfy the pair. Steps 12-14 are trivial at this point as there is
only one pair to satisfy. We will see these steps in more detail later in the example. As there
are no pairs left to satisfy, any empty slots for the first three columns will be assigned a valid
value in step 17. At this stage all pairs have been covered so it does not matter what values
these slots are given provided that they do not violate any constraints. An interesting future
optimisation could be to leave these slots empty in order to satisfy pairings with elements that

57

are encountered later in the Definition Element Table. Table 7 contains the updated
Configuration Element Table with the newly added elements written in bold text.

Table 7 - Configuration Element Table after processing configSet.

The algorithm now returns to step 8 and selects the next element moving horizontally. As part
of step 9 it creates all valid pair combinations between the values of the „id‟ element and the
values of „setRef‟, „configRef‟ and „configSet‟. The resulting set of all valid pairs are shown in
table 8.

Table 8 - All valid pairs for id and setRef, configRef and configSet.

Taking a look at the Configuration Element Table in table 7 we can see that no values have
been set for „id‟ at this point. As a result step 10 completes without removing any existing
elements and table 8 above with all the possible pairings is left unchanged. All pairs it contains
must be satisfied within the Configuration Element Table. The algorithm first looks for a row
with an empty slot for the element it is trying to add. Step 11 selects a row and in this case
there is an empty slot in row 1 of table 7 in the „id‟ column. If the parent of „id‟ has a value of
None then the value of „id‟ must be set to None. The parent of „id‟ is „configSet‟ which in this

58

case has a value of On so the algorithm moves on to step 13 as any value for „id‟ is valid.
Next, in step 13, the algorithm tries to pick the value it should set „id‟ to in row 1 by
determining which value will cover the most uncovered pairs from table 8. If the algorithm was
to choose None as the value for „id‟ then 3 pairs would be satisfied. These are (setRef: None,
id: None), (configRef: None, id: None) and (configSet: On, id: None). If the algorithm was to
choose 0 then 3 pairs would also be satisfied. These are (setRef: None, id: 0), (configRef:
None, id: 0) and (configSet: On, id: 0). Calculating in the same manner for values 65000 and
15000 it can be seen that all values will satisfy three pairings. As such it does not matter what
value pairwise selects at this point. Pairwise will always choose the last value when more than
one value satisfies the most pairs. As a result the value of 15000 is chosen and added to the
table in step 14 resulting in table 9.

Table 9 - Configuration Element Table with first set of id pairings satisfied.

The pairs (setRef: None, id: 15000), (configRef: None, id: 15000) and (configSet: On, id:
15000) have been satisfied and are removed from the list of all pairs leaving only unsatisfied
pairs in step 16. This list is shown in table 10.

Table 10 - Uncovered pairs for id after selecting first value.

59

The algorithm now moves on to the second row and sees that there is an empty slot under the
„id‟ column. It again counts the number of pairs that would be satisfied by adding each of „id‟s
values to the empty slot. If „id‟ was set to None then 3 pairs would be satisfied, (setRef: None,
id: None), (configRef: configSet, id: None) and (configSet: On, id: None). In a similar manner a
value of 0 or 65000 would satisfy 3 pairs. However a value of 15000 would only satisfy one
pair, (configRef: configSet, id: 15000). As a result a value of 65000 is chosen. The pairs that
are now satisfied are removed from the list of unsatisfied pairs in table 10 (step 16). The value
for „id‟ is chosen in a similar manner for rows 3 - 6 so the steps will not be repeated in this
example. The Configuration Element Table, table 11 contains the selected values for „id‟ for
the first 6 rows.

Table 11 - Configuration Element Table after processing three rows for id.

Table 12 - Table of pairings with id that are not yet covered.

The pairs in the above table are pairs that could not be satisfied in the 6 rows that are
currently in the Configuration Element Table. As per step 15 the algorithm will add new rows
vertically in order to satisfy any pairs that cannot be added to an existing row. The algorithm
takes the first unsatisfied pair. It will check if there is an existing free slot that will satisfy the
pair. In this case all rows have a value for „id‟ so then the algorithm will continue on and add a
new row to satisfy the pairing (setRef: None, id: None) and then remove the pair for the list of
uncovered pairs (step 16). The algorithm then takes the next unsatisfied pair (setRef: On, id:
0). This pair cannot be added to any of the 7 rows so an eighth row is added to satisfy this pair
and the pair removed from the list of uncovered pairs (step 16). As the value of „setRef‟ is On
then its parent hierarchy also needs to be turned on so „connection‟ and „general‟ are also set
to On. The resulting Configuration Element Table is shown in table 13.

60

Table 13 - Vertical Processing of unsatisfied pairs for id.

The algorithm takes the next unsatisfied pair (configRef: None, id: 0). The algorithm checks for
any empty slots that can be used in the existing rows to satisfy this pair. It sees that in the
eighth row setting the value of „configRef‟ to None would satisfy this pair and so adds the
value to this row as per steps 11-16. The next pair (configRef: None, id: 65000) requires a
new row (step 15 and 16). (configRef: configSet, id: None) can be satisfied in the seventh
row(steps 11-16) and the last three pairs require new rows (step 15 and 16). The resulting
Configuration Element Table after processing all of these pairs is provided in table 14.

Table 14 - Vertical Processing of covering all unsatisfied pairs for id.

61

Next the algorithm fills in the empty slots up until the „id‟ column (step 17). The values chosen
are unimportant as long as they don‟t violate any constraints. The Configuration Element
Table after filling in the empty slots is provided in table 15.

Table 15 - Configuration Element Table after processing the id element.

The next element to process is the „information‟ element (step 8). The pairwise algorithm
considers all valid pairings with „information‟ as we have seen previously (step 9). The result is
table 13.

Table 16 - All valid pairs with the information element.

It can be seen in table 16 that there is no pair (configRef: event, information: data). This is
because this is an invalid pair and is removed by the pairwise algorithm. The pairing is invalid
because „event‟ and „data‟ are both contained within the same „information‟ choice container
and so it is not possible for „configRef‟ to reference „event‟ when the „information‟ choice
container has chosen „data‟. The pairwise algorithm removes the pairs that have already been

62

covered in the Configuration Element Table, table 15 (step 10). As a result of this the pairs
identified are reduced to the set of pairs in table 17 which will then be processed in the same
manner (steps 11-17) as previous elements so that they become covered in the Configuration
Element Table, table 18. As the „information‟ element is a child of „configSet‟ then „configSet‟
must have a value of „On‟ before „information‟ can be assigned a value other than None. This
parent-child restriction holds true for all elements.

Table 17 - All uncovered pairs for the information element.

Table 18 - Configuration Element Table after processing the information element.

The next element (step 8) to be processed is the „data‟ element. As this element is one of the
choices in the „information‟ choice container it can only be turned on when the „information‟
element has chosen it. As the „information‟ element and the „data‟ element have a direct
dependency the pairs between „information‟ and „data‟ are not considered by pairwise. For
example, if „data‟ is set to On then „information‟ must be given the value of data. Alternatively,
if „information‟ has a value of data then ‟data‟ must be On. All valid pairs that need to be
covered for the „data‟ element are provided in the table, table 19 (step 9).

63

Table 19 - All valid pairs for the data element.

In table 19 there are no pairings with „configRef‟ set to event. This is because it is not possible
to have both „event‟ and „data‟ in the same configuration as they are both choices within the
same choice container. The pairing (configRef: event, data: None) is implicitly covered in that
while referencing „event‟, „data‟ must have a value of None. None of the pairs in the table have
been covered so far (step 10) so all are processed by the pairwise algorithm. As „data‟ is a
choice within „information‟ it can only be turned on if „information‟ has chosen it. This is what
step 12 caters for. Step 12 also handles the case where the parent is None so the value must
be None or when trying to add a value for a reference that references an incorrect choice in
the row in which case it skips this value and adds another value later on. Setting values for
„data‟ to satisfy this requirement covers all the pairs in table 19 resulting in the Configuration
Element from table 20.

Table 20 - Configuration Element Table after processing the data element.

64

The pairwise algorithm carries out the same processing for the rest of the elements from the
Definition Element Table. Table 21 is the complete Configuration Element Table required to
cover all pairs for the Dsm example. In the „frequency‟ column it can be seen that some of the
rows have a value of None. None is not one of the possible values for „frequency‟ according to
the Definition Element Table. However, as „frequency‟ is a child of „data‟, in the cases where
„data‟ has been given a value of None then „frequency‟ must also be None. This corresponds
to restriction number 1 in the list of restrictions relating to the values that are invalid within a
row.

Table 21 - Final Configuration Element Table for the Dsm example.

In order to create the ARXML files that are used by the SCG, the above table needs to be
converted from a Configuration Element Table into ARXML. First, containers for external
references need to be added. „setRef‟ is an external reference so for the rows where this has
a value of On additional columns are added containing the referenced container from the Drm
module. This updated Configuration Element Table is then processed by the Configuration
Creator as described section 4, which is responsible for the conversion from the Configuration
Element Table into ARXML. This results in 21 AUTOSAR configurations which cover all pair
combinations between all element values from the Definition Element Table.

65

6. Experiments

This section describes the experiments that were conducted in order to compare the two
generators. It presents the results of these experiments and the conclusions we draw from
them.

Experiment 1: Number of crashes based on set number of configurations

In one run the pairwise generator creates all the configurations needed in order to cover all
pairs of elements values. It is expected that the pairwise technique, according to McGregor
(McGregor, 2010), can find at least 90% of the faults that an exhaustive method can. The
random generator is similar to an exhaustive technique except that it can create duplicates. It
creates as many configurations as it is asked to, or as many configurations as it can create in
a given time. While the pairwise generator never creates duplicate configurations, the random
generator may create duplicates. The pairwise generator, taking a parameter definition file as
input, generates exactly the same number of configurations for every run. To compare the
efficiency of the two algorithms, the random algorithm is asked to create the same number of
configurations that pairwise does in one run. Both sets of configurations are run through the
SCG and the number of crashes are counted for each generator and finally compared.

Experiment 2: Number of crashes based on set amount of time

This second experiment is similar to the first experiment with the exception that in this case
the random generator is not limited to a fixed number of configurations, but to a set amount of
time, e.g. four hours. The number of configurations for a module(s) generated with the random
algorithm is much larger than the number of pairwise configurations for the same module(s).
The pairwise generator is expected to create all the configurations and run them through the
SCG before the time elapses (giving it a reasonable time). For the pairwise generator there is
no need to run again, even if the time permits it, because it will never produce anything
different. The random generator will try to create as many configurations as possible and run
each through the SCG in that set amount of time. The number of crashes can be compared
when running the pairwise and the random configurations through the SCG.

Experiment 3: Overhead of time taken to generate configurations

The random generator is expected to be faster in generating the same number of
configurations needed to complete the pairwise algorithm. Running these configurations
through the SCG is expected to take much more time than creating them. With this experiment
we want to see if the time difference between the two generators is noteworthy even after
considering the time needed to run the configurations of each generator through the SCG.

Setup of the experiments

The experiments were conducted for three of the Basic Software modules with different sizes
and complexity levels. The complexity is higher for modules that contain elements such as
choice-containers and/or references. It increases especially for the pairwise algorithm that
needs to cover all pair combinations of elements values. For a choice container, all pairs that
include one of the choices that is not selected in a given row cannot be satisfied within the
same row. For references, the complexity increases because of all the elements that need to
be added when setting a value to a reference, e.g. its parents, its referenced element. Most of
the pairs for these elements that need to be added are not satisfied in the current
configuration so the algorithm needs to create many configurations in order to satisfy all the
pairs. Mainly, the complexity increases because of the invalid pairs/values described in
section 5.3.1.

66

The first module is called Development Error Tracer (Det) and it is a small size module with a
low complexity because, as mentioned above, it does not contain any reference or choice
containers. This module includes 7 elements (2 containers and 5 parameters). The parameter
definition in ARXML format for the Det module is available in Appendix A. The second module
is called Function Inhibition Manager (FiM) and it is a medium size module that contains 35
elements (8 containers and sub-containers, 1 choice container with 2 choices, 15 parameters
and 9 references). More details about this module can be found on the AUTOSAR website
(AUTOSAR FiM, 2011). The last module is called Diagnostic Event Manager (Dem) and it is a
large size module with 195 elements (34 containers and sub-containers, 2 choice-containers
with 3 choices each, 120 parameters and 33 references). Some of these elements have upper
multiplicities set to 255, 65535 or even infinite and value ranges up to 32768, 65536 or even
around 16 million. Detailed information about the Dem module can be found on the AUTOSAR
website (AUTOSAR Dem, 2011).

For all of the modules used in these experiments we have set a limit value equal to 5 for the
elements that can have more instances. For example, if a container had a lower multiplicity of
0 and an upper multiplicity of infinite, we have changed the value of the upper multiplicity to 5.
If a parameter had a lower multiplicity of 10 and an upper multiplicity of 255, we have set the
upper multiplicity to 15. If the difference between the lower and the upper multiplicity of an
element was less than 5 we left them unchanged. To gain understanding about the complexity
of the Dem module, the pairwise generator needs to process 1288 elements when creating
the Dem configurations with a limit value set to 5. For the example presented in section 5.2.3.
the pairwise generator had to process only 14 elements. This limit value was chosen in
cooperation with Mecel AB.

As previously described, the SCGs have two components of interest for the purpose of testing.
The first is a component that checks whether the provided configuration conforms to the rules
in the modules specification. The second component generates the source code. In order to
pass the first component of the SCGs we had to constrain our configurations.

For the Det module, its structure has been modified to satisfy the constraints. The new
structure, as described in figure 37, was limited using a limit file. The difference is that the Dlt
parameter has a lower multiplicity of 1 whereas the original Dlt had a lower multiplicity of 0.
We made this change due to a constraint that expects a Dlt parameter to be present.

For FiM we implemented a constraints handler that makes sure the configurations created by
both pairwise and random are satisfying the constraints defined for the FiM module. An
example of a constraint defined for the FiM module says that the value of the FiMFunctionId
integer parameter belonging to the FiMFID sub-container shall start from 1 and be consecutive
throughout the entire configuration. So if we create 3 instances of the FiMFID sub-container in
a configuration, the first sub-container shall have its FiMFunctionId set to 1, the second
container shall have it set to 2 and the last one to 3.

For the Dem module a constraint handler was not implemented because the Dem SCG was
checking for over two hundred constraints to be satisfied by the configurations. While we have
provided a constraints framework, the scale of constraining Dem is too great to accompany
this thesis work and can make up part of a future thesis project. This means that in our
experiments the Dem SCG was expected to signal that the given configurations are valid, but
not working configurations. It was also possible that the Dem SCG could crash when running
the constraints checker part of the SCG.

The structure of the new parameter definition file for the Det module is described in figure 37.
As mentioned earlier in this section, the limitations have been applied to this parameter
definition so that the lower multiplicity of the Dlt parameter was set to 1 and the upper
multiplicity of the ErrorHook parameter was set to 5. The configuration cases created by

67

pairwise for Det are used in a number of experiments so the list of cases is provided in table
22. For FiM and Dem the number of pairwise configurations was too large for us to be able to
display it in this paper.

The pairwise generator always produces the same result for a given parameter definition with
small differences regarding the values of the elements. For an integer or a float parameter, the
pairwise generator will assign three values besides None. The first value is the minimum value
that the parameter can have according to the parameter definition. The second value is the
maximum value that it can have according to the same parameter definition. The third value is
obtained by randomly choosing a value between the minimum and the maximum values. For a
string parameter that has defined a regular expression, the pairwise generator assigns one
random string value that conforms to the regular expression. This is done by using a java
library called Xeger (Xeger, 2009). Giving the string all possible values is unnecessary from a
testing perspective and practically infeasible. Even if the results of the pairwise algorithm differ
in these manners, they are still created using the same algorithm every time and they always
contain the same number of configurations with the elements values chosen in the same way.
These randomly chosen values do not influence the results, according to Mecel AB, and we
can say that pairwise produces the same configurations in each run.

Figure 37 - The parameter definition structure of the Det module.

68

Table 22 - Configuration Element Table generated by pairwise for Det.

The experiments described in this section were run on a computer with the following
characteristics:

● Processor: Intel(R) Core(TM)2 Duo CPU T9400 @2.53 GHz 2.54 GHz

● Installed memory (RAM) 4.00 GB

● System type: Windows 7 64-bit Operating System

The version of Java was 1.7.0_10 and the VM arguments for running our application were set
to: -Xms128m -Xmx3000m -Xss4m -XX:MaxPermSize=256m.

6.1. Experiment 1: Number of crashes based on set number of

configurations

The first experiment was conducted in order to compare the number of crashes based on set
number of configurations, as described in the beginning of this chapter.

69

6.1.1. Design

The following steps have been followed when designing the first experiment for each of the
three modules Det, FiM and Dem.

1. Run the pairwise generator to create all configuration cases. For the Det module, this
gives the cases in table 22. Store the number of configurations.

2. Run all pairwise configurations through the SCG.

3. Analyse the output of the SCG to identify crashes from pairwise configurations. Store
the number of crashes and the name of the configuration that crashed. Also identify
and store the number of handled errors.

4. Run the random generator to create the same number of configurations as pairwise,
i.e. 11 for Det.

5. Run all random configurations through the SCG.

6. Analyse the output of the SCG to identify crashes from random configurations. Store
the number of crashes and the name of the configuration that crashed. Also identify
and store the number of handled errors.

7. Compare the number of crashes identified by the pairwise generator with the number
of crashes identified by the random generator.

Notes:

● To identify crashes the output of the SCG is automatically read and analysed based on
some expected printing messages according to the implementation of the SCG. If none
of the expected messages that signal a handled error or a successful run are
displayed, then we categorize this run of the SCG as a crash. A message containing
an unhandled error is also counted as a crash.

6.1.2. Results

Table 23 shows the averaged results of running the first experiment 10 times. The experiment
is run for each module 10 times and each row represents one module.

Nr. Module Configurations Crashes
from
Random

Crashes
from
Pairwise

Errors
from
Random

Errors
from
Pairwise

1 Det 11 0 0 0 0

2 FiM 504 0 0 42 35

3 Dem 2431 0 0 2431 2431

Table 23 - Averaged Crash Data for each module in experiment 1.

70

6.1.3. Discussion

This section discusses each row from table 23 and gives a conclusion related to the first
experiment.

For the first row, the module under experiment was Det. The pairwise generator produced 11
configurations. As a result 11 random configurations were also generated. When the pairwise
configurations were run through the SCG no crashes and no errors were identified. When the
random configurations were run through the SCG no crashes and no errors were identified
either.

For the second row, the module under experiment was FiM. The pairwise generator produced
504 configurations. As a result 504 random configurations were also generated. When the
pairwise configurations were run through the SCG no crashes and 35 errors were identified.
When the random configurations were run through the SCG no crashes and an average of 42
errors were identified.

For the third and final row, the module under experiment was Dem. The pairwise generator
produced 2431 configurations. As a result 2431 random configurations were also generated.
When the pairwise configurations were run through the SCG no crashes and 2431 errors were
identified. When the random configurations were run through the SCG no crashes and an
average of 2431 errors were identified.

As the Det module is less complex in comparison to other modules, we did not expect to
identify crashes or errors in the Det SCG at this stage.

For the FiM module, the results indicate that the FiM SCG was tested using working
configurations which test both the constraints checking and the source code generation
aspects of the SCG. No crashes were reported after applying both the pairwise and the
random techniques showing that both generators are comparable and that the FiM SCG is
robust at crash handling. When analysing the numbers of errors found for the FiM module and
their print messages, we saw that the pairwise generator discovered the same error in 35 of
the 504 configurations. The random generator also discovered the same error that pairwise
found, but in an average of 42 configurations out of 504. This error that both generators
encountered was handled by the FiM SCG. It had to do with one of the constraints that we
have applied when creating configurations for the FiM module. This means that the FiM SCG
was not validating the configuration against this constraint in the specified way. Regarding
this, Mecel AB confirmed that the FiM SCG contained a bug and have raised a report to have
it fixed.

As for the Dem module, both the pairwise and the random configurations were valid, but not
working configurations since they were not constrained, so the SCG found handled errors in
all of them and it did not crash. This result shows that the Dem SCG is robust at error and
crash handling, since there were no unhandled errors. It also shows that the two generators
always created valid configurations and that they did not crash even when creating a large
number of configurations for a high complexity module such as Dem.

6.2. Experiment 2: Number of crashes based on set amount of time

The second experiment was conducted in order to compare the number of crashes based on
set amount of time, as described in the beginning of this chapter.

71

6.2.1 Design

The following steps have been followed when designing the second experiment for each of the
three modules Det, FiM and Dem.

1. Set the amount of time the random generator should run for. This time is only needed
by the random generator in order to know when to stop creating configurations and
running them through the SCG. The pairwise generator does not stop until it creates all
configurations it needs to create. If we would stop the pairwise generator before it
finishes, no results will be obtained. There is also no need to run the pairwise
generator multiple times for the same module in a given time, because, as mentioned
earlier, it always creates the same result.

2. Run the pairwise generator and run the created configurations through the SCG.

3. Analyse the SCG output and count the number of crashes from the pairwise
configurations. The names of the configurations that crash are also provided. Also
identify and store the number of handled errors.

4. Run the random generator and run the created configurations through the SCG for the
amount of time specified in step 1. This amount of time has been increased as the
complexity of the modules increased. For Det it was set to one hour, for FiM to two
hours and for Dem to four hours. The time was increased in order to give the random
generator at least as much time as the pairwise generator needs to run once. The time
needed to run a set of experiments during a nightly build was also considered in this
equation.

5. Analyse the SCG output and count the number of crashes from the random
configurations. The names of the configurations that crash are also provided. Also
identify and store the number of handled errors.

6. Compare the number of crashes identified by the pairwise generator with the number
of crashes identified by the random generator.

6.2.2. Results

The table below shows the averaged results of running the experiment 10 times. The
experiment is run for each module 10 times and each row represents one module.

Nr. Module Pairwise
Config.

Random
Config.

Crashes
from
Pairwise

Crashes
from
Random

Errors
from
Pairwise

Errors
from
Random

Time

1 Det 11 2813 0 0 0 0 1h

2 FiM 504 5189 0 0 35 512 2h

3 Dem 2431 10686 0 0 2431 10686 4h

Table 24 - Averaged Crash Data for each module in experiment 2.

72

6.2.3 Discussion

This section discusses each row from table 24 and gives a conclusion related to the second
experiment.

For the first row, the module under experiment was Det and the given amount of time was one
hour because of the small size of this module. The pairwise generator produced 11
configurations, ran them through the SCG and stopped before the time elapsed. The random
generator produced an average of 2813 configurations and ran them through the SCG in one
hour. When the pairwise configurations were run through the SCG no crashes and no errors
were identified. When the random configurations were run through the SCG no crashes and
no errors were identified either.

For the second row, the module under experiment was FiM and the given amount of time was
two hours because of the medium size of this module. The pairwise generator produced 504
configurations, ran them through the SCG and stopped before the time elapsed. The random
generator produced an average of 5189 configurations and ran them through the SCG in two
hours. When the pairwise configurations were run through the SCG no crashes and 35 errors
were identified. When the random configurations were run through the SCG no crashes and
an average of 512 errors were identified.

For the third row, the module under experiment was Dem and the given amount of time was
four hours because of the large size of this module. The pairwise generator produced 2431
configurations, ran them through the SCG and stopped before the time elapsed. The random
generator produced an average of 10686 configurations and ran them through the SCG in four
hours. When the pairwise configurations were run through the SCG no crashes and 2431
errors were identified. When the random configurations were run through the SCG no crashes
and 10686 errors were identified.

For the pairwise generator, we did not expect any crashes to be identified when running the
SCGs since the same configurations were generated in the first experiment and they did not
crash.

In this experiment the random generator was not limited to create the same number of
configurations as the pairwise generator. This gave the random generator a chance to create
as many configurations as it could in a given time so that it increases its chances of identifying
crashes in the SCGs. This was not the case for the second experiment as no crashes were
identified this time either, so the random generator did not outperform the pairwise generator
in this experiment. This helps to strengthen the conclusion given in the first experiment with
regards to the robustness of the SCGs under test at crash handling.

Because of the low complexity of the Det module, we did not expect any crashes or errors at
this stage also. For the medium size module, called FiM, both generators found the same
error as in the first experiment. The pairwise generator found it in 35 of the 504 configurations
and the random generator found it in an average of 512 out of 5189 configurations. For the
large size module, called Dem, the SCG did not fail this time either at handling all the errors in
each configuration, which shows again the robustness of the Dem SCG at error handling.

6.3. Experiment 3: Overhead of time taken to generate configurations

The third experiment was conducted in order to determine if an overhead is introduced by
using the pairwise algorithm, as described in the beginning of this chapter.

73

6.3.1 Design

The following steps have been followed when designing the third experiment for each of the
three modules Det, FiM and Dem.

1. Run the pairwise generator to create all configuration cases. For Det, this gives the
cases in table 22. Store the time taken to create the pairwise configurations.

2. Run all pairwise configurations through the SCG. Add the time taken to run all
configurations through the SCG to the time taken to create the configurations. Store
the result.

3. Run the random generator to create the same number of configurations as pairwise.
Store the time taken to create the random configurations.

4. Run all random configurations through the SCG. Add the time taken to run all
configurations through the SCG to the time taken to create the configurations. Store
the result.

5. Divide the times taken to create the pairwise configurations with the time taken to
create the random configurations. This gives the factor difference between the two
values.

6. Divide the times taken to create the pairwise configurations and run them through the
SCG with the time taken to create the random configurations and run them through the
SCG. This gives the factor difference between the two values.

6.3.2 Results

The table below shows the averaged results of running the experiment 10 times. The
experiment is run for each module 10 times and each row represents one module.

Nr. Module A:Pairwise
conf. time
(s)

B:Random
conf. time
(s)

C:Pairwise
conf. & SCG
time (s)

D:Random
conf. & SCG
time (s)

A/B C/D

1 Det 0.31 0.07 13.03 12.57 4.43 1.04

2 FiM 37.07 5.6 1034.82 997.21 6.62 1.04

3 Dem 10224.25 68.17 13347.36 3175.45 149.98 4.2

Table 25 - Averaged generation and SCG times for each module.

6.3.3. Discussion

This section discusses each row from table 25 and gives a conclusion related to the third and
final experiment.

74

For the first row, the module under experiment was Det. The pairwise generator created 11
configurations in an average time of 0.31 seconds. The random generator created the same
number of configurations, i.e. 11, in an average time of 0.07 seconds. Dividing these two
values, we can see that the random generator was in average 4.43 times faster than the
pairwise generator in these 10 runs of the experiment. The pairwise generator created 11
configurations and ran all of them through the SCG in an average time of 13.03 seconds. The
random generator created the same number of configurations, i.e. 11, and ran all of them
through the SCG in an average time of 12.57 seconds. Dividing these two values, the factor
difference is 1.04. This means that the random generator together with the SCG was still
faster than the pairwise generator together with the SCG for the Det module in these 10 runs
of the experiment. However, as the factor difference is so close to 1, the overhead introduced
by pairwise is not noteworthy. The times recorded in this experiment are included in Appendix
B.

For the second row, the module under experiment was FiM. The pairwise generator created
504 configurations in an average time of 37.07 seconds. The random generator created the
same number of configurations, i.e. 504, in an average time of 5.6 seconds. Dividing these
two values, we can see that the random generator was in average 6.62 times faster than the
pairwise generator in these 10 runs of the experiment. This factor difference is larger than the
4.43 factor difference for the Det module, because of the complexity added by the choice
container and references of the FiM module, as explained in the introduction of this chapter.
The pairwise generator created 504 configurations and ran all of them through the SCG in an
average time of 1034.82 seconds, i.e. approximately 17 minutes. The random generator
created the same number of configurations, i.e. 504, and ran all of them through the SCG in
an average time of 997.21 seconds, i.e. approximately 16 and a half minutes. Dividing these
two values, the factor difference is 1.04. This means that the random generator together with
the SCG was still faster than the pairwise generator together with the SCG for the FiM module
in these 10 runs of the experiment. However, as the factor difference is so close to 1, the
overhead introduced by pairwise is not noteworthy.

For the third and final row, the module under experiment was Dem. The pairwise generator
created 2431 configurations in an average time of 10224.25 seconds, i.e. almost 3 hours. The
random generator created the same number of configurations, i.e. 2431, in an average time of
68.17 seconds. Dividing these two values, we can see that the random generator was 149.98
times faster than the pairwise generator in these 10 runs of the experiment. The pairwise
generator created 2431 configurations and ran all of them through the SCG in an average time
of 13347.36 seconds, i.e. almost 4 hours. The random generator created the same number of
configurations, i.e. 2431, and ran all of them through the SCG in an average time of 3175.45
seconds, i.e. almost one hour. Dividing these two values, the factor difference is 4.2. This
means that the random generator together with the SCG was still faster than the pairwise
generator together with the SCG for the Dem module in these 10 runs of the experiment. It is
worth noting here that the Dem module was unconstrained, so when running the SCG, all the
configurations were rejected during the constraints checker component of the SCG. As the
Dem SCG did not run to completion, the times recorded do not reflect the total time needed to
test the SCG. This means that the factor difference of 4.2 is worse than if the SCG ran to
completion.

When comparing the times needed to create the configurations for each module in these 10
runs of the experiment we notice that there was an overhead impact introduced by running the
pairwise generator. However, when the time taken to run the configurations through the SCG
was included, the overhead introduced by pairwise decreased.

75

6.4. Conclusion

The following table, table 26, shows the types of configurations that each generator
succeeded in creating for each of the three modules. The generators produced valid and
working configurations for the Det and FiM modules and valid but not working configurations
for the Dem module.

Type Det FiM Dem

Valid Yes Yes Yes

Working (Constraints Applied) Yes Yes No

Table 26 - Configuration Types for modules.

Something else to consider when comparing the two generators is the number of parameter
definition elements that each generator can cover. The pairwise generator builds all possible
pairings. Due to this, no element will be left uncovered. For example in the table 22 the
Notification container can have the values None and On, both of which are represented in the
configurations. The random generator takes the lower and upper multiplicity of an element and
it randomly generates a number (inclusive) between them. This represents the number of
times this element is added to the configuration. In the example using the Notification
container the lower multiplicity is 0 and the upper multiplicity is 1. It is possible that the random
generator will always randomly pick a lower multiplicity of 0. As a result the Notification
container could never be represented in any configuration. We have counted the number of
covered elements by both generators during the first experiment and we have found that they
both had 100% coverage, so the random generator did not skip any elements for the modules
under test. The averaged results are illustrated in table 27.

Nr. Module Nr. of elements Elements covered
by Random

Elements covered
by Pairwise

1 Det 7 7 7

2 FiM 35 35 35

3 Dem 195 195 195

Table 27 - Averaged number of elements covered by each generator.

When comparing the number of crashes that each generator can identify, our first two
experiments did not find a difference since none of the generators uncovered crashes in the
SCGs. This showed that all the SCGs under test were robust at crash handling.

When comparing the number of errors handled by each SCG, we found that both generators
uncovered a problem in the FiM SCG. The random generator found this error in more
configurations than the pairwise generator did, but this does not prove that random is better
from this point of view, since we talk about a single error and both generators found it. We

76

also looked at which generator found the error faster and we found that pairwise, as it always
creates the same result, found the error in the second configuration every time, but it had to
create all the configurations first before it can run any of them through the SCG. The random
generator found the error in the fifth configuration or even later, but it found it faster than the
pairwise generator because the random generator ran each configuration through the SCG
right after it was created. This result does not prove that random is faster from this point of
view, since both generators ran together on a nightly builder and the error was recorded after
both of them finished running.

Using the pairwise generation technique introduced an overhead when considering the time
taken to create the same number of configurations as the random generator in the 10 runs of
the experiment. This overhead decreased for all modules under test when considering the
time to run all the configurations through the SCGs. This happened mainly because the time
taken to run the configurations through the SCGs is greater than the time needed to create the
configurations. For the Det and the FiM module, the overhead introduced by using the
pairwise algorithm decreased to a level that is not noteworthy. For the Dem module, it took the
pairwise generator more time to create all the configurations than it took to run them through
the SCG. This happened because the Dem SCG never needed to generate any code, since
all inputs were rejected because of unsatisfied constraints.

Another important aspect that we have to take into consideration when comparing the two
generators is the fact that the pairwise generator only needs to run once to create all the
configurations that cover all pairs of element values.

One of the limitations of the experiments we conducted in this study is the number of modules
under test. One may argue that only three Basic Software modules are not enough to illustrate
the real difference between the two generation techniques. Since it takes one nightly build to
run a set of experiments for each of the three modules, we needed 10 nightly builds to gather
this data. We agree that more tests could uncover more benefits when using one of the two
generators. We chose our modules trying to cover different size and complexity levels. That is
why we chose a small and low complexity module such as Det, a medium size and medium
complexity module as FiM and a large and high complexity module as Dem.

Another limitation of the experiments has to do with the number of times we ran each
experiment. The pairwise generator is deterministic so given more runs it would not produce
different results to the ones we recorded. However the random generator may produce
different results if run more times. We tried to mitigate this by giving the random generator
more time to run with the second experiment.

In line with the limitations for these experiments is also the fact that the configurations for the
Dem module were not constrained and the time taken to run the Dem configurations through
the SCG is actually less than it should be, as only the constraints checker component of the
SCG ran and never the code generation component. This was useful for the first and second
experiment, since the configurations tested the robustness to error handling of the Dem SCG.

77

7. Related Work

This chapter discusses related work in the area of combinatorial testing, software product line
testing and integration testing. It is divided into sections which serve to group the related work
into categories. The first category is software product lines, an area of interest due to the
similarities with AUTOSAR parameter definitions. The second category is pairwise algorithms
with literature for algorithms related to our pairwise algorithm and alternative algorithms. The
third category contains literature on additional methods that could be used to improve random
generation.

7.1. Software Product Lines

This section describes the related work from software product lines literature and how this
literature relates to this thesis.

McGregor‟s paper (McGregor, 2010) discusses software product lines and how they can be
used for better quality, productivity and cycle times. Changes need to be made in the
approach to testing to help achieve these improvements. There is much variability across a
software product line so McGregor discusses how to handle this variability when testing and
different testing techniques that can be applied at different stages of the development process.
McGregor identifies the main challenges present when testing a software product line. These
are:

● Variability: The more variability that is present within the product line the more
resources will be required for testing.

● Emergent Behaviour: When components are combined some unexpected behaviour
may occur that is not present in the individual components. It is difficult to have a
reusable test case for this.

● Creation of Reusable Assets: Test cases and test data can be broken into smaller
chunks in order to facilitate their reuse in more places. This reuse comes at the cost of
more planning time in defining the smaller chunks and more management needed for
the increased number of artefacts.

● Management of Reusable Assets: Certain information needs to be managed relating to
reusable assets. This includes traceability between all parts of an asset, where the
assets should be stored and when an asset can be used. Configuration management
systems can be used to achieve this.

An organization uses software product lines to identify the common features across all of their
products to allow them to reuse these common features. Tests are created in parallel with the
features making them reusable for common features and traceable overall. The level of testing
required depends on the domain. Medical software needs to be tested more rigorously than
video game software. The method for producing the tests should follow the same method for
producing the production code. In developing the tests in line with the product the tests are
inherently reusable within that context.

The variability that exists within software product lines introduces a number of implications on
testing:

● Variation occurs at specified points: Testing needs to be able to respond to these
variation points, selecting the correct tests.

78

● Product variation means there will be test variation: Tests usually have the same
variation points as the product and tests should be related to the product they test, e.g.
by using a builder that builds the product and tests together.

● The product and test goals should match: The qualities expected from the product
should also be expected from the tests.

● Variants are bound at a point in time: The tests should also bind at the correct time.

● All bindings in the product must also be present in the tests: Test cases may need
clever techniques to achieve this e.g. for dynamically bound variants.

● It is important to manage the amount of variation: Variation has results in more
combinations to be considered in testing. Each variant should be considered carefully
before being added.

● Common components: Commonality allows for less retesting and for reusing tests.

McGregor discusses combinatorial testing in more detail. Due to the variability of software
product lines exhaustive testing of all combinations could require billions to trillions of test
cases. Using combinatorial techniques a high level of coverage (up to 90%) can be achieved
with 30 - 60 test cases. The pairwise technique can be used to cover pairs of parameters, 3-
way, 4-way up to n-way. Pairwise testing can be used for creating a configuration for a
product.

The configurations we create are based on a parameter definition. This definition can contain
mandatory and optional elements making it similar to a product line. Due to the stark
similarities between our requirements and McGregor‟s statements we decided to investigate
the pairwise technique further.

McGregor also recommend identifying areas in which variability can be reduced before
applying the pairwise technique. We have employed this concept in the following ways:

● Use a limit file and limit value to put limitations on a parameter definition.

● Limit value ranges to the max value, min value and one value in between.

The paper from Ye et al. (Ye et al., 2005) is based in the area of software product lines. The
authors propose a feature-oriented method for modelling feature dependencies and variability
in a software product line. Variability gives the opportunity to customize software product lines.
The features of a software product line are never stand-alone and they also depend on or
influence other features.

The authors‟ approach supports detection of conflicting features and consists of a feature tree
view and a feature dependency view. The latter represents the main interest of the authors for
their study. It consists of a set of individual dependency diagrams and a matrix that comprises
all these dependencies. An individual dependency diagram describes all the direct and indirect
dependencies of one feature.

The authors define three hierarchical and three non-hierarchical relationships between
features. The hierarchical relationships are composition, generalisation/specialisation and
variation point. Composition implies that a certain feature consists of another feature. A
generalisation/specialisation relationship between two features means that one feature is a
generalised feature of the other feature. The variation point relationship implies that one
feature is optional and it is a child of another feature. The non-hierarchical relationships

79

defined by the authors are requires, excludes and impacts. The requires relationship between
two features means that one feature requires the other feature. The excludes relationship is
bi-directional and it implies that two features exclude each other. The impacts relationship
means that one feature impacts on another feature.

For the individual dependency diagrams, the authors use a set of UML-based notations and a
custom notation for the variation point. The other component of the feature dependency view,
the feature dependency matrix, is developed to store the dependencies between all features
of a product line. It is a n x n matrix, where n is the number of features, and it contains in each
cell M(i,j) the dependency between the feature contained in row i with the feature contained in
column j. The authors also encode these dependencies with numerical values, e.g. 1 for
requires, 100 for excludes, and include an algorithm for generating the individual dependency
views, which they decompose into a set of forward-to and backward-to dependency diagrams.
In the tree view, they distinguish between a mandatory and a variable feature, by assigning
the <<variant>> stereotype to the variable features.

In the future work of our study, the feature dependency matrix could be a good way to store
and manipulate the information about dependencies between different Configuration Elements
and rules in the Basic Software modules.

7.2. Pairwise Algorithms

This section contains the literature related to pairwise algorithms. At a high level there are two
categories of pairwise algorithm, those using an all pairs approach and those using orthogonal
and covering arrays. The literature for the all pairs approach is directly related to our thesis.
The literature on orthogonal and covering arrays is presented as an alternative considered.

All-Pairs

The Bellcore paper (Cohen et al., 1996) from Cohen et al. describes a combinatorial design
method used for testing. During some experiments, the method presented good code
coverage and the ability to uncover faults that were not detected by a standard process. They
use this method for selecting fewer combinations of parameters to test, since all the possible
combinations are often too many. Using a system called AETG, a tester can specify what are
the parameters that need to be tested and their possible values. They also mention that a
tester can specify constraints between the different test parameters. According to the authors
the most used combinatorial methods are pairwise and triple (3-wise). An empirical study done
at Bellcore revealed that the most faults were caused by an incorrect single value or by an
interaction of two values, i.e. a pair. A code coverage study also shows that pairwise is
sufficient for obtaining good code coverage. Multiple comparisons were done between the
number of test sets needed for all possible combinations of parameters and the number of test
sets covering the pairwise combinations. In one case with only four parameters having two or
three values each, the reduction for pairwise is up to 75%. In another case with 75
parameters, the reduction was much higher since only 28 test sets were needed to cover all
pairwise combinations of parameters, while exhaustively a tester needed to create 1029 test
sets. The authors also mention that one of the developers uncovered all faults with pairwise
that he had previously uncovered with exhaustive unit testing. We have considered the results
presented by this paper and decided to implement a combinatorial design method in this
thesis. As the authors suggested, the pairwise method is one of the most used combinatorial
methods and it is sufficient for revealing most of the faults of a system.

In a paper written by Lei et al., (Lei et al., 2002) the authors provide two algorithms for
generating pairwise test cases: an algorithm for horizontal growth and an algorithm for vertical
growth. The In-Parameter-Order strategy, as they call it, starts by pairing up the first two

80

parameters of a system and creates a new test set for each pair. The algorithm for horizontal
growth is used to extend the existing test cases with the values of a new parameter until all
the pairs between the new parameter and each of the previous parameters have been
satisfied. In case pairs are still left uncovered after filling in a value for each existing test set,
new test sets need to be added. This is where the algorithm for vertical growth is used. It will
add new test sets and cover all missing pairs. They implemented the algorithm as a tool called
PairTest and compared its test generating abilities with AETG, a pairwise tool developed at
Bellcore (Cohen et al., 1996). They did not find a significant difference in the number of test
sets created by both tools in order to cover all the pairs of different size systems, but they
found that PairTest has a lower time complexity than AETG. In Lei et al.'s paper there are two
limitations. First, with respect to the horizontal algorithm, a value is added horizontally based
on the one that will satisfy the most uncovered pairs. The paper does not discuss what should
be done if all potential values will satisfy the same number of pairs. Second, the paper does
not consider constraints. These are limitations that we have improved in our algorithm, as
described in section 5.3.

Czerwonka discusses an algorithm for n-wise (Czerwonka refers to it as t-wise) testing called
PICT with the aim of presenting an approach to n-wise testing that can be used in a real world
setting (Czerwonka, 2008). Czerwonka states that literature exists on 20 tools for pairwise
generation of test cases but most lack features necessary for them to be used within industry.
It is also stated that a lot of work has been done previously to improve the time for creating
pairwise arrays. The three main principles of PICT are speed of test generation, ease of use
and extensibility. PICT takes parameters each containing values as input, similar to how we
take elements with values. PICT is divided into two distinct steps. The first is a preparation
step which builds all possible pairs and marks them as uncovered, covered or excluded. The
excluded pairs are those which violate constraints. Our algorithm considers pairs that are
invalid in a row during the second pair processing step. These pairs can be invalid due to
other values in the row, e.g. a triplet. PICT handles this in the first step. For example if PICT is
using pairwise and creates all pairs for three parameters A, B and C, but an invalid triple can
exist, then PICT will also add a triplet „ABC‟ during this initial phase and mark it as excluded.
Another difference here to our approach is that we do not build all pair combinations at the
start. This is due to the memory requirements of storing all of this data. Instead we build pair
combinations as each element is being processed and remove the pairs once they are
deemed invalid or have been covered within a test case. The second step is to process the
pairs and build the array of n-wise test cases. This occurs in a similar manner to our approach
by trying to cover as many uncovered pairs as possible when adding to a row. The paper also
discusses the concept of mixing the n value. For example if it is known that faults are more
likely to occur in one subsection between triplets of parameters then set n to 3 while
processing this subsection, otherwise use 2. A related concept presented is to split the system
under test (SUT) into a hierarchy applying n-wise to a level of the hierarchy and combining the
result with other levels of the hierarchy. This is useful in domains with a clear hierarchy e.g. UI
windows that have dialogues. This reduces combinatorial explosion. Czerwonka also
discusses the ability to seed the generator with a combination of parameters with the aim of
defining a common parameter set that can be reused in testing. Czerwonka also looks into
negative testing by allowing one invalid value per test case to test how the SUT handles this.
PICT allows for weighting parameters to put more emphasis on parameters that the tester
deems more important. As our pairwise generator works in an industrial setting we have
achieved this goal also set out by PICT.

Orthogonal and Covering Arrays

Williams discusses a tool called TConfig used for pairwise testing (Williams, 2000). This tool is
based on a method using orthogonal and covering arrays. This approach is rooted in statistical
experimental design. Williams states that empirical studies have shown that covering pairs in
the test cases provides excellent code coverage. The author describes the algorithm used for

81

pairwise. An orthogonal array is one where all pairs are covered the same number of times. It
is a construct used in statistical experimentation and is defined as O(c,k,n,t) where c is the
number of test cases, k the number of elements, n the values with constraints applied and t
the strength e.g. for pairwise t has a value of 2. Covering arrays are defined in the same
manner except that in covering arrays all pairs are covered at least once but they do not have
to occur the same number of times. The proposed tool called TConfig is compared with the
PairTest tool described in Lei et al.‟s paper. It created less test configurations in 13 out of 16
comparisons and was, at worst, over 100 times faster than IPO. The example used did not
contain any constraints and it was unclear how constraints like those we encountered could be
incorporated into the algorithm. Williams also highlights that further work is needed in applying
this approach for parameters with differing numbers of values. The suggestion is to merge the
approach presented with the all pairs approach. As a result and due to the closer match of the
All Pairs algorithms we decided on using an All Pairs approach in this thesis.

Colbourn et al. also use orthogonal and covering arrays in their pairwise algorithm, called DDA
(Deterministic Density Algorithm) (Colbourn et al., 2004). It is deterministic, is fast at building
test cases and gives a logarithmic worst-case guarantee on test case size. It can also be
seeded with desired tests. It is compared with a number of other pairwise algorithms. As
mentioned in the previous paper there is an issue with processing parameters that have an
unmatched number of values. This paper suggests the use of mixed level covering arrays to
solve this problem but admits that there are few results on certain aspects when applying this
to software testing. They do however incorporate mixed level covering arrays into DDA. The
paper mentions the need for a pairwise generator that can handle constraints but it is unclear
whether DDA provides a solution for this when the DDA algorithm is presented. As a result the
all pairs approach is still a better fit based on our generation requirements.

7.3. Random Generation

This section contains related work that exists in the area of software testing. The concepts
they present can be applied to the random generator and present a number of interesting
ideas for future work.

Visser et al. (Visser et al., 2006) discuss automated test input generation of object orientated
container classes that use state matching to avoid generation of redundant tests. The input to
the tests are sequences of calls to methods in the containers interface. They use exhaustive
techniques with model checking to explore all possible test sequences (with a limit on the
input size). They also use lossy techniques where they create abstractions of the model and
use those to drive the test. This reduces the number of states being tested. The state of the
test is examined to see if it can be matched with a previously stored state allowing them to
avoid using this state again. They use a purely random technique as a basis for comparison in
terms of coverage. These state based techniques serve as an improvement to random
generation. In our case the exhaustive state space of possible configurations can be so large
as to render the probability of our random generator producing duplicate configurations too
small to warrant introducing state matching to our random generator. It would be an interesting
future work to explore the different techniques discussed by Visser et al. in more detail.

Pacheco et al. (Pacheco et al., 2005) discuss automatic generation and classification of test
inputs. The authors use a tool called Eclat whose output is a set of unit tests for the Java
classes given as an input. The authors present one technique for test input selection and two
additional techniques that complement the test input selection. For the first technique, which
can be considered an error-detection technique, they find a small set of inputs likely to
produce faults from a larger list. This is done by comparing the behaviour of the Java classes
when tested against a correct model. If the input given violates this correct model, the
technique classifies this as a test input likely to reveal a fault. Another component of this first

82

technique is used to dismiss the redundant test inputs. The second technique is used to
convert the test inputs of the first technique into a set of failing test cases. The third technique
complies to a model based approach and is used to create valid inputs that are going to be
used in the first technique. The authors have implemented these techniques in the Eclat tool
and found that the final product was effective at creating test inputs likely to reveal faults.
Related to our study, the valid configurations have been created by using an approach similar
to the third technique mentioned in this paper. We believe that the first technique could be
followed in the future work of our study when considered along with Visser et al.‟s paper, since
it would be interesting if the random generator could discard duplicate or redundant
configurations and reduce the number of configurations to a smaller set that is likely to
produce a crash.

In 2007, Pacheco et al. (Pacheco et al., 2007) discussed feedback-directed random test
generation that uses the feedback received after running different randomly generated unit
tests for object-oriented programs. Their technique generates inputs by randomly selecting a
method call and finding elements from previously generated inputs. When an input is built, it is
executed and checked against a set of contracts and filters. This helps determining if the input
is illegal, contract-violating, redundant or if it can be used for generating more inputs. The
three default filters used are called equality, null and exceptions. The equality filter maintains a
set of all created inputs and checks each new input for equality against this set. This results in
discarding redundant inputs. The null filter uncovers the absence of a null check on the
arguments of a method. The exceptions filter finds an input as contract-violating if its
execution throws an exception. This technique, which was implemented in a tool called
RANDOOP, has proven advantages in terms of coverage and error detection when compared
with systematic generation techniques or undirected random test generation techniques. It
retained the advantages of the random testing technique (scalability and simplicity of
implementation) and cancelled its disadvantages by avoiding the generation of redundant or
not useful inputs. When the authors disabled the use of filters and contracts, their tool
revealed less errors and skipped some very important bugs that were found previously when
using the feedback-directed technique. The authors believe that a possible combination of
both random and systematic approaches could represent a useful technique that retains the
best of each approach. Feedback-directed generation techniques could also be used in the
future work of our study and improve the random generator so that it can discard invalid,
redundant or constraint violating configurations.

Korel discusses the differences between random, path-oriented and dynamic test data
generators (Korel, 1996). In this paper, the author presents an approach for automated
generation of test data for programs with procedures. His approach analyses data
dependence to guide the test generation process. He mentions that random test data
generators are usually inefficient at finding test data that can execute a selected statement,
mainly because their random nature gives them the possibility to always miss something. The
main idea of the dynamic approach is to initially execute a program with random selected
inputs and during the execution of the program, to decide whether the execution should
continue through the current or an alternate branch. The dynamic approach concentrates only
on branches that are related to the execution of the selected statement and ignores the
others. To identify these branches, this approach uses data dependencies that guide the
search process. The author refers to the dynamic approach that is used in this paper as the
chaining approach which identifies a series of statements to be executed before reaching the
selected statement. The results of the experiment conducted by Korel indicate that the
chaining approach increases the chances of generating test data. This paper has revealed
some of the pitfalls of our random generator. The random generator might always choose to
skip creating an optional Configuration Element and this can lead to not finding a crash that is
related to the use of this Configuration Element. This is one reason why we chose to
implement our solution using not only the random technique but also a more dynamic
approach, the pairwise generation technique.

83

8. Conclusion and Future Work

Mecel AB work with automotive software. One aspect of what they do is to create AUTOSAR
configurations for Basic Software modules. These configurations are provided as input to
Source Code Generators which generate executable code for the modules. The focus of our
thesis was to design and develop a random configuration generator and a pairwise
configuration generator and compare them using a number of experiments and analyse the
results. We also developed a constraints framework. Some modules have rules that must be
followed in order to create a working configuration. Our framework provides a means to
uncover constraint violations and provide a fix for the violation. We have implemented the
constraints for the FiM module within this framework.

We focused on three experiments when comparing the two generators. In each of the
experiments we used three modules, a small module called Det, a medium module called FiM
and a large module called Dem. Each module has a SCG and the SCG has two key
components. The first is a constraints checker that ensures the configuration conforms to the
rules required of the module. The second component takes the configurations that have
passed the constraints checker successfully and generates the code. Our aim was to test both
of these components to determine whether the pairwise generator is at least as good as the
random generator with respect to finding crashes and bugs.

The first experiment was to see how many crashes the pairwise generator could produce from
the SCG for a given module and how many crashes the random generator could produce
when allowed to create the same number of configurations as the pairwise generator for the
same module. In this experiment no crash information was found for Det. As Det is such a
small module this is most likely due to the absence of crash causing issues in the Det SCG.
Both generators uncovered a bug in the second module FiM. The FiM module had some
constraints it needed to conform to. As a result we handled these constraints in our constraints
handler according to the specification provided by Mecel AB. We then analysed the generation
reports for the SCG and found that despite giving the SCG a working configuration it threw
errors for the area we had constrained. Mecel AB confirmed that the SCG contained a bug
and have raised a report to have it fixed. The Dem module has a large number of constraints
which we did not apply in the constraints handler but has been identified as future work and
for this module neither the random generator nor the pairwise generator produced crashes.
We also looked at the element coverage achieved by the random generator and pairwise
generator for the three modules. In both cases the coverage was 100%.

The second experiment was similar to the first experiment except instead of limiting the
random generator to a set number of configurations we allowed it to run for a set amount of
time. This was to allow for the fact that the random generator has no restriction on the number
of configurations it generates. Using the same three modules the results were comparable to
the first experiment. No crashes were produced by either generator for Det, the same bug as
in the first experiment was identified in FiM by both the pairwise generator and the random
generator and no crashes were identified for Dem.

There are a number of conclusions we draw from the experimentation and other factors that
carry weight, when comparing the random generator and the pairwise generator. Both
generators showed the ability to uncover problems within the SCGs in the first two
experiments for FiM. This finding is very positive for pairwise as it shows that the pairwise
generator has been successful in an industrial setting. Czerwonka points out when discussing
PICT (Czerwonka, 2008) that literature exists for 20 different pairwise tools but most of those
tools do not work in an industrial setting. The pairwise generator also works in the presence of
constraints, an area on which literature has not covered in great detail.

84

The final experiment was to see if the overhead introduced by pairwise in processing all pairs
and creating all configurations for those pairs was noteworthy when compared with the time
the random generator takes to create the same number of configurations for the same
module(s) when considering the time taken to run the SCG for the configurations. For the Det
and FiM module, we saw that the overhead introduced by using the pairwise generator was
not noteworthy. The overhead for the Dem module appears to be noteworthy, but the time
spent running the SCG was reduced, as only the constraints checker component ran.

There is some qualitative data that works in favour of the pairwise generator. An important
aspect for industry was that the time taken to run the pairwise generator needed to be feasible
enough to allow for running a large module on a nightly builder. The pairwise generator was
built with this in mind and the large module Dem runs on the nightly builder in Mecel AB and
finishes in the allotted time. An important aspect to consider when looking at the run time for
the pairwise generator is that it only needs to be run once for a given input. It is deterministic
so will always produce the same output. This means that for any changes made to a SCG the
configurations that were produced by the pairwise generator can be reused without having to
rerun the pairwise generator. The same cannot be said of the random generator as, due to its
random nature it does not have a definition of done.

In summary the pairwise generator has made a positive contribution to the field as it is an
example of a pairwise technique that uses constraints that has been shown to work within
industry. On the surface it would appear that the random generator is more efficient than the
pairwise generator but given that the pairwise generator only needs to run once for a given
input this indicates that the initial overhead can be offset by the amount of times a tester
reuses the configurations. Going forward, if the interfaces that both generators use for
processing the inputs changed, there would be no real difference between what would need to
change in the implementation of both algorithms. The pairwise algorithm creates the Definition
Element Table using the same principle as the random generator, so we cannot assume that
one generator would be more complex to update than the other. The pairwise generator is
recommended especially when the number of exhaustive test cases is practically infeasible to
create, which is the case for the majority of the BSW modules. For small modules, the random
generator is comparable and it performs quite well, according to the results of our
experiments.

Some questions arose about the various different approaches that can be taken when using
pairwise. The pairwise technique is actually one flavour of the more general n-wise technique.
Future work in this area of research could look into the use of n-wise where n is higher than 2,
applied directly to the automotive industry. It would be interesting to discover which n value
produces the best results within this particular domain.

Another idea for future work is to build a more comprehensive constraints handler for the
modules. This could make use of the dependency matrix discussed in the software product
lines literature. We found very promising results when testing with a module that used the
constraints handler so the SCGs for more modules can be tested when more constraints are
considered. It is also interesting from the perspective that it might lead to an alternate
approach to the all pairs algorithm resulting in an algorithm that handles constraints differently
to our approach. Mecel AB agree that this is an area of interest to them and have started
discussions with future thesis students to continue with this subject.

Another area where future work could be carried out is further optimisation of the pairwise
generator.

The results from this thesis should be applicable to other domains and an interesting future
work would be to recreate this thesis within a different domain.

85

There are a number of future work ideas that could be applied to the random generator. There
are interesting concepts in the use of state based random generator. States can be used to
avoid duplicate constraints, to take a previously correct state and modify it slightly with the aim
of producing a crash causing state and adding the ability to shrink states to the smallest
possible state still likely to produce a crash. States can also be used with a tree based
generator that backtracks when building a tree to try and create a unique configuration that
contains elements less covered by previously created trees.

There are some limitations we have identified within this thesis. The pairwise approach we
used considers pairs of 2 elements. The n-wise approach can be used for different n values,
e.g. by comparing 3-wise. The reason we chose to go with pairs is due to the literature
highlighting that it is between pairs of elements that faults are most likely to occur (Cohen et
al., 1996). As our thesis was conducted as a case study there is a risk that a higher value of n
would better produce crashes for this case.

The use of the all pairs approach to pairwise over orthogonal and covering arrays may be
considered a limitation. Given the lack of information on using constraints with orthogonal and
covering arrays the all pairs approach was a better match for our requirements.

Another possible limitation is that without a comprehensive constraints framework we were
limited in the number of modules we could test and analyse the results for. We did manage to
produce some favourable results and show that pairwise generation is at least as good as
random generation. With more data it may become more definitive that one generation
technique is better than the other in this domain.

A final limitation is that it was not possible to verify the source code generated by the SCGs for
our configurations. For this study, of the unit tests created by Mecel AB there was no unit test
suite for verifying the source code.

86

9. References

AUTOSAR. (2012). Basics. AUTOSAR. 2013, 12 March.
http://autosar.org/index.php?p=1&up=1&uup=0

AUTOSAR. (2011, December). Diagnostic Event Manager V4.2.0 R4.0 Rev 3. AUTOSAR.
2013, 20 May.
http://autosar.org/download/R4.0/AUTOSAR_SWS_DiagnosticEventManager.pdf

AUTOSAR. (2011, November). Function Inhibition Manager V2.2.0 R4.0 Rev 3. AUTOSAR.
2013, 20 May.
http://autosar.org/download/R4.0/AUTOSAR_SWS_FunctionInhibitionManager.pdf

AUTOSAR. (2012). Home. AUTOSAR. 2013, 28 February. http://autosar.org/index.php

AUTOSAR. (2011, October). Layered software architecture V3.2.0 R4.0 Rev 3. AUTOSAR.
2013, 12 March.
http://autosar.org/download/R4.0/AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf

AUTOSAR. (2012). Motivation and goals. AUTOSAR. 2013, 28 February.
http://autosar.org/index.php?p=1&up=1&uup=2&uuup=0

AUTOSAR. (2011, September). Specification of Development Error Tracer V3.2.0 R4.0 Rev
3. AUTOSAR. 2013, 21 April.
http://www.autosar.org/download/R4.0/AUTOSAR_SWS_DevelopmentErrorTracer.pdf

AUTOSAR. (2011, November). Specification of ECU configuration V3.2.0 R4.0 Rev 3.
AUTOSAR. 2013, 14 February.
http://autosar.org/download/R4.0/AUTOSAR_TPS_ECUConfiguration.pdf

AUTOSAR. (2008, February). Technical Overview V2.2.1 R3.0 Rev 0001. AUTOSAR . 2013,
11 May. http://www.autosar.org/download/AUTOSAR_TechnicalOverview.pdf

AUTOSAR. (2011, October). Virtual Functional Bus V2.2.0 R4.0 Rev 3. AUTOSAR. 2013, 13
April. http://www.autosar.org/download/R4.0/AUTOSAR_EXP_VFB.pdf

Claessen, K., & Hughes, J. (2000, September). QuickCheck: a lightweight tool for random
testing of Haskell programs. In Acm sigplan notices (Vol. 35, No. 9, pp. 268-279). ACM.

Cohen, D. M., Dalal, S. R., Parelius, J., & Patton, G. C. (1996). The combinatorial design
approach to automatic test generation. Software, IEEE,13(5), 83-88.

Colbourn, C. J., Cohen, M. B., & Turban, R. C. (2004, February). A deterministic density
algorithm for pairwise interaction coverage. In Software Engineering. ACTA Press.

Czerwonka, J. (2008). Pairwise testing in the real world: Practical extensions to test-case
scenarios. Microsoft Corporation, Software Testing Technical Articles.

Honekamp, U. (2009). The Autosar XML Schema and Its Relevance for Autosar Tools.
Software, IEEE, 26(4), 73-76.

Korel, B. (1996, May). Automated test data generation for programs with procedures. In ACM
SIGSOFT Software Engineering Notes (Vol. 21, No. 3, pp. 209-215). ACM.

http://autosar.org/index.php?p=1&up=1&uup=0
http://autosar.org/download/R4.0/AUTOSAR_SWS_DiagnosticEventManager.pdf
http://autosar.org/download/R4.0/AUTOSAR_SWS_DiagnosticEventManager.pdf
http://autosar.org/download/R4.0/AUTOSAR_SWS_FunctionInhibitionManager.pdf
http://autosar.org/index.php
http://autosar.org/download/R4.0/AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf
http://autosar.org/index.php?p=1&up=1&uup=2&uuup=0
http://www.autosar.org/download/R4.0/AUTOSAR_SWS_DevelopmentErrorTracer.pdf
http://autosar.org/download/R4.0/AUTOSAR_TPS_ECUConfiguration.pdf
http://autosar.org/download/R4.0/AUTOSAR_TPS_ECUConfiguration.pdf
http://www.autosar.org/download/AUTOSAR_TechnicalOverview.pdf
http://www.autosar.org/download/R4.0/AUTOSAR_EXP_VFB.pdf

87

Lei, Y., & Tai, K. C. (2002, January). A test generation strategy for pairwise testing. In IEEE
Transactions on Software Engineering, Vol. 28, No. 1. IEEE.

McGregor, J. (2010). Testing a software product line. Testing Techniques in Software
Engineering, 104-140.

Mecel. (2013). Product brief – Mecel PICEA Suite. At the forefront of automotive technology -
Mecel AB. 2013, 12 March. http://www.mecel.se/products/mecel-
picea/Product.Brief.Mecel.Picea.pdf

Oriat, C. (2005). Jartege: a tool for random generation of unit tests for java classes. Quality of
Software Architectures and Software Quality, 242-256.

Pacheco, C., & Ernst, M. (2005). Eclat: Automatic generation and classification of test inputs.
ECOOP 2005-Object-Oriented Programming, 734-734.

Pacheco, C., Lahiri, S. K., Ernst, M. D., & Ball, T. (2007, May). Feedback-directed random
test generation. In Software Engineering, 2007. ICSE 2007. 29th International Conference on
(pp. 75-84). IEEE.

Runeson, P., & Höst, M. (2009). Guidelines for conducting and reporting case study research
in software engineering. Empirical Software Engineering, 14(2), 131-164.

Visser, W., Pǎsǎreanu, C. S., & Pelánek, R. (2006, July). Test input generation for java
containers using state matching. In Proceedings of the 2006 international symposium on
Software testing and analysis (pp. 37-48). ACM.

Williams, A. W. (2000, August). Determination of test configurations for pair-wise interaction
coverage. In Proceedings of the IFIP TC6/WG6 (Vol. 1, pp. 59-74).

Xeger. (2009, October). A Java library for generating random text from regular expressions
Version 1.0-SNAPSHOT. Google Project Hosting. 2013, 02 June.
https://code.google.com/p/xeger/

Ye, H., & Liu, H. (2005, June). Approach to modelling feature variability and dependencies in
software product lines. In Software, IEE Proceedings- (Vol. 152, No. 3, pp. 101-109). IET.

Yin R. K. (2009). Case Study Research: Design and Methods. SAGE Publications, USA. (4th
edition,Vol.5, pp. 5-35).

http://www.mecel.se/products/mecel-picea/Product.Brief.Mecel.Picea.pdf
http://www.mecel.se/products/mecel-picea/Product.Brief.Mecel.Picea.pdf
https://code.google.com/p/xeger/
https://code.google.com/p/xeger/

88

Appendices

Appendix A: Det module Parameter Definition

<?xml version="1.0" encoding="UTF-8"?>
<AUTOSAR xmlns="http://autosar.org/schema/r4.0">
 <AR-PACKAGES>
 <AR-PACKAGE UUID="a3e46e8f-d03a-4bfd-8944-d551e20f8711">
 <SHORT-NAME>PICEA</SHORT-NAME>
 <AR-PACKAGES>
 <AR-PACKAGE>
 <SHORT-NAME>BswMd</SHORT-NAME>
 <ELEMENTS>
 <BSW-IMPLEMENTATION UUID="540c3526-be04-4b34-b6c8-3e593eb0e5b0">
 <SHORT-NAME>BSWImpl_Det</SHORT-NAME>
 <VARIATION-POINT/>
 <PROGRAMMING-LANGUAGE>C</PROGRAMMING-LANGUAGE>
 <SW-VERSION>3.0.1</SW-VERSION>
 <VENDOR-ID>41</VENDOR-ID>
 <AR-RELEASE-VERSION>4.0.3</AR-RELEASE-VERSION>
 <BEHAVIOR-REF DEST="BSW-INTERNAL-
BEHAVIOR">/PICEA/BswMd/Det/BSWBehavior_Det</BEHAVIOR-REF>
 </BSW-IMPLEMENTATION>
 <BSW-MODULE-DESCRIPTION>
 <SHORT-NAME>Det</SHORT-NAME>
 <LONG-NAME>
 <L-4 L="FOR-ALL">Development Error Tracer</L-4>
 </LONG-NAME>
 <MODULE-ID>15</MODULE-ID>
 <INTERNAL-BEHAVIORS>
 <BSW-INTERNAL-BEHAVIOR>
 <SHORT-NAME>BSWBehavior_Det</SHORT-NAME>
 <EXCLUSIVE-AREAS/>
 <ENTITYS/>
 <EVENTS/>
 </BSW-INTERNAL-BEHAVIOR>
 </INTERNAL-BEHAVIORS>
 </BSW-MODULE-DESCRIPTION>
 </ELEMENTS>
 </AR-PACKAGE>
 <AR-PACKAGE UUID="ef01f2f3-4873-4ec4-8c78-9c9462b57a02">
 <SHORT-NAME>EcucDef</SHORT-NAME>
 <ELEMENTS>
 <ECUC-MODULE-DEF UUID="9156748c-7fe3-45b6-8264-c1e7d3b77faa">
 <SHORT-NAME>Det</SHORT-NAME>
 <DESC>
 <L-2 L="EN">Det configuration includes the functions to be called at notification. On one</L-2>
 </DESC>
 <ADMIN-DATA>
 <DOC-REVISIONS>
 <DOC-REVISION>
 <REVISION-LABEL>4.2.0</REVISION-LABEL>
 <ISSUED-BY>AUTOSAR</ISSUED-BY>
 <DATE>2011-11-09</DATE>
 </DOC-REVISION>
 </DOC-REVISIONS>
 </ADMIN-DATA>
 <INTRODUCTION>
 <P>
 <L-1 L="EN">side the application functions are specified and in general it can be decided
 whether Dlt shall be called at each call of Det.</L-1>
 </P>
 </INTRODUCTION>
 <LOWER-MULTIPLICITY>0</LOWER-MULTIPLICITY>

89

 <UPPER-MULTIPLICITY>1</UPPER-MULTIPLICITY>
 <REFINED-MODULE-DEF-REF DEST="ECUC-MODULE-DEF">/AUTOSAR/EcucDefs/Det</REFINED-
MODULE-DEF-REF>
 <SUPPORTED-CONFIG-VARIANTS>
 <SUPPORTED-CONFIG-VARIANT>VARIANT-PRE-COMPILE</SUPPORTED-CONFIG-VARIANT>
 </SUPPORTED-CONFIG-VARIANTS>
 <CONTAINERS>
 <ECUC-PARAM-CONF-CONTAINER-DEF UUID="5aa195a3-1a24-4c92-9046-43ee0cb9d847">
 <SHORT-NAME>General</SHORT-NAME>
 <DESC>
 <L-2 L="EN">Generic configuration parameters of the Det module.</L-2>
 </DESC>
 <LOWER-MULTIPLICITY>1</LOWER-MULTIPLICITY>
 <UPPER-MULTIPLICITY>1</UPPER-MULTIPLICITY>
 <MULTIPLE-CONFIGURATION-CONTAINER>false</MULTIPLE-CONFIGURATION-CONTAINER>
 <PARAMETERS>
 <ECUC-BOOLEAN-PARAM-DEF UUID="5b338520-29ef-4ce8-acbf-e040aab3f534">
 <SHORT-NAME>Dlt</SHORT-NAME>
 <DESC>
 <L-2 L="EN">

 Only if the parameter is present and set to true, the Det requires the Dlt interface and forwards its
 call to the function Dlt_DetForwardErrorTrace. In this case the optional interface to Dlt_Det is required.
 </L-2>
 </DESC>
 <LOWER-MULTIPLICITY>0</LOWER-MULTIPLICITY>
 <UPPER-MULTIPLICITY>1</UPPER-MULTIPLICITY>
 <IMPLEMENTATION-CONFIG-CLASSES>
 <ECUC-IMPLEMENTATION-CONFIGURATION-CLASS>
 <CONFIG-CLASS>PRE-COMPILE</CONFIG-CLASS>
 <CONFIG-VARIANT>VARIANT-PRE-COMPILE</CONFIG-VARIANT>
 </ECUC-IMPLEMENTATION-CONFIGURATION-CLASS>
 </IMPLEMENTATION-CONFIG-CLASSES>
 <ORIGIN>AUTOSAR_ECUC</ORIGIN>
 <SYMBOLIC-NAME-VALUE>false</SYMBOLIC-NAME-VALUE><DEFAULT-VALUE>FALSE</DEFAULT-
VALUE>
 </ECUC-BOOLEAN-PARAM-DEF>
 <ECUC-BOOLEAN-PARAM-DEF UUID="3448ae28-ee36-4923-b4e1-16d21cb09e23">
 <SHORT-NAME>VersionAPI</SHORT-NAME>
 <DESC>
 <L-2 L="EN">Pre-processor switch to enable / disable the API to read out the modules version information.
 </L-2>
 </DESC>
 <INTRODUCTION>
 <P>
 <L-1 L="EN">

 true: Version info API enabled.
 false: Version info API disabled.
 </L-1>
 </P>
 </INTRODUCTION>
 <LOWER-MULTIPLICITY>1</LOWER-MULTIPLICITY>
 <UPPER-MULTIPLICITY>1</UPPER-MULTIPLICITY>
 <IMPLEMENTATION-CONFIG-CLASSES>
 <ECUC-IMPLEMENTATION-CONFIGURATION-CLASS>
 <CONFIG-CLASS>PRE-COMPILE</CONFIG-CLASS>
 <CONFIG-VARIANT>VARIANT-PRE-COMPILE</CONFIG-VARIANT>
 </ECUC-IMPLEMENTATION-CONFIGURATION-CLASS>
 </IMPLEMENTATION-CONFIG-CLASSES>
 <ORIGIN>AUTOSAR_ECUC</ORIGIN>
 <SYMBOLIC-NAME-VALUE>false</SYMBOLIC-NAME-VALUE><DEFAULT-VALUE>TRUE</DEFAULT-
VALUE>
 </ECUC-BOOLEAN-PARAM-DEF>
 <ECUC-ENUMERATION-PARAM-DEF UUID="e217ada2-44aa-47c4-897c-eb225df33d49">
 <SHORT-NAME>Platform</SHORT-NAME>
 <CONFIGURATION-CLASS-AFFECTION/>
 <ORIGIN>Mecel</ORIGIN>
 <DEFAULT-VALUE>WIN32</DEFAULT-VALUE>

90

 <LITERALS>
 <ECUC-ENUMERATION-LITERAL-DEF UUID="86253bdc-b9d4-4a52-b3d5-84a2b9b6d4bb">
 <SHORT-NAME>WIN32</SHORT-NAME>
 </ECUC-ENUMERATION-LITERAL-DEF>
 <ECUC-ENUMERATION-LITERAL-DEF UUID="e66b91f4-8f9e-4967-9db6-4f5cba60c957">
 <SHORT-NAME>VAST</SHORT-NAME>
 </ECUC-ENUMERATION-LITERAL-DEF>
 </LITERALS>
 </ECUC-ENUMERATION-PARAM-DEF>
 <ECUC-BOOLEAN-PARAM-DEF UUID="6f2af97c-6270-405f-a0dd-4c3f7b4570de">
 <SHORT-NAME>ForeignModule</SHORT-NAME>
 <ORIGIN>Mecel</ORIGIN><DEFAULT-VALUE>TRUE</DEFAULT-VALUE>
 </ECUC-BOOLEAN-PARAM-DEF>
 </PARAMETERS>
 </ECUC-PARAM-CONF-CONTAINER-DEF>
 <ECUC-PARAM-CONF-CONTAINER-DEF UUID="e4daed99-1b51-4cdf-b61e-816633992b67">
 <SHORT-NAME>Notification</SHORT-NAME>
 <DESC>
 <L-2 L="EN">Configuration of the notification functions.</L-2>
 </DESC>
 <LOWER-MULTIPLICITY>0</LOWER-MULTIPLICITY>
 <UPPER-MULTIPLICITY>1</UPPER-MULTIPLICITY>
 <MULTIPLE-CONFIGURATION-CONTAINER>false</MULTIPLE-CONFIGURATION-CONTAINER>
 <PARAMETERS>
 <ECUC-FUNCTION-NAME-DEF UUID="0af9fc8a-70f8-4996-b639-a31e8922522b">
 <SHORT-NAME>ErrorHook</SHORT-NAME>
 <DESC>
 <L-2 L="EN">

 Optional list of functions to be called by the Development Error Tracer in context of each call of
Det_ReportError.
 </L-2>
 </DESC>
 <INTRODUCTION>
 <P>
 <L-1 L="EN">

 The type of these functions shall be identical the type of Det_ReportError itself:
 Std_ReturnType (*f)(uint16, uint8, uint8, uint8).
 </L-1>
 </P>
 </INTRODUCTION>
 <LOWER-MULTIPLICITY>0</LOWER-MULTIPLICITY>
 <UPPER-MULTIPLICITY>2</UPPER-MULTIPLICITY>
 <IMPLEMENTATION-CONFIG-CLASSES>
 <ECUC-IMPLEMENTATION-CONFIGURATION-CLASS>
 <CONFIG-CLASS>PRE-COMPILE</CONFIG-CLASS>
 <CONFIG-VARIANT>VARIANT-PRE-COMPILE</CONFIG-VARIANT>
 </ECUC-IMPLEMENTATION-CONFIGURATION-CLASS>
 </IMPLEMENTATION-CONFIG-CLASSES>
 <ORIGIN>AUTOSAR_ECUC</ORIGIN>
 <SYMBOLIC-NAME-VALUE>false</SYMBOLIC-NAME-VALUE>
 <ECUC-FUNCTION-NAME-DEF-VARIANTS>
 <ECUC-FUNCTION-NAME-DEF-CONDITIONAL/>
 </ECUC-FUNCTION-NAME-DEF-VARIANTS>
 </ECUC-FUNCTION-NAME-DEF>
 </PARAMETERS>
 </ECUC-PARAM-CONF-CONTAINER-DEF>
 </CONTAINERS>
 </ECUC-MODULE-DEF>
 </ELEMENTS>
 </AR-PACKAGE>
 </AR-PACKAGES>
 </AR-PACKAGE>
 </AR-PACKAGES>
</AUTOSAR>

91

Appendix B: Experiment Data

● Number of crashes based on set number of configurations

○ Det module

Nr. Configurations Crashes
from
Random

Crashes
from
Pairwise

Errors
from
Random

Errors
from
Pairwise

1 11 0 0 0 0

2 11 0 0 0 0

3 11 0 0 0 0

4 11 0 0 0 0

5 11 0 0 0 0

6 11 0 0 0 0

7 11 0 0 0 0

8 11 0 0 0 0

9 11 0 0 0 0

10 11 0 0 0 0

○ FiM module

Nr. Configurations Crashes
from
Random

Crashes
from
Pairwise

Errors
from
Random

Errors
from
Pairwise

1 504 0 0 22 35

92

2 504 0 0 45 35

3 504 0 0 53 35

4 504 0 0 36 35

5 504 0 0 61 35

6 504 0 0 39 35

7 504 0 0 50 35

8 504 0 0 36 35

9 504 0 0 48 35

10 504 0 0 32 35

○ Dem module

Nr. Configurations Crashes
from
Random

Crashes
from
Pairwise

Errors
from
Random

Errors
from
Pairwise

1 2431 0 0 2431 2431

2 2431 0 0 2431 2431

3 2431 0 0 2431 2431

4 2431 0 0 2431 2431

5 2431 0 0 2431 2431

6 2431 0 0 2431 2431

7 2431 0 0 2431 2431

93

8 2431 0 0 2431 2431

9 2431 0 0 2431 2431

10 2431 0 0 2431 2431

● Number of crashes based on set amount of time

○ Det module

Nr. Pairwise
Config.

Random
Config.

Crashes
from
Pairwise

Crashes
from
Random

Errors
from
Pairwise

Errors
from
Random

Time

1 11 3257 0 0 0 0 1h

2 11 3455 0 0 0 0 1h

3 11 3229 0 0 0 0 1h

4 11 3245 0 0 0 0 1h

5 11 3202 0 0 0 0 1h

6 11 3173 0 0 0 0 1h

7 11 3458 0 0 0 0 1h

8 11 3181 0 0 0 0 1h

9 11 599 0 0 0 0 1h

10 11 1333 0 0 0 0 1h

○ FiM module

94

Nr. Pairwise
Config.

Random
Config.

Crashes
from
Pairwise

Crashes
from
Random

Errors
from
Pairwise

Errors
from
Random

Time

1 504 6079 0 0 35 671 2h

2 504 6088 0 0 35 604 2h

3 504 6316 0 0 35 611 2h

4 504 6097 0 0 35 596 2h

5 504 6024 0 0 35 582 2h

6 504 5974 0 0 35 576 2h

7 504 6319 0 0 35 608 2h

8 504 5968 0 0 35 576 2h

9 504 1064 0 0 35 101 2h

10 504 1958 0 0 35 194 2h

○ Dem module

Nr. Pairwise
Config.

Random
Config.

Crashes
from
Pairwise

Crashes
from
Random

Errors
from
Pairwise

Errors
from
Random

Time

1 2431 10680 0 0 2431 10680 4h

2 2431 10538 0 0 2431 10538 4h

3 2431 10521 0 0 2431 10521 4h

4 2431 10593 0 0 2431 10593 4h

95

5 2431 10819 0 0 2431 10819 4h

6 2431 10806 0 0 2431 10806 4h

7 2431 10366 0 0 2431 10366 4h

8 2431 10834 0 0 2431 10834 4h

9 2431 10881 0 0 2431 10881 4h

10 2431 10823 0 0 2431 10823 4h

● Overhead of time taken to generate configurations

○ Det module

Nr. A:Pairwise
conf. time
(s)

B:Random
conf. time
(s)

C:Pairwise
conf. & SCG
time (s)

D:Random
conf. & SCG
time (s)

1 0.33 0.06 13.2 12.53

2 0.34 0.08 12.98 12.6

3 0.31 0.08 13.07 12.56

4 0.31 0.06 13.04 12.54

5 0.3 0.08 12.93 12.57

6 0.34 0.08 13.15 12.54

7 0.28 0.08 13.02 12.56

8 0.3 0.06 12.95 12.56

9 0.28 0.06 13.06 12.54

96

10 0.28 0.06 12.9 12.7

○ FiM module

Nr. A:Pairwise
conf. time
(s)

B:Random
conf. time
(s)

C:Pairwise
conf. & SCG
time (s)

D:Random
conf. & SCG
time (s)

1 23.09 2.76 583.52 560.9

2 22.95 2.96 616.79 594.19

3 23.29 3.07 617.36 592.43

4 22.42 2.82 613.6 590.29

5 23.31 2.95 624.36 602.41

6 23.38 2.96 628.37 604.16

7 22.5 2.82 587.08 562.12

8 23.29 2.92 629.02 603.5

9 121.14 20.22 3530.52 3405.78

10 65.29 12.51 1917.57 1856.29

○ Dem module

Nr. A:Pairwise
conf. time
(s)

B:Random
conf. time
(s)

C:Pairwise
conf. & SCG
time (s)

D:Random
conf. & SCG
time (s)

1 6880.31 82.01 9808.35 3120.08

2 7795.83 71.24 10912.92 3276.9

97

3 6876.82 78.3 9854.32 3272.8

4 7933.01 85.77 11020.66 3455.67

5 7211.48 55.68 10243.26 3057.33

6 6902.39 58.95 9942.07 3064.72

7 6897.88 80.79 9857.84 3295.29

8 8170.67 57.64 11215.2 3080.75

9 26311.54 55.74 29474.7 3050.64

10 17262.55 55.54 21144.3 3080.3

● Number of covered elements

○ Det module

Nr. Nr. of
elements

Elements
covered by
Random

Elements
covered by
Pairwise

1 7 7 7

2 7 7 7

3 7 7 7

4 7 7 7

5 7 7 7

6 7 7 7

7 7 7 7

98

8 7 7 7

9 7 7 7

10 7 7 7

○ FiM module

Nr. Nr. of
elements

Elements
covered by
Random

Elements
covered by
Pairwise

1 35 35 35

2 35 35 35

3 35 35 35

4 35 35 35

5 35 35 35

6 35 35 35

7 35 35 35

8 35 35 35

9 35 35 35

10 35 35 35

○ Dem module

Nr. Nr. of
elements

Elements
covered by
Random

Elements
covered by
Pairwise

99

1 195 195 195

2 195 195 195

3 195 195 195

4 195 195 195

5 195 195 195

6 195 195 195

7 195 195 195

8 195 195 195

9 195 195 195

10 195 195 195

