
 
 
 
 
 
 
 
 
 
 
 

Chalmers University of Technology 

Department of Computer Science and Engineering 

Göteborg, Sweden, October 2013 

 

  

 

 

 

 

 

Behavior-driven Tile Caching in Web GIS Applications 

Master of Science Thesis in the Programme Software Engineering 

 

ANDERS OLOFSSON 

  



 
 

 

 

 

 

 

The Author grants to Chalmers University of Technology and University of Gothenburg the non-

exclusive right to publish the Work electronically and in a non-commercial purpose make it 

accessible on the Internet.  

The Author warrants that he/she is the author to the Work, and warrants that the Work does not 

contain text, pictures or other material that violates copyright law.  

The Author shall, when transferring the rights of the Work to a third party (for example a 

publisher or a company), acknowledge the third party about this agreement. If the Author has 

signed a copyright agreement with a third party regarding the Work, the Author warrants hereby 

that he/she has obtained any necessary permission from this third party to let Chalmers 

University of Technology and University of Gothenburg  store the Work electronically and make 

it accessible on the Internet. 

 

 

 

 

Behavior-driven Tile Caching in Web GIS Applications 

 

Anders Olofsson 

© Anders Olofsson, October 2013. 

Examiner: Matthias Tichy 

Chalmers University of Technology 

Department of Computer Science and Engineering 

SE-412 96 Göteborg 

Sweden 

Telephone + 46 (0)31-772 1000 

 

 

Cover: Heat map visualization of seven days’ user accesses, see chapter 6.  

Department of Computer Science and Engineering 

Göteborg, Sweden, October 2013 

  



 
 

Abstract  

Tile-based Web GIS is an increasingly popular way of displaying maps online, where the map view 

consists of square images called tiles. In a typical setting, a majority of the tiles on a tile server remains 

unused over large amounts of time. The setting of the study is the company Kartena. Investigations are 

performed which tells if the number of cached tiles at the company Kartena can be reduced while still 

keeping an acceptable cache hit ratio. The goal is to create an algorithm which gives as good cache hit 

ratios as possible, meaning that as many accesses as possible are cached server-side. By identifying 

typical navigation behavior of web map users, optimizations can be made on the server. By identifying 

and only rendering a small subset of the total amount of tiles in advance, storage requirements as well 

as rendering times go down.  

Two studies related to the problem are identified. Quinn and Gahegan use heuristics and heat maps to 

create a predictive model, and Garcia et al. use past usage statistics to predict future usage. Using the 

mentioned studies as well as heat maps and statistical analysis, an algorithm is created which - 

given a number of tile access logs and a set of domain-specific heuristics - provides a recommendation 

of which tiles that are suitable for caching. An experiment is performed by examining real usage of the 

applications and see how well the new model would perform in terms of cache-hit ratio. Depending on 

the amount of training data used, the experiment indicates that hit ratios of 95% and upwards are 

possible. The results suggest that the algorithm can be used to realize an on-demand caching solution at 

Kartena. The resulting algorithm can also be used to reduce storage costs and rendering times in similar 

settings. 

 

  



 
 

Acknowledgements 

First of all I would like to thank my academic supervisor Jörgen Hansson, who early on took great 

interest in the project and have been an invaluable support. Of equal importance is my industry 

supervisor Per Liedman, a big thanks for the expertise provided and the time dedicated.  

A special thanks also to the team at Kartena AB – both for providing the possibility of conducting the 

thesis and for being great encouragement and assistance.  

Finally, I would like to thank my friends and family for support. The thesis would not have been possible 

without them. 

   

  



 

1 
 

Contents 
1 Introduction .......................................................................................................................................... 5 

1.1 Scope ............................................................................................................................................. 6 

1.2 Outline........................................................................................................................................... 6 

2 Background ........................................................................................................................................... 6 

2.1 Maps in GIS and tile-based GIS systems ....................................................................................... 6 

2.2 Kartena .......................................................................................................................................... 8 

2.2.1 Kartena’s Tile set ................................................................................................................... 8 

2.2.2 Business Benefits .................................................................................................................. 9 

3 Related Work ...................................................................................................................................... 10 

3.1 A Predictive Model for Frequently Viewed Tiles in a Web Map ................................................. 10 

3.2 A Descriptive Model Based on the Mining of Web Map Server Logs for Tile Prefetching in a 

Web Map Cache ...................................................................................................................................... 11 

3.3 Additional Studies ....................................................................................................................... 11 

4 Domain Analysis .................................................................................................................................. 12 

4.1 Tile Statistics and Data Gathering ............................................................................................... 12 

4.2 Non-linear Access Patterns ......................................................................................................... 12 

4.3 Clients .......................................................................................................................................... 13 

4.4 Scale Levels ................................................................................................................................. 15 

5 Heuristics ............................................................................................................................................. 16 

5.1 Heat Map Analysis ...................................................................................................................... 16 

5.2 Comparison to Existing Studies ................................................................................................... 19 

5.2.1 Populated Places ................................................................................................................. 20 

5.2.2 Major Roads ........................................................................................................................ 22 

5.2.3 Coastlines ............................................................................................................................ 23 

5.2.4 Points of Interest ................................................................................................................. 23 

5.2.5 Review Conclusion .............................................................................................................. 24 

5.3 Filling and Buffering .................................................................................................................... 24 

5.4 Scale Ranking .............................................................................................................................. 25 

5.5 Resulting Heuristic Model ........................................................................................................... 26 

6 Descriptive Analysis ............................................................................................................................ 28 

6.1 Trivial Model ............................................................................................................................... 28 

6.2 Simplified Model ......................................................................................................................... 29 

7 Evaluation ........................................................................................................................................... 31 



 

2 
 

7.1 Individual Comparison ................................................................................................................ 32 

7.1.1 Heuristical Model ................................................................................................................ 32 

7.1.2 Trivial Model ....................................................................................................................... 32 

7.1.3 Garcia et al.’s Simplified Model .......................................................................................... 32 

7.2 Combined Comparison................................................................................................................ 33 

7.3 Experiment Design ...................................................................................................................... 34 

7.3.1 Data Sets and Output Limits ............................................................................................... 35 

7.3.2 Results ................................................................................................................................. 35 

8 Discussion ............................................................................................................................................ 37 

8.1 Evaluation of the Combined Experiment .................................................................................... 37 

8.2 Application of Result ................................................................................................................... 38 

8.3 Threats to Validity ....................................................................................................................... 38 

9 Conclusion ........................................................................................................................................... 39 

9.1 Future Work ................................................................................................................................ 40 

References .................................................................................................................................................. 41 

Appendix A: Technical Solution .................................................................................................................. 43 

Database ................................................................................................................................................. 43 

Python scripts.......................................................................................................................................... 43 

9.2 Manual queries ........................................................................................................................... 44 

9.3 TileMill ......................................................................................................................................... 45 

 

  



 

3 
 

List of Figures 

Figure 1: Combining several tiles to a single view ........................................................................................ 7 

Figure 2: Pyramid tile scheme (Quinn and Gahegan, 2010) ......................................................................... 7 

Figure 3: RT 90 boundaries (Spatial Reference, 1997) .................................................................................. 8 

Figure 4: The resulting model proposed by Quinn and Gahegan ............................................................... 10 

Figure 5: Percentile of requests for 7 days of access data.......................................................................... 13 

Figure 6: Scale level 0 .................................................................................................................................. 17 

Figure 7: Scale level 1 .................................................................................................................................. 17 

Figure 8: Scale level 2 .................................................................................................................................. 17 

Figure 9: Scale level 3 .................................................................................................................................. 17 

Figure 10: Scale level 4 ................................................................................................................................ 17 

Figure 11: Scale level 5 ................................................................................................................................ 17 

Figure 12: Scale level 6 ................................................................................................................................ 17 

Figure 13: Scale level 7 ................................................................................................................................ 17 

Figure 14: Scale level 8 ................................................................................................................................ 17 

Figure 15: Scale level 9 ................................................................................................................................ 18 

Figure 16: Scale level 10 .............................................................................................................................. 18 

Figure 17: Scale level 11 .............................................................................................................................. 18 

Figure 18: Scale level 12 .............................................................................................................................. 18 

Figure 19: Scale level 13 .............................................................................................................................. 18 

Figure 20: Scale level 14 .............................................................................................................................. 18 

Figure 21: Low-opacity compilation of scale levels 4-14 ............................................................................ 19 

Figure 22: Populated areas for scale levels larger than 8 ........................................................................... 20 

Figure 23: Locations of the 20 biggest cities in Sweden ............................................................................. 21 

Figure 24: Example of a road panning event .............................................................................................. 22 

Figure 25: Example of a “random” tile access pattern ............................................................................... 23 

Figure 26: Malmö with holes ...................................................................................................................... 24 

Figure 27: Malmö with holes removed ....................................................................................................... 24 

Figure 28: Karlstad with no buffering ......................................................................................................... 25 

Figure 29: Karlstad with buffering .............................................................................................................. 25 

Figure 30: The resulting heuristic model .................................................................................................... 26 

Figure 31: Sample output from the heuristical model ................................................................................ 27 

Figure 32: Close-up view of the cached tiles covering Gothenburg and surrounding areas ...................... 27 

Figure 33: The ten most popular tiles using the heuristical model ............................................................ 28 

Figure 34:Example output from the trivial model, scale level > 5 .............................................................. 29 

Figure 35:The 20 most popular tiles using the trivial model ...................................................................... 29 

Figure 36: Simplified model, example behavior ......................................................................................... 30 

Figure 37: Example of simplified model cache recommendation using scale level 9 as the prediction 

source .......................................................................................................................................................... 31 

Figure 38: The 20 most popular tiles using the simplified model ............................................................... 31 

Figure 39: Box plot (Algorithm A) ............................................................................................................... 36 

Figure 40: Box plot (Algorithm B) ................................................................................................................ 36 

Figure 41: Box plot (Algorithm A and Algorithm B) .................................................................................... 37 

Figure 42: Example rows in the access log table ........................................................................................ 43 

Figure 43: Technical components and their interactions ........................................................................... 45 



 

4 
 

List of Tables 

Table 1: Tile lifecycle at Kartena ................................................................................................................... 8 

Table 2: Total and individual number of tiles for scale levels 0-19. ............................................................. 9 

Table 3: Description of clients ..................................................................................................................... 15 

Table 4: Scale levels ordered by number of requests ................................................................................. 15 

Table 5: The 20 biggest Swedish cities, ordered by population. ................................................................ 21 

Table 6: The 20 biggest Swedish cities, ordered by number of hits. .......................................................... 21 

Table 7: Normalized scale rankings for the heuristical model .................................................................... 25 

Table 8: Heuristical model - test results ..................................................................................................... 32 

Table 9: Trivial model - test results ............................................................................................................. 32 

Table 10: Simplified model test results, 0.49% cached tiles ....................................................................... 33 

Table 11: Simplified model test results, 1% cached tiles ............................................................................ 33 

Table 12: Training data sets ........................................................................................................................ 35 

Table 13: Test data sets .............................................................................................................................. 35 

Table 14: Results of Algorithm A ................................................................................................................. 35 

Table 15: Results of Algorithm B ................................................................................................................. 35 

 

  



 

5 
 

1 Introduction  

Web Geographic Information Systems (Web GIS), “Slippy maps” or simply “web maps”, can be 

considered a trend in cartography (Kraak and Brown, 2002). There are many different map services 

available and they are slowly becoming a natural part of navigation and surveying tasks.  

Web maps are typically composited of square image files called tiles, which are pre-rendered (or cached) 

and put on a tile server. Tiles are then requested from various web applications. The number of tiles on 

the server depends on the area covered and the number of scale levels used – commonly this number is 

large. Caching all tiles is costly, both in terms of storage required and rendering times. An approach 

which addresses these issues is “on-demand rendering”, which renders tiles only when requested from a 

web map application.  

The setting of our study is Kartena, a Gothenburg-based company developing and maintaining tile-based 

web applications. Kartena wants to move to an on-demand architecture in order to reduce the amount 

of pre-rendering that needs to be performed. However, since on-demand rendering leads to slightly 

longer loading times for the end user, the hope is that the subset containing the most popular tiles can 

be cached in advance. By investigating different ways of predicting future user behavior, a suitable 

subset can be identified which will reduce the number of on-demand renderings that have to be 

performed. Currently, no information of user behavior exists, which is the starting point of the study.  

Several previous studies have been made on the subject. Quinn and Gahegan propose a heuristic 

solution, where typical user patterns are extracted by analyzing heat maps, and Garcia et al. propose a 

solution where access logs are mined in order to estimate future tile usage. The research introduced in 

this report describes a similar approach to tile prioritizing, where both heuristics and access log mining 

are used to prioritize tiles. By doing this, the study offers a new take on the tile caching problem.  

Purpose 

The aim of the study is to investigate different methods of predicting future tile accesses at the company 

Kartena. By doing this, the introduction of an on-demand rendering solution is made possible since a 

partial cache can be built based on the predictions – optimally reducing the tile loading times for the 

majority of users.  

By examining current state of the art approaches to descriptive algorithms and heuristic models and 

combining the findings, the thesis also evaluates the field of Web GIS tile caching in a new way.  

Goals  

The primary goal of the study is to develop an algorithm which, based on previous user behavior and a 

set of heuristics, provides a recommendation of which tiles to cache. Output from the algorithm is a list 

of tile indexes in the form (x, y, scale), which ranks individual tiles from high to low caching priority. The 

second goal is to develop a technical solution to the problem, which automatically parses access logs in 

order to be able to provide a caching recommendation. Heuristics should be defined in a user-friendly 

way in order to ease the addition of new heuristics.  

Results 

The result of the study is an algorithm, which provides a cache recommendation by combining the 

theory presented in two previous studies. When the training data is sparse, the algorithm uses 

heuristical predictions to provide a cache recommendation and when the training data grows the 

algorithm adjusts the output according to the learned behavior. When tested on real world data, the 



 

6 
 

algorithm managed to obtain hit ratios of 95% and upwards. According to Kartena the results are more 

than good enough to implement an on-demand caching solution.  

1.1 Scope 
The study investigates the possible business gains (in terms of future cache size and hit ratios) from 

implementing an on-demand caching solution. The actual implementation of an on-demand caching 

solution is not performed – due both to time constraints and the fact that Kartena requested a purely 

investigative approach. 

Exact calculations on saved storage space and reduced rendering times are not performed. Both, but 

especially rendering times, depend on the geographical information covered by each tile – exact 

calculations are therefore not trivial and were deemed not possible for the given time frame.  

The algorithms and models presented are generalizable for all tile-based web GIS systems and are not 

bound to any particular technical platform or technologies. The study therefore keeps technical details 

to a minimum. For the interested reader, technical details on how the solution was obtained are 

presented in Appendix A.  

1.2 Outline 
The study is started with a background chapter, which aims to create an understanding of the topic and 

provide necessary knowledge. The related work section follows, where the two studies that are the 

foundation of this report are presented. A domain analysis is then performed, this is done to enable the 

heuristic and descriptive analysis, such as specifying the client set and investigating basic tile patterns. 

The domain analysis is followed by the two main sections of the study - heuristic approach and 

descriptive approach. The heuristic chapter is heavily based on one of the previously presented studies, 

where the findings of Quinn and Gahegan are investigated with relation to the domain. A heuristic 

algorithm is created, which uses the findings of the analysis to create a tile ranking. The descriptive 

chapter implements two algorithms: the model created by Garcia et al., and the trivial model. The 

results are evaluated in the evaluation chapter. The study is rounded off with a discussion, followed by 

the conclusions made along with suggestions for future work.  

2 Background  

This section explains the technical details of GIS mapping and tile-based GIS systems in order to provide 

the reader with a sufficient understanding of the problem. The company Kartena is also presented - 

more specifically the tile rendering pipeline used and the possible business benefits from the study.  

2.1 Maps in GIS and tile-based GIS systems  
In GIS systems, spatial map information is commonly expressed in vector form (Sample and Ioup, 2010). 

When displaying a map, the vector information is styled (according to some styling rules) and then 

rasterized to a visible image. Primitive web-based GIS systems commonly offer real-time server-side 

rendering of images which is then served to the user. The downside to this approach is the constant 

rendering that is required – two users viewing slightly different areas of a map would require two 

separate rasterizing jobs to take place.  

Sample and Ioup (2010) identify an alternative way of designing web GIS applications. By dividing the 

geographical data into square bitmaps of predefined sizes called “tiles”, a virtualized map view can be 



 

7 
 

created on-the-fly by combining several tiles. This leads to faster applications as no on-line rendering 

has to be performed, the tiles are rendered – or cached – in advance and then distributed to the users 

when requested. This is the most common technique used in today’s map services (Boulos et al., 2010).  

 

Figure 1: Combining several tiles to a single view 

Tiles are commonly ordered in a pyramid-like scheme (Figure 2), where resolution – or scale level – 

increases the further down we get in the pyramid. The topmost scale level has index 0. Tiles at this scale 

level cover a big area. When creating tiles for scale level 1, tiles for the above scale level (in this case, 0) 

are typically divided into four smaller parts which in turn are rendered. Each scale level therefore 

consists of a grid of images, and each scale level can be mapped to a particular map scale. Tiles are 

referenced using a discrete addressing scheme, namely (x, y, scale) or (x, y, z). For example, (6370, -

25696, 13) denotes the tile at scale level 13 where x = 6370 and y = -25696.  

 

Figure 2: Pyramid tile scheme (Quinn and Gahegan, 2010) 

The term “WMS” (Web Map Service) is commonly used to refer to online map applications (OGS, 2006). 

This study uses the same term to refer to the tile-based map applications developed by Kartena. While a 



 

8 
 

WMS doesn’t have to be tile-based, the definition is broad and the same connection has been done in 

earlier studies, which motivates the usage of the term.  

2.2 Kartena 
Founded in 2000, Kartena is a Gothenburg-based company offering GIS services. The company offers 

route planning tools and positioning services, as well as tailor-made WMS applications for a number of 

clients – the latter being the focus of this study.  

Map data in vector form is provided by Lantmäteriet (the Swedish official body for dealing with 

cartography issues). The tile lifecycle, describing how tiles are created, stored and served to WMS 

applications, is presented in Table 1.  

Step Task 

1 Map data is parsed and put in a PostGIS database for easy access (PostGIS, 2013).  

2 Data is imported into the software TileMill, where css-like styling rules are created and 
previewed (MapBox, 2013).  

3 Using the styling rules from step 2, the data is rendered (scale levels 0-14) to 256x256 
tiles in PNG format by using the software mapnik (Pavlenko, 2013).  

4 Tiles are placed on a tile server which uses the software TileStache (TileStache, 2013), to 
serve the tiles.  

5 Tile requests are logged and stored in plain text files consisting of 24 hours each. Log files 
are encoded using the Common Log Format, or CLF (W3C, 1995). 

Table 1: Tile lifecycle at Kartena 

An example URL for the tile (155, -782, 8) is [serverURL]/8/155/-782.png. When a tile is served, the tile 

server logs using the Common Log Format (CLF) (Apache, 2012). Logs are stored in text files consisting of 

24h of consecutive log data each; a log file typically contains between 200 000 and 400 000 tile requests.  

2.2.1 Kartena’s Tile set  
The tile set at Kartena is determined by the RT 90 coordinate system as defined by Lantmäteriet 

(Lantmäteriet, 2013). The geographical boundaries where the RT 90 projection is suitable are set by the 

rectangle (10.5700, 55.2000) and (24.1800, 69.1000). This area covers the whole of Sweden, along with 

parts of the Baltic Ocean. For reference, the boundaries are shown in Figure 3. 

 

Figure 3: RT 90 boundaries (Spatial Reference, 1997) 



 

9 
 

Using the boundaries, we calculate the corner tiles for each scale level and in turn compute the total 

number of tiles. Table 2 shows the number of tiles at each scale level, along with the running total for 

the previous levels.  

Scale level Upper left tile Lower right tile Number of tiles Running total 

0 (0, 1, -4) (0, 1, -3) 2 2 

1 (1, 1, -7) (1, 2, -6) 4 6 

2 (2, 2, -15) (2, 4, -12) 12 18 

3 (3, 4, -29) (3, 7, -23) 28 46 

4 (4, 9, -59) (4, 15, -47) 91 137 

5 (5, 18, -117) (5, 30, -93) 325 462 

6 (6, 36, -234) (6, 59, -187) 1 152 1 614 

7 (7, 71, -468) (7, 118, -374) 4 560 6 174 

8 (8, 142, -936) (8, 236, -747) 18 050 24 224 

9 (9, 285, -1872) (9, 473, -1494) 71 631 95 855 

10 (10, 570, -3744) (10, 945, -2988) 284 632 380 487  

11 (11, 1139, -7489) (11, 1890, -5977) 1 137 776 1 518 263 

12 (12, 2279, -14978) (12, 3780, -11953) 4 545 052 6 063 315 

13 (13, 4557, -29955) (13, 7561, -23906) 18 180 250 24 243 565 

14 (14, 9114, -59911)  (14, 15122, -47812) 72 708 900 96 952 465 

15 (15, 18228, -119821) (15, 30243, -95625 290 751 152 387 703 617 

16 (16, 36455, -239642) (16, 60487, -191249 1 163 053 002 1550 756 619 

17 (17, 72910, -479285) (17, 120973, -382499 4 651 970 368 6 202 726 987 

18 (18, 145820, -958570) (18, 241947, -764998 18 607 785 344 24 810 512 331 

19 (19, 291641, -1917140) (19, 483893, -1529995) 74 429 979 938 99 240 492 269 
Table 2: Total and individual number of tiles for scale levels 0-19. 

As can be seen in the table, level 14 contains 96 952 465 tiles. This large number is the highest amount 

of tiles that can ever be cached at Kartena, and gives some insight into the numbers dealt with and the 

problems with an exponential pyramid structure. For example, the introduction of scale level 15 would 

require 387 703 617 tiles, greatly increasing storage costs and rendering times.  

2.2.2 Business Benefits 
As previously stated, the large number of tiles leads to long rendering times. Currently, all tiles are 

rendered in one rendering session, typically lasting several days. Also, bitmaps of Sweden for scale levels 

0-14 occupy roughly 153 GB, which raises costs since more server storage is needed. Both initial storage 

costs and rendering times will be lower when decreasing the amount of pre-rendered tiles, which is the 

main business benefit of the study. Also, new map data is regularly provided by Lantmäteriet and with 

shortened rendering times new material can go live more quickly. Similarly, a reduced number of tiles 

might help in introducing new scale levels, which currently is too costly in terms of both storage and 

rendering times.  

It should be noted that using an on-demand solution, storage costs are likely to increase over time since 

newly accessed tiles are placed in the cache once rendered. Subsequent accesses to this tile by other 

users will therefore not require any rendering. In previous attempts of letting certain tile servers run 

purely on-demand, the resulting number of cached tiles after roughly a year of usage was around 40% of 

the total tile body. 60% of the tiles were therefore not accessed in over a year, which is an indication 

that significant optimizations can be made.  



 

10 
 

The research introduced in this study mainly affects step 3 in Table 3. While changes to the rendering 

pipeline is outside of the study’s scope, the practicalities would consist of configuring mapnik to render 

the tiles recommended by the algorithm.  

3 Related Work  

As previously mentioned a number of similar studies have been made, which should be examined to 

connect the study to existing research. Two existing articles are instrumental to our work: “A Predictive 

Model for Frequently Viewed Tiles in a Web Map” by Quinn and Gahegan (2010) which attempts to 

come up with heuristical patterns behind tile accesses, and “A Descriptive Model Based on the Mining of 

Web Map Server Logs for Tile Prefetching in a Web Map Cache” (2012) by Garcia et al. which parses 

access logs to derive individual tile statistics. This section presents those two studies. 

3.1 A Predictive Model for Frequently Viewed Tiles in a Web Map 
In this paper by Quinn and Gahegan, the authors propose a heuristic approach to the problem of 

determining the most frequently used tiles in a web map. Microsoft Bing heat maps were analyzed and 

heuristical predictions of the most important areas were created.  

The result of the study is a model (Figure 4) where coast lines, cities, major roads and “points of 

interest” were deemed important to users. Some additional heuristics are added, such as buffering and 

the removal of “holes” in otherwise fully cached areas.  

 

Figure 4: The resulting model proposed by Quinn and Gahegan 

The authors also discuss the potential gains that can be achieved by implementing and using the model. 

As in Kartena’s case, the reduced rendering times and storage costs are the main advantages being 

identified. Other possible areas of usage are also found including cartography, where the cartographer 

can put more effort into making selected areas more usable, and aerial imagery updates where selected 

areas can be updated more often.  



 

11 
 

The concepts are introduced in a pedagogical way and the results are directly applicable to Kartena’s 

domain. Because of this, the study “A Predictive Model for Frequently Viewed Tiles in a Web Map” is 

used as a starting point for the predictive research introduced in chapter 6. The aim is to evaluate and 

verify the findings of Quinn and Gahegan in Kartena’s domain, and to possibly make use of the findings 

in the new algorithm.  

3.2 A Descriptive Model Based on the Mining of Web Map Server Logs 

for Tile Prefetching in a Web Map Cache 
In this study by Garcia et al. (2012), the authors offer a descriptive approach to tile caching, based on 

the premise that tile access patterns are slow to change. As in this report, the goal is to create a partial 

cache method were only a selected number of tiles are rendered. The result is the simplified model 

which is trained using access logs from Spanish nation-wide web services to predict future usage.  

Since the number of tiles in most web map services is large, dealing with individual tile statistics is 

impractical. The services examined include zoom levels all the way to level 19, which together with the 

(compared to Sweden’s) slightly larger area increases the tile count to the order of billions (refer to 

Table 2 for an estimate). The simplified model therefore uses statistics from a selected prediction level, 

which preferably has a manageable number of tiles. The simplified model then uses this level to 

determine the probabilities of tile accesses at other levels.  

The performance and accuracy of the model is examined by comparing its output to the access data 

from other dates (more specifically, access logs from new dates). Multiple tests were performed by 

comparing different prediction levels to “target” testing levels, with the result being a matrix that shows 

how particular scale levels benefit from different prediction levels. The results varied greatly, with the 

best prediction levels resulting in hit ratios between 70-95% and the worst prediction levels resulting in 

hit ratios around 8-15%. According to the authors, the results indicate that the potential gains from 

using a similar model are high.  

Even though the word “prefetching” is used in the title, the study mainly describes an application where 

pre-rendering and caching is used – i.e. the same as in Kartena’s case. The similarities of the domains 

motivate further investigation of the findings of Garcia et al.; the simplified model is therefore 

implemented and compared in the evaluation chapter.  

3.3 Additional Studies 
While somewhat sparse, other studies exist which can be used as starting points. Garcia et al. published 

another study in the same area, “A Cache Replacement Policy Based on Neural Networks Applied to Web 

Map Tile Caching” (Garcia et al., 2011) The approach is a little different than the before mentioned 

study, instead of the simplified model an Artificial Neural Network (ANN) is used to provide a tile cache 

recommendation. Since more extensive background knowledge was needed the study was not 

examined closer.  

The paper “Hotmap: Looking at Geographic Attention” by D. Fisher (2007) discusses the applications of 

tile request heat maps, as well as the design choices involved in and the lessons learned from creating 

such systems. The system of focus is “Hotmap”, which visualizes the tile requests made to Microsoft 

Surface (currently Bing maps). Similar to Quinn and Gahegan’s study, Fisher concludes that tile 

popularity tends to follow population. Borders of many kinds were also interesting, such as coastlines, 

roads and even the borders of available map data. As the study is cited in Quinn and Gahegan’s work 



 

12 
 

and many of their ideas are directly derived from Fisher’s study, focus is put on the former. The lack of 

actual models to use also supports the decision.  

4 Domain Analysis  

An initial analysis of the domain is here performed. This sheds light of various characteristics of the 

domain, which helps in making the following algorithm more accurate. Data gathering methods are 

explained, followed by the client base. Lastly the scale levels are investigated.  

4.1 Tile Statistics and Data Gathering 
Before any analysis can be done, tile statistics need to be collected. For a number of reasons, tile 

statistics are obtained from web access logs. Access log mining is the data gathering technique used by a 

number of related studies, for example the mentioned study by Garcia et al. Also, in the paper Mining E-

Commerce Data: The Good, the Bad, and the Ugly (2001), Kohavi discusses different approaches to the 

mining of website data in order to gain insight into customer patterns. The author describes different 

means of acquiring data in an e-commerce setting, and while the domain is different the methods would 

be similar in a Web GIS setting. Access logs are already available at Kartena, and exactly describe actual 

tile requests which are things that speak to their advantage. The downside is that they cannot be 

modified to log more things if needed.  

An alternative to access logs would be to implement some sort of system which monitors user behavior 

at browser level. This way, detailed information could be obtained such as time spent looking at certain 

areas. This was deemed to be too time consuming and error prone however, not to mention the legal 

issues that would come into play.  

4.2 Non-linear Access Patterns 
In the WMS applications studied by Garcia et al., a non-linear access pattern was found. Tile accesses 

where found to follow the 80:20 rule meaning that 20% of the accessed tiles received roughly 80% of 

the total hits. In simpler words, this means that a small portion of the accessed tiles receive a majority of 

the hits. Can similar patterns be found at Kartena? Figure 5 demonstrates the relationship between 

number of requests and number of tiles for seven days of investigated access logs. 



 

13 
 

 

Figure 5: Percentile of requests for 7 days of access data 

Tile accesses at Kartena also seem to follow the 80:20 rule. This shows that the tile accesses, although 

not coming from public general-purpose WMS applications, already show some characteristics of such 

usage (Garcia et al., 2012). This motivates the use of both Garcia et al.’s and Quinn and Gahegan’s 

results as starting points to the study.  

4.3 Clients  
The client-owned WMS applications are the driving factor behind the tile accesses. Considering this, it is 

motivated to specify the client base in order to be able to investigate certain patterns. Table 3 displays 

the referrers found in seven days of access logs, ordered by number of requests made from each 

referrer. A brief description of each WMS is presented, along with the size in percentage of hits as well 

as the geographical areas of interest where this is determinable.  

Client WMS description Hits Hits (%) Areas of interest 

Client 1 Map application of a Swedish ice 
cream company, showing locations 
where the ice cream trucks stop.  

907913 39.544 All over Sweden 

Client 2 Map applications of a web developer, 
specializing in producing maps for 
community transit services.  

549684 23.941 Bus stops and train 
stations in various 
Swedish cities 

Client 3 Map view of a website listing parking 
opportunities in Stockholm. 

218538 9.5184 Stockholm 

Client 4 Map application of a sport streaming 
website, showing current and future 
events. 

132909 5.7888 Depends on sport 
event covered 

Client 5 Map view of a student housing agency 
located in Gothenburg. 

132848 5.7862 Göteborg 

Client 6 Map application of a Swedish betting 
site, showing physical locations. 

129219  5.6281 Populated areas all 
over Sweden 



 

14 
 

Client 7 Map application offering travel 
directions by bus or train. 

44860 1.9539 Populated areas all 
over Sweden 

Client 8 Map view of a Swedish ferry line, 
showing all stops of a Swedish ferry 
line. 

42915 1.8692 Göteborg 

Client 9 Map application of a transit company 
located in Kronoberg county. 

30654 1.3351 Mainly Växjö and 
Alvesta, travel 
destinations can be 
all over Sweden 

Client 10 Various accesses where the referrer 
could not be determined (localhost, or 
no referrer at all). 

25953 1.1304  

Client 11 Map application of a car service 
company showing all service stations. 

14464 0.6300 Populated areas all 
over Sweden 

Client 12 Map application of a transit company 
located in Kalmar. 

13058 0.5687 Mainly Kalmar, 
travel destinations 
can be all over 
Sweden 

Client 13 Map application of an amusement park 
located in Gothenburg. 

10763 0.4688 Göteborg 

Client 14 Map application of a bicycle vendor 
chain, showing all stores. 

10299 0.4486 Stockholm 

Client 15 Route planning application used by a 
major Swedish construction company. 

6785 0.2955 All over Sweden 

Client 16 Map application of a Swedish county, 
showing public services. 

5069 0.2208 Skåne 

Client 17 Map application of an energy 
company, showing all offices. 

4256 0.1854 Various Swedish 
cities 

Client 18 Various requests made through a 
demo application of a Kartena-
developed extension to the software 
Leaflet. 

2979 0.1298 All over Europe 

Client 19 Web application of a private health 
care company, showing all clinics. 

2667 0.1162 Stockholm 

Client 20 Mobile app capable of displaying 
participants in running competitions. 

2583 0.1125 Vaxjo, Göteborg 

Client 21 Various administrative applications 
and tools at Kartena. 

1671 0.0728 Sweden 

Client 22 Web site of a Scandinavian shopping 
centre company, showing existing and 
planned shopping centres.  

1598 0.0696 Partille, Malmö, 
Trollhättan, 
Kristianstad, 
Helsingborg, 
Borlänge, Örebro, 
Norrköping, 
Karlstad, Stockholm, 
Torp 

Client 23 Map application of a Swedish machine 
leasing company, showing all store 
locations. 

1543 0.0672 Various Swedish 
cities 

Client 24 Web view of a Swedish concrete 
company, listing all office locations. 

1383 0.0602 Various Swedish 
cities 

Client 25 Map view of the local branch of a 
major Swedish banking organization. 

520 0.0226 Borås, Bollebygd, 
Mark, Svenljunga 



 

15 
 

Client 26 Map view of a Swedish insurance 
company, listing all office locations. 

436 0.0190 Major to minor 
Swedish cities 

Client 27 Map view of a Swedish estate listing 
website, showing properties for sale. 

235 0.0102 Populated areas all 
over Sweden 

Client 28 Map view of a Swedish hostel 
organization, showing hostel locations. 

98 0.0043 Populated areas all 
over Sweden 

Client 29 Map view of a Swedish hotel, 
displaying the hotel location. 

30 0.0013 Stockholm 

Client 30 Map view of a fuel station company, 
listing all fuel station locations. 

16 0.0007 Cities all over 
Sweden 

Client 31 Map application of an office supply 
company, listing all stores. 

5 0.0002 Cities all over 
Sweden 

Table 3: Description of clients 

Some interesting facts can be observed, such as the size differences between the clients. The smallest 

clients are almost negligible in size, while the biggest ones contribute to the most hits. Since the tile set 

is used only by the above clients, their areas of interest should in some way affect the resulting cache 

suggestion. This is further discussed in the heuristics chapter.  

4.4 Scale Levels  
Using the same seven days of sample data, we can look at the popularity of individual scale levels. Table 

4 shows the scale levels ordered by number of hits.  

Scale level Number of requests Requests (%) 

13 295804 12.88 

11 280009 12.19 

12  272919 11.88 

14  202802 8.831 

8 199882 8.704 

10  192903 8.400 

9  164353 7.157 

5  161306 7.024 

1  143695 6.257 

7  135461 5.899 

4  115703 5.038 

6  79116 3.445 

3  27579 1.201 

2  24752 1.078 

0  179 0.008 
Table 4: Scale levels ordered by number of requests 

As evident by Table 4, higher levels are typically more popular than lower levels. Higher levels offer 

users a more detailed view of an area than lower levels which may be one of the reasons behind their 

popularity.  

Higher scale levels also have a much higher tile count, which together with browser caching is one of the 

reasons they get more requests. For example, level 0 only contains 2 tiles, as we saw in Table 2. When a 

user visits scale level 0, those tiles are typically placed in the browser cache and not reloaded when 

he/she zooms in and out in the application. Higher scale levels contain a much larger number of tiles and 

“new” tile accesses are much more likely to occur.  

It should be noted that scale levels probably are heavily affected by the WMS applications. For example, 

level 1 places quite high compared to levels 0, 2 and 3. The reason behind this could be that level 1 



 

16 
 

offers a reasonable sized overview of Sweden, offering a good starting point for several types of WMS 

applications. For example, a popular WMS which uses scale level 6 in its starting view makes this level 

place higher in the above table, as the starting view tiles are requested by all users. If the WMS is also 

clearly restricted to a particular area, level 6 should be prioritized high especially in this particular area – 

other areas might not need as much focus on scale level 6. No WMS-specific analysis of scale level 

popularity has been performed however, this is left as a possible starting point of further studies.  

5 Heuristics  

By manually analyzing previous behavior, is it possible to create an understanding of common user 

patterns and “guess” where future users will look? This section presents the heuristic part of the 

algorithm.  

Initially, a heat map analysis is performed in order to get an overview of the domain. This is followed by 

a review of the study done by Quinn and Gahegan - particularly how the findings apply to Kartena’s 

context. Finally, the resulting heuristic algorithm is presented.  

5.1 Heat Map Analysis  
Heat maps have been previously used to analyze user behavior in WMS applications, for example Fisher 

(2007). By visualizing user accesses, user patterns and other characteristics can be estimated. To a large 

extent, the heuristic research is based on heat maps.  

In the following heat maps, tiles are represented as a colored tetragons. Tiles are colored from red to 

yellow, corresponding to an increasing number of hits. As tile accesses frequencies are skewed (recall 

the 20:80 rule and Figure 5), the coloring has to reflect this to provide a linear visualization. By default, a 

linear coloring scheme is used. Using a linear coloring scheme, very few tiles are colored yellow as 

popular tiles are very rare compared to un-popular tiles. Fisher (2007) proposes that a logarithmic color 

scaling is used instead, which was used as a starting point for coloring. It should be noted that tiles with 

no popularity (i.e. received no hits) are not rendered at all.  

Using an opacity value of 40%, the tiles are superimposed on a background layer - in essence a 

geographical map. Fisher states that a low-contrast greyscale coloring should be used for the 

backgrounds as the colored tiles then are easy to distinguish from the backgrounds. However, attempts 

made found that greyscale images conflicted with the low opacity tiles – a darker background proved to 

be more suitable and was therefore chosen.  

When constructing heat maps, it has to be decided how much data should be displayed. Early 

investigations found that the number of accesses was typically smaller during weekends. Since the areas 

of interest and in turn user behavior also might change, the data used should contain at least 7 days of 

access data in order to ensure that the changed behavior is covered. On the other hand, the time 

required to render increases with larger data sets. Rendering a single heat map image typically takes a 

couple of minutes – a trade-off is therefore made between the data size and the heat map’s usability in 

terms of rendering times. Also, heat maps get cluttered and hard to interpret with more data points. It 

was decided that seven days’ worth of access logs were enough to perform an initial heat map analysis.  

In order to provide the reader with an understanding of the tile sizes, Figures 6-20 present a selection of 

the available scale levels along with an example snapshot of tiles on this level. The heat map was 

created from 7 days of access logs, consisting of 2 311 954 tile requests.  



 

17 
 

 
Figure 6: Scale level 0 

 
Figure 7: Scale level 1 

 
Figure 8: Scale level 2 

 
Figure 9: Scale level 3 

 
Figure 10: Scale level 4 

 
Figure 11: Scale level 5 

 
Figure 12: Scale level 6 

 
Figure 13: Scale level 7 

 
Figure 14: Scale level 8 



 

18 
 

 
Figure 15: Scale level 9 

 
Figure 16: Scale level 10 

 
Figure 17: Scale level 11 

 
Figure 18: Scale level 12 

 
Figure 19: Scale level 13 

 
Figure 20: Scale level 14 

Figures 6-20 show, especially on higher scale levels, that user interest is focused on a few, quite specific, 

areas. Lower scale levels are less specific, but still show some interesting patterns. The north of Sweden 

is clearly of less interest than the southern parts. Major cities are clearly more popular than other areas, 

e.g. Gothenburg in scale level 8.  

The square shape of the tiles are clearly visible. Since Kartena and the heat map visualization software 

TileMill use different map projections, some distortions are present. The “curved” characteristics of the 

tiles is an effect of the conversion from Kartena’s RT 90-projection to WGS 84 (Spatial Reference, 2007), 

which is the projection used by TileMill. The distorted look of level 0 is another consequence. This 

behavior is typical and will not affect the study in a major way – besides level 0 the area covered by the 

tiles are the same in both projections. Generally, lower scale levels are left out in the following heat map 

renderings as those levels tend to hide too much of the tiles beneath.  

When overlaying tiles, user patterns become clearer. Figure 21 shows a compilation of zoom levels 4-14, 

with a lowered tile opacity in order for several scale levels to be visible at once. Generally, lower scale 

levels are left out in the following heat map renderings as they tend to hide too much of the tiles 

beneath.  



 

19 
 

 

Figure 21: Low-opacity compilation of scale levels 4-14 

Some interesting observations can be made. Land areas are clearly more popular than ocean areas, 

which is reasonable. It also appears that a high portions of the hits are based around and on cities. Some 

sporadic patterns can be found, such as “lines” in the images which indicates user panning along some 

route, possibly a road. This is one of the areas which Quinn and Gahegan deemed important, a more 

thorough analysis is made in the literature review section.  

5.2 Comparison to Existing Studies 
Quinn and Gahegan (2010) propose four different areas which benefits a predictive model. The areas 

are presented below, along with reasoning of how they apply to the investigated data. Do the findings 

translate well to Kartena’s domain?  



 

20 
 

5.2.1 Populated Places 
The authors identify populated areas as typically being interesting to users. The assumption is largely 

based on Fisher’s study (2007), which found that users tend to look where they live. Also, users not 

living in a populated area will still have an interest populated regions, as they might work or plan to go 

there.  

 

Figure 22: Populated areas for scale levels larger than 8 

When closely examined at different zoom levels, Figure 22 shows that yellow tiles are frequently located 

in areas that are more populated. In unpopulated areas, tiles tend to be red or transparent, indicating 

few or no hits. As mentioned in the heat map analysis chapter, tile requests in the north of Sweden 

decrease to the point of being non-existent, probably because there is not much focus by the clients in 

this region. A conclusion is that cities are typically more interesting than areas in between.  

While populated areas are interesting to users, we cannot assume that tile popularity follows city size. 

Table 5 shows the 20 biggest cities in Sweden ordered by population, along with their corresponding 

number of tile requests based on the geographic position shown in Figure 23. Tile requests with scale 

level larger than 6 were used, lower levels would make the tiles too unspecific for city interest 

conclusions to be made.  



 

21 
 

 
Figure 23: Locations of the 20 biggest cities in Sweden 

City Population Hits (scale >= 6) 

Stockholm 1372565 204139 

Göteborg 549839 139080 

Malmö 280415 12500 

Uppsala 140454 6633 

Västerås 110877 22660 

Örebro 107038 27205 

Linköping 104232 3417 

Helsingborg 97122 6746 

Jönköping 89396 3029 

Norrköping 87247 2740 

Lund 82800 6898 

Umeå 79594 2453 

Gävle 71033 3528 

Borås 66273 1937 

Eskilstuna 64679 12877 

Södertälje 64619 4742 

Karlstad 61685 1746 

Täby 61272 6024 

Växjö 60887 54420 

Halmstad 58577 14104 
Table 5: The 20 biggest Swedish cities, ordered by 
population. 

City Population Hits (scale >= 6) 

Stockholm 1372565 204139 

Göteborg 549839 139080 

Växjö 60887 54420 

Örebro 107038 27205 

Västerås 110877 22660 

Halmstad 58577 14104 

Eskilstuna 64679 12877 

Malmö 280415 12500 

Lund 82800 6898 

Helsingborg 97122 6746 

Uppsala 140454 6633 

Täby 61272 6024 

Södertälje 64619 4742 

Gävle 71033 3528 

Linköping 104232 3417 

Jönköping 89396 3029 

Norrköping 87247 2740 

Umeå 79594 2453 

Borås 66273 1937 

Karlstad 61685 1746 
Table 6: The 20 biggest Swedish cities, ordered by number of 
hits. 

 

It is evident that there is no clear correlation between city population and the number of hits. Stockholm 

and Gothenburg place high in the hit ranking, which could be an effect of both many clients being based 

in this region as well as the high population of those cities. However, Malmö receives relatively few hits 

considering it is the third biggest city in the country. Also, Växjö places third in the hit ranking despite 

having a relatively small population. This is probably an effect of Client 9 offering services in the region 



 

22 
 

leading to an increased number of tile accesses. Växjö’s high ranking indicates that client areas of 

interest clearly affect the request numbers – if Client 9 would be removed the area would most likely 

receive much a less number of hits. This should somehow be reflected in the heuristical model. 

As seen in Table 3, the bigger clients (Client 1 and 2 for example) together stand for more than half of 

the total accesses. These clients do not have specific regions of interest, which makes it difficult to 

estimate the populated areas that are interesting to them. Under the assumption that WMS users look 

at areas close to their home and that user locations are related to city size, it is reasonable to also let the 

size of populated areas be a driving factor.  

Data of populated areas in Sweden (essentially what is seen in Figure 23, containing every Swedish city 

and town) was obtained from Lantmäteriet. The data was reasonably easy to parse which made it 

suitable for use in the heuristic algorithm. 

The conclusions are: 

 Populated areas are interesting to users and should be cached.  

 Client areas of interest, where this can be determined, should be the driving factor which 

decides tile priority. Following this, cities should be ranked by population.  

5.2.2 Major Roads 
Quinn and Gahegan identify major road networks to be an important part in WMS applications. In their 

study, roads where clearly popular to users – a lot of user interest was based around roads despite not 

being located in other areas of interest such as cities.  

While not as obvious as for Quinn and Gahegan’s research, some evidence that roads are interesting can 

be found. In Figure 24, a single user of Client 15’s WMS (the route-planning WMS) did a search between 

the cities Bjärred and Hässleholm and presumably panned along the proposed route.  

 

Figure 24: Example of a road panning event 

In the analyzed data, only three occurrences of road panning could be found. All occurrences came from 

the WMS of Client 15, and used scale levels 9, 10 and 11. While not enough data to draw definite 

conclusions, the absence of higher scale levels seems relevant - panning hundreds of kilometers using 

the highest zoom level would probably take too long. 



 

23 
 

Road data was found to be hard to parse and rank, which makes it difficult to build a reasonable 

heuristic conclusion. Unlike city data which can be easily ranked on population, road data did not 

contain any meta-information which could be used for ranking. While a road cache most certainly would 

increase the cache hit ratio it is uncertain how efficient the increase would be. More tiles leads to more 

cache hits, but for the model to be efficient more evidence should exist in order for a road cache to be 

motivated. A large increase in cached tiles does not motivate a small increase in cache hit ratio.  

The conclusions are: 

 If the number of route planning applications is high, the amount of road caching should increase 

in priority.  

 If roads are cached separately, this should be done on scale levels 9, 10 and 11.  

5.2.3 Coastlines 
The paper states that coastlines are accessed more frequently than other areas. The authors mention 

that this may be an effect of many roads being situated along coast lines which may explain this 

behavior. Still, they decide to independently cache all coastlines independent of nearby roads.  

No real evidence of coastline interest can be found in the gathered data. The high interest in the 

western coast of Sweden (as evident in Figure 22) is mainly due to the many applications being based 

here. The northern Baltic ocean coastline has no apparent hit patterns close to coastlines besides cities. 

The conclusion is that coast lines are not particularly interesting to users.  

5.2.4 Points of Interest 
The authors deem certain “points of interest” as typically being popular to users. Points of interest 

includes national parks, mountain peaks as well as universities and historic buildings.  

No real evidence of similar user behavior can be found. Since the WMS analyzed by Quinn and Gahegan 

is a public general purpose one, the findings may not be applicable. When extending the time range 

analyzed, some examples of “random” tile accesses can be found. For example, a user of the WMS 

provided by Client 3 investigated a wilderness area in northern Sweden (Figure 25). The findings were 

too few and infrequent however, making it hard to make a heuristic conclusion.  

 

Figure 25: Example of a “random” tile access pattern 



 

24 
 

In Kartena’s domain a “point of interest” could possibly be translated to the clients’ areas of interest. For 

instance, if a popular WMS provides many tile requests to a specific area other than cities, this area 

should be cached. Again, the client’s areas of interest should be a driving factor behind the heuristical 

model. Other than this, “points of interest” as defined by Quinn and Gahegan is not applicable to the 

current client set.  

5.2.5 Review Conclusion 
Some of the findings of Quinn and Gahegan translated well to this context.  

 Populated areas should be cached, using both city population and WMS interest. This means 

that if a city both has a high population and a high WMS interest, this should be reflected in the 

output. 

 Road networks are not cached, both because the reward is not clear and the data availability is 

limited.  

 Neither coast lines nor points of interest as defined by Quinn and Gahegan are suitable caching 

candidates. 

The differences between the general WMS application investigated by the authors (Microsoft Bing) and 

more client-driven WMS applications, such as Kartena’s, are evident. Only populated areas translated 

reasonably well to Kartena’s setting, and road networks, coast lines and points of interest did not 

translate well. While Kartena’s domain was similar to general WMS applications in terms of access 

patterns (recall the 80:20 rule), it is clear that user behavior does not have to be similar. 

5.3 Filling and Buffering 
By default, the city data only contains the actual populated areas for each city. In some cases, this 

results in “holes” in the data at the location of parks, bodies of water and the like. An example of this 

can be seen in Figure 26. A scrolling user might find it annoying to encounter non-rendered tiles in the 

middle of a city, as those tiles would take longer to render. Figure 27 shows the city data with holes 

removed.  

 
Figure 26: Malmö with holes 

 
Figure 27: Malmö with holes removed 

As with parks and fields, rivers and other geographical delimiters like forces the city to be divided in 

multiple polygons. By buffering the city boundaries, a more coherent area can be created. Buffering 

extends the borders of an area, hopefully eliminating any unwanted space. Figure 28 and Figure 29 show 

the difference before and after buffering. 



 

25 
 

 
Figure 28: Karlstad with no buffering 

 
Figure 29: Karlstad with buffering 

The operation inevitably leads to a larger area than necessary being covered – some forest parts outside 

the city boundaries as well as parts of the water are now part of the “city”. It was deemed that this side 

effect is inevitable and the gains in usability are more important than the losses in exactness of the 

caching.  

Buffering was done by Quinn and Gahegan – several different buffer values were used depending on the 

type of object being buffered, as could be seen in Figure 4. In this study, the buffer range is constant 

since only one type of object (city) is being buffered. The buffer range was chosen so that waterways 

and other delimiters within city bounds are well and fully covered, removing unwanted spaces from the 

cache output. 

5.4 Scale Ranking 
So far, the heuristic analysis has only dealt with the two-dimensional attributes of the tiles – in other 

words the geographical positions on a map. Each position may have different popularities at different 

scale levels however, which needs to be reflected in the ranking.  

Tile rankings for each zoom level are derived the data presented in Table 4: Scale levels ordered by 

number of requests, as presented in chapter 4. Since the populated analysis was done on levels 6 – 14, 

only those levels are used. The normalized ranking values for the heuristical model are presented in 

Table 7.  

Scale level Requests Normalized ranking value 

13 295804 1.000 

11 280009 0.947 

12 272919 0.923 

14 202802 0.686 

8 199882 0.676 

10 192903 0.652 

9 164353 0.556 

7 135461 0.458 

6 79116 0.268 
Table 7: Normalized scale rankings for the heuristical model 

In order to ease future computations, normalization to the interval 0-1 is performed. Normalization is 

done by dividing all values with the highest value, resulting in all values being located between 0 and 1 

and the relative proportions kept intact. 

  



 

26 
 

5.5 Resulting Heuristic Model 
The final heuristic model is presented in Figure 30.  

 

Figure 30: The resulting heuristic model 

It should be noted that the output produced by the model assumes that further tile accesses will follow 

the same patterns. If the access patterns are suspected to have changed, the model should be run again 

with updated domain information and provide a new cache recommendation.  

Get area of all Swedish 

cities with population 

larger than 10000 

Fill and buffer the areas 

Populated areas 

Remove tiles with  

scale level < 6 

Rank tiles on population 

and z 

Get area of all cities with 

application interest  

Fill and buffer the areas 

Remove tiles with  

scale level < 6 

 

Rank tiles on application 

popularity and z 

Remove duplicates 

Normalize 

Application 

areas 

1. Take city population and divide 

it by the population of the 

largest city. 

2. Take popularity in percent of 

each scale level and divide it by 

the popularity in percent of the 

most popular scale level (see 

Table 7). 

3. For each scale level, multiply 

value from 1 with value from 

2. This is set as the value for all 

tiles at this scale level. 

1. Take application popularity in 

percent (see Table 3) and divide 

it by the popularity of the most 

popular application. 

2. Take popularity in percent of 

each scale level and divide it by 

the popularity in percent of the 

most popular scale level (see 

Table 7). 

3. For each scale level, multiply 

value from 1 with value from 

2. This is set as the value for all 

tiles at this scale level.  

Find all tiles which 

overlaps the areas 
Find all tiles which 

overlaps the areas 

Combine both branches by merging the 

lists. If duplicates are found (a tile was 

recommended by both the population 

and the application branch), add the 

values.  

Divide each tile value with the highest 

tile value. 

See 5.3: Filling and Buffering 

 

Output 
A list of tiles with values between 0 and 

1. The tiles are ordered in descending 

order with highest tile values at the top.  

See 5.2.1: Populated Places 

 

See 5.4: Scale Ranking 

 



 

27 
 

As can be seen in the “Remove duplicates” step, merging of the different branches is done by simply 

adding the values. The addition is followed by a normalization to the interval 0-1 - the same operation 

that was used on the scale levels. Those two steps assures that both branches are given equal 

importance, and also that the relative values between tiles are kept intact.  

As described in the figure, the output of the model is an ordered list which keeps the most interesting 

tiles at the top. When deciding a tile cache, the cache limit (number of tiles to cache) is first decided. 

This number of tiles are then picked from the list, starting from the top. It should be noted that both the 

type of output and the cache selection process is the same for all following models – all of them output 

an ordered list tile ranking with values between 0 and 1 from where the number of tiles equal to the 

cache limit is selected. 

Example output 

Figure 31 shows an example output from the heuristical model. Population areas and numbers data 

were obtained from Lantmäteriet, and the application areas are derived from Table 3. Using this as 

input, the total number of tiles in the output was 469179. For more tiles in the cache output, a lower 

population limit should be chosen or more application areas specified.   

 
Figure 31: Sample output from the 
heuristical model 

 
Figure 32: Close-up view of the cached tiles covering Gothenburg and 
surrounding areas 

Also, Figure 32 shows a closer view of the tile cache over Gothenburg. It is noticeable how the precision 

increases with an increased scale level. For reference, the 10 most popular tiles in the output are shown 

in Figure 33. As expected, all tiles are from scale level 13. They all have a value of 1.0 meaning that they 

were from the predicted most popular area, which in this case is Stockholm.  



 

28 
 

 

Figure 33: The ten most popular tiles using the heuristical model 

6 Descriptive Analysis  

In this section, two descriptive algorithms are implemented and compared: The trivial model, where 

past request frequency is used directly as a way of predicting future accesses, and the simplified model 

proposed by Garcia et al.  

6.1 Trivial Model 
Early in the study, the idea that letting the request frequency directly decide a tile ranking emerged. 

Such a solution would simulate an on-demand tile caching server that has been running for a while, 

instead of waiting for data we simply inject the accesses from a previous time period.  

The trivial model originates from the assumption that user patterns are consistent over time. Assuming 

this, the trivial solution to the problem is to simply order tiles based on past popularity. This is done by 

examining the training data and counting all the tile accesses made to each tile. The values are then 

normalized to the interval 0-1, where the most popular tile has the value 1 and tiles with no hits get the 

value 0.   

Using the same 7-day data set as in the previous sections, an example cache recommendation can be 

made. The training data contained roughly 900000 unique requests, which is the length of the cache 

recommendation. A visualization of the cache recommendation is shown in Figure 34. Each cached tile is 

shown in a low-opacity red, leading to solid colors where user interest is high:  



 

29 
 

 
Figure 34:Example output from the trivial model, scale level > 5 

 
Figure 35:The 20 most popular tiles using the trivial model 

As an example of the tile recommendation, the 20 most popular tiles are shown in Figure 35. It is 

noticeable how a very small portion of the tiles receive many hits – the values in the column “value” 

decrease quite quickly. For an example, consider the 20th most popular tile is about 75% as popular as 

the most popular tile.  

The detail and accuracy of the model is dependent on the size of the training data. We cannot rank tiles 

we do not have any information on. For example, in order for the model to recommend a cache of one 

million tiles, at least one million unique tile hits would have to be present in the training data. This is one 

of the drawbacks of this model – large caches demand large amounts of training data as no other 

assumptions are made regarding tile priority. Here, a combination with the heuristic predictive model 

previously created might come in handy, which is further examined in the evaluation chapter.  

6.2 Simplified Model 
The simplified model, as defined by Garcia et al., is a way of estimating the popularity of individual tiles 

by only using tile data from one scale level. Tile popularity for all tiles are then calculated from this level, 

which is shown below.  

In order to come up with a cache recommendation a prediction scale level has to be chosen. This is 

essentially one of the scale levels available in the domain (in Kartena’s case between 0 and 14), and 

determines the level from which the statistics for all levels are obtained. Popularity values for all scale 

levels can then be created using the following logic:  

Let s denote the prediction scale level. Ranking values for all tiles are then be obtained by using the 

following logic:  

 Tiles with scale z = s get the same ranking value as the corresponding tile value in the trivial 

solution.  

 Tiles with scale z > s get the same ranking value as the tile in s which covers the tile in z’s area.  

 Tiles with scale z < s get a ranking value by calculating the average values of the four tiles in 

scale level (z + 1) covering the same area. 



 

30 
 

An example of the behavior is shown in Figure 36. The prediction level’s values are derived directly from 

the trivial model. Tiles below the prediction level (larger scale value) gets the same value as the tile 

above, and for each additional level the procedure is repeated. Tiles above (smaller scale value) are 

averaged from the values below, and again the process is repeated for each additional level.  

 

Figure 36: Simplified model, example behavior 

Using this behavior, the algorithm is able to “guess” the probability of all tiles. As for the trivial model, 

the output is an ordered list where the most popular tiles are located at the top. The main downside of 

the algorithm is that many tiles will share the same ranking value – because of the many propagations of 

the prediction level’s tile values to higher levels.  

According to the authors, the simplifications allow for a less resource-intensive solution as only data 

from the prediction level is used – all other levels can be ignored. However, the number of calculations 

gets higher with larger prediction levels, as more averaging-operations are needed. While a speed 

comparison is outside the aim of the study, this is still a factor which affects the study (as evident in the 

evaluation chapter).  

 

0.5 

0.1 0.4 

0.9 0.6 

0.1 0.1 0.4 0.4 

0.1 0.1 0.4 0.4 

0.9 0.9 0.6 0.6 

0.9 0.9 0.6 0.6 

Prediction level Prediction level - 1 Prediction level + 1 



 

31 
 

 
Figure 37: Example of simplified model cache 
recommendation using scale level 9 as the prediction source 

 
Figure 38: The 20 most popular tiles using the simplified 
model 

Figure 37 shows an example of the simplified model’s output. It is noticeable that the model results in a 

quite few number of areas being cached deeply, compared to the trivial model where the cached tiles 

were more scattered. The result looks more like the output from the heuristic model with very few areas 

being cached. Also, Figure 38 shows an example of the tile ranking. In this particular training data, the 

two most popular tiles in level 9 got the same number of hits leading to both having the tile value 1.0. 

All tiles beneath get the same tile value, as evident in the eight tiles of level 10 and the 32 tiles of level 

11 (where only 10 are showed due to the limited size of the table).  

Because of the estimating nature of the algorithm, quite small amounts of training data is required to 

construct a cache compared to the trivial model. While the ranking values in the output may be inexact 

and not as fine grained as for the trivial model, the hope is that the simplified model provides a suitable 

alternative when only limited amounts of training data is available.  

7 Evaluation  

When evaluating the models, a metric reflecting the performance has to be decided on. In existing 

literature, hit ratio is commonly used to evaluate the performance of tile caching methods. In this 

context, hit ratio is defined as the percentage of accesses in a test set which lead to cached tiles. While 

there are other metrics that may be important, achieving a good hit ratio is the purpose of the study and 

the area that have the most impact on business benefits at Kartena.  

In order for the evaluation to carry weight, the results must be set in relation to other values. More 

specifically, what are “good” hit ratios? Garcia et al., when using the mean of normalized access 

frequencies as threshold, obtained hit ratios of up to 96%. The conclusion was that this is a high number, 

and that accurate predictions are possible. During discussions, Kartena stated that a 95% hit ratio is a 

good starting point for a lower hit ratio limit. This number might be adjusted at later stages, but for 



 

32 
 

initial attempts it was deemed to be sufficient. While a high hit ratio as possible is wanted, 95% is 

selected as the lower limit for the introduction of an on-demand solution at Kartena.  

The following sections evaluate the models. First, individual experiments on the three models are 

performed, which are followed by a combined comparison.   

7.1 Individual Comparison 
The individual comparison is a first step in determining the performance in a real setting. The models are 

tested separately against 7 days of access logs, which contain roughly two million tile accesses. The 

trivial model and the simplified model require training data, which was taken from a different set also 

containing 7 days. As with the heat map analysis, 7 days was considered a suitable length – the data sets 

should compensate for the fact that the user behavior might be different on the weekends.  

As a fair comparison has to be made, all cache recommendations should contain the same number of 

tiles. Using the current training data set, the trivial model provides the shortest cache recommendation 

(471313 tiles) which makes it the limiting factor. For the following three tests, the output limit of 471313 

tiles, or 0. 48612% of all possible tiles is therefore chosen.   

7.1.1 Heuristical Model 
The predictions, which as mentioned originates mainly from populated areas and WMS areas of interest, 

should ideally be able to produce decent results on its own. The results are shown in Table 8: 

Cached tiles (%) Hits  Hits (%) 

0. 486% 1228612 67.96 
Table 8: Heuristical model - test results 

It is clear that the model captures the majority of user requests. However, the results are far from the 

goal of 95% - it is not enough to build a cache by using only the heuristical model.  

It should be noted that the tile cache of 0.486% is pretty small. By buffering larger areas, lowering the 

population threshold and allowing for more zoom levels the tile count would increase. This is further 

discussed in the discussion chapter.  

7.1.2 Trivial Model 
If user behavior is consistent over time, the trivial model is suspected to provide accurate cache 

predictions. No evaluations of similar models were found in existing literature. 

Cached tiles (%) Hits Hits (%) 

0.486% 2186333 94.59 
Table 9: Trivial model - test results 

As evident by the table, the trivial model provides good results. A more detailed comparison is done in 

the combined comparison later in this chapter. Perhaps the model can consistently provide results over 

95% when more training data is used.  

7.1.3 Garcia et al.’s Simplified Model 
When evaluating the simplified model, it is necessary to decide on a prediction scale which yields the 

most accurate results. A subset of different scale levels and their performance is listed in Table 10.  

Prediction scale  Hits Hits (%) 

0 591831 25.61 



 

33 
 

1 576679 24.95 

2  614455 26.58 

3 491410 21.26 

4 14577 0.631 

5 97078 4.200 

6 489730 21.19 

7 535955 23.19 

8 732840 31.71 

9 907913 39.28 
Table 10: Simplified model test results, 0.49% cached tiles 

During experiments, calculating the levels got increasingly more time consuming for higher prediction 

scale. The reason is that for higher levels, more averaging-operations have to be performed as the 

number of tiles in lower scale levels also increase. Level 9 alone took several hours to complete, and 

more levels would mean exponentially longer calculating times. The combined experiment would simply 

take too long to complete. This is the reason why only levels 0-9 were tested. 

Scale level 9 has the best performance, even if the results clearly are not as good as for the trivial model. 

The results vary a lot across prediction scale levels however, the low performance of levels 4 and 5 is 

somewhat surprising. When allowing for a higher cache output (1% instead of 0.49%), more coherent 

results appear: 

Prediction scale  Hits Hits (%) 

0 1043612 45.15 

1 962661 41.65 

2  1076666 46.58 

3 875424 37.88 

4 600849 26.00 

5 579040 25.05 

6 665946 28.81 

7 591808 25.60 

8 951752 41.18 

9 1131956 48.97 
Table 11: Simplified model test results, 1% cached tiles 

Following the results of Table 10 and Table 11, level 9 should be used as the prediction source. Higher 

hit ratios might be possible if higher scale levels where used.  

The above results are roughly in the same area as the tests performed by Garcia et al. While their upper 

hit ratios was up in the 95% range, the number of tiles was bigger. When the authors used a cache of 

1%, the results were in the area of 5% - 60%. No test on all scale levels was performed, which is 

unfortunate as this would allow for a more fair comparison.  

7.2 Combined Comparison 
As stated in the purpose description, the solution is based on a combination of heuristical predictions 

and descriptive statistics. From the three individual models, two combined algorithms are obtained.  

Algorithm A consists of the heuristic model plus the trivial model. Given the good performance of the 

trivial model and the relatively bad performance of the heuristical model, the latter placed “after” the 

trivial model in the ranking. This means that the trivial model caches as many tiles at it can and if the 

cache limit is not reached, the heuristical model fills in the rest. This way, the trivial model is given more 

importance and the heuristical model kicks in when needed. Duplicates are removed by adding the tile 



 

34 
 

values, followed by a normalization to the interval 0-1 (the same procedure as for the heuristical model, 

recall chapter 5 and Figure 30 where the two branches are added followed by a normalization). 

The extent of which the two models contribute to the cache recommendation is dependant on the 

training data. Currently, the trivial model needs about 1-2 weeks of data to completely cover the cache 

limit of 0.486%. Using one day of training data, roughly 1/4th of the cache limit is covered, the rest is left 

to the heuristical model.  

The tile value 𝑣𝐴 for the tile 𝑇{𝑥, 𝑦, 𝑧} before normalization is expressed as: 

𝑣𝐴{𝑇(𝑥, 𝑦, 𝑧)} = 𝑣𝑡𝑟𝑖𝑣𝑖𝑎𝑙(𝑥, 𝑦, 𝑧) +  𝑣ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐𝑎𝑙(𝑥, 𝑦, 𝑧) × 𝐶, 0 ≤ 𝐶 ≤ 1  

Where 𝑣𝑡𝑟𝑖𝑣𝑖𝑎𝑙(𝑥, 𝑦, 𝑧) is its value in the trivial model 𝑣ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐𝑎𝑙(𝑥, 𝑦, 𝑧) its value in the heuristical 

model and 𝐶 the value of the least popular tile in the trivial model. As 𝐶 is always between 0 and 1, 

multiplying with 𝐶 ensures that all heuristical values are smaller than the trivial model’s, placing them 

after the trivial model in the final cache recommendation.  

Algorithm B consists of the heuristic model plus the simplified model using level 9 as the prediction 

source. Since the algorithms were roughly the same in terms of performance, both algorithms are given 

the same importance when combining them. Also, as they both completely cover the cache limit of 

0.486% on their own, placing either one after the other will completely hide the other. As with 

Algorithm A, tiles are combined by adding the output values from both models and normalizing the 

results.  

For Algorithm B, the tile value 𝑣𝐵 for the tile 𝑇{𝑥, 𝑦, 𝑧} before normalization is given by: 

𝑣𝐵{𝑇(𝑥, 𝑦, 𝑧)} = 𝑣𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑑(𝑥, 𝑦, 𝑧) +  𝑣ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐𝑎𝑙(𝑥, 𝑦, 𝑧) 

Where 𝑣𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑑(𝑥, 𝑦, 𝑧) is its value in the simplified model and 𝑣ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐𝑎𝑙(𝑥, 𝑦, 𝑧) its value in the 

heuristical model. In contrast to Algorithm A, both models are given the same importance which makes 

further adjustments unnecessary.  

7.3 Experiment Design 
The experiment should be able to decide which, if any, of the algorithms that is most suitable to use in 

an on-demand setting. As before, the target hit ratio of 95% is used, ideally the algorithms should be 

able to consistently provide hit ratios above this target. The outline of the experiment is presented 

below: 

1. Four different sets are used to train the algorithms, covering 1, 7, 14 and 28 days respectively. 

Both algorithms are trained using each training set, and each algorithm now provide a cache 

recommendation.  

2. Another 28 days of access logs are used to test the algorithms. As with the training data, the 

testing data is divided in four sets, consisting of 1, 7, 14 and 28 days each.   

3. For each algorithm and all combinations training sets - testing sets, the number of tiles in the 

test set also found in the cache recommendation is divided by the total number of requests 

made in the test set. A cache hit ratio is now obtained, which is a value between 0 (no cache 

hits) and 1 (only cache hits).  

Since all combinations are tested, 16 different cache hit ratios are obtained for each algorithm. This way, 

some variation in the data sets is obtained: shorter periods of training data is tested against both 



 

35 
 

shorter and longer periods and vice versa.  Because of limitations in data availability, 28 days was 

chosen as the maximum number of access logs available for both training and testing data.  

Baseline 

The baseline of the experiment is the “cache all” approach, meaning that 100% of the tiles in the RT 90 

region are cached. This always gives a cache hit ratio of 1 since all tile requests lead to already cached 

tiles. Similar hit ratios are not realistic, but the optimal goal.   

7.3.1 Data Sets and Output Limits 
The data sets and their dates are shown in Table 12 and Table 13:  

Data set Dates 

Training data 1 2013-03-06  

Training data 2 2013-03-07 to 2013-03-13 

Training data 3 2013-03-07 to 2013-03-20 

Training data 4 2013-03-07 to 2013-04-03 
Table 12: Training data sets 

Data set Dates 

Test data 1 2013-05-04 

Test data 2 2013-04-06 to 2013-04-12 

Test data 3 2013-04-06 to 2013-04-19 

Test data 4 2013-04-06 to 2013-05-03 
Table 13: Test data sets 

An effort was put into having both training and test sets of different length. This is why training and test 

set 1 only consist of one day of training data, in contrast to training and test sets 4 which cover four 

weeks. During the course of the study, only a couple of months’ worth of access logs where available 

which is the reason that the dates of sets 2, 3 and 4 overlap. Ideally, no overlaps should be present – 

“fresh” data sets should be used for each ratio calculated.  

When comparing Algorithm A and Algorithm B, it is important that the same amount of tiles is used in 

both comparisons, in other words an “output limit” must exist. In the individual comparisons, the trivial 

model was the limiting model as it provided the shortest output given 7 days of sample data. In order to 

be able to connect the combined experiment to the previous experiments, the same limit is chosen. The 

limit is therefore set to 469179 tiles, or 0.48% of all tiles. In other words, all cache recommendations are 

cut off so that only 0.48% of all tiles are used.  

7.3.2 Results 
The hit-ratio results of the experiments are shown in Table 14 and Table 15:  

Algorithm A Test data 1 Test data 2 Test data 3 Test data 4 

Training data 1 0.9637 0.9564 0.9566 0.9590 

Training data 2 0.9852 0.9835 0.9822 0.9829 

Training data 3 0.9912 0.9907 0.9904 0.9904 

Training data 4 0.9929 0.9909 0.9908 0.9914 
Table 14: Results of Algorithm A 

Algorithm B Test data 1 Test data 2 Test data 3 Test data 4 

Training data 1 0.5798 0.5498 0.5530 0.7490 

Training data 2 0.5601 0.5544 0.5592 0.5597 

Training data 3 0.5723 0.5628 0.5697 0.5691 

Training data 4 0.6094 0.5985 0.6059 0.6050 
Table 15: Results of Algorithm B 

It is evident that sufficiently high hit ratios can be obtained. Algorithm A, which consisted of the trivial 

model and the heuristical model, is a suitable candidate for creating a tile cache recommendation. It 

consistently provides hit ratios in the area of 98-99%, all while caching a very small portion of the total 



 

36 
 

tiles (less than 0.5%). The combined approach clearly provides better values than the individual 

algorithms.  

Algorithm B does not perform very well. Hit ratios are typically in the range 55-60%. Which is better than 

for the simplified model alone but actually worse than for the heuristical model. However, unusually 

high hit ratios were found using training set 1 and test set 4. Despite repeated investigations, no cause 

of the behavior could be found. The same combination of training set and test set in algorithm A did not 

yield any unusual results, which would be expected if the sets were unusual in any way. With the 

exception of this behavior, hit ratios consistently increase with longer training data sets. Therefore, the 

conclusion that longer training data sets are better can be drawn. 

The box plot is a way of visualizing groups of numerical data using various statistical concepts such as 

mean, median and quartiles. Using box plots, it is possible to visualize many characteristics of data sets 

while using a relatively small amount of space. Also, it is possible to visualize several data sets without 

knowing the underlying distribution, which is the case of the experiment (Liu, 2008).  

Figure 39 and Figure 40 show schematic box plots for algorithm A and algorithm B respectively, and 

Figure 41 shows both plots in a single view. Various statistical properties are shown in the graph- 

outliers are shown as dots and the black bar represents the range of the 95% C.I. The quartiles, mean, 

median and adjacent values are also shown. 

 
Figure 39: Box plot (Algorithm A) 

 
Figure 40: Box plot (Algorithm B) 



 

37 
 

  
 

 

Figure 41: Box plot (Algorithm A and Algorithm B) 

The performance differences between the two algorithms are clear - Algorithm A consistently provides 

values larger than 95%. The box plot of algorithm B is also slightly less dense and fluctuates a bit more, 

maybe indicating less reliable results. The relatively poor performance of training set 1 combined with 

the quick improvements due to the larger training sets resulted in Algorithm A:s plot being slightly left-

skewed.  

For algorithm A, the lower limit of the 95% confidence interval is 97.44%. It is therefore likely that 

further samples would perform well above the 95% limit previously set.  

8 Discussion  

This section presents an extended discussion of the experiment results, the possible applications of the 

results and the validity threats.  

8.1 Evaluation of the Combined Experiment 
Algorithm A consistently provides better results than Algorithm B. The trivial model’s superiority to the 

simplified model is clearly visible in the result. It is also evident that the variance of B is high compared 

to A.  



 

38 
 

Neither of the individual models provided adequate hit ratios on their own. The trivial model’s 

advantage over the simplified model is evident in the combined experiment – overall the simplified 

model had a pretty bad performance. It is noticeable how the combined algorithms (trivial and 

heuristics, and simplified and heuristics) perform better, which motivates the combination of several 

models.  

All models could benefit from a higher cache limit. For example consider the trivial model - while good 

results (just over 94.5%) were obtained using a low cache limit (0.48%), results over 95% are probably 

possible if the cache limit is increased. In a similar way, the heuristical model would probably benefit 

from a higher population threshold. At the same time the “quality” of a tile ranking is something that 

could be investigated further, especially when increasing the cache limit. When selecting tiles to cache, 

there is a trade-off between cached tiles and the hit ratio they contribute. Adding a few hundred 

thousand tiles to the cache output will likely increase the hit ratio, the question is if the increase is 

enough to motivate the extra tiles.  

8.2 Application of Result 
Provided that some modifications to Kartena’s rendering procedures are made, the tile set 

recommended by Algorithm A can be used as the initial cache in an on-demand architecture. The 

experiment indicates that great optimizations can be made in terms of storage and rendering times, 

while still achieving a good hit-ratio. The exact numbers of saved time and space when rendering are not 

known as tiles all have different rendering times and take up different amounts of space.  

There are solid indications that more training data provides better hit ratios, which should be considered 

prior to building the cache. The algorithm performs well under varying amounts of training data, with 

heuristical predictions kicking in when the training data is not sufficient. Also, Algorithm A assumes that 

the patterns are the same as before. In the event of changes to the domain such as a changed client set, 

it may be wise to update the training recommendation in order for the cache to be relevant.  

At some point, the number of cached tiles should be decided. In the experiment, a cache of 0.48% was 

used which was enough to obtain good hit ratios. When using a higher number, the hit ratio will most 

certainly be higher. However, the cache is limited by the amount of unique tiles in the training data. 

Tiles with no hits will never be recommended by the trivial model – and the heuristical model is limited 

by the city data.  

The result also extends the current state of the research area. For Quinn and Gahegan, no quantitative 

user data was available, instead ready-made heat maps were utilized. This is a drawback of their study. 

For example, evaluation is performed by overlaying the cache recommendation on heat maps, which is 

meant to provide some indications on the model’s accuracy. Such tests are probably prone to errors, 

which is something that can and should be addressed. This report presents a more exact evaluation 

using real-world quantitative access data, which could be further built upon.  

8.3 Threats to Validity 
This section presents some of the drawbacks that have been identified, along with how they were 

handled.  

Simplified model  

Due to computational limitations, all levels in the simplified model were not tested. However, it should 

be noted that the results were in the same area as the results of Garcia et al. It is therefore reasonable 

to expect similar results for the other scale levels, which would not affect the result in a major way. 



 

39 
 

Heuristic research  

While the 67% hit ratio indicates that decent estimations are made, it is possible that this can be made 

better. The population threshold of 10000 could and should be further examined and perhaps lowered. 

However, the increase of cached tiles always comes at a cost, as discussed in the Future work part.  

Also, the order of the filling and buffering operations should be reversed. Currently, the buffering will 

create new “holes” in the cache due to previously separated areas being combined. If the filling 

operation is performed after instead of before the buffering, this problem is likely to disappear. This 

drawback was realized after the experiments were done, and while the results in terms of hit ratio 

would probably be negligible (if the tiles were important, the trivial model would catch them) it should 

still be considered.  

Non-independent data sets  

The training sets were not independent, as test set 2 ⊂ test set 3 ⊂ test set 4 and training set 2 ⊂ 

training set 3 ⊂ training set 4. This may affect the result – in test set 4, any unusual activity in the last 

seven days affecting the result may be “hidden” by the two previous data sets. Longer test sequences 

were deemed to be more important however, which is the reason the experiment was set up the way it 

was. The limitations in available data was also a contributing factor – the available access logs covered 

roughly nine weeks which made the trade-off necessary. Also, all values in Table 14 and Table 15 are 

examples of possible real-world combinations of training and testing data and are therefore valid.  

9 Conclusion  

The study investigated the possible gains of implementing of an on-demand caching solution at the 

company Kartena. This section presents the conclusions made, followed by suggestions for future work.  

Background 

When developing web map applications, a couple of challenges exist when it comes to serving map 

information to the user. A typical solution is the tile-based approach, which serves portions of the map 

data in separate files. The large number of tiles in a typical applications puts constraints on storage and 

rendering times, as evident at the company Kartena where a rendering session can take several days. 

Since the majority of tiles are rarely accessed, the goal is to move to a semi-on-demand rendering 

approach where a subset of the most popular tiles are rendered in advance. Additional tiles are then 

rendered only when accessed by a user. Typically, this solution leads to less storage space needed and 

up-front rendering to be done – if a suitable tile subset can be identified.  

By creating an algorithm for predicting the most popular tiles, the study set out to address the issues in 

a suitable way. The goal was to use a combination of heuristic usage patterns and predictive statistics as 

this had not been done before.  

Solution 

Two related studies were identified, which offered different takes on similar problems. Quinn and 

Gahegan analyzed heat maps and identified (to users) interesting geographical areas, in order to predict 

future tile usage, which. They identified major roads, coast lines, cities and “points of interest” to be 

interesting to users. Garcia et al. created a model which used tiles access logs to come up with a tile 

prediction, and created “the simplified model” which offered some optimizations to manage the large 

number of tiles.  



 

40 
 

The findings of Quinn and Gahegan were found to not translate particularly well to the domain. Only 

populated areas translated somewhat well. A heuristical model was created, which addresses the issues 

and also added things like filling and buffering. The simplified model was implemented, as well as a third 

model - the trivial model - where past tile statistics directly affected the tile recommendation. 

Evaluation 

The proposed algorithms were evaluated in a series of experiments, where the algorithms were 

compared to real world access data. A good algorithm would have as many of the accessed tiles in its 

recommendation, therefore obtaining a good hit ratio.  

 The heuristical model did not perform particularly well, with hit ratios of 67.96%. It was not 

possible to accurately predict user behavior using the heuristical model alone. 

 The simplified model as defined by Garcia et al. did not provide satisfactory results, the highest 

hit ratio found was 48.97%. The performance was about the same as in the study by Garcia et al.  

 The trivial model showed great potential and provided the most accurate results, offering hit 

ratios of 94.59%.  

Two combined comparisons were also made, by pairing the heuristical model with the two descriptive 

models respectively. The heuristical model combined with the trivial model was called Algorithm A and 

the heuristical model combined with the simplified model was called Algorithm B.  

 Algorithm A performed very well, obtaining hit ratios of 95% and upwards. 

 Algorithm B performed better than the simplified model individually – offering hit ratios 

between 70 and 83%. 

According to Kartena, the performance of Algorithm A was more than enough to implement an on-

demand caching solution. The results were achieved when caching a small (0.48) percent of the total 

number of tiles, which has the business benefit of shorter rendering times and reduced required storage 

space. If needed, the cache can be modified – with more cached tiles the hit ratios almost certainly go 

up. Also, there are strong indications that the algorithm performs better when using longer training sets.  

9.1  Future Work 
A couple of future areas of improvement have been identified. In this section, suggestions of future 

areas of improvement are presented.  

The number of accesses was shown to be smaller over weekends. Are they also different in nature? It is 

entirely possible that certain WMS applications offer services that only are used on weekdays. Overall, a 

more application-specific analysis could be performed. For example, performing individual heat map 

analyses for the biggest WMS applications might provide new information on how the heuristical cache 

should be constructed. Also, the default view (not always level 1) of all applications should be identified 

and prioritized higher in the heuristical model. The trivial solution probably takes care of a lot of this 

however.  

The study did a fair comparison with the different models. However, further work could be done in the 

evaluation by tailoring the input data for each model: as mentioned in the discussion chapter, increased 

cache limits could be investigated further. Further evaluations could be made, for example investigating 

different population thresholds with relation to hit ratio and tiles cache. Also, the heuristical study could 

be extended with experiments measuring the popularity of all the important geographical areas found 

by Quinn and Gahegan.   



 

41 
 

References 

Apache, 2012. Apache HTTP Server Version 1.3. [online] Available at: 

<http://httpd.apache.org/docs/1.3/logs.html> [Accessed 05 June 2013].  

Boulos, M. N. K., Warren, J., Gong, J., Yue, P., 2010. Web GIS in practice VIII: HTML5 and the canvas 

element for interactive online mapping. International Journal of Health Geographics, 9(14), pp.1-13. 

ESRI, 2013. What is map caching?. [online] Available at: 

<http://webhelp.esri.com/arcgisserver/9.3/java/index.htm#what_is_map_caching.htm> [Accessed 08 

February 2013].  

Fisher, D., 2007. Hotmap: Looking at Geographic Attention. IEEE transactions on Visualization and 

Computer Graphics, 13(6), pp.1184-1191 

Garcia, R., De Castro, J.P., Verdu, M.J., Verdu, E., Regueras, L.M., Lopez, P., 2012. A Descriptive Model for 

Predicting Popular Areas in a Web Map. [online] Available at: <http://www.wseas.us/e-

library/conferences/2011/Cambridge/AIKED/AIKED-66.pdf> [Accessed 08 February 2013]. 

Garcia, R., De Castro, J.P., Verdu, M.J., Verdu, E., Regueras, L.M., Lopez, P., 2011. A Cache Replacement 

Policy Based on Neural Networks Applied to Web Map Tile Caching. The Steering Committee of The 

World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp), pp. 

1-7. 

Kraak, M. J., 2004. The role of the map in a Web-GIS environment. Journal of Geographical Information 

Systems, 6, p.83–93.  

Kraak, M. J., Brown, A., 2002. Trends in cartography. [online] Available at: 

<http://kartoweb.itc.nl/webcartography/webbook/ch02/ch02.htm> [Accessed 08 January 2013].  

Lantmäteriet, 2013. RT 90. [online] Available at: <http://www.lantmateriet.se/Kartor-och-geografisk-

information/GPS-och-geodetisk-matning/Referenssystem/Tvadimensionella-system/RT-90/> [Accessed 

05 June 5, 2013]. 

Liu, 2008. Box plots: use and interpretation. Transfusion, 45, p.2279. 

Manlai, Y., Chen, C., Liu, H., Lin, H., 2007. A Usability of Web Map Zoom and Pan Functions. International 

Journal of Design, 1(1), 15-25. 

MapBox, 2013. TileMill. [online] Available at: <http://www.mapbox.com/tilemill/> [Accessed 27 May 

2013].  

OpenGeo, 2013. Introduction to PostGIS. [online] Available at: <http://workshops.opengeo.org/postgis-

intro/geometries.html> [Accessed 27 May 2013].  

OGS, 2006. OpenGIS Web Map Server Implementation Specification. [online] Available at: 

<http://portal.opengeospatial.org/files/?artifact_id=14416> [Accessed 05 June 2013]. 

Pavlenko, 2013. What is mapnik?. [online] Available at: <http://mapnik.org/faq/> [Accessed 11 June 

2013].  

PostGIS, 2013. About PostGIS. [online] Available at: <http://postgis.net> [Accessed 23 May 2013]. 



 

42 
 

PostgreSQL, 2013. About. [online] Available at: <http://www.postgresql.org/about/> [Accessed 23 May 

2013]. 

Python Software Foundation, 2013. About Python. [online] Available at: 

<http://www.python.org/about/> [Accessed 23 May 2013]. 

PostGIS, 2013. PostGIS Special Functions Index. [online] Available at: http://postgis.net/docs/manual-

2.0/PostGIS_Special_Functions_Index.html#PostGIS_Aggregate_Functions [Accessed 27 May 2013]. 

pgAdmin, 2013. Introduction. [online] Available at: <http://www.pgadmin.org> [Accessed 27 May 2013].  

Quinn, S., Gahegan, M., 2010. A Predictive Model for Frequently Viewed Tiles in a Web Map. 

Transactions in GIS, 14(2), pp.193-216. 

Sample, J.T. and Ioup, E., 2010. Tile-Based Geospatial Information Systems. New York: Springer. 

Soonthornsutee, R., Luenam, P., 2012. Web Log Mining for Improvement of Caching Performance. in: 

IMECS 2012, International MultiConference of Engineers and Computer Scientists. Hong Kong, People’s 

Republic of China 14-16 March 2012.  

Spatial Nodes, 2010. Tileseeder. [online] Available at: <http://blog.minst.net/2010/09/01/tileseeder> 

[Accessed 08 February 2013].  

Spatial Reference, 1997. EPSG: 2400. [online] Available at: <http://spatialreference.org/ref/epsg/2400/> 

[Accessed 05 June 2013]. 

Spatial Reference, 2007. EPSG: 4326. [online] Available at: <http://spatialreference.org/ref/epsg/wgs-

84> [Accessed 10 October 2013]. 

TileStache, 2013. TileStache. [online] Available at: <http://tilestache.org/> [Accessed 27 May 2013]. 

TileStache, 2013. Proj4Projection. [online] Available at: 

<http://tilestache.org/doc/TileStache.Goodies.Proj4Projection.html> [Accessed 27 May 2013]. 

Varrazzo, 2010. psycopg. [online] Available at: <http://initd.org/psycopg/> [Accessed 23 May 2013]. 

W3C, 1995. Logging Control In W3C httpd. [online] Available at: 

<http://www.w3.org/Daemon/User/Config/Logging.html> [Accessed 27 May 2013]. 

W3C, 1999. Status Code Definitions. [online] Available at: 

<http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html> [Accessed 28 May 28, 2013]. 

w3schools, 2013. Introduction to XML. [online] Avilable at: 

<http://www.w3schools.com/xml/xml_whatis.asp> [Accessed 27 May 2013].  

 

 

  

http://www.python.org/psf/


 

43 
 

Appendix A: Technical Solution 

As stated in the goal description, part of the study is to develop a technical solution to the problem. This 

chapter describes the different technical decisions made, the technical components used and their 

motivating factors.  

Database 
The implementations of all the algorithms rely heavily on PostGIS. PostGIS is a spatial extension of the 

PostgreSQL relational database system, and adds new spatial data types as well as functions. Using 

PostGIS, GIS-operations are made available which greatly simplifies certain operations. PostGIS-specific 

geographical data types are used to represent city data as well as individual tiles. Built-in functions 

greatly simplifies intersection queries such as “does this tile and this area overlap” and the buffering of 

areas (PostgreSQL, 2013) (PostGIS, 2013). 

Access logs are stored in the database. Figure 42 shows some sample rows from the “accesslog”-table 

(columns “ip” and “site” censored).

 

Figure 42: Example rows in the access log table 

Using various queries and views, information can be obtained from the accesslog table. Certain other 

tables also exist, such as the “cached”-table where the output of the model(s) are created.  

Cities are also stored in the PostGIS database, with the columns name, population and area. Using 

various PostGIS functions such as ST_Intersects intersections with tiles and the like can be found. Holes 

are removed using a combination of ST_ExteriorRing (gets the bounds of a polygon) and ST_BuildArea 

(constructs an area given a polygon), and buffering is done using ST_Buffer (PostGIS, 2013).  

Kartena has experience with PostGIS which speaks to its favor. Alternative database systems were 

available, such as MySQL which has some built-in spatial support. However, the experience argument 

was deemed very important and is the main reason PostGIS was chosen 

Python scripts 
By using the python programming language, automated and context-dependable queries are achievable.  

The database is mainly controlled through a number of python scripts, through the PostgreSQL library 

psycopg (Varrazzo, 2010). For example, “logparser.py” reads accesslogs and fills the database with tile 

information. The python scripts can then be invoked through Windows batch files.  

Even if only shallow knowledge of Python existed beforehand, the language proved to be quick to learn 

and adapt to. Kartena has developed an extension to TileStache called Proj4Projection (TileStache, 

2013), which greatly simplifies the task of transforming from tile coordinates (e.g. 12, 2864, -12838) to 

geographical coordinates (e.g. lat = 59.28, lon = 15.22). Examples and instructions on how to use this 



 

44 
 

was provided by Kartena, which is the main reason that Python along with Proj4Projection was used in 

the study. 

The Python scripts both read and write to the database, which is symbolized by the double-pointed 

arrow in Figure 43. Typically, reads are performed in order to obtain some data – the data is then 

modified and written to a different table.  

The scripts read and parse the following types of files: 

Access logs  

Text files containing information in CLF form. The files are parsed manually by reading each row. Only 

valid accesses are accepted, i.e. those which have an http status code equal to 200 (W3C, 1999). Also, 

requests to tiles located outside the RT-90 bounds are ignored.  

Heuristics file 

Heuristics are expressed in an xml file (w3schools, 2013). Python has built-in support for XML parsing, 

which makes the format easy to use. 

Population cities are denoted using the “popCity”-tag. Including a city in the xml document simply 

means that it will be added to the population ranking. Population and ranking data is then obtained 

from the database – for debugging purposes only the name is specified in the heuristics file. An example 

use of the population tag is: 

<popCity name = "Nynäshamn"></popCity> 

Client areas are city-based, and are specified using the “appCity” tag. This tag has an “app”-attribute 

specifying which client the tag refers to, a “name”-tag specifying the city. The text field contains the 

value the WMS application’s value. It is likely that several client areas share the same city, therefore the 

values are added when parsed. An example use of the application tag is: 

<appCity app = "Client 1" name = "Stockholm">0.095184087</appCity> 

Scale level weights are specified using the “scale”-tag. The attribute “level” contains the scale, and the 

text field contains the weighted value. An example use of the scale tag is: 

<scale level="8">0.6757244662005923</scale> 

City data 

City data is expressed in a separate file using a semicolon-separated unspecified format. Each row 

contains a city name, population count and a string denoting a polygon in the PostGIS multipolygon-

format (OpenGeo, 2013). An example row in the city file is: 

"Karlskrona";"";35212;"MULTIPOLYGON([polygon data])" 

9.2 Manual queries 
Manual queries are used to both read and write from the database. SQL queries can be performed 

directly from the pgAdmin application (pgAdmin, 2013). Manual queries were mostly used for debugging 

and testing different approaches – most of the steps where later automated using Python scripts. 

Manual queries are shown as a double-pointed arrow in Figure 43, as both inserts and reads are done.  



 

45 
 

9.3 TileMill 
Heat maps, city graphics and other map views are created using TileMill. The program connects directly 

to the database and displays any geometries found in the specified table. Styling rules are specified 

which changes how the result looks.  

An example schema of the technical components is shown in Figure 43:  

 

Figure 43: Technical components and their interactions 

 

Database 

Manual queries Python scripts TileMill 

Heuristics 

XML file 
Access logs City data 


