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Abstract 

his work looks into electrical treeing in cross-linked polyethylene-based 

materials (XLPE), where the ability to resist tree development is considered 

as an indicator of improved applicability for insulation in high voltage 

power cables. The thesis presents results of a twin PhD project involving joint work 

of two students. One of the students (author of this thesis with a background in 

electrical engineering) concentrated on developing new methodology for testing the 

resistance to electrical treeing in XLPE modified by addition of voltage stabilising 

agents, while the design and syntheses of these agents was the domain of the second 

student, Markus Jarvid (having his background in chemical engineering). The latter 

work has been published in a separate thesis. 

In contrast to the traditionally used needle-electrode test objects, a wire-

electrode geometry has been introduced for creating the highly divergent electric 

field distribution in the insulation, necessary for initiation of an electrical treeing 

process. The wire-electrode object has shown a benefit of producing several trees 

during each individual test, therefore providing more data for further analyses. These 

objects also allow for exposing a larger volume of the material and let trees incept in 

weak-spot locations. How to conveniently analyse the resulting treeing data from 

performed experiments is further analysed in the thesis. To increase the applicability 

of the elaborated methodology for testing materials characterised by different degree 

of transparency, optical observations of the treeing process were complimented by 

simultaneous detection of partial discharges (PDs). Analyses of the latter have 

allowed an interpretation scheme practical for measuring resistance to treeing in non-

transparent materials. 

To evaluate how voltage stabilisers influence the resistance to treeing in XLPE, a 

broad range of stabilisers have been identified and tested. A detailed analysis 

demonstrates a positive effect imposed by addition of 4,4’-didocyloxybenzil. This 

compound is thereafter compared with the effect of various other stabilisers, 

T 



vi 

including benzil-, thiaxanthone- fullerene- and melamine-types. Finally the stabiliser 

efficiencies are correlated with molecular ionisation potential and electron affinity, 

where it has been found that the stabilising efficiency increases with electron affinity 

of the added molecules. The results from this twin PhD project opens up a 

possibility to design new types of practically useful voltage stabilisers and test their 

suitability for improving the insulation in future high voltage cables. 
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Chapter 1 

Introduction 

here is a rapid development world wide of the electric power networks 

which together with a wish for a more reliable power generation and 

distribution emphasizes the need for novel ideas. Today the public opinion 

is demanding a more environmentally sustainable choice of new solutions. Moreover 

local and national grids are gradually being connected to create a so called 

“supergrid”, as it is for example planned that countries like the United Kingdom and 

Iceland are to be connected with the European continent. Progress is also made to 

further strengthen the grid by additional international links, both inland and across 

seas [1]. Many of these projects require installations of high voltage cables. In 

addition, the high voltage direct current (HVDC) technology is becoming attractive as 

it provides the most feasible technical and economical solution for many applications 

and especially new types of extruded polymeric cables are to be developed and used 

as a mean for electric energy transportation. 

The increased use of high voltage cables for energy transmission is followed by a 

desire to further increase their operating voltage level for increasing transmission 

capacity and for reducing losses. This leads to a demand for better cable insulation 

materials that can withstand the resulting increase in electric stress. The choice of 

insulation material has over the past decades gradually changed from the traditional 

mass-impregnated paper in favour of cross-linked polyethylene. As the polyethylene-

based insulation is improved, it also becomes more attractive for the higher voltage 

ratings. 

So far the desired development has been achieved by producing insulation 

materials with fewer impurities, reducing the negative effects imposed by the presence 

of contaminants. Today it becomes more and more difficult to improve the insulation 

quality much further using this approach due to the high costs involved in making the 

materials even purer. There is a need for other paths for improving the resistance 

towards electrical failures. The most promising approaches considered nowadays rely 
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on addition of either nano-sized particles or chemical additives known as “voltage 

stabilisers”. In the work described in this thesis the effect of voltage stabilisers is in 

focus. 

In parallel with the development of new materials, follows a need to elaborate 

suitable test methods that allows for evaluating and verifying which materials would 

prove reliable in the next generations of power cables. Several properties are 

necessary to consider, here the focus is on how to verify a material’s resistance to 

electrical treeing and the proposed solution relies on optical observations along with 

detection and analyses of partial discharge (PD) activity during the treeing process. 

This thesis describes part of a twin PhD student project performed in 

collaboration with the division of Applied Chemistry/Polymer Technology of the 

Department of Chemical and Biological Engineering at Chalmers University of 

Technology, financed by Chalmers Area of Advance in Materials Science. The other 

part of the project, performed by Markus Jarvid [2], focused on chemical aspects 

related to voltage stabiliser synthesis and performance. In a natural way the jointly 

performed activities overlap to some extent. 

1.1 Outline of the Thesis 

Chapter 2 presents background information that establishes a relation between 

the presented work and previously published results. Phenomena of degradation by 

electrical treeing as well as different testing methods used for tree detection are 

described. Approaches utilized for enhancing the electrical strength of XLPE as 

cable insulation material are also elucidated, as are means of data analyses. 

Chapter 3 proposes a new methodology for testing and comparing material’s 

resistance to high electrical stress. Four different test objects are compared and 

evaluated, two of wire type and two of needle type. It is further discussed how the 

multitude of trees appearing in the wire type objects can be statistically analysed and 

a verification that treeing is incepted on equal terms is provided. 

Chapter 4 elucidates how optical detection of tree initiation can be 

complemented by analysing results of PD measurements during the tree formation. 

It shows how the PD activity reflects the tree growth and an approach on how this 

information can be used for estimating the electrical tree initiation is suggested. 

Additionally, some interesting results are shown that illustrate the influence of gas 

release from tree channels on the tree growth rate. 

Chapter 5 uses the developed test methodology and analysis for evaluating how 

various voltage stabilising agents affect the tree initiation of modified XLPE-based 

materials. Several different voltage stabilisers are compared, some yielding in a 

considerable increased performance. The voltage stabilising efficiency is further 

correlated to values on electron affinity and ionisation potential of the added 

molecules. 

Chapter 6 summarises the important results of this thesis and in Chapter 7 some 

suggestions for continuing future work are presented. 
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Chapter 2 

Background 

his chapter presents an overview on the phenomenon of electrical treeing. 

The focus is on treeing in polyethylene (PE), and especially in cross-linked 

polyethylene (XLPE) for high voltage cable insulation, this material is being 

investigated in this project. As a thorough review of the phenomenon is provided in 

[3], only some relevant aspects are highlighted by presenting different factors 

affecting electrical tree inception, e. g. its growth and a resulting breakdown. Ways of 

improving polymeric insulation properties are discussed together with some 

comments on how research can further be advanced with the purpose of better 

qualifying newly developed materials. This is followed by describing various 

approaches on measuring and analysing experimental data, either for understanding 

the treeing phenomenon itself or for characterising insulation material qualities. 

Finally, relevant techniques to statistically present and understand treeing data 

employing Weibull statistics are discussed. 

2.1 The Phenomenon of Electrical 

Treeing 
Important degradation and breakdown mechanisms in high voltage cable 

insulation are associated with the phenomena of treeing. Two different types are 

distinguished, electrical and water treeing, the latter also known as electrochemical 

treeing. These are separate phenomena and only electrical treeing will be considered 

here, although water trees might act as points of initiation for electrical trees [4]. 

Observations on electrical treeing were published already in the 1950’s [5]. Since then 

a substantial amount of research has been made on this subject; even so the topic is 

still not fully understood and relevant research activities are still much in demand.  

T 
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Electrical trees originate at points with highly divergent electric fields, e. g. at 

surfaces of contaminants, protrusions, voids or at tips of water trees. Once initiated, 

they grow into branched or bush-like structures and continue growing until they 

eventually lead to a breakdown. Even though treeing is often linked to polyethylene 

cable insulation, other materials exposed to high electric field stress can also be 

affected, examples are polypropylene [6], epoxies [7], silicones [8], polyimide [9] or 

poly(methyl methacrylate) (PMMA) [10]. The electrical trees consist of hollow gas 

filled tubules, which penetrate the material whilst forming the tree-like structure. 

These tubules range between ~1 and ~30 µm in diameter [11]. Figure 2.1 shows an 

example of experimentally grown electrical tree in XLPE, initiated from an ultra-thin 

wire electrode. 

 

2.1.1 Different Stages of the Treeing Process  

The process of electrical treeing is generally divided into four separate stages; 

initiation, propagation, runaway and breakdown [12]. The initiation is preceded by an 

inception stage during which an emission of electroluminescence (EL) has been 

observed [13]. These stages are illustrated in Figure 2.2 and are further discussed in 

more detail. 

The processes involved in the tree initiation are complex and still not fully 

understood, though there exist some different hypotheses related to this issue [14-

16]. Laurent and Teyssedre [12] have postulated a stage process where the tree 

originates in a “void-free” material by excitation of molecules due to collisions with 

hot electrons or by charge recombination. This yields formation of nano-voids, 

where the mean free path of the charge carriers increases and a solid-gas interface 

appears. Further enlargement of such voids can now be caused by space charge 

induced electro-mechanical forces. Eventually, the voids reach a micrometer size and 

 

Figure 2.1 Experimentally grown electrical tree in XLPE from a wire electrode of 
10 µm in diameter under ramped AC voltage. 



Characterising Resistance to Electrical Treeing in New XLPE-Based Materials for High-Voltage Cables 

 

7 

the degradation proceeds into a more severe stage, as gas discharges can now take 

place, an electrical tree is said to be incepted. When a void becomes able to retain 

partial discharges, at a size of approximately 10 µm in diameter [17], its boundaries 

start eroding. Hot electrons, UV light and thermal stress cause chain scission of the 

polymer matrix [12, 18]. The time required for this process can vary from some 

nanoseconds up to several weeks and is highly dependent on the type of applied 

electric stress. For inception to occur the electric stress needs to exceed a specific 

threshold level [19]. 

 
Once the tree is initiated, it will start to propagate through the insulation, 

accompanied by partial discharges occurring in the created hollow tubules. The hot 

electrons of the plasma start deterioration processes in the dielectric at the tip of the 

tree, causing the tree channels to stretch. Furthermore tubules also start branching in 

a fractal-like manner. The rate of tree growth or propagation often changes with 

time. At the beginning the tree growth is usually fast, often followed by a period of a 

limited growth, a plateau region. A period of increased growth rate starts again 

thereafter. As various tree types may be formed, the growth rate can further depend 

on the type of tree formed. 

Eventually the tree will reach a critical stage, where its growth rate increases 

rapidly, until it bridges the entire insulation thickness and causes a breakdown. 

According to Chen at al. [20] this occurs when the electrical field at the periphery of 

the branches reaches a value of around 100 MV/m. As one or maybe a couple of 

branches reach the opposite electrode, a gaseous path is formed and a complete 

breakdown of the insulation is close. The small width of the tubules may cause a 

delay of the breakdown for some time, until the tubules are widened sufficiently for 

 

Figure 2.2 Microscopic observations of the process of tree growth, shown with the stages 
of (a) initiation, (b) growth, (c) runaway and (d) breakdown. Trees are 
grown in XLPE with AC voltage conditions. 
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an arc to be formed [17]. Another reason for such a delay can be related to the 

conductivity of tree tubules or perhaps even the pressure of the gaseous by-products 

inside them, as reported for polypropylene, where the time between bridging the 

entire insulation by a tree and the complete breakdown could take several hours [6, 

21]. In the last stage the heat generated from the arc melts and carbonizes the 

discharge channel and the material loses its insulating ability. 

2.1.2 Different Tree Types and Their Properties 

Electrical trees have been classified into different categories depending on their 

appearance [22]. The most common division is between bush and branch trees. For 

distinguishing among them, a classification of fractal dimension (dt) [23] may be 

used. Bush trees are, as the name suggests, denser in their structure with more 

branching and have a fractal dimension, 2 < dt ≤ 3. Branch trees, on the other hand, 

exhibit a more sparse appearance with less branching and a fractal dimension less 

than two [11]. Examples of bush and branch trees are illustrated in Figure 2.3. More 

recently this distinction has evolved into a plenitude of types as well as combinations 

of the different types: pine, bush-branch, etc. [20, 24-26].  

 
As for the bush and branch trees, these have appeared to also have different 

properties [17]. The less dense structure of the branch tree shows different discharge 

behaviour in comparison to the bush trees, individual pulses are very short (1-2 ns) 

in time and the magnitude of the partial discharges ranges between 0.1 pC up to 

1 nC during their growth. The rate of pulses is reported to remain nearly constant at 

~200 pulses per second. The discharges do not bridge all the way to the branch tip, 

but rather widen the tubules and cause additional branching. Considering the bush 

tree, individual pulses are longer in time, they can reach magnitudes above 1 nC and 

levels of up to 2000 pulses per second have been reported. The partial discharges are 

 

Figure 2.3 Microscope pictures illustrating branch (a) and bush (b) type electrical trees, 
experimentally grown in XLPE under ramped AC voltage. 
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believed to be concentrated in the body of the bush, creating a large amount of 

branching. However at the periphery of the tree, only minor damage is generated. 

The propagation of a bush tree is also slower compared to that of a branch tree. 

Whereas the larger discharges associated with branch trees cause the local 

breakdown to reach the tip of the tree channel resulting in further damage which 

increases tree growth. In many cases the two tree types are combined. The trees start 

of branch-like, at the plateau region a sharp change to the bush structure has been 

reported [11] and when the growth rate increases again a bush-branch tree is formed. 

2.2 Factors Affecting Treeing 

Processes 
A number of factors affect the process of treeing. The properties of the incepted 

trees depend on the type of the applied electrical stress, varying with AC, DC or 

impulse voltages. The related characteristic features, including findings regarding 

influence of voltages containing harmonics and PWM voltages, are summarised 

below. External factors, e. g. temperature and pressure additionally affect the treeing 

characteristics. Finally, material properties, such as material morphology as well as 

injection and presence of space charge are of importance. 

2.2.1 Influence of Different Voltage Types 

AC Voltage Conditions 

As power frequency AC voltage is utilised in power systems world-wide, the 

effect of AC stress on electrical treeing has correspondingly been examined 

extensively. Since electrical treeing is a statistical process, treeing tests are preferably 

performed at low voltage ramping speed [27] that allows for the inception process to 

happen within a relatively narrow voltage span. The frequency of the applied voltage 

influences both the initiation voltage and the tree shape [28], for 50 Hz the trees are 

predominantly of branch type with mainly one leading channel that approaches the 

opposite ground plane. At 1 kHz the trees become much denser with several main 

channels bridging the insulation in addition to a multitude of smaller branches in the 

tree structure. The tree growth rate also appears to increase with higher frequency. 

Due to such a change in tree properties, it is not recommended to increase the 

voltage frequency for speeding up the testing. When, on the other hand, testing is 

performed at a constant AC voltage levels, the tree behaviour changes [20] with 

amplitude, at lower voltage levels the trees grow as predominantly branch structures, 

whereas when the voltage magnitude becomes higher, bush type trees are incepted. 

These different structures are also accompanied by significant variations in the 

growth rate and the propagation time. Table 2.1 summarises how different properties 

of AC stress as well as temperature affects tree initiation and growth. 
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DC Voltage Conditions 

Electrical trees appearing under DC stress behave differently from trees resulting 

from AC stress. However, for this case the research activities have not been equally 

extensive. The effect on treeing has been studied using: 

(i) ramped DC voltage [29] 

(ii) grounding after a DC voltage pre-stress [30] 

(iii) polarity reversal after DC voltage pre-stress [31]  

(iv) application of voltage pulses of opposite or the same polarity after DC 

voltage pre-stress [32, 33]. 

 It was found that breakdown following a treeing process was higher for 

negative polarity as compared to positive one [31, 34], this was explained by the 

effect of injected space charges, the latter being more prominent in the case of 

negative voltage and thus in turn reducing the effective radius of the electrode and 

thereby increasing the electric field at its tip.For the DC case it has also been 

presented that a higher ramp rate reduces the tree inception level [31], an opposite 

dependence as compared for the case with AC voltage ramp rates. This tendency can 

be explained by homo charge injection, which becomes more prominent for the 

slower DC voltage ramping rate. Concerning the effect of DC voltage with 

superimposed impulses of the opposite polarity, the breakdown levels were found to 

be lower comparing to applying impulses alone [31]. For this cases a build-up of 

hetero charge at the needle tip is believed to increase the stress on the material at 

polarity reversal. The experiments with grounding a DC pre-stress voltage resulted in 

electrical treeing and breakdown at lower voltage as compared to the short term DC 

breakdown level [35]. This is also supported by results from tests with addition of 

antioxidants in XLPE [30], which showed that grounded DC of negative polarity 

resulted in lower voltages of tree inception. Table 2.2 summarises how different DC 

stress parameters affect tree initiation. 

 
 

 

 

Table 2.2 List of dependence on electrical tree initiation for DC conditions 

DC voltage property TIF or TIT 

Positive polarity ↘ 

Ramp rate ↗ ↘ 

Amplitude ↗ ↘ 

 

Table 2.1 List of some properties of electrical treeing under AC conditions 

AC voltage property TIF or TIT Grow rate Tree type 

Frequency ↗ ↗ ↗  more bush-type 

Ramp rate ↗ ↗ ↗ more bush-type 

Amplitude ↗ ↘ ↗ more bush-type 

Temperature ↗ ↘ ↗ more branch-type 
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Further Types of Voltage Waveforms 

As indicated above, treeing phenomena under impulse voltages has been 

investigated. Sekii [36] used impulse voltages of positive and negative polarity. The 

results for positive polarity showed a lower tree inception level, similarly as is the 

case for DC testing. It was further seen that positive impulses created longer tree 

channels and for each of the applied pulses the length increment was greater. The 

effect of needle electrode radius was in [37] investigated utilising impulse voltage 

stress and likewise for negative polarity the trees developed at a slower rate. Their 

appearance also differed depending on polarity. For needle radii smaller than 40 µm 

there was a pronounced polarity effect, while for larger needle radii the effect was 

lost, mainly because the field distribution changed from non-uniform to quasi-

uniform. Impulse voltage was applied to pre-grown trees in [38], resulting in 

noticeably elongated and broadened channels stretching from the pre-grown trees, in 

case the latter were of bush type. When in contrary applying impulses to branch 

trees, their appearance remained unaffected. Tree inception for combinations with 

superimposed impulses on AC power frequency voltage was examined in [39]. It was 

shown that for low amplitudes of the AC voltage, the impulse voltage level needed 

for tree inception was relatively constant. For higher AC voltages the impulse tree 

inception voltage decreases with increasing the AC level. 

Also with the increasing use of voltage shapes containing higher degrees of 

harmonic content, some recent investigations also covered the influence of 

harmonics on electrical treeing. Indications that tree growth becomes more extensive 

in such conditions are presented in [40]. Similar results demonstrating shorter times 

for tree inception at AC voltage with harmonic distortions are reported in [25]. 

2.2.2 Influence of Temperature and Pressure 

Two parameters influencing electrical tree development are temperature and 

pressure. The effect of pressure on electrical tree initiation has not been extensively 

analysed so far. In [41] however, an attempt to evaluate this effect at an interface of a 

silicone cable joint is reported. A dependence of electrical tree inception voltage on 

hydrostatic pressure, ranging between one and fifty bar, showed a significant 

increase, whilst the growth rate increased only slightly. It was also discovered that 

branching developed stronger at higher hydrostatic pressure. 

The influence of treeing properties with temperature has been more broadly 

covered. According to [17] the tree inception is only slightly dependent on 

temperatures, in the range between 25 and 70 °C. However, above this temperature 

range a strong drop in the inception time by an order of magnitude was observed, 

which remained stable up to the material's melting point. The authors also convey 

that branch type trees were typical at temperatures above 80 °C and they grew faster. 

A similar trend with lower tree inception levels at elevated temperature were 

reported in [42], for polyester and epoxy resins. At cryogenic temperature of 77 K 

trees are difficult to initiate, as the inception voltage is strongly increased [17, 43], the 

growth rate is reported to be low and before the trees become 0.5 mm in length the 

glassy polymer cracks. 
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2.2.3 Influence of Material Microstructure 

The microstructure of a material, including degree of crystallinity and lamellae 

thickness, are also parameters to consider as they affect the treeing process. By 

decreasing the lamellae thickness, the amorphous regions in between are reduced, 

and tree initiation voltage is thus increased [44, 45]. Investigations comparing new 

cables with ones operated in service [46] revealed a slight decrease in tree initiation 

time but a clear decrease of growth rate for cables being in operation for 17 years. 

This effect was attributed to a resulting higher degree of crystallinity and decreased 

crystal size occurring from electrical and thermal stresses at cable operation. Tree 

growth rate and the coupled tree type has also been reported in [47] to depend on 

morphological factors. 

Presence of mechanical stress or strain moreover affects the treeing process. In 

[48] the authors compared slowly cooled and quench cooled needle test objects, and 

the resulting mechanical stresses in the polyethylene was found to be higher in the 

quench cooled material. However, after allowing these objects to relax, treeing 

resistance became larger than for the slowly cooled objects. The difference in strain 

level was considered as the influencing factor. A local change of material 

microstructure may also be caused due to local heating associated with PD activity in 

tree channels [49]. 

2.2.4 Influence of Additives 

Influencing the treeing initiation can naturally be used favourably to increase 

polymeric materials’ resistance to treeing by introducing additives. Two main groups 

of additives are classified; chemical compounds known as “voltage stabilisers” and 

nano-size fillers (nano-particles). The concept of using voltage stabilisers for 

inhibiting electrical treeing in polymers has been around for several decades [50]. 

Recently new advances in this field [51] have been highlighted. It has been postulated 

that voltage stabilisers can dispose high-energy (hot) electrons in such a way that the 

polymer matrix is left unharmed. Ashcraft et al. [52] found a correlation between the 

efficiency of a voltage stabiliser and its ionization energy. Accordingly, the hot 

electrons that otherwise might cause electrical tree inception will on impact with a 

voltage stabiliser molecule cause it to ionize, this way creating a stable radical cation 

and releasing two non-harmful electrons of lower energy, as illustrated in Figure 

2.4 (a). The stabiliser is designed to ionise at a lower energy compared to the 

polymer, thus free electrons are prevented from reaching levels of kinetic energy 

harmful to the bonds in the polymer chains. The stabiliser is also suggested to 

include the ability of healing already ionised polymer segments, see Figure 2.4 (b). 

The voltage stabiliser can possibly also be regenerated by combining with a free 

electron, see Figure 2.4 (c). Furthermore, a field-grading effect of voltage stabilisers 

is discussed in [53, 54], where it is proposed that polarisable stabilising compounds 

will be attracted by the enhanced electric field close to a defect, where it will increase 

the permittivity and thus reduce the electric field strength. 
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Several publications show that an addition of voltage stabilisers improves the 

resistance towards electrical treeing significantly [51, 55]. In addition, there are also a 

few commercially available antioxidants and ultraviolet (UV) stabilisers that are 

claimed to have electrical tree inhibiting properties [56]. However, in cases where 

similar structures have been evaluated using different types of measuring setups, the 

measured efficiency varies considerably and inquiries into the reasons behind the 

different results have generally not been made. An example is the evaluation of 2,4-

dioctyloxybenzophenone where the different methods in [55] and [57] resulted in 

widely different stabilising effects. More information about factors influencing the 

stabilising effect, e.g. test conditions, is clearly needed. It is also desirable to expand 

the library of molecules functioning as voltage stabilisers and to better predict their 

effect in real life applications. 

 
A second approach to improving the electrical properties of an insulating 

material is by addition of nano-sized particles to the polymer [58-61]. Yamano and 

IIzuka [62] showed that both the electrical tree inception level and especially the time 

to breakdown increases by addition of Al2O3 nano-particles together with 

phtalocyanine acid to a low density polyethylene (LDPE). The increase in TIV is 

ascribed to two main factors; absorbance of kinetic energy of electron carriers 

(similar to the case with stabilisers) and a local electric field distortion in the vicinity 

of the nano-particles. One of the challenges with adding nano-particles is however 

the need to accurately control their even dispersion in the polymer matrix, as this is 

found to highly influence the additive efficiency. 

2.3 Object Types used in Treeing 

Tests 
Before choosing an appropriate method for the electrical treeing study, many 

different factors need to be considered. Depending on the property to be explored as 

 

Figure 2.4 Possible mechanisms of a voltage stabiliser; a) ionisation, b) healing already 
ionised polymer chains and c) regeneration. 

a)

b)

c)
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well as the properties of the material to be investigated itself. Several alternative 

options exist, regarding both the test object type and the tree detection method. All 

the methods have in common the utilisation of a sharp geometry of the high voltage 

electrode, required for introducing highly divergent electric stress in the test object. 

The electrode geometries utilized for treeing purposes include various modifications 

of needle-needle [63, 64] and needle-plane [26, 63-67] electrode types. Typically, steel 

needles with a tip radius of 3, 5 or 10 µm are used, though semiconducting 

protrusion electrodes have also been introduced [6, 22]. An alternative way for 

electrical treeing tests is the use of a wire-plane electrode configuration [55, 68]. 

The most common manner of initiating trees by using the needle electrodes is 

standardized in ASTM D3756-97 [27] and has thus yielded an extensive knowledge 

on their performance. For example, in [69] studies on the influence of several 

different electrode materials on the tree initiation showed a linear correlation 

between the tree initiation voltage and the work function of the oxide-covered 

electrode. The authors argued that charge injection is partly influenced by the oxide 

presence. Despite of this broad experience, a few concerns have been raised 

regarding the efficiency of needle electrodes, as the delicate needle tips can easily be 

damaged during the insertion, which causes their radii being difficult to control 

accurately. Voids and mechanical stress around the needle tips are also among the 

reported problems, which are likely to occur during the insertion or as a result of 

different thermal expansion coefficients of the metallic electrode as compared to the 

polymer [69]. 

Bamji et al. [70] have argued that using semiconducting protrusions provide a 

more realistic stress, as the insulating layer in a high voltage cable is not in contact 

with metal, but with semiconducting layers. Semiconducting protrusions were also 

used in [71] to incept electrical trees, although in this case with the purpose to study 

space charge injection into the polymer. 

More recently an electrode arrangement utilizing an ultrathin tungsten wire 

instead of the needle [55, 68] has been introduced for the purpose of evaluating the 

resistance towards electrical treeing by improved insulation materials. The wire-plane 

configuration reduces some of the problems related to the needle electrode while 

creating additional benefits, such as a parallel formation of several trees in each 

tested object and exposure of a larger volume of the tested material [72], which in 

turn also allows for a larger amount of treeing data from each tested object. 

2.4 Treeing Detection Methods 
So far optical detection appears to be the most common and robust detection 

method for testing the resistance to electrical treeing in transparent or semi-

transparent polymeric materials. This approach is intensively utilized also in this 

work. Microscopes equipped with CCD cameras usually provide excellent images. 

This way the different types of trees can easily be distinguished and a possibility to 

detect the tree growth in real time makes it easy to control the measurements. A 

novel technique to detect trees by using x-ray tomography imaging has recently been 
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proposed [73]. As a result, trees can be visualised in three dimensions, even in non-

transparent materials. 

To further explore and understand the different stages of treeing, partial 

discharge (PD) measurements are often incorporated in the tests as a complimentary 

or as the main technique. Some results include differing PD patterns depending on 

the tree type [74], as is described earlier. It is also shown that PD patterns during the 

electrical treeing process can be linked to time-to-breakdown. PD amplitude might 

also indicate if tree channels are non-conducting or conducting (carbonised). The 

latter have been found to be characterised by apparent charges two to three orders of 

magnitude smaller as compared to discharges occurring in non-conducting trees, i.e. 

below the sensitivity of commercial PD detectors [75]. An alternative way to detect 

partial discharges in tree channels is by using UHF sensors, as demonstrated by 

Sarathi et al. [25]. Detecting electrical trees and estimating their properties through 

measurements of test object impedance has also been utilized [76]. This method 

relies on the fact that when an electrical tree appears within the test object, 

particularly when its channels become conductive, the impedance of the object 

changes due to altering of the electric field distribution. 

2.5 Statistical Analyses of Treeing 

Data 
Whereas different approaches are used for presenting and analysing the data of 

electrical treeing tests, a common way also proposed in standards [17, 27], is by 

means of the Weibull distribution [77]. This is an extreme value statistics where a 

chain fails through its weakest link. Breakdown models describing treeing 

phenomena using Weibull statistics have additionaly been developed by Hill and 

Dissado [78]. The three-parametric Weibull distribution is defined according to 

Equation 2.1. 
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Here x represents the evaluated quantity. γ denotes the threshold value, this 

value must have a physical meaning as to why breakdown cannot occur below it. α 

describes the scale parameter, which represents how high above the threshold the 

probability of failure equal to 1/e or 63 percent. The voltage or field for this 63 % 

percentile is in this work denoted as V63 or E63. This value is analogous to the mean 

value of the Gaussian distribution. β represents the shape value of the distribution. A 

graphic representation showing a cumulative Weibull probability plot is shown in 

Figure 2.5; the above named parameters are indicated in the figure. The same data 

are plotted as a density function in Figure 2.6, where the influence of the shape 

parameter, β, is clearer. A small β (<3) corresponds to a right-side tail (towards 
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Chapter 3 

Evaluation on the 

Performance of Wire 

Objects and Multiple 

Treeing Analysis 

n this chapter different properties of the wire test objects are discussed 

including possible ways to analyse the multitude of trees initiated in them. As 

wire-type objects have not been used widely, a deeper understanding of their 

behaviour is needed. This is made through comparative studies with the 

conventional needle-electrode test objects. The presented material attempts at filling 

this knowledge gap, where the design of the wire test objects is elucidated together 

with the results of tests performed on both needle and wire objects. 

3.1 Design of Test Objects 
Four different test object types have been studied. Among the wire-electrode 

types, the earlier developed design with a semiconducting tab as well as a newly 

developed object, without the tab, are compared, the latter being introduced within 

the framework of this project. As already indicated, they all utilise a sharp geometry 

of the tree inception electrode to achieve the highly divergent electric field strength 

in the dielectric material necessary to initiate the process of electrical tree growth. 

The examined four different object types are further on denoted as type A, B, C and 

I 
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D. The objects of type A and B have a wire-plane electrode configuration. The 

needle-needle objects, C and D, are prepared according to the ASTM D3756 – 

97(2010) standard [27]. Electrical treeing tests made with the A type object have 

previously been reported in [55, 68]. The B type object is a further development of 

object A during the beginning of the reported project. Figure 3.1 illustrates the four 

object types together with relevant dimensions; a photograph showing actual 

examples of the objects is also provided. 

 
An ultra-thin tungsten wire, with a diameter of 10 or 20 µm, is used as the wire 

electrode. The A type object is made with the wire of 10 µm in diameter. The B type 

is however prepared in two sets; one with each of the wire diameters, thus it is 

further divided into B10µm and B20µm when this distinction is presented. Tungsten was 

selected as the electrode material for its hardness and high elastic modulus as well as 

for providing good electron emission ability. Stainless steel needles are used as 

electrodes in C and D objects, one needle having a sharply polished tip of a 3±1 µm 

radius at the end inclined at 30°. The second needle electrode has a semi-spherical tip 

with a radius of 0.5 mm. The objects are manufactured thin enough, enabling optical 

observation of electrical treeing. In this work only polyethylene has been 

investigated, which is semi-transparent, and the treeing is thus visible quite clearly in 

 

Figure 3.1 Four investigated test object types; denoted A, B, C and D. The A and B 
type are designed with wire-plane geometry, whereas C and D are of the 
traditional needle-needle type. 
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real-time. However by using electrical detection, as is introduced in Chapter 4, a 

transparent or semi-transparent material is no longer a prerequisite. The polyethylene 

with the trade name Borlink LS4201S was provided as LDPE resin by Borealis, 

Sweden and is characterised by a melt flow rate (MFR) of 2 g/10 min at 190 °C and 

2.16 kg and a density of 922 kg/m³. This resin, containing dicumyl peroxide and the 

antioxidant 6,6'-di-tert-butyl-4,4'- thiodi-m-cresol, has a low level of contaminants 

that may influence electrical measurements and is recommended for use in high 

voltage applications up to 220 kV. The tungsten wire was supplied by LUMA Metall 

AB, Sweden, while the steel needles were manufactured by Ogura Jewel Industry, 

Japan. 

3.2 The Electric Field at the Electrode 
To calculate the electric field distribution in the test objects, finite element 

simulations have been performed using Comsol Multiphysics software (vers. 4.2). 

The four investigated object types have been analysed by electrostatic simulations in 

3D to estimate electric field strength in the vicinity of the electrode. The significant 

difference in dimensions between the electrode (µm) and the object (mm) requires a 

high number of mesh elements to resolve the electric field distribution. The size of 

the model can however be decreased by utilising symmetries and thus only a quarter 

of the objects needed to be modelled. The maximum electric field, at the electrode 

surface was then calculated. 

 A simplified field enhancement factor, K, has been introduced in [68] for 

approximating the maximum electric field at the wire electrode, according to 

Equation 3.1. By inserting the applied voltage, U, in kV, and K in mm-1, the resulting 

electrical field, Emax, is given in kV/mm 

 

KUE =max
 (3.1) 

 

The 3D simulations further revealed that for the wire-plane electrode 

arrangement the factor K remained approximately the same along the wire segment 

in which treeing is expected, not being particularly sensitive to the distance between 

the wire and the grounded plane. 
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Comparison of the field enhancement factor, K, to basic analytical formulas 

The electrical field correction functions found from the 3D numerical 

simulations are compared to analytical expressions for geometries approximating the 

different electrode systems in the test objects. For estimating the maximum electrical 

field strength at the tip of the sharp electrode in the double needle-electrode 

arrangement, Emax,DNT, an analytical expression derived by Griač et al [80] can be 

used. This approximation is based on an assumption that the needles can be 

represented by conducting hyperboloid surfaces and that the sharp electrode radius, 

r, is much smaller than the other geometries involved, i.e. the radius of the blunt 

needle, R, and the electrode separation, d. Equation 3.2 illustrates this dependence 

for an applied voltage U. 
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The actual maximum field strength in the dielectric will however be modified 

due to injection of space charges, which depends on both the material of the 

electrode and the tested polymer [71, 81]. Taking this influence into consideration 

would require detailed models of the physical processes involved and further 

analyses involving this behaviour have not been made. 

For obtaining the analytical expression describing the electric field strength, 

Emax,wire, in the wire-plane configuration a cylindrical conductor parallel to a plane 

 

Figure 3.2 3D simulations of the voltage distribution and the electrostatic field strength 
in a test object of type A. 

kV

kV/mm
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has been considered [82] as defined by Equation 3.3. Here r stands for the wire 

electrode radius and d is its distance to the plane electrode. This formula, similarly to 

the former one, takes into account the geometrical factors only, without considering 

any space charge effects.  
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The field enhancement factor, K, considered in Equation 3.1 has been evaluated 

from the 3D-numerical simulations for all the object types, including the needle-

needle ones. For the needle type objects C and D, a good agreement with the 

analytical expressions describing the maximum electric field strength according to 

Equation 3.2 was found. From the simulations, K was found to be 70 and 68 mm-1 

compared to the calculated values of 64 and 63 mm-1 using the analytical equation. 

These differences are due to a small variation in actual electrode distance. For the 

wire objects the analytical expression of Equation 3.3 was merely used as an 

indication, as its geometrical basis differs significantly from that of the A and B 

objects. In this case the simulations rendered values for K of 16, 21 and 12 mm-1 

whereas the analytical expression provided values of 27, 27 and 15 mm-1, for type A, 

B10µm and B20µm respectively. Concerning the objects of type A, the reduction of field 

enhancement factor from 21 to 16 mm-1 is caused by the proximity of the 

semiconducting tab, which in further investigations appeared to have a significant 

influence on the obtained treeing results (see more details in Section 3.5.2). 

3.3 Preparation of Test Objects 
The preparation procedure of the different test object types is described in this 

section. In order to make the material comparison as representative as possible the 

manufacturing process of the different object types has been kept practically 

identical. Following manufacturing, the objects were stored in sealed bags at room 

temperature until electrical testing. The time between the object preparation and 

electrical testing was within 30 days for all the batches. 

3.3.1 Moulding and Cross-Linking Procedure 

The preparation process consists of several stages; the material is first ground, 

thereafter follows a melt-forming of thin plaques. These steps are followed by 

preparation and placement of the electrodes, except for the D objects, where the 

needle electrodes are inserted in the last stage. The prepared objects are now ready 

for cross linking of the polyethylene material. Microscopy is finally utilized to ensure 

that defect samples are removed. 
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Grinding and melt-forming 

Pellets of the high voltage grade low density polyethylene are cooled in liquid 

nitrogen and ground into a powder in a Retsch grinder with a sieve of 500 µm for 

achieving an even material in the finished objects, without distinct boundaries. In the 

next step, for the objects of A and B type, two plaques of polyethylene are prepared 

for the wire electrode to be placed in between. These plaques are cast from the 

polyethylene powder in metallic moulds, specially constructed for the purpose. To 

melt the powder into the desired shape without initiating material cross linking, the 

temperature needs to be kept at relatively low level. The temperature and press force 

scheme for preparing these plaques is illustrated in Figure 3.3. The press force is 

2 kN at the start of the process with a temperature of 130 °C. After three minutes 

the force is raised to 200 kN and kept for three minutes before the temperature is 

decreased to ambient (~20 °C) during fifteen minutes, where after also the press 

force is removed.  

 
Preparation and insertion of electrodes 

The A type objects utilize a semi-conducting tab to provide a connection point 

between the high voltage supply and the wire electrode. These tabs are prepared of a 

cross-linked polyethylene with addition of carbon black which renders them semi-

conducting. Onto each tab a tungsten wire of 10 µm diameter is manually sewn, 

forming a loop protruding from the end of the tab. The tab, with the attached 

tungsten wire, is thereafter placed between two plaques prepared in the previous 

step. In preparing the B objects the wire is attached to a piece of copper tape with 

electrically conducting glue. The wire is fixed in its place between the plaques and the 

copper tape is fastened. Both types of objects are then again placed in metallic 

moulds, ready for cross linking. Figure 3.4 shows how the different parts of A and B 

type objects are arranged before cross linking. 

 

Figure 3.3 Temperature and press force cycle during the primary moulding of plaques for 
object types A and B. 
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Regarding the needle objects, the needles are first examined under a microscope 

to make sure that the geometric requirements are fulfilled prior to their insertion. 

When preparing the C type objects needles are melted in the polyethylene powder in 

a special mould and thereafter the whole assembly is cross linked. In contrast, for D 

objects material blocks of suitable size are first manufactured and cross linked and 

the needle insertion is done after this stage. 

 

Cross-linking process 

The temperature and press force cycle used for the cross-linking process is 

illustrated in Figure 3.5. A force of 2 kN and a temperature of 130 °C is used during 

the first 15 minutes. Thereafter both press force and temperature is ramped during 

15 minutes up to 200 kN and 180 °C, respectively. This press force is kept for the 

remaining part of the process. At the same time, the temperature is kept at 180 °C 

for another 15 minutes, whereafter it decreases during the following 30 minutes. 

 
Needle insertion in D type objects 

After cutting blocks of 20 x 25 mm2 from a 6 mm thick XLPE plaque prepared 

according to the cross-linking process described above, these are placed in a needle 

insertion jig and pre-heated for 90 minutes at 125 °C. Thereafter the needles are 

 

Figure 3.5 Temperature and press force cycle during the cross linking of all object types. 
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Figure 3.4 Sketch of A and B type objects illustrating how the wire electrode is 
positioned between the pre-made plaques of polyethylene. 
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slowly inserted at this temperature. Following the insertion the temperature is kept 

for another 30 minutes to release internal stresses within the material, after which the 

oven is turned off and the setup is left to cool slowly overnight. 

3.3.2 Degassing Process 

The dicumyl peroxide-induced cross-linking process of polyethylene releases 

reaction by-products such as; methane, acetophenone and cumylalcohol [83]. 

Presence of these by-products usually results in a higher resistance to electrical 

treeing [17, 83]. However, with time the by-products migrate out from the material 

and evaporate. To make the tests reliable and repetitive, this process is speeded up 

by degassing the cross-linked test objects, in a vacuum oven at pressure less than 

1 mbar for five days at a temperature of 55 °C. 

To investigate the amount of by-products remaining after degassing, IR 

spectroscopy and HLPC chromatography tests were performed on the investigated 

material [84], these showed that the remaining amount of by-products after five days 

of degassing was around 0.1 %. 

3.4 Test Procedure 
Tree initiation voltage or field (TIV, TIF) has been obtained for measuring the 

XLPE’s resistance towards electrical treeing. All objects have been tested at ambient 

conditions using constantly ramped sinusoidal voltage. Before and after the electrical 

testing, optical microscopy was used to identify and remove objects having visible 

defects. The visual inspection has been made with both non-polarized and polarized 

light for identifying birefringence patterns that indicate presence of strain in the 

material. 

3.4.1 Electrical Setup for Treeing 

The electrical measurements for tree initiation voltage were performed in a setup 

as illustrated in Figure 3.6. A 20 kVA variable step-up transformer with a maximum 

voltage output of 75 kVrms was applied as the voltage source. A constant voltage 

ramp rates of 500 Vrms/s was employed. To limit short circuit currents in case of 

breakdown in or across the test object a water resistor of approximately 200 kΩ was 

connected in series with the test object. Voltage measurements were made using a 

resistive voltage divider connected to a DAQ device (NI USB-4431) at sampling rate 

of 1 kHz. 
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3.4.2 Detection Methodology 

During testing the object was placed in a glass tank filled with transformer oil, 

preventing a flashover across the surface of the test object, as illustrated in 

Figure 3.7. The oil also provided a similar refractive index to the polyethylene 

enhancing the visibility of the electrical trees. 

 
A CCD camera, capturing 25 frames per second at a resolution of 768 x 576 

pixels per frame, was utilized for detection of the trees. The CCD camera was 

positioned in front of the test object which was lit from behind. The oil was kept at 

 

Figure 3.7 Sample holder - the test object is placed between high voltage connection and 
grounded copper bar in a glass tank filled with transformer oil. 
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Figure 3.6 Schematic view of the electrical testing circuit. 
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ambient temperature (19-22 °C). The treeing process was examined both in real-time 

and recorded to be studied in more detail after the tests. By analysing the recorded 

videos the time of each tree initiation could be noted and correlated to the 

corresponding voltage level. This voltage is throughout this thesis considered as the 

tree initiation voltage, even though in reality the tree starts growing before it can be 

observed with the CCD camera. The exact level of treeing initiation is however not 

of great importance when comparing between different materials and this systematic 

error is further reduced in the measurements with the optical microscope of a higher 

resolution, introduced in Chapters 4 and 5. 

3.5 Analyses on Wire Type Objects 
With the introduction of the wire electrode, a larger volume of the dielectric is 

exposed to the highly divergent electric field as compared to the needle electrode. 

From this follows that several electric trees initiate at the electrode, in each of the 

tested objects, as is illustrated in Figure 3.8. 

 
This is perhaps the most prominent feature of the wire-type object, as opposed 

to the traditional needle type where only a single tree is formed. In order to further 

understand and make better use of the treeing processes yielded in the test objects, a 

deeper analysis is made on this behaviour. The appearance of many trees will 

naturally provide more data, however some consideration on how to interpret and 

present this information is necessary. The data interpretation is simpler for the 

traditional needle due to the single obtained data point per test object. With multiple 

trees present in every object there is a need for a more sophisticated approach for 

the statistical analyses. The plenitude of obtained data should be utilised in an as 

beneficial manner as possible. A suggestion on how to achieve this is presented 

below together with a detailed evaluation and verification on its suitability. This work 

 

Figure 3.8 Multiple trees growing from the wire object. 
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second order equation also presented in the figure. When the measured raw data 

from Figure 3.13 are corrected with the defined relation, the tree initiation voltage 

levels become less influenced by the distance to the semiconducting tab, especially 

for distances between 1 and 3.5 mm. To limit the influence of tab effect, only objects 

with wire loops extending 2.5±1 mm were further considered, while still leaving 

enough data for comparisons as the one shown in Figure 3.11. 

 
A similar field analysis was also made for the electrode-to-ground distances, 

varying between 2 and 5 mm. A correlation in this case is not so evident, even 

though a small trend can be noticed in Figure 3.15, indicating that this parameter is 

not so critical for controlling the accuracy of the treeing initiation tests. 

 
A further inconvenience, albeit of a different nature, with the use of 

semiconducting electrodes, is that in cases of a complete breakdown, carbon black 

 

Figure 3.15 Dependence on the wire-to-ground distance on tree initiation voltage in A-
type objects. 
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Figure 3.14 Calculated maximum electric field strength at the wire as a function of the 
tab-to-wire distance. 
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particles disperse in the surrounding transformer oil, significantly reducing the 

visibility whilst also changing its dielectric properties. Therefore the oil needs to be 

changed and both the container and the object holder need to be cleaned thoroughly 

after each such occasion. 

3.5.3 Object B - Newly Developed Object without Tab 

For improving the above reported problems the B-type object, without the 

semiconducting tab, was further developed. To verify its superiority as regards less 

dependence on the field enhancement due to variations in the electrode positioning, 

the tree initiation voltage and field enhancement at the electrode were further 

examined. The wire-to-plane distance was examined for both B10µm and B20µm. In 

Figure 3.16 the observed tree initiation voltage are ordered by the wire to ground 

distance. As determined, a lack of such dependence can be noticed and the allowed 

distance variations were set to 3.5±1mm. The 3D-simulations also showed a similar 

behaviour, only a very small change in the electric field strength was found when 

varying the distance between the electrodes.  

 
Also the influence of tree position on the wire was analysed. It was done by 

relating the angle at which the tree appears, or for the trees located further than 

2 mm away from the tip of the wire loop by its distance. Figure 3.17 shows how this 

distinction is made, 0° is placed at the tip of the curvature and for reference reasons 

90° is positioned at the parallel line made at a distance of 2000 µm from the 

curvature tip, which was the designed wire loop width. For trees appearing on the 

straighter parts of the wire, above this line, a division is instead made by their 

distance from the line. 

 

Figure 3.16 Dependence of tree initiation voltage on wire-to-ground distance for for 10 
and 20 µm B-type objects. 
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A last consideration was made to conclude if the trees were independent of each 

other; this is related to a question if the position of a newly incepted tree can be 

affected by the locations of already growing trees. The trees proved to appear 

randomly at the electrode, independent on the previous treeing instances, as 

illustrated in Figure 3.20. It is therefore assumed for further analyses that all the trees 

do practically incept on equal terms, despite of their position along the wire and 

small geometry deviations in the prepared objects. 

 

 

Figure 3.20 Order of appearance of electric trees in B10µm type object (the figure is 
constructed from a video sequence). 
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Figure 3.19 Number of trees appearing at various positions o the wire electrode. 
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fact that this was always done at high pressure and at a controlled rate, kinks 

appeared in most objects. When cooling at a faster rate by use of metal blocks, 

cooled to 10-20 °C below zero, the kinks were found to be reduced in both number 

and sharpness, however they grew back again during the degassing process, as seen 

in Figure 3.22, showing a kink in a test object checked under microscope at 24 h 

intervals during the degassing at 55 °C.  

 
The material in the vicinity of the wire electrode has also been checked using 

polarised light; a typical result is shown in Figure 3.23. As seen from the 

birefringence patterns, mechanical stress is present in the polyethylene close to the 

kink formation, which might influence the electrical treeing inception at these points. 

On the other hand, no such stress is observed elsewhere along the non-deformed 

parts of the wire. 

 

 

Figure 3.23 Birefringence close to a kink indicating built-in stress in the material. 

 

Figure 3.22 Kink development during the degassing process at 55 °C 
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A presence of mechanical stress was also found in the tested polyethylene 

material by checking the objects using polarised light. Two typical examples of C and 

D objects are presented in Figure 3.26, note that the images are not to scale. For the 

D objects, where the needles where inserted into the already cross-linked material 

clear birefringence patterns can be observed at the needle tip, indicating frozen in 

mechanical stress in the polyethylene. For the C type objects, no such patterns could 

be found at the tip of the needle, though some birefringence can still be identified in 

the material bulk. 

 
The mechanical stress also had an impact on the tree initiation voltage, as 

illustrated in the Weibull plot of Figure 3.27, where the unfilled squares represent 

data from needle objects of type D with birefringence patterns close to the needle 

tip. It can be noted that these objects generally had trees initiated at lower voltages as 

compared to the objects where no mechanical stress could be distinguished. 

The above named disadvantages of the needle type objects should however be 

weighted to other qualities. Knowing the exact location of tree growth allows for 

higher magnification of the optical methods. This is also a prerequisite when 

attempting to capture electroluminescent signals during the tree inception stage. The 

appearance of a single tree can also be an advantage for qualitative electrical 

measurements of e.g. PD activity in the electrical tree, as it is evident from which 

point it originates. 

 

Figure 3.26 Typical birefringence patterns found in C and D objects. 

 

Figure 3.25 Example of needle electrodes with damaged and proper tip. 
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they were first cooled in liquid nitrogen before splitting them into two halves, 

exposing the wire electrode and the surrounding bulk of the material. The split 

objects were thereafter etched and sputtered with gold before the study. As 

exemplified in Figure 3.29 no clear difference in the morphology of the polyethylene 

could be distinguished close to the wire electrode or elsewhere in the objects. An 

examination on the crystal regions in XLPE showed no significant variation in size. 

Further the contact between the electrode and the insulation appears satisfactory; an 

imprint of the sub-micrometer ridges in the polymer is noted in the channel, where 

the wire was positioned. As seen in the figure the tungsten wire has been forced out 

of its original position during the splitting of the object. 

 

 

Figure 3.29 SEM picture of the XLPE close to the wire and further out in the material 
bulk. 
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Chapter 4 

Correlation of Electrical 

and Optical Treeing 

Observations 

n the previous chapter it was verified that the wire object functions in the 

desired way and having decided upon how to statistically analyse the visually 

obtained treeing data, further testing has focused on how treeing can be 

detected and studied with additional electrical measurements of the partial discharge 

activity in the tree channels. The properties of the obtained PD signals are analysed 

and these are compared to the optical observations, mainly with respect to tree 

initiation voltage and the number of incepted trees. Tests have been performed for 

the reference XLPE and for the same material with addition of a voltage stabiliser. 

These results are then utilized in a method to determine a material’s resistance to 

treeing without depending on optical observations. Effect of stray capacitance on the 

treeing process is also investigated, as is the effect from constant amplitude of the 

AC voltage stress. 

4.1 Test Procedure 
To facilitate the treeing analyses, the ramp speed of the applied voltage has been 

lowered by an order of magnitude, which provides for both a better accuracy in the 

determination of tree initiation as well as more data traces in which to study PD 

activity. Some small modifications in the object preparation and to the test setup 

I 
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were introduced as described in the following section, though the testing mainly 

followed the same procedure as described in Chapter 3. 

A non-commercial stabiliser, 4,4’-didodecyloxybenzil (in this work also denoted 

as Et12), with the chemical structure seen in Figure 4.1, has been tested along with 

reference XLPE, without stabiliser addition. This particular stabiliser was originally 

chosen for a more detailed study on stabiliser performance as its benzil core exhibits 

promising properties with respect to its ionization potential. Alkyl chains have been 

bound to the core for providing better miscibility with polyethylene. The stabiliser 

was first dissolved in 300 ml of dichloromethane (DCM) and mixed with the 

polyethylene powder by shaking it in an erlenmeyer flask during approximately one 

hour. The solvent was then removed by placing the mixture in a rotary evaporator 

for around one hour at a pressure of 800 to 900 mbar. An additional drying was 

thereafter performed in a vacuum oven for 12 hours at 40 °C. Test objects of type B 

with the 10 µm wire electrode were manufactured from the XLPE with and without 

the stabiliser, following the earlier described procedure. Four different loadings of 

the stabiliser were studied, 10, 20, 30 and 40 mmol/kg of polyethylene, which 

respectively corresponds to approximately 0.56, 1.12, 1.68, and 2.24 wt%. 

 

4.2 New Test Setup 
The following modifications have been implemented in the test setup, as are 

illustrated in Figure. The transformer has been exchanged for another one allowing 

slower ramp rates, between 20 and 160 Vrms/s and a PD measurement system, based 

on the principles described in [85, 86], is introduced. The selected PD detection 

method is chosen due to its efficiency in separating the PD signal from the applied 

voltage with only some simple electrical components. It has the PD decoupler 

connected in parallel to the test object, which protects the data acquisition system in 

case of occasional breakdown of the object. The PD decoupler comprises a 95.66 pF 

capacitor, Cpd, a 51 Ω resistor, Rpd, as well as a 1.80 meter long coaxial cable with the 

screen grounded in both sides. The resistor and capacitor create a high-pass filter, 

suppressing the applied sinusoidal voltage without affecting the high frequent PD 

signal. The coaxial cable acts as a resonant amplifier for the high frequency content 

of the signal, thus amplifying the PD signal. Furthermore, a Pearson current 

monitor, model 2877 with a bandwidth of 200 MHz providing a ratio of 1 V for a 

current of 1 A, is positioned around the ground wire connected to the test object, 

allowing for measurements of the current in the object during treeing. The PD 

 

 

Figure 4.1 Chemical structure of the added stabiliser, 4,4’-didodecyloxybenzil. 
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detector, the Pearson current monitor and the voltage divider are connected to a 

Tektronix DPO4000 oscilloscope with 8 bits resolution and a bandwidth 350 MHz 

with a maximum sampling rate of 2.5 GHz. However to limit the data amount the 

PD traces are sampled at a rate of 50 MS/s. The signal traces (each 20 ms long), 

corresponding to one period of the applied sinusoidal voltage, are collected and 

stored in a computer. The time between each set of traces is set to 2 seconds. The 

testing was performed for four different 50 Hz AC voltage ramp rates; 20, 40, 80 and 

160 Vrms/s. 

 
The CCD camera used in the tests presented earlier in Chapter 3 has been 

exchanged by a stereomicroscope equipped with another CCD camera, recording the 

process at 3.7 frames per second at a resolution of 2048 x 1532 pixels. This allows 

for detection of trees smaller than 10 µm and makes the determination of tree 

initiation significantly more accurate. The electrical tree initiation tests were 

performed in transformer oil in a custom made container, as shown in Figure 4.3. 

 

 

Figure 4.3 New optical detection set-up for the treeing experiments, showing a microscope 
coupled to a CCD camera and the new object holder designed for the purpose. 

 

Figure 4.2 Modified set-up with PD decoupler and Pearson current monitor. 
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4.3 Properties of the PD Detection 

System 
Not having access to an electrically shielded room for these measurements 

implies that some issues with background noise and disturbances in the signal have 

been encountered. Different types of noise could be distinguished and Figure 4.4 

shows the background noise originating from the surrounding environment, which 

resulted in a peak-to-peak noise level of about 25 mV. This limits the trigger level 

used for detecting PDs in this work. Furthermore, the stepper motor regulating the 

voltage ramp produces a background noise of a similar range, though precaution has 

been made to shield and limit it. Unfortunately, a non-identified source has 

additionally produced considerably larger disturbance, appearing occasionally, thus 

destroying the measured signal and rendering PD detection impossible in some tests. 

If this happens in only a few signal traces of the test, these are simply removed from 

the analyses; otherwise the electrical detection from that test object has to be 

discarded. Due to these disturbances some tests series could not be analysed, 

however an adequate amount of data was obtained to perform a characterisation of 

the treeing process to a certain extent. 

 
To estimate the charge of the measured PDs, calibrations were made with 

Haefly PD calibrator type 451 applying PD signals of 200, 100, 50 and 20 pC to the 

test setup in parallel to the test object. The resulting traces from this calibration are 

shown in Figure 4.5, with the signal from 20 pC charge omitted as it is below the 

noise level. As seen the sampling rate of 50 MS/s is not enough to resolve the 

oscillations in the applied PD pulse and accordingly the accuracy in the peak values 

of the detected PD becomes affected. The sampling frequency is however high 

enough, to detect the occurring PDs. Recreation of the apparent charge of the PD 

by integration of the voltage will thus not be accurate, due to both the poor sampling 

rate and the background noise. Therefore a simpler approach of correlating the peak-

to peak value of the signal is chosen as an indicator of the PD amplitude. For the 

 

Figure 4.4 Periodic background noise, without high voltage applied to the test set-up, 
limiting the detection trigger level. 
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three cases of 200, 100 and 50 pC; the corresponding peak-to-peak voltages are 212, 

100 and 52 mV, respectively. A linear relation can be observed between the voltage 

amplitude and the charge and 1 mV in the measured PD signal represents about 1 

pC in the magnitude of the partial discharge. The presented results will be provided 

as peak-to-peak values in V, as more focus is put here on differences in the PD 

activity rather than on the determination of their physical behaviour. 

 
The 50 Hz sinusoidal voltage is sufficiently suppressed for direct PD detection. 

However, to minimise the influence of noise and the voltage ramp to allow also for 

detection of weaker PDs an accumulated sum is subtracted from the measured signal 

according to Equations 4.1 and 4.2, as introduced in [85]. 

 

1

)2,()1,(
)1,(

+

−+−
=−

n

ctnuctu
ctu accM

acc
 (4.1) 

 

where uM is the measured signal by the oscilloscope, uacc the accumulated sum 

from the earlier signal traces and n is set to the number traces chosen to average 

over. c is the recorded cycle number and t is time. For these test series n is set to 120 

when applying the 20 V/s ramp speed and set to 20 for the faster ramp rates where 

the voltage remnant varies more between two consecutive traces, c.  

 

)1,(),(),( −−= ctuctuctu accMdiff  (4.2) 

 

where udiff is the difference between the captured voltage trace and the 

accumulated sum from the previous recorded traces. Due to the stochastic nature of 

PDs, both the phase locked disturbances and the remnant from the applied voltage 

are limited. Figure 4.6 illustrates how the signal-to-noise ratio is somewhat improved 

by removal of the low frequency contributions from the applied voltage. The 

 

Figure 4.5 Signals from calibration pulses of 50, 100 and 200 pC connected in parallel 
with the test object. 
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described approach has been implemented in LabView, based on the acquisition 

software used in [85, 86]. 

 
Udiff is then employed in detecting the PDs by using a simple threshold, PDtrig, 

value of the peak-to-peak voltage. The PDtrig level has been set to 0.035 V for the 

PD decoupler trace and to 0.002 V for the Pearson current monitor. Two traces 

originating from the same PD are displayed in Figure 4.7 together with the different 

trigger levels (note that both the current signal and its trigger level are amplified ten 

times in the figure for comparison purposes). The low sample rate limits the 

accuracy of the PD amplitude estimation. However by increasing it, the time 

between two consecutively captured traces is increased also, thus the 50 MS/s rate 

was chosen as a suitable trade-off. 

 

 

Figure 4.7 Recorded PD and current signals, together with indicated detection trigger 
levels. Note that the current signal has been magnified ten times. 
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Figure 4.6 PD signal traces (uM and udiff) and before and after the averaging, removing 
the voltage remnant from the applied voltage. 
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In theory, the relation between both measured PD amplitudes for the two 

employed detectors should be closely linear. Figure 4.8 shows a phase-resolved 

pattern of PD amplitude (PRPDA) detected for a single test object during a 

complete voltage ramp by means of both the detectors. To enable the comparison, 

the voltage measured by the Pearson current monitor is scaled with a factor of 24.24 

(estimated from Figure 4.7). Some deviations can be noticed, both as lower and 

higher values (indicated in the highlighted box), which can probably be attributed to 

the low sampling rate. It can further be noted that the PD decoupler allowed 

detection of smaller PDs. 

 
The presented data indicate for some advantages of the PD decoupler approach. 

Therefore, in the following no more results obtained by means of the current 

monitor will be presented.  

4.4 Characteristics of PD Behaviour 
In order to correlate the optical detection of the treeing processes with analyses 

of the in parallel ongoing PD activities, aspects and possible approaches were 

investigated. These are presented in this section. 

4.4.1 PD versus Optical Detection with Respect to 

Initiation Voltage 

In real-time, the results of optical observations and electrical detections appeared 

quite simultaneously. However, when analyzing the video recordings frame by frame, 

it appeared that the optical evidence of the inception could be observed somewhat 

 

Figure 4.8 PRPDA pattern detected in the same test object by PD decoupler and 
Pearson current monitor while the applied voltage is ramped up. As seen, the 
amplitudes do not scale with a constant. 
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before the PD signals were detected above the noise level. Figure 4.9 elucidates this 

correlation by comparing the tree initiation detected with the optical system to that 

of the PD decoupler for the different investigated ramp rates. 

 
The voltage level where the first tree is optically detected is set in the figure as 

zero voltage level. The difference between this voltage and the level of the first 

detected PD is plotted in form of the raw data as well as fitted to a box plot, with the 

mean and the 75 percentiles indicated. In addition the voltage steps between the 

captured cycles are indicated by black lines. As the time between recorded traces is 

constant, i.e. 1.7 s, the step in the applied voltage is larger between traces for the 

higher ramp rates. It can be observed from the figure that the lowest ramp rate 

shows least difference between the optical and the electrical detections, with a mean 

value of the difference at around 0.2 kV and a maximum deviation slightly higher 

than 0.4 kV. For the intermediate voltage ramp rate these values are respectively 0.6 

and 1.0 kV, though for the fastest ramp rate the mean value is reduced to 0.3 kV 

even though the maximum deviation is still high, close to 1.2 kV. The reduction in 

the mean value for the fastest ramp rate could be a result of the too low number of 

data points, however it could also be related to the fact that trees at the higher ramp 

rates initiate at higher voltage levels and grow more rapidly, probably producing 

larger PDs from the beginning. It can also be noticed that for all ramp rates, some of 

the optically detected inceptions are detected electrically during the subsequently 

recorded PD trace. In other cases a few traces are needed before the inception is 

electrically seen. For the two lower ramp rates, at most six to seven traces were 

needed, while for the fastest ramp rate up to four traces. The fact that not all trees 

can be detected in the subsequently captured PD trace is mainly attributed to the 

signal to noise ratio, the PDs may be weak and hidden in the noise. It might also be 

the case that PDs do not occur at every sinusoidal period, and as the system is 

 

Figure 4.9 Box plot illustrating the difference in tree initiation voltage for trees measured 
by PD decoupler as compared to the results of optical observations. The 
0 kV level corresponds to the optically detected tree initiation voltage. 

4 PD traces

4 PD traces

4 PD traces



Characterising Resistance to Electrical Treeing in New XLPE-Based Materials for High-Voltage Cables 

 

49 

limited to recording cycles every 1.7 s, i.e. every 85th cycle, no PD may exist in the 

tree channel during the first recorded cycle or cycles. 

4.4.2 PD Activity versus Voltage Magnitude and Number 

of Trees 

To elucidate how the PD activity depends on the treeing process in the test 

object a few parameters were analyzed. These are the number of PDs, as well as their 

maximum, summed and average PD amplitudes per sinusoidal period. Figure 4.10 

illustrated a treeing progress in a test object, similar tendencies were observed in a 

majority of the test objects. The inception of each newly appearing tree and the rate 

of growth of the previous trees are seen in the pictures together with the 

corresponding initiation voltage level. To simplify the following analysis only the five 

first trees are illustrated. 

 
The raw PD data presented in Figures 4.11, 4.13, 4.14 and 4.15 reveal existence 

of a considerable variation of the measured parameters. To simplify the analysis a 

floating average, PDnumf for each data series was calculated according to Equation 

4.3. PDnum is the number of PDs in each trace and n is the number of subsequent 

traces used for the calculation. It has to be remembered that the ramp rate increases 

the voltage amplitude between each captured trace. Therefore different values of the 

cycle number n are utilized for the different ramp rates (according to Table 4.1) to 

 

Figure 4.10 Sequence of images illustrating initiation and development of electrical trees 
and voltage levels for five first trees appearing in the same test object. 



Chapter 4 Correlation of Electrical and Optical Treeing Observations 

50 

ensure a good fit with the measured voltage. Accordingly, floating averages are also 

calculated for the summed, maximum and average PD amplitudes. 

1

1
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+

+
=

−

+

n

nPDnumPDnum
PDnum ii

if

 (4.3) 

 

 
The measured behaviour of the different PD parameters are shown for the case 

illustrated in Figure 4.10. To simplify the comparison between electrical and optical 

detection, the initiation voltage for each tree is indicated on the x-axes in Figures 

4.11, 4.13, 4.14 and 4.15. First the number of PDs detected per period is presented, 

in Figure 4.11. One may observe an apparent increase in number of PDs after the 

appearance of next electrical tree. This is further stressed by including slopes of the 

Number of PDs in the figure, displaying noticeable changes in the steepness. 

 
The presented approach to identify appearance of new trees based on the PD 

data was utilized on several test objects. Figure 4.12 shows a comparison of such 

results for a test series (15 objects). A tendency for increase in the number of 

detected PDs, as represented by the increasing slope, suggests that this type of 

analysis provides a possibility to follow the inception of new trees in the insulation. 

 
Figure 4.11 Number of detected PDs per cycle for the test object illustrated in Figure 

4.10. The indicated lines correspond to the case with one, two, three and four 
trees growing from the wire electrode. The tree initiation voltage levels for these 
first five trees are marked along the x-axis. 
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Table 4.1 Values of n used for calculating the floating mean for the different ramp 
rates. 

Ramp rate (Vrms/s) Cycle number, n 

20 6 
80 3 
160 2 
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The next considered parameter is the summed PD amplitude, which shows a 

correlation between the applied voltage level and the number of trees (Figure 4.13). 

Here a similarity to the data presented in Figure 4.11 is seen. A larger summed PD 

magnitude can be observed as the number of trees increases. This relation between 

the number and the total amount of detected PDs has been observed through all the 

tests employed in this study. However since the resolution employed in this 

investigation is limited, the evaluation of the number of PDs detected is probably a 

more accurate measure at this stage.  

 
The relatively stable relation between the number of detected PDs and the 

summed PD amplitude suggests that the average amplitude should be relatively 

constant, which is further illustrated in Figure 4.14. An additional observation based 

on several data series suggests that the average PD amplitude converges to 0.2 V, 

independently of the ramp speed and eventual addition of voltage stabiliser to the 

 

Figure 4.13 Summed PD amplitude per cycle, for the test object illustrated in Figure 
4.10. The TIV for the first five trees are marked along the x-axis. 
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Figure 4.12 Slope of the number of PDs per period for the first three trees appearing 
along the wire electrode in 15 studied test objects. 
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investigated XLPE. When reaching this level of PD amplitude, all the test objects 

had exhibited intensive tree growth (Figure 4.10 at 17.36 kV). Finally the maximum 

PD amplitude detected in each period is plotted in Figure 4.15. 

 

 
The most apparent observation is that the amplitude increases together with 

applied voltage level. A natural assumption is that this is caused by both the gradual 

growth of the tree channels in volume as well as the voltage increase. 

 

Figure 4.15 The maximum PD amplitude per cycle, for the test object illustrated in 
Figure 4.10. The TIV for the first five trees are marked along the x-axis. 
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Figure 4.14 Average PD amplitude per period, for the test object illustrated in Figure 
4.10. The TIV for the first five trees are marked along the x-axis. 
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4.5  Correlation of PD Activity to the 

Number of Incepted Trees 
So far the gradual changes in PD characteristics have been evaluated for 

increasing number of trees. In this section the data values of the relevant parameters 

discussed in previous section are compared at test completion. First it is concluded 

that the number of PDs per period are related to the number of trees found in the 

samples. As shown in Figure 4.16, a fairly linear correlation between the number of 

PDs and the amount of trees can be observed. 

 
The same approach was used on the summed PD data, which according to previous 

observations regarding the converging average amplitudes, should closely follow the 

relation between the number of PDs and the number of trees. Figure 4.17 indicates 

that this correlation indeed takes place. From this also the number of PDs follows 

the summed PD amplitude, presented in Figure 4.18. The presented observations 

enable the evaluation of new materials’ resistance to treeing. However additional 

tests are still necessary to further explore how to use the PD characteristics in an 

optimal way. 

 

Figure 4.16 Number of PDs versus number of incepted trees found after test completion. 
The data is fitted to a linear function. 
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The tree inhibiting effect caused by introduction of the stabiliser into the XLPE 

should be reflected in the information provided through PD analyses. To enable 

such a comparison, the results of analyses are presented in Weibull statistics plots; 

the optical measurements of the initiation voltage level for the first four trees are 

fitted to a three-parametric Weibull distribution, see Figure 4.16. As a first 

approximation, the data for the four trees observed optically are compared with the 

expected number of PDs presuming five trees are incepted, assuming that a few have 

originated from defects. It is assumed, based on the approximation from Figure 4.16 

that 22 PDs per period are by average corresponding to the formation of five trees. 

The voltage level at which this number of PDs are detected is retrieved as the tree 

initiation voltage of the investigated test objects. Three-parametric Weibull 

distributions from both the optical and the proposed electrical detection method of 

test series for the reference as well as the stabilised material are illustrated in Figure 

4.19, together with the fit using optical detection. As can be observed the stabilised 

material shows higher resistance to electrical treeing and this behaviour is also 

 

Figure 4.18 Number of PDs per period as a function of the aggregated PD amplitude per 
period. 
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Figure 4.17 Summed PD amplitude per period versus the number of incepted trees at 
completed test, fitted to a linear function. 
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reflected in the PD data, as expected. This suggests that the electrical approach can 

be employed to evaluate different materials based on the electrical measurements 

only. 

 

4.6  Influence of Test Object 

Orientation 
So far the relation between the measured PD characteristics and the tree 

initiation voltage and growth has been presented. An attempt to increase the 

sensitivity of the measured PD signals is now discussed for a case of switching the 

test object orientation, i.e. by forcing the trees to incept at the wire electrode while 

remaining at a ground potential. The used connection of the test object in the setup 

presented in Figure 4.3 is made with the sample holder mounted in the opposite 

direction, maintaining the PD measurement circuit always coupled to the high 

voltage side. In theory, the electric field distribution should remain independent of 

the object orientation if not considering capacitive couplings to surroundings. The 

latter can be represented in form of parasitic capacitances as represented in Figure 

4.20. Reversing the object polarity would also be advantageous if attempting to 

measure the change of object capacitance during the treeing process [87]. 

 

Figure 4.19 Three-parametric Weibull fit of tree initiation voltage for the two materials 
compared. Fits are presented for both the optical data and from the PD 
measurements. 

1.381 2.278 11.85

2.966 3.360 12.56

2.402 5.181 13.34

3.076 2.846 14.82

Ref - optical detection

Ref - PD detection

Et12 - optical detection

Et12 - PD detection



Chapter 4 Correlation of Electrical and Optical Treeing Observations 

56 

 
To evaluate this method, six test objects with reference XLPE for both cases 

were subjected to treeing test; this is repeated also for the stabilised XLPE. In Figure 

4.21 two test objects are illustrated showing that the electrical tree growth is affected 

by switching the test object orientation, an obvious observation is that fewer and less 

developed trees can be observed for the objects with a grounded wire. It is therefore 

suggested suggesting that the influence of the stray capacitances on the actual electric 

field distribution is significant. This was further supported by numerical simulations, 

similar to those described in Section 3.2, where the grounded surrounding is 

implemented into the model as a distributed capacitance with zero potential at a 

given distance from the object surface. By using a distance of 5 cm, which well 

corresponds to the geometrical arrangement in the test setup, the maximum electric 

field at the wire becomes lowered by 20 % when applying high voltage potential to 

the plane electrode. 

 

 

Figure 4.20 Stray capacitances between the two electrodes and to the surrounding, 
influencing the field distribution. 
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As concluded earlier, the number of detected PDs was considered an important 

indicator to evaluate the number of trees present in the insulation material. When 

performing such evaluation for the two test objects illustrated in Figure 4.21, the 

same tendency is found. It is illustrated in Figure 4.22 where the comparison is made 

up to the maximum voltage level, thus including the all incepted and growing trees. 

 
It was earlier concluded that the relation between the number of detected PDs and 

the summed PD amplitude was close to constant due to the converging average PD 

amplitude. When comparing these characteristics in Figure 4.23 for the case with 

 

Figure 4.22 Number of PDs measured for the two objects illustrated in Figure 4.21. The 
first trees incepted at 11.65 kV for the wire on high voltage potential and at 
16.49 kV for the grounded wire. 

11.65 12.5 13.5 14.5 15.5 16.49 17.5 18.5 19.5 20.5 21
0

10

20

30

40

50

60

70

Applied voltage [kV
rms
]

N
u
m
b
e
r
 o
f 
P
D
s

 

 
Wire on high potential

Wire on high potential, floating mean

Wire grounded

Wire grounded, floating mean

 

Figure 4.21 Typical behaviour of type and number of trees for test objects with wire 
electrode connected high voltage or ground potentials. The images display all 
trees appearing after finished measurement at 21 kV. 
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change object orientation, it appears that the same trend is followed, i.e. the PD 

amplitude of 0.2 V is the limiting level. 

 
The natural conclusion from to the above presented observations is that the relation 

between the summed PD amplitude and the voltage level should follow the same 

tendency as discussed earlier. It thus should be closely related to the number of PDs 

detected. Which indeed is also the case, as illustrated in Figure 4.24. 

 
The final comparison between the maximum PD amplitude detected per cycle is 

shown in Figure 4.25. Here it is again clear that less can be said about the tendency 

of treeing, apart from the observation that the PD amplitude increases for higher 

 

Figure 4.24 Summed PD amplitude for the test objects illustrated in Figure 4.21. 
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Figure 4.23 Average PD amplitude for the two test objects illustrated in Figure 4.21. 
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Figure 4.26. For the reference
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needed for further clarification.

Figure 4.26 Weibull plot of TIV comparing the configurations with ground and high 
potential on the wire electrode for both stabilised and reference material.
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rate was also measured for the both materials at 14 kV, no difference in growth rate 

existed between the two materials though in the early stages of a tree the growth rate 

was higher. 

 

4.8 Effect of Gas Release – Tree 

Puncture in the Test Object 
In several objects one of the growing trees punctures the insulation. If this 

occurs to one of the trees close to the ground electrode, then a complete breakdown 

occurs at the interface between XLPE and oil. If on the other hand a tree punctures 

the insulation further away from the ground electrode the oil holds as insulation and 

the test can continue. For these incidents (six in total) a dramatic change in tree 

structure and growth rate is observed. The branches of the punctured trees increase 

their growth exceptionally, as compared to the neighbouring non-punctured ones. 

The pressure of the enclosed gas in the tree tubules is assumed to be linked the tree 

growth. As is seen in Figure 4.29 the punctured tree also has a much more branch-

like appearance as compared to the neighbouring trees which have been exposed to 

the same voltage. These branches of the punctured tree are also considerably longer, 

stretching far into the insulation. 

 

Figure 4.28 Microscope images showing difference in tree structure for ramped and 
constant AC voltage. The top rows illustrates referens XLPE, the bottom 
row depict XLPE with addition of Et12. The pine-like structure appearing 
at constant voltage levels was not present at ramped AC voltage, not even 
during the start of tree growth at lower levels. The voltage level indicated for 
the trees at ramped AC is the level during which the images are captured. 
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Figure 4.29 Tree development after the tree to the right growths through the test samples 
and the gas is released from the tree channels. This tree is more widespread, 
with very branchlike structure. a) shows two trees at the time of puncture, b), 
c) and d) show the appearance with 100 s intervals. In b) the gas being 
released from the tree tubules can be observed as bubbles. 
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 Chapter 5 

Performance of Voltage 

Stabilisers 

o evaluate how to increase the treeing resistance of XLPE, a number of 

stabilisers have been tested and evaluated. Presented first in this chapter is a 

more extensive analysis of the addition of 4,4’-didocyloxybenzil (Et12), as 

used in Chapter 4. This is followed by investigations on several other stabilisers 

belonging to the same group (benzils). These results are further presented in 

Publication VI. In addition the stabilising effect is related to the electron affinity of 

the used molecules. The design and synthesis of the tested stabilisers as well as the 

related molecular modelling was mainly made by Markus Jarvid and is in detail 

presented in his doctoral thesis [2] as well as in the listed publications from Chapter 

1.2. Results from tests of the stabilising effect of fullerenes are presented in 

Publication VII. A number of thiaxanthone- and melamine-type stabilisers were also 

tested and accounted for in Publication VIII. Publication IX relates the molecular 

properties of the stabilisers to the tree inhibiting efficiency. 

5.1 Annealing of Test Objects 
To ensure a coherent procedure of the evaluation of materials with and without 

voltage stabilisers, all the test objects were heat treated after the preparation and 

degassing in an oven for five minutes at 130°C and then the oven was turned off and 

its temperature decreased to ambient, shown in Figure 5.1. As earlier investigations 

have revealed, the treeing inception voltage can be affected by annealing of the test 

object material [47, 48]. The electrical treeing tests were consequently performed on 

T 
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chains are compared to the reference XLPE. They are of ether, ester and tertiary 

amine type. Figure 5.8 shows the chemical structure of the different compounds: 

benzil, ether-type core with alkyl chains containing 1, 12 or 30 carbon atoms (Et1, 

Et12 and Et30), ester-type core with alkyl chains containing 2 or 12 carbon atoms (Es2 

and Es12) and amine-type core with alkyl chains of 1 or 8 carbon atoms (Am1 and 

Am8). 4,4’-didocyloxybenzil is thus denoted here as Et12. 10 mmol/kg of the 

stabiliser was added to the XLPE. Alkyl chains are advantageous from a processing 

perspective since they reduce the melting temperature of the voltage stabiliser 

significantly and can also give a better miscibility with polyethylene. 

The attachment of side chains to the benzil core has further the benefit of decreasing 

the vapour pressure compared to that of neat benzil, which starts to sublimate at 

133 °C, i.e. below the temperature used during cross-linking. It was also 

consequently discovered that pure benzil suffered from almost complete sublimation 

during preparation of the test objects, and this should be considered when evaluating 

the electrical treeing test results. Fourier transform infrared spectroscopy (FTIR) 

analysis confirmed however that the other stabilisers: Et1, Et12, Et30, Es2, Es12, Am1 

and Am8 remained in the polyethylene material after its cross linking without any 

noticeable loss. 

 
Figure 5.9 shows Weibull distributions of the tree initiation voltage of XLPE 

materials containing the benzil-type voltage stabilisers as well as the reference XLPE 

material. As can be noted the initiation voltage is increased for all stabilisers and 

shorter alkyl chains improved the resistance to treeing more significantly. The ester, 

Es1 and amine, Am1 have increased the E63 value most, by around 75 %. The 

threshold level is somewhat more uncertain due to a rather low number of data in 

 

Figure 5.8 Chemical structures of the tested benzil-type stabilisers. 
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the voltage-stabilised XLPE. Based on the SAXS analyses, the lamellar thickness 

decreases slightly, from 7.7 nm to a level between 6.4-7.5 nm. According to [89, 90] a 

change of lamellar thickness by ~1.3 nm should results in a change of tree initiation 

voltage by about 10 %. As the results from the presented treeing tests are clearly 

above 10 %, it is postulated that the microstructure variation due to addition of 

benzil-type stabilisers is unlikely the main cause of the increased dielectric strength. It 

is rather believed that other mechanisms cause this effect, as further discussed and 

highlighted in the next section. 

5.3 Influence of Ionisation Potential 

and Electron Affinity on the 

Stabilising Efficiency 
It is a well-established knowledge within high voltage engineering that 

breakdown strength of gaseous and liquid dielectrics depends strongly on electron 

affinity of these media [91]. The ability to form negative ions by capturing free 

electrons is in these cases competing with the molecule ionisation process.  

In order to check if a similar process could be responsible for the observed 

stabilising efficiency of the tested molecules, their ionisation potentials (IP) and 

electron affinities (EA) were considered, using data from Publications XI-IX. In 

addition, data on treeing efficiency for stabilisers found in literature [52, 55, 57, 92-

95] were also included in the analyses. The calculations have been performed by 

using Gaussian 09, DFT B3LYP/6-311+G(d,p) software. Table 5.1 presents IP and 

EA values for the stabilisers tested within the framework of this thesis, all values 

corresponding to the literature data can be found in Publication IX. Chemical 

structures and full names of the abbreviated ones in the table are provided in 

Appendix 2. The numbers in column (No) refers to list of all the compounds, as 

presented in Publication IX. Fullerene and PCBM are listed with experimental data 

on ionisation potential and electron affinity [96-99]. 
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The obtained values are then correlated to the stabilising efficiency, Φ, found from 

the electrical treeing tests, as defined in Equation 5.1. 

 

cE

EE

XLPE

XLPE 1

,63

,6363
⋅












 −
=Φ  (5.1) 

 

E63 and E63,XLPE denotes the 63 % probability percentiles from the Weibull fits 

of electrical tree initiation of stabilised and reference XLPE, respectively, and c is the 

molal concentration of the stabiliser. 

In Figure 5.11 the stabilising efficiency, Φ is plotted as a function of the 

ionisation potential for all the stabilisers tested in this thesis (indicated by diamonds), 

as listed in Table 5.1. Stabilisers 1 through 15 (marked with filled diamonds) where 

tested at a concentration of 10 mmol/kg. The data points for C60 and PCBM 

(marked as unfilled diamonds), were obtained at lower stabiliser concentrations. The 

data for the stabilisers with stabilising efficiency retrieved from literature are also 

included in the figure (unfilled other markers together with reference in the label). It 

should be considered that these are tested with varying test methods. No clear 

correlation between the stabilising efficiency and the ionisation potential could be 

found in this plot, even though existence of such a correlation was claimed in [52]. 

Table 5.1 Adiabatic ionisation potentials and electron affinities for stabilisers presented 
in Figures 5.11 and 5.12. For further details regarding the calculations for 
the different compounds, refer to Publication IX. 

No Stabiliser type 
Adiabatic ionisation 
potential (IP) [eV] 

Adiabatic electron 
affinity (EA) [eV] 

1 Et1 7.714 1.397 
2 Es2 8.018 1.753 
3 Am1 6.819 1.128 
4 MeOTX 7.336 0.956 
5 HOTX 7.490 0.999 
6 ITX 7.563 0.950 
8 OTXMa 7.210 1.328 
9 OTXAc 7.420 1.312 

10 Triazine 1 7.182 -0.688 
11 Triazine 2 6.487 -0.210 
12 MPT 6.664 -0.368 
13 DTDCPB 6.419 3.435 
14 DOABP 7.050 0.523 
15 Anthracene 7.108 0.717 
55 C60 7.6 2.67 
56 PCBM 7.17 2.63 
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When on the other hand the electron affinity of the tested stabilising molecules 

is considered instead, as seen in Figure 5.12, a significant correlation is found, as 

illustrated by a second polynomial fit of the data points represented by the filled 

diamonds, i.e. stabilisers tested under equal conditions. The most significant outliers 

identified by unfilled diamonds, showing a stabilising efficiency much higher than 

predicted, represent the low concentration effects of the fullerenes, PCBM and C60. 

As indicated earlier, it is difficult to judge the other observed outliers, as these data 

come from various publications. 

The existing correlation between stabilising efficiency and electron affinity 

suggests operation of an electron scavenging mechanism and the effective voltage 

stabilisers have typically their adiabatic electron affinities in a range of ~0.5-3.5 eV 

which in this case is the energy gained by the system when a stabilising molecule 

binds a free electron. Similar trends have been found in breakdown tests of 

polyethylene films, as reported by Yamano [100] and Kisin et al. [51].  

 

Figure 5.11 Stabilising efficiency, Φ, for various stabilising compounds plotted as a 
function of their ionisation potential. The numbered points refer to the 
compounds tested in this thesis, as listed in Table 5.1. The literature 
references to the remaining points are provided in the legend. 
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Figure 5.12 Stabilising efficiency, Φ, of various stabilising compounds as a function of 
their electron affinity. The numbered points refer to the compounds tested in 
this thesis, as listed in Table 5.1. The literature references to the remaining 
points are provided in the legend. 
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Chapter 6 

Conclusions 

  wire type object for testing of electrical treeing resistance in polymer 

insulation has been developed. It was found to be advantageous in several 

aspects as compared to the traditional needle type objects, especially for 

material characterisation and comparisons of newly developed materials. By 

removing the semi-conducting tab, the benefits of this type of test object has 

become further enhanced and the main remaining disadvantage is now the tendency 

to kink formation. This behaviour is however not considered to be serious, as no 

evidence has been found that trees formed along the wire electrode would influence 

each other. Furthermore, a new way of analysing the appearance of multiple trees in 

each test object is proposed, which has given rise to a more beneficial use of the 

multitude of data received from the treeing tests with a slightly altered approach for 

the statistical analysis. The presented attempt utilizes the first four trees in each 

tested object for further statistical analyses. 

Also an interesting aspect with the new method is that a relatively large volume 

of the material is stressed, presumably also in its weakest points, as in contrast to the 

needle objects, the tree growth is not forced to one specific location. The performed 

SEM investigations could not indicate any variations in the material morphology 

close to the wire electrode. It is therefore believed that use of wire-electrode objects 

provides an opportunity to better explore the influence of material structure and 

constituency on electrical tree inception. 

At the first stage, optical measurements have been applied to describe the 

initiation and growth of electrical trees in relation to the applied AC voltage; if 

however the test objects are non-transparent this will introduce considerable 

difficulties. Thus to further improve the possibility to characterize different 

insulation materials, electrical detection of PD events in the tree channels during 

initiation and growth has been implemented and resulted in elaboration of a 

promising methodology. A number of observations are presented, defining the most 

A 
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important parameters for determining the initiation of a tree. These include the 

summed PD amplitude and the number of PDs detected, whereas the maximum and 

the average PD amplitude may additionally contribute to the analysis. The number of 

PDs per cycle and the summed PD amplitude per cycle show strong correlations to 

optical observations of tree growth. Thus both the optical observations as well as the 

electrical measurements seem suitable for characterising materials’ resistance towards 

electrical treeing and monitoring of the gradual treeing progress, e.g. at different 

ramp rates or containing various additives. In conclusion the electrical measurements 

allowed for distinguishing between differences in tree initiation voltage. 

Several promising stabilisers, within several groups, including benzil-, 

thiaxanthone- fullerene- and melamine-types, have been tested and characterised. 

Most of them exhibit promising behaviour, by increasing the resistance towards 

electrical treeing of cross-linked polyethylene in the range between around twenty up 

to well above a hundred percent. The efficiency of these stabilisers with respect to 

tree initiation voltage was found to depend strongly on electron affinity of the 

molecules rather than on their ionisation potential, which opens for new possibilities 

when designing new and efficient additives, with the aim of improving insulation of 

high voltage power cables. 
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Chapter 7 

Future Work 

ome possible continuation tracks can be foreseen for future research in the 

field: one deals with the development of the electrical detection 

methodology, to further improve the accuracy in the measurement system 

and also how to correlate these measurement to the physical processes of the treeing 

in a more prominent manner, a second track is to consider where along the wire the 

trees initiate and to study these spots, for expanding the knowledge on tree 

inception. To improve the understanding further, various material characterisation 

techniques could be applied. Expanding the electrical treeing tests to be made at 

operating cable temperature would further provide more knowledge on the 

performance of additives and the insulation. 

In regarding to the PD analyses, it would be beneficial to perform additional 

tests with constant voltage amplitudes. Thus avoiding the influence of voltage 

ramping. In addition, tests utilising different voltages, e. g. square, PWM and DC 

voltages, can possibly bring new light to material behaviour in situations when 

transients or disturbances appear and how they affect the lifetime of the insulation. 

Further it can be an advantage to support the PD analyses by measuring the increase 

in capacitance or loss current inflicted by the gradual growth of electrical trees. This 

will require an efficient shielding of the test object against parasitic influences and 

external disturbances but is believed to provide additional interesting results. 

  

S 
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Appendices 
Appendix A 
List of studies made within this twin PhD work with the following data provided: Abbreviation 
of stabiliser (full name and chemical structure is provided in Appendix B), concentration of 
stabiliser, voltage ramp rate used for electrical testing, type of object, annealing time, (time between 
manufacturing of objects and electrical testing), number of yielded data point from electrical tests, 

threshold parameter from fit to the three-parametric Weibull distribution, E63 parameter from fit 

to the three-parametric Weibull distribution, improvement in E63 parameter as compared to the 
reference material from the same study and in which publications the data has been published. 
Listed in chronological order of testing. 
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Study 1: Initial stabiliser test

– A 18

Et12 A 8

Et11 A 9

Am8 A 5

– A 16 IV

– B10µm 64 IV

– B20µm 56 IV

– C 10 IV

– D 15 IV

– B10µm 31

– B20µm 0

– B10µm 37

– B20µm 15

Et12 B10µm 29

Et12 B10µm 25

2ambenz B10µm 21

Et12 A 20

Et11 A 25

Am8 A 16 1.9

90.5

Study 2: Test object comparison

Study 3: Voltage ramp rate and stabilisers

Study 4: Annealing, comparing Study 1

14.5 500 ~450 244 577

-19.6

18.3 500 ~450 321 459 -18.9

17.3 500 ~450 360 455

24.5

84.6 250 – 344 800

17.3 250 – 320 523

–

17.3 500 – 462 560 23.1

– 250 – 320 365

–

– 250 – – 420 –

– 500 – – –

–

– 500 – 408 455 –

– 500 <30 1185 1517

–

– 500 <30 393 462

–

– 500 <30 1118 1476 –

– 500 <30 311 368

–

– 500 <30 391 519

14.5 500 – 680 20.1

26.9

18.3 500 – 384 661 16.8

17.3 500 – 415 713

–

– 500 – 128 566 –
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Study 6 contains data from Et12 prepared in different ways. noheat has not 
undergone a final heat treatment similar to that described in Chapter 5.1, 60° has 
been degassed at this temperature (as opposed to 90 °C used for the rest of the 
batches in this study, 10 ml has been dissolved in 10 ml DCM for soaking the 
polyethylene (as opposed to 300 ml DCM). 
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– B10µm 40 III

– B10µm 48 III

– B10µm 54

– B10µm 24 III

– B10µm 32 III

Et12 B10µm 39 III

Et12 B10µm 38 III

Et12 B10µm 57

Et12 B10µm 40 III

Et12 B10µm 25 III

Et12 B10µm 72

Am8 B10µm 54

Tri1 B10µm 57

Triami B10µm 52

– B10µm 40

Et12 B10µm 24

Et12 noheat B10µm 31

Et12 60° B10µm 35

Et12 10 ml B10µm 29

Et12 B10µm 41

Am8 B10µm 32

Am8 B10µm 20

DPPD B10µm 40

– LDPE B10µm 28 XI & XII

– XLPE B10µm 32 XI & XII

Et12,LDPE B10µm 28 XI & XII

Et12,XLPE B10µm 28 XI & XII

Study 5: Ramprates, stabilsers and PD

Study 6: Different preparation methods

Study 7: Radiation cross linking

-8.04471 48
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–

–
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486
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250

–

328

322

476

454

399

454

404

–

–
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–nondeg is reference XLPE tested without degassing (containing methane, 
acetophenone and cumylalcohol), SR1 through SR4 and RNS are different 
batches of reference XLPE. In Benzdiff the stabiliser has been added through 
diffusion after cross linking. 
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– SR1 B10µm 60 VI - IX

– SR2 B10µm 12

– SR3 B10µm 24

– SR3 B10µm 24

– SR4 B10µm 13

– RNS B10µm 8

– nondeg B10µm 16

Benz B10µm 28 VI & IX

Benzdiff B10µm 4

Et1 B10µm 32 VI & IX

Et1 B10µm 24

Et12 B10µm 67 VI

Et12 B10µm 24

Et12 B10µm 24

Et12 B10µm 23 VI

Et12 B10µm 21

Et12 B10µm 20

Et12 B10µm 28 VI

Et12 B10µm 24

Et12 B10µm 24 VI

Et12 B10µm 27

Et30 B10µm 20 VI

Es2 B10µm 24 VI & IX

Es2 B10µm 36

Es12 B10µm 28 VI

Am1 B10µm 28 VI & IX

Am8 B10µm 28 VI

Study 8a: Stabilisers, concentration and annealing
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–

–
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–perox is non cross-linked reference XLPE, which is used as reference for 
PCBMperox. Batches of diffusion loaded stabilisers were also made for anthracene 
and PCBM. 
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ITX B10µm 32 VIII & IX

ATX B10µm 28 VIII

OTXMa B10µm 28 VIII & IX

MeOTX B10µm 28 VIII & IX

OTXAc B10µm 28 VIII & IX

HOTX B10µm 24 VIII & IX

Es12TX B10µm 28 VIII

Triazine 1 B10µm 28 VIII & IX

Triazine 2 B10µm 16 VIII & IX

C60 B10µm 28 VII & IX

PCBM B10µm 20 VII & IX

DPPD B10µm 28

June1 B10µm 20

22Th B10µm 28

– B10µm 23
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Et12 B10µm 0

Et12 B10µm 9

– perox B10µm 20

PCBMperox B10µm 20

PCBMdiff B10µm 16 IX
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Study 8a: Stabilisers, concentration and annealing (continuing)
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Study 9: Further stabilisers
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Appendix B 
List of experimentally tested voltage stabilisers within this twin PhD project. Abbreviation used 
within this thesis, followed by full name for some stabilisers and their chemical structure. 

 

Abbr. Molecular structure and name

Benz

Benzil

Et1

4,4'-dimethoxybenzil

Et12

4,4'-didodecyloxybenzil

Et30

Es2

Es12

Am1

Am8

N,N,N',N'-tetraoctyl-4,4'-diaminobenzil

Et11

undecenyloxybenzil

Benzil-type

O

O

O
O
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HOTX

MeOTX

ITX

OTXMa

OTXAc

TXEs12

ATX

Fullerenes

C60

Buckminster fullerene

PCBM

Phenyl–C61–Butyric Acid Methyl Ester

Thiaxanthones
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Melamines

Triazine 1

Triazine 2

Other

June1

Triami

Triphenylamine

Tri1

Triphen 1

22Th

2,2'-thenil

2ambenz

2-aminobenzonitrile

N
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Other (continuing)

DPPD

Anth

Anthracene

DTDCPB


