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I. INTRODUCTION

In recent experiments and numerical simulations it has been found that significant trans-

port might be mediated by coherent structures such as streamers, blobs and vortices through

the formation of rare avalanche-like events of large amplitude1–8. These events cause the

probability distribution function (PDF) to deviate from a Gaussian profile on which the

traditional mean field theory such as transport coefficients is based. Specifically, the PDF

tails manifest the intermittent character of transport due to rare events of large amplitude

that are often found to substantially differ from Gaussian distribution, although PDF cen-

tres tend to be Gaussian. Therefore, a comprehensive predictive theory is called for in order

to understand and subsequently improve intermittent transport features e.g. confinement

degradation in tokamaks.

Drift wave turbulence is known to generate zonal flows, which in turn inhibits the growth

of turbulence and transport9,10. As such, zonal flows play an important role in fusion

plasmas11–13.

In geophysical fluid dynamics, zonal flows are believed to cause a similar reduction in

transport in atmospheres14,15 under certain limiting conditions16. This comes as no surprise,

given the analogy between drift waves in the dissipationless limit and Rossby waves in

nearly incompressible, shallow rotating fluids; both systems are described by the Charney-

Hasegawa-Mima (CHM) equation17.

Numerical studies where sheared flow is externally prescribed18–20 lead to energetics

that are qualitatively different from those obtained in the drift-wave/zonal-flow feedback

mechanism21. In the CHM model22–24 sheared flow may be imposed by prescribing the

background density gradient25. The known solutions of the CHM equation, namely bipolar

and monopolar vortices26, form in the plasma. Here the term vortex is used to describe a

localized extremum in the electrostatic potential that is evolved through the CHM equation.

In this paper fluid simulations using the CHM equation are designed so that zonal flows

are prescribed externally,

moving in the poloidal direction and with various configurations in the radial direction. At

initialisation bipolar vortices form, but only monopolar vortices survive due to the interaction
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between vortices as well as the destructive effects of the sheared flow17.

The fluid simulations produce quasi-stationary time series (poloidally averaged and sam-

pled at different radial points) of the electrostatic potential and corresponding vorticity that

describe the CHM flows22–25,27,28. We apply a standard Box-Jenkins modeling for each time

series. This mathematical procedure effectively removes deterministic autocorrelations from

the time series, allowing for the statistical interpretation of the stochastic residual part. In

this particular case it turns out that an ARIMA(3,1,0) model (autoregressive integrated

moving average)30 accurately describes the stochastic process.

The stochastic residual of the time series of potential and vorticity exhibit Gaussian

statistics or distributions with elevated exponential tails. We utilize analytical results from

nonperturbative stochastic theory, the so-called instanton method31–37 for computing PDFs

in turbulence as a comparison to the numerical data. The analytically derived PDFs are

rather insensitive to the details of the linear physics of the system36 and thus display salient

features of the nonlinear interactions. The numerically generated time traces are analysed

using the ARIMA model and fitted with the analytical models accordingly. We find in the

regions with strong nonlinear characteristics an emergent universal scaling of the PDF tails

of exponential form ∼ exp
(

− const |φ|
)

as suggested by recent theoretical work in Ref.

36, 38, and 40 relevant for the direct cascade dynamics. However, in many cases for the

CHM zonal flows we find Gaussian PDFs in similarity to what was seen from the theoretical

model in Ref. 39, whereas for some mid radial points the system exhibit sub-exponential

PDFs ∼ exp
(

− const |φ|α
)

with α < 1, where the dynamics is strongly influenced by the

zonal flow resulting in strong intermittency.

The paper is organized as follows: Section II introduces the CHM model and Section III

the statistical method used in the analysis. The numerical results are presented in Section

IV after which they are discussed and the paper is concluded by a summary of the main

results.
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II. CHARNEY-HASEGAWA-MIMA MODEL

The CHM equation is solved in the Cartesian plane perpendicular to a constant magnetic

field B = B0ẑ, with x and y being the radial and poloidal coordinates of toroidal geometry

respectively. The plane is periodic in the y direction and finite in the x direction. The

background electrostatic field φ evolves through time on the (x, y) plane through the CHM

equation22–24,28

Ln

cs

∂

∂t

(

φ− ρ2s∇
2
⊥
φ
)

− ρs
∂φ

∂y
−
ρs
v∗

c

B

[

φ, ρ2s∇
2
⊥
φ
]

= 0, (1)

where [ , ] are the Poission brackets. The diamagnetic velocity v⋆ = v⋆ŷ is defined as

v∗ =
cTe
eB

1

n0

∂n0

∂x
=

c2s
Ωci

L−1
n , (2)

with c the speed of light, Te the electron temperature, e the electron charge, cs the sound

speed, Ωci the ion cyclotron frequency and n0 the time-independent nonlinear background

density. The characteristic length is the thermal Larmor radius ρs = cs/Ωci and the char-

acteristic time is taken as ρs/max |v⋆| = (cs max |L−1
n |)−1. Equation (1) has two global

invariants: the generalised energy W and the generalised enstrophy U .

A second-order modified Euler predictor-corrector time scheme is used to solve equation

(1). The periodic y direction is treated spectrally while the x direction as well as the non-

linearity of equation (1) are finite differenced25. The CHM equation’s nonlinear term is

calculated using a conservative scheme for vector nonlinearities29. The x boundary condi-

tions are fixed with φ = 0 at all time.

The numerical runs are initialized with a perturbation along the y direction consisting of

many wavelengths, while the nonlinear density gradient L−1
n = L−1

n (x) is prescribed and kept

constant. The CHM equation produces a solution containing many pairs of bipolar vortices

that evolve into larger monopolar vortices, the latter existing for most of the numerical run.

In order to do a statistical analysis on these fluctuations, time series of the algebraic averages

in the poloidal (y) direction of the normalised electrostatic potential eφ/Te and normalised

vorticity ω/Ωci are obtained at positions along the radial (x) axis, denoted as φ̄(x, t) and

ω̄(x, t). The normalised vorticity is obtained using

ω

Ωci
= ρ2s∇

2
⊥

eφ

Te
. (3)
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III. STATISTICAL ANALYSIS

In this paragraph we will quantify the intermittency in the simulated time series by

computing the PDFs of the residuals or the stochastic component of the time traces and

compare these with analytical predictions. Here, we briefly outline the implementation of

the instanton method. For more details, the reader is referred to the existing literature31.

In the instanton method the PDF tail is first formally expressed in terms of a path integral

by utilizing the Gaussian statistics of the forcing, in a similar spirit as in Refs. 31, 34–

37. Here and throughout this paper, the term forcing is meant to describe the inherent

unpredictability of the dynamics and will be assumed to be Gaussian for simplicity. A

general class of solutions is presented in Ref. 36. The integral in the action (Sλ) in the path

integral is evaluated using the saddle-point method in the limit λ→ ∞ representing the tail

values. The parameter λ is proportional to some power of the quantity of interest such as the

potential or flux. In mathematical terms, this corresponds to evaluating the integral along

an optimum path among all possible paths or functional values. The instanton is localized in

time, existing during the formation of coherent structure. The saddle-point solution of the

dynamical variable φ(x, t) of the form φ(x, t) = F (t)ψ(x) is called an instanton if F (t) = 0

at t = −∞ and F (t) 6= 0 at t = 0. Note that, the function ψ(x) here represents the

spatial form of the coherent structure. Thus, the intermittent character of the transport

consisting of bursty events can be described by the creation of the coherent structures. The

dynamical system with a stochastic forcing is enforced to be satisfied by introducing a larger

state space involving a conjugate variable φ∗, whereby φ and φ∗ constitute an uncertainty

relation. Furthermore, φ∗ acts as a mediator between the observables (potential or vorticity)

and instantons (physical variables) through stochastic forcing. Based on the assumption that

the total PDF can be characterized by an exponential form and that it is symmetric around

the mean value µ, the expression

P (φ) =
1

Nb
exp {−

1

b
|φ− µ|χ}, (4)

is found, where the potential φ plays the role of the stochastic variable, with P (φ) deter-

mining its statistical properties. Here b is a constant containing the physical properties of

the system. Using the instanton method we find different statistics in different situations.
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In a vorticity conserving system the intermittent properties of the time series in simulations

are attributed to rare events of modon like structures that have a simplified response for the

vorticity,

∇2
⊥
φ = −k2

⊥
φ+ ηx. (5)

Here η = 1+(1−k2)U and the vortex speed is U . In this situation it has been predicted38,40

that the system has exponential tails in the direct cascade, exp
(

− const |ω|
)

∼ exp
(

−

const |∇2
⊥
φ|
)

∼ exp
(

− const |k2
⊥
φ|
)

, indicating a value of χ = 1.0 as in Ref. 38 and 40. In

the References 34, 35, and 37 the statistics of the momentum flux is found to be a stretched

exponential with χ = 3/2. However, when the nonlinear interactions are weak, as well as in

the case of an imposed zonal flow we find Gaussian statistics where χ = 2 as is elucidated

on in Ref. 39. In the analysis we will make use of different types of distributions to retro-fit

the PDFs of simulation results mainly using the Laplace distribution (χ = 1.0) and the

Gaussian distribution (χ = 2.0).

We focus on the time traces (averaged in the y-direction) at five equidistant radial points

located at x = −18.9,−9.5, 0.0, 9.5, 18.9 (in units of ρs). Each set of data describes the

time evolution of the potential and vorticity to which we apply a standard Box-Jenkins

modeling30. This mathematical procedure effectively removes deterministic autocorrelations

from the system, allowing for the statistical interpretation of the residual part, which a

posteriori turns out to be relevant for comparison with the analytical theory. In our set-up,

it turns out that an ARIMA(3,1,0) model accurately describes the stochastic procedure, in

that, one can express the (differenced) potential time trace in the form

φt+1 = a1 φt + a2 φt−1 + a3 φt−2 + φres(t) (6)

where the fitted coefficients a1, a2, a3 describe the deterministic component and φres is the

residual part (noise or stochastic component). In the time traces the mean values differ

by several orders of magnitude and a convenient way of starting the comparison between

different cases is to apply rescaling of the data. In the rescaling procedure we multiply the

original time trace with a constant factor, thus the mean and variance values are directly

affected. However, the skewness and kurtosis are kept constant by construction. The benefits

gained from rescaling are that we may compare a large number of different cases at different
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radial points and that the tails are retained and the ARIMA model is preserved, thus in this

sense the original and rescaled data is statistically equivalent. The original simulation data

sets are down-sampled and consists of typically 5× 104 entries.

IV. RESULTS

In this section the numerical results from all the different stream configurations are pre-

sented in tandem with the statistical analysis.

Throughout the paper the simulation plane has dimensions −Lx ≤ x ≤ Lx and 0 ≤ y ≤

Ly where Lx = 23.5ρs and Ly = 23.4ρs. The characteristic length is ρs = 0.42 cm.

A. One stream

The constant background density gradient (Figure 1) generates one stream centred at

x = 0 and with velocity max |v⋆| in the negative poloidal (y) direction. The flow is zero for

|x| ≥ 15ρs. The characteristic length and time in Figure 1 give max |v⋆| = 105 cm s−1.

At initialisation many vortices form that coalesce into large monopolar vortices, their

widths determined by the width of the stream and with alternating polarities (Figure 2).

These monopolar vortices are dragged by the diamagnetic flow and move at a speed of

0.2max |v⋆| in the negative y direction, which is the direction of the diamagnetic velocity v⋆

(Figure 1). Smaller vortices that earlier in the evolution moved outside the stream, move

very slowly in random directions under the influence of the large vortices inside the stream,

as can be seen at positions x = ±20ρs.

After initialisation the generalised energy and enstrophy change significantly as vortices

merge but once the large vortices have formed, from time 0.5×104 (csmax |L−1
n |)−1 onwards,

these quantities are relatively stable (Figure 3 and Table I). Small changes in energy con-

servation are reflected in small changes in potential amplitudes. The change in enstrophy

conservation is mirrored in changes in the vorticity of the fluctuations.

In the statistical analysis, the higher moments of the distribution function may reveal

important features of the statistics and the underlying dynamics of the process. Here, in the

statistical analysis we will in addition consider the kurtosis and skewness. We define the kur-
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FIG. 1. Constant x profile of the normalised diamagnetic velocity v⋆. The characteristic time is

(csL
−1
n )−1 = 4.2× 10−6 s.

tosis as the fourth moment divided by the square of the second moment kurtosis = m4/m
2
2,

note that sometimes 3 is subtracted from the kurtosis yielding a zero kurtosis for a Gaus-

sian distribution. A high value of the kurtosis is a key mark for a heavy tailed distribution

which is flat at the centre. The skewness is defined as the third moment normalized by the

3/2-power of the second moment, skewness = m3/m
3/2
2 and describes the asymmetry of the

PDF around its mean value.

FIG. 2. The normalised potential eφ/Te and normalised vorticity ω/Ωci at 23921.47 characteristic

time units for the one stream. The minimum and maximum values of eφ/Te are ±0.019 and the

extrema for ω/Ωci are -0.105 and 0.136. Maximum is white and minimum black in both plots. The

vortices move in the negative y direction at a speed of 0.2max |v⋆|.
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FIG. 3. Conservation of the generalised energy (dashed line) and enstrophy (dotted line) for the

one stream. The change in generalised energy is △E/E0 = (E0 −E1)/E0 up to the end of the run

and the change in generalised enstrophy is △U/U0 = (U0 − U1)/U0. The notation E0 and U0 is

used for the initial values and E1 and U1 for the final values. Table I shows the conservation from

times 0.48 × 104 and 0.96 × 104 (cs max |L−1
n |)−1 onwards.

△E/Et = (Et − E1)/Et △U/Ut = (Ut − U1)/Ut

t = 0.2 t = 0.4 t = 0.2 t = 0.4

One stream 0.026 0.171 −0.048 −0.068

TABLE I. Conservation of the generalised energy E and generalised enstrophy U for the one stream.

The time parameter t is scaled such that t = 1 is the end of the simulation.

In Figure 4, the kurtosis along the x direction for the original time series is compared

to the ARIMA modeled residual stochastic part of the time series. At some negative x

locations distributions with elevated tails are found in the potential for the original time

traces however this behaviour is not found for the vorticity. Furthermore, comparing the

kurtosis of the potential and vorticity of the ARIMA modeled time traces the region with

elevated tails coincide, as an indication of Eq. (5).

Figure 5 displays the PDFs at several positions marked by black lines in Figure 4 along

the x direction. The time traces are normalized in order to be able to show several PDFs

in the same graph according to PDF (φ̃) = PDF [(φres − µ)/µ], where µ is the mean value
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and φres is the residual after the ARIMA process. An analogous definition is adopted

for the vorticity ω̃. Here it can be seen that the PDFs of potential and kurtosis have

exponential tails at the positions with higher kurtosis compared to the middle region which

seems to exhibit Gaussian statistics. Note at some radial positions we find very large values of

kurtosis signifying distributions with heavy tails and χ < 1. Moreover, the PDFs are nearly

symmetric yielding small values of the skewness measure. In particular, Figure 2 shows that

the time evolution of the electrostatic potential exhibits a structure of alternating negative

and positive polarity vortices along the poloidal (or y) direction, indicating that the poloidal

average for the nonlinear term is weak. At the same time the vortices are not symmetric

about the x = 0 axis and these asymmetries result in the vorticity-like statistics.
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FIG. 4. The kurtosis of the potential and vorticity time traces along the x direction in the one

stream case are shown for the original time traces (graph on the left) compared to the ARIMA

modeled time traces (graph on the right).
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FIG. 5. Numerical PDFs along the x direction of the potential (graph on the left) and vorticity

(graph on the right) time traces in the one stream case. The various x positions sampled are

indicated by black vertical lines in Figure 4.
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B. Two adjacent anti-parallel streams

The background density gradient (Figure 6) generates two streams flowing anti-parallel

to each other with max |v⋆| centred at x = ±3.5ρs. The two streams flow adjacent to each

other so that the edges of the streams are at x = ±14ρs and x = 0, where v⋆ becomes zero.

Two cases with different max |v⋆| are studied: a slow-flowing and a fast-flowing system. For

the slow-flowing streams the characteristic length and time give max |v⋆| = 11.2 × 104 cm

s−1. The fast-flowing streams have a max |v⋆| of 3.6 times that of the slow-flowing streams.

Consequently the diamagnetic velocity gradient is larger for the fast-flowing streams.

As in the case of one stream (Section IVA), the initialisation creates many vortices that

merge to form monopolar vortices moving in each of the streams. In the case of the slow-

flowing streams, a smaller gradient in the diamagnetic velocity shear exists between the two

streams, compared to the shear in the case of the fast-flowing streams. As a result, there

are more interactions between the vortices in the anti-parallel streams in the case of the

slow-flowing streams. This manifests itself in Figure 7 by the fact that the two vortices

situated inside the different streams move in the same direction, while the two vortices in

Figure 8 move in opposite directions.

Positive vortices do not move in the direction of the stream where they are situated.

Instead, they tend to move in the direction of the stream that is sampled by the edge of the

vortex. This is clearly shown in Figures 7 and 8. The negative vortices are dragged in the

direction of their neighbouring positive vortices, shown by the vortex at x = 0 in Figure 7

and the one at x = −11ρs in Figure 8. When the negative vortices are far enough from a

positive vortex, their movement is determined by the flow direction sampled by their edge,

as shown by the vortex at x = 15ρs in Figure 7. When vortices are far removed from the

central flow streams and the vortices residing there, they exhibit small random movements,

shown by the positive vortex at x = −15ρs in Figure 7 and the negative vortex at x = 16ρs

in Figure 8.

The generalised energy and enstrophy conservation follow the same pattern as for one

stream (Section IVA): after initialisation and large changes in energy and enstrophy the

simulation produces a solution with less changes in these quantities. This is shown in Table
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FIG. 6. Constant x profile of diamagnetic velocity v⋆ normalised to max |v⋆| for two anti-parallel

streams. For slow flows the characteristic time is (csL
−1
n )−1 = 3.8 × 10−5 s and for fast flows it is

(csL
−1
n )−1 = 10−5 s.

△E/Et = (Et − E1)/Et △U/Ut = (Ut − U1)/Ut

t = 0.2 t = 0.4 t = 0.2 t = 0.4

Slow-flowing streams 0.50 0.29 0.63 0.37

Fast-flowing streams 0.41 0.26 0.52 0.30

TABLE II. Conservation of the generalised energy E and generalised enstrophy U for two anti-

parallel streams. The time parameter t is scaled such that t = 1 is the end of each simulation.

II where the change measured from 40% of the duration to the end of the time-line is

approximately half the change measured from 20% to the end. The energy and enstrophy

change throughout the run as the two adjacent streams influence each other. There is less

interaction between the two streams when the diamagnetic velocity gradient between them

is larger. This manifests in slightly better conservation in the faster streams (Table II).

As a comparison to the statistical analysis of the one stream case, we will consider the

time evolution of the stochastic part of the electrostatic potential and vorticity for both slow-

flowing and fast-flowing anti-parallel streams. In Figure 9(a), the kurtosis of the potential

and vorticity time traces are displayed corresponding to the simulation of the slow flow

presented in Figure 7.
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We find similarly good correspondence in kurtosis profiles between the potential and

vorticity as was found in the case of one stream (Section IVA) for the stochastic residual

part whereas for the original time traces no such correspondence could be found. We have

omitted the figures of the kurtosis of original time series due to space limitations here and

in the rest of the paper, since these do not provide any additional useful information.

In Figure 10 and 11, the numerical PDFs of the stochastic part φres are shown for the

CHM simulations of Figure 7. We find that at the edge of the stream the PDFs are close to

Gaussian whereas at the stream centre other nonlinear features can be found. Here we will

utilize Eq. (4) in the following cases: Laplacian distribution denotes the analytical model

for χ = 1.0, whereas a Gaussian PDF is represented by χ = 2.0. The appearance of a

Laplacian distribution at the stream (Figure 11) is suggestive of a vorticity conserving non-

linear system38,40, whereas a Gaussian distribution is likely for a weakly nonlinear system37

or dynamics impeded by a strong zonal flow39.

FIG. 7. The normalised potential eφ/Te and normalised vorticity ω/Ωci at 1055.88 characteristic

time units for the slow-flowing streams. The minimum and maximum values of eφ/Te are −1.7 ×

10−2 and 1.4 × 10−2. The extrema for ω/Ωci are −9.3 × 10−2 and 0.13. Maximum is white and

minimum black in both plots. The positive vortex at x = 5ρs moves in the negative y direction

at an approximate speed 3.4max |v⋆|, while the negative vortex at x = 0 moves at approximate

2max |v⋆| in the negative y direction. It accelerates and decelerates every time the positive vortex

passes it on its right hand side. The positive vortex at x = −15ρs drifts slowly and randomly,

while the negative vortex at x = 15ρs moves at speed 0.4max |v⋆| in the positive y direction.
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FIG. 8. The normalised potential eφ/Te and normalised vorticity ω/Ωci at 3847.67 characteristic

time units for the fast-flowing streams. The minimum and maximum values of eφ/Te are −1.8×10−2

and 10−2, while the extrema for ω/Ωci are −3.9×10−2 and 0.18. Maximum is white and minimum

black in both plots. The negative vortex at x = −11ρs moves at speed 0.9max |v⋆| and the positive

vortex at x = −4ρs moves at max |v⋆|, both in the positive y direction. The positive vortex at

x = 6ρs moves at speed 0.4max |v⋆| in the negative y direction while the negative vortex at x = 16ρs

undergoes small and slow random movements.
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FIG. 9. The kurtosis of the potential and vorticity of the ARIMA modeled time traces along the

x direction are shown for (a) the slow-flowing and (b) the fast-flowing anti-parallel cases.

In Figure 9(b) the kurtosis of the time series generated by the fast-flowing anti-parallel

streams corresponding to the simulation presented in Figure 8. The ARIMA modeled time

trace of potential and vorticity follow each other reasonably well compared to the original
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FIG. 10. The PDFs of the potential (graph on left) and vorticity (graph on right) time traces

along the x direction in the slow-flowing anti-parallel case. The various x positions sampled are

indicated by black lines in Figure 9(a).

time traces. Also here the skewness is small and the PDFs are Gaussian or exponential.
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FIG. 11. Fits to the two salient types of PDFs, the Gaussian and the Laplacian (exponential)

distributions.
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C. Two streams with space between them

Figure 12 shows the background density gradient generating the two cases studied here:

two streams flowing parallel to each other and two streams flowing anti-parallel to each

other. For both cases there exists a space between the streams. The parallel streams are

located at positions x ∈ [−14,−4] and x ∈ [4, 14] with max |v⋆| at x = ±9ρs and v⋆ = 0

outside these intervals. The anti-parallel streams are located at positions x ∈ [−16,−6] and

x ∈ [6, 16] with max |v⋆| at x = ±11ρs and v⋆ = 0 outside these intervals. The characteristic

length and time are the same in both cases, giving max |v⋆| = 4.7× 104 cm s−1.

Initial pairs of bipolar vortices merge to form monopolar vortices. In the case of two

parallel flowing streams, all the vortices move in the flow direction of the two streams (Figure

13). These vortices exhibit the same behaviour as those in Section IVB, namely they move

in the direction of the flow sampled by their edges. Vortices outside the two streams are not

influenced by the flow direction of the streams, e.g., the vortices at x = ±20ρs in Figure 13.

In the case of the two anti-parallel flowing streams, monopolar vortices form inside the

streams from bipolar vortices after initialisation. These vortices move in the opposite di-

rection of the stream in which they reside. Monopolar vortices forming between the two

anti-parallel streams at positions x > 0 move in the flow direction their edges sample, i.e.,

the negative y direction. At some stage during the simulation these vortices migrate in the

negative x direction, moving through the stream situated at x = −10ρs and in the process

destroying the vortices in that stream. The result is shown in Figure 14 where one vortex,

situated at x = −ρs, moves between the streams in the negative y direction while another

moves in the opposite direction of the stream flow at x = 8ρs.

Table III shows that the generalised energy conservation is good for the two streams

flowing in the same direction, but bad for the anti-parallel streams. This shows that the

amplitude of the fluctuations decrease more in the latter case. There is no discernible pattern

in the conservation of the generalised enstrophy.

Figure 15 presents the kurtosis generated with two imposed parallel or anti-parallel flows

with a spacing between them. The statistics are obtained from the time evolution of the

electrostatic potential in Figures 13 and 14 for the parallel and anti-parallel flows respec-
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FIG. 12. Constant x profiles of diamagnetic velocity v⋆ normalised to max |v⋆| for two streams

with a space between them. The characteristic time is (csL
−1
n )−1 = 8.9 × 10−6 s for both parallel

and anti-parallel streams.

FIG. 13. The normalised potential eφ/Te and normalised vorticity ω/Ωci at 1124.14 characteristic

time units for two parallel streams. The minimum and maximum values of eφ/Te are −2.3× 10−2

and 2.4 × 10−2, while the extrema for ω/Ωci are 0.18 and 0.2. Maximum is white and minimum

black in both plots. The negative vortex at x = −3ρs moves at speed 0.7max |v⋆| and the positive

vortex at x = 6ρs moves at 1.2max |v⋆|, both in the negative y direction.

tively. Note that the kurtosis of time traces of potential and vorticity follow each other

reasonably well compared to the original time traces.
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FIG. 14. The normalised potential eφ/Te and normalised vorticity ω/Ωci at 2273.71 characteristic

time units for anti-parallel streams. The minimum and maximum values of eφ/Te are −1.8× 10−2

and 2.5 × 10−2, while the extrema for ω/Ωci are -0.25 and 5.2 × 10−2. Maximum is white and

minimum black in both plots. The negative vortex at x = −ρs moves at speed 1.4max |v⋆| in the

negative y direction and the positive vortex at x = 8ρs moves at speed 0.6max |v⋆| in the positive

y direction. The positive vortex at x = −21ρs hardly moves at all.

△E/Et = (Et − E1)/Et △U/Ut = (Ut − U1)/Ut

t = 0.2 t = 0.4 t = 0.2 t = 0.4

Parallel streams 0.03 −0.003 0.007 −0.21

Anti-parallel streams 0.32 0.160 0.274 0.02

TABLE III. Conservation of the generalised energy E and generalised enstrophy U for two streams

with a space between them. The time parameter t is scaled such that t = 1 is the end of each

simulation.
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FIG. 15. The kurtosis of the potential and vorticity of the ARIMA modeled time traces along the

x direction are shown in the (a) parallel and (b) anti-parallel cases.
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V. DISCUSSION AND SUMMARY

In this paper simulations of unforced Charney-Hasegawa-Mima (CHM) flows have been

performed where we have imposed constant background density profiles on the CHM equa-

tion. In this manner we generated a single zonal flow, anti-parallel flows with slow and fast

moving plasma adjacent to each other, as well as parallel and anti-parallel flows with a space

between the flow streams.

In the single flow stream a chain of monopolar vortices form along the stream with their

widths determined by the stream width and with polarities opposite from their neighbours.

The vortex chain moves in the flow direction. When two anti-parallel zonal flows are placed

adjacent to each other, monopolar vortices form in each stream but they are affected by

the neighbouring stream and vortices in their close proximity. The smaller the flow velocity

gradients are, the more interaction occurs. Vortices move in the direction their edges sample.

In addition, negative polarity vortices in the presence of positive vortices are dragged along

by the positive vortex. When two streams are placed a distance from each other, monopolar

vortices form inside as well as between the streams. All vortices move in the flow direction

when the streams flow in parallel. In the case of anti-parallel flow the vortex movement is

in the opposite direction of the residing flow velocities. Vortex movement between the two

flows are dictated by the flow direction the vortex edge samples.

After initialisation bipolar vortices form that merge and destroy each other until only

monopolar vortices survive, which leads to enstrophy changes during the initial phase. The

amplitudes of the vortices also change to a stable value during this phase, hence an initial

change in energy. Once the initial phase is over, the energy and enstrophy conservation is

good for the one stream. In the case of the two stream scenarios the energy and enstrophy

are conserved to a lesser extent in some numerical runs and to a larger extent in others.

This is because vortices keep on being created and destroyed as they interact in a random

manner with each other and the sheared flow.

We have sampled time series at points in the radial direction (poloidally averaged) of the

electrostatic potential and corresponding vorticity generated by the simulations. Our aim is

to evaluate the intermittent characteristics of the time series by using a standard Box-Jenkins
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modeling. This mathematical procedure effectively removes deterministic autocorrelations

from the time series, allowing for the statistical interpretation of the stochastic residual part.

The numerically generated time traces are compared with predictions from a nonperturbative

theory, the so-called instanton method for computing probability density functions (PDFs)

in turbulence. More specifically the numerically generated time traces are analysed using the

ARIMA model and fitted with analytical models accordingly. In the simulations presented

here we find that an ARIMA(3,1,0) model presents an adequate description of the stochastic

process.

The time series of the ARIMA modeled stochastic residual of cases described in section

IV (A,B,C) of the potential and vorticity exhibit in general a uni-modal PDF with Gaussian

features or a PDF with exponential tails. In summary, the PDF ∼ exp
(

− const |φ|χ
)

with

χ = 2.0 or exponential statistics are found with (χ = 1.0). The different configurations are

represented by an imposed slow and a fast zonal flow as well as parallel and anti-parallel

flows. The rationale for using the ARIMA model is to uncover the stochastic process hidden

in the numerically generated time trace. The ARIMA process is specifically designed to

identify correlations in a time trace by utilizing a differencing procedure and thus provides

us with an efficient model how to subtract the correlations in time from the full signal. The

objective of this work is to identify the particular stochastic process that is generating the

time trace. The one important restriction of this procedure is that the stochastic process has

to be stationary with respect to the mean and variance. For an arbitrary stochastic process,

there exist formal tests to check whether stationarity holds. In this particular example of

CHM zonal flows with a constant background density profile generating the process, this is

fulfilled except for a short interval at the start of the simulation.

One non-trivial aspect of the statistics of the electrostatic potential in the CHM system is

conservation of energy and enstrophy that may lead to a Gibbsian equilibrium distribution.

However with the imposed shear flow through the varying density gradient, non-vanishing

triad interactions redistribute energy between the modes, contributing to a situation where

the PDFs deviate from the Gaussian form at some radial locations. For a general discussion

see Krommes41. The cascade processes or redistribution energy and enstrophy can also be

directly seen in the simulations as deviations in the conserved quantities.
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To this end, in general we find an emergent universal exponential scaling of the distri-

bution functions (Laplace distribution with χ = 1.0) that accurately describes the statistics

of the time series of the electric potential and vorticity. Analysing the profiles along the

x coordinate of the kurtosis of the potential and vorticity time series we find striking sim-

ilarity suggestive of the relation in Eq. (5). Exceptions to the named distributions occur

where strong nonlinear interactions are present in the dynamics where the PDFs are sub-

exponential with χ < 1.0 and high values of the normalized fourth moment (kurtosis) is

found.
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