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1 INTRODUCTION

The ability to, by numerical simulations, investigate the crashworthiness of fibre reinforced
polymer (FRP) vehicle structures is crucial for a widespread use of these materials in future
cars. Consequently, for an accurate prediction of the crashworthiness performance, crucial failure
mechanisms, e.g. initiation and propagation of delamination, needs to be accurately captured
in the simulations. However, to enable full car crash Finite Element (FE) analyses in the
automotive industry, computational efficiency is essential; therefore, shell elements are mostly
used. A drawback of using a shell analysis approach is the low accuracy of the predicted through-
thickness distribution of the out-of-plane stress components, which are essential for prediction
of delamination initiation.

Aiming to improve the calculated stress distribution while still keeping a shell analysis ap-
proach, the current contribution investigates the potential of using a multiscale procedure in
order to obtain an improved resolution of the through-thickness stress distribution compared to
a pure shell analysis.

First the kinematic description of the shell (the macroscale) is presented. Then the prolonga-
tion conditions are described; how the macroscopic deformation measures are used to construct
boundary conditions for a detailed 3D Representative Volume Element (RVE) analysis of the
laminate. Several types of boundary conditions on the RVE are considered and in order to find
the most appropriate type, with respect to accuracy in the through-thickness stress response, a
numerical example is presented.

2 MACROSCOPIC KINEMATICS

2.1 Initial shell geometry and convected coordinates

As a staring point, a point X in the initial configuration B0 of the shell is described by
the placement map Φ(ξ) ∈ B0 parametrised in terms of convected (covariant) coordinates ξ =
(ξ1, ξ2, ξ) as

X(ξ) = Φ(ξ) = Φ0(ξ0) + ξM(ξ0) (1)

where ξ0 = (ξ1, ξ2). The mapping Φ(ξ) is defined by the midsurface placement Φ0 and the
outward unit normal vector field M , where the coordinate ξ ∈ h0

2 [−1, 1] is associated with this
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direction and h0 is the initial thickness of the shell. The covariant basis vectors are defined as

Gα = Φ0,α + ξM ,α; α = 1, 2; G3 = M (2)

where •,α denotes the derivative with respect to ξα.

2.2 Current shell geometry

A point, x, in the current (deformed) configuration B is described by the deformation map
ϕ(ξ) ∈ B of the inertial Cartesian frame as

x(ξ) = ϕ(ξ) = ϕ0(ξ0) + ξm(ξ0) +
1

2
ξ2γ(ξ0)m(ξ0) (3)

where the mapping is defined by the midsurface placement ϕ0, the spatial director field m and
an additional scalar thickness inhomogeneity strain γ, cf. also Figure 1.
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Figure 1: Mappings of shell model defining undeformed and deformed shell configurations rela-
tive to inertial Cartesian frame.

The pertinent spatial covariant basis vectors are given as

gα = ϕ0,α +

(
ξ +

1

2
γξ2

)
m,α +

1

2
γ,αξ

2m; α = 1, 2; g3 = (1 + γξ)m (4)

3 COUPLING BETWEEN THE SCALES – PROLONGATION

In order to couple the macroscopic scale with the laminate level, relations between the kine-
matics on the two scales must be established. Following Larsson and Landervik1, it is assumed
that the averaged deformation field varies slowly enough within the RVE to justify that it is
constant in the tangent plane (=) of the shell. In the thickness (⊥) direction separation of micro-
and macro scales cannot be assumed, whereby the microscopic fluctuations on the laminate level
must be completely resolved in the thickness direction. Thus, the thickness of the RVE is given
by the thickness of the thin-walled structure,whereas the in-plane extensions of the RVE should
be chosen based on a balance between accuracy and computational efficiency. In the following,
we consider quantities related to the macroscopic fields denoted by a superimposed bar, e.g. •.
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3.1 Kinematic expansions of macroscopic fields in the RVE

The particular expansion used to describe the relative placement field inside the RVE is de-
composed into separate portions in the tangent- and thickness direction, x̄= and x̄⊥ respectively.
Thus, the relative placement ∆x(X) (measured as the placement relative to the expansion point
X̄) can be expressed as

∆x = ∆x̄= + ∆x̄⊥ + uf (5)

where uf is the laminate level displacement field. As to the particular descriptions of the
placement fields, different Taylor series expansions are used. The tangent placement, ∆x=, is
defined by a first order expansion, at each ξ-level in the ξα directions, of the RVE defined as

∆x= = gα|ξ∆ξα (6)

where the notation gα|ξ implies that the expansion is made for a fixed value of ξ. The place-
ment in the thickness direction, ∆x̄⊥, is formulated as the second-order Taylor series expansion

(involving the second gradient K = (gi ⊗G
i
),j ⊗G

j
) about the origin of the RVE as

∆x⊥ = g3|ξ=0ξ +
1

2
g3,3|ξ=0

ξ2 (7)

For further details about the prolongation procedure, see1.

3.2 Choice of boundary conditions

The boundary conditions for the RVE analysis need to be chosen with due consideration to
the adopted homogenisation procedure. In this contribution different boundary conditions have
been studied: (i) Mixed boundary condition – Dirichlet boundary conditions are applied on the
in-plane surfaces of the RVE, i.e. uf = 0 and Neumann (traction free) conditions on the top and
bottom surface; (ii) pure Dirichlet, with all six surfaces of the RVE subjected to the condition
uf = 0; (iii) Taylor boundary conditions, i.e. the fluctuation field uf = 0 in the entire domain; .

4 NUMERICAL EXAMPLE

A square isotropic plate, clamped at one edge and subjected to a prescribed edge displacement
on the opposite edge has been simulated using the described shell model and a 3D continuum
solid model (reference case) using a hexahedron element mesh. To compare the results from the
two models a shell integration point close to the middle of the plate has been chosen. At this
point the generalised strains of the shell model are extracted, i.e. ḡα|ξ, m̄ and γ̄, such that the
proper displacement can be applied to the RVE according to Eq. (5) (and particular choice of
boundary condition). The corresponding stress distribution inside the RVE can then be solved
for.

In Figure 2, the computed stress distribution for component σxz is shown for the: solid model;
shell model; and RVE:s with different in-plane sizes as well as different boundary conditions. As
can bee seen in Figure 2a, an increased RVE size does not converge towards the reference model;
only a qualitative improvement in terms of shape is observed. This implies that an increase
in RVE size leads to an increased deviation in the applied shear deformation (on the RVE)
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compared to both the reference and the shell model. The effect from different RVE boundary
conditions on the stress distribution is shown in Figure 2b. It can be seen that when Dirichlet or
Taylor boundary conditions are applied, the results are similar to that of the shell. Furthermore,
the Mixed boundary condition fulfills the traction free condtion on the top an bottom surface,
although the maximum stress is underestimated.

(a) (b)

Figure 2: Comparison of out-of-plane shear stress distribution, σxz, through the thickness.
(a) Comparison between different in-plane RVE-sizes (for Mixed boundary conditions). (b) Dif-
ferent types of boundary conditions (illustrated on a 12x13x13 element RVE).

5 CONCLUSIONS

In this contribution, the potential of using a multiscale approach for increasing the accuracy
of the stress components has been studied. Different boundary conditions on the RVE have been
investigated and in the case of an isotropic plate, the results show that the size of the RVE cannot
be chosen too large as this will lead to non-matching deformation modes on the two scales. In
the anisotropic case (transverserly isotropic laminae), similar conclusions can be drawn (not
shown here). Moreover, results indicate that the ’best’ obtainable stress distribution (compared
to the reference case) corresponds to what is obtained in the shell analysis. In particular, the
stress distribution obtained in the pure shell analysis is recovered for the case of Taylor and
Dirichlet boundary conditions. In addition to described boundary conditions, weak periodic
boundary conditions have also been studied and will be presented. To accomplish results closer
to the reference case with the given multiscale method, a higher order expansion of the relative
placement would likely be necessary.

Finally, an alternative post-processing recovery approach to obtain the through-thickness
stress distribution, based on the integration of the momentum balance equations, has also been
investigated. Initial results (not shown here) indicate that for the isotropic case, the distributions
correlate well with the reference case. These results and results for a laminate with transversely
isotropic properties will be presented.

REFERENCES

[1] Larsson, R. & Landervik, M. A stress-resultant shell theory based on multiscale homoge-
nization. Computer Methods in Appplied Mechanics and Engineering 263, 1–11 (2013).


	INTRODUCTION
	MACROSCOPIC KINEMATICS
	Initial shell geometry and convected coordinates
	Current shell geometry

	COUPLING BETWEEN THE SCALES – PROLONGATION
	Kinematic expansions of macroscopic fields in the RVE
	Choice of boundary conditions

	NUMERICAL EXAMPLE
	CONCLUSIONS

