
Unsupervised Outlier Detection in Software
Engineering
Master of Science Thesis in Software Engineering

HENRIK LARSSON
ERIK LINDQVIST

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
Göteborg, Sweden June 2014

Unsupervised Outlier Detection in Software

Engineering

Henrik Larsson Erik Lindqvist

2014

The Author grants to Chalmers University of Technology and University of
Gothenburg the non-exclusive right to publish the Work electronically and in a
non-commercial purpose make it accessible on the Internet. The Author war-
rants that he/she is the author to the Work, and warrants that the Work does
not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party
(for example a publisher or a company), acknowledge the third party about
this agreement. If the Author has signed a copyright agreement with a third
party regarding the Work, the Author warrants hereby that he/she has obtained
any necessary permission from this third party to let Chalmers University of
Technology and University of Gothenburg store the Work electronically and
make it accessible on the Internet.

Unsupervised Outlier Detection in Software Engineering
HENRIK LARSSON
ERIK LINDQVIST

c© HENRIK LARSSON, ERIK LINDQVIST, 2014

Examiner: Matthias Tichy
Supervisor: Richard Torkar

Department of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 Göteborg
Sweden
Telephone +46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden June 2014

Abstract

The increasing complexity of software systems has lead to increased de-
mands on the tools and methods used when developing software systems.
To determine if a tool or method is more efficient or accurate than others
empirical studies are used. The data used in empirical studies might be
affected by outliers i.e. data points that deviates significantly from the
rest of the data set. Hence, the statistical analysis might be distorted by
these outliers as well.

This study investigates if outliers are present within Empirical Soft-
ware Engineering (ESE) studies using unsupervised methods for detection.
It also tries to assess if the statistical analyses performed in ESE studies
are affected by outliers by removing them and performing a re-analysis.
The subjects used in this study comes from a narrow literature review of
recently published papers within Software Engineering (SE). While col-
lecting the samples needed for this study the current state of practise
regarding data availability and analysis reproducibility is investigated.

This study’s results shows that outliers can be found in ESE studies
and it also identifies issues regarding data availability within the same
field. Finally, this study presents guidelines for how to improve the way
outlier detection is presented within ESE studies as well as guidelines for
publishing data.

Contents

1 Introduction 1
1.1 Problem and Purpose . 1
1.2 Hypotheses and Research Questions 2

2 Related Work and Theoretical Background 4
2.1 Outliers . 4
2.2 Replication . 5

3 Methodology 7
3.1 Pre-Study . 7

3.1.1 Search Process for Papers 7
3.1.2 Search Process for Algorithms 9

3.2 Application of Algorithms . 9
3.2.1 Analyzing the Results . 10

3.3 Replication of Analysis . 11

4 Results from Pre-Study 12
4.1 Descriptive Statistics for the Paper Search 12
4.2 Candidates from the Paper Search 12

4.2.1 An empirical study on the developers’ perception of soft-
ware coupling . 13

4.2.2 Are test cases needed? Replicated comparison between
exploratory and test-case-based software testing 13

4.2.3 Mining SQL injection and cross site scripting vulnerabil-
ities using hybrid program analysis 13

4.2.4 Parameter tuning or default values? An empirical inves-
tigation in search-based software engineering 14

4.2.5 An analysis of multi-objective evolutionary algorithms for
training ensemble models based on different performance
measures in software effort estimation 14

4.2.6 Improving feature location practice with multi-faceted in-
teractive exploration . 14

4.2.7 Transfer defect learning 14
4.2.8 Do background colors improve program comprehension in

the #ifdef hell? . 15
4.2.9 Reverb: Recommending code-related web pages 15
4.2.10 Drag-and-drop refactoring: Intuitive and efficient program

transformation . 15
4.2.11 The impact of parameter tuning on software effort esti-

mation using learning machines 15
4.2.12 Adoption and use of Java generics 16
4.2.13 Training data selection for cross-project defect prediction 16

4.3 Candidate algorithms from the algorithm search 16
4.3.1 Modified Z Score (MZS) 16
4.3.2 Local COrrelation Integral (LOCI) 17
4.3.3 Angle Based Outlier Detection (ABOD) 18
4.3.4 Changes to the Automated Process 18
4.3.5 Changes to the Analysis 19

i

5 Results 20
5.1 Application of Outlier Detection Algorithms 20
5.2 Analysis of Selected Papers . 20

5.2.1 Do background colors improve program comprehension in
the #ifdef hell? . 20

5.2.2 Improving feature location practice with multi-faceted in-
teractive exploration . 24

5.2.3 Drag-and-drop refactoring: Intuitive and efficient program
transformation . 24

5.2.4 Mining SQL injection and cross site scripting vulnerabil-
ities using hybrid program analysis 25

5.2.5 The impact of parameter tuning on software effort esti-
mation using learning machines 25

5.2.6 An empirical study on the developers’ perception of soft-
ware coupling . 25

5.2.7 Adoption and use of Java generics 25
5.2.8 An analysis of multi-objective evolutionary algorithms for

training ensemble models based on different performance
measures in software effort estimation 25

6 Discussion 27
6.1 Results from Pre-Study . 27
6.2 Results from the Application of Algorithms 28
6.3 Regarding the Review Process . 29
6.4 Multi-Dimensional Outlier Detection 29
6.5 Guidelines . 30

7 Threats to Validity 32
7.1 Internal . 32
7.2 External . 32
7.3 Conclusion . 32
7.4 Construct . 32

8 Conclusions 33

9 Future Work 34

A Software Requirements for Using Developed Tools 36

B Papers Reviewed in the Pre-Study 37

C Algorithms Reviewed in the Pre-Study 46

D Sample Sizes for Data Sets Used in this Study 48
D.1 Before Outlier Detection and Removal 48
D.2 After Outlier Detection and Removal 50

E Pipeline 51

F Papers Documenting Outliers 52

ii

G R Code for the Replication of Analysis 56

iii

1 Introduction

Software is increasingly important for both national and international infras-
tructure. Hence, it is increasingly important to produce software more cost-
efficiently (Sommerville, 2006). This has led to an increased interest, the last
30 years, in Software Engineering (SE). The field of SE do not just covers the
technical aspects of creating software, it also attends to the aspects of managing
software projects. Empirical studies plays an important role in order to study
the effects of developed methods and tools within SE. These empirical studies
are considered to be an accepted discipline within SE (Ko et al., 2013).

Data collected from empirical studies are used to draw conclusions regarding
the study. However, this data can contain outliers, values that deviates signif-
icantly from the rest, which may or may not impact the analysis of the study.
It is therefore important to understand the impact of outliers in order to inter-
pret the results correctly and to draw valid conclusions (Kriegel et al., 2008).
Additionally, the task of identifying and removing outliers needs to be docu-
mented for the study to be more easily replicated. This is of importance since
replication experiments, which confirms the findings of a study, helps building
confidence in the result and procedures. Therefore, replication is considered
as one of the cornerstones in a scientific community and an indicator of how
mature a scientific discipline is (Brooks et al., 2008).

In this study the presence of outliers will be investigated, within the field
of Empirical Software Engineering (ESE). Furthermore, the effect on the con-
clusions drawn in ESE studies, when potential outliers are removed, will be
investigated to determine the applicability of outlier detection within ESE. Ad-
ditionally, to which extent the presence of outliers is documented and outlier
detection is conducted will also be investigated. Ultimately, this study aims at
providing guidelines regarding if/how outlier detection should be conducted and
presented in empirical studies.

This report is divided as follows: Section 2 presents background information
regarding outliers and replication as well as related work within these areas.
In Section 3 the methodology used for the pre-study is presented. Section 4
presents the candidate papers and algorithms from the pre-study and is followed
by Section 5 where the results from the application of algorithms (presence of
outliers) as well as a deeper analysis of a few selected papers is presented. The
report is concluded with a discussion in Section 6, threats to validity in Section 7
and finally conclusions in Section 8.

1.1 Problem and Purpose

As empirical studies within SE grows more complex, with the maturity of the
field, the quantities of data that is handled grow as well. In order to be able
to replicate these studies with large data sets it is of importance that all steps
are well documented, including the data post-processing such as outlier detec-
tion. Furthermore, performing data post-processing, such as outlier detection,
manually on a large data set can be a tedious and error-prone task, which may

1

complicate replication of the study. Therefore, unsupervised and ‘automatic’
methods are of interest.

The purpose of this study is to investigate to what extent outlier detection
is conducted and documented within the field of SE. Furthermore, outlier de-
tection using unsupervised and ‘automatic’ methods will be conducted on data
sets from a selected collection of papers in order to investigate the presence of
outliers. Additionally, a verification will be carried out, on a subset of papers
containing outliers, in order to verify that their conclusions hold in the absence
of outliers. Finally, guidelines will be proposed for how to present the data anal-
ysis performed with regards to outlier detection and removal. These guidelines
are meant to support researchers in presenting their studies within SE so that
the studies can be more easily replicated.

1.2 Hypotheses and Research Questions

Outliers can cause a large impact on the mean value of a data set. Hence, our
first hypothesis is related to the occurrence of outliers within ESE studies.

H0Outliers
Data from software engineering studies do not contain out-

liers.
H1Outliers

Data from software engineering studies contain outliers.

If H0Outliers
can be rejected it is of interest to investigate if removing the

outliers could lead to different conclusions than those drawn in the original
study.

H0Concl
Removing outliers from software engineering studies does

not lead to different conclusions than the conclusions drawn in the
original study.
H1Concl

Removing outliers from software engineering studies leads
to different conclusions than the conclusions drawn in the original
study.

The documentation of the presence outliers and outlier detection in SE stud-
ies are of importance for the study’s ability to be replicated. If data points are
excluded for the sake of being outliers it is especially important to explain why,
so others can reproduce this data post-processing step.

RQ1: To what extent is the presence of outliers and outlier detection
documented in software engineering studies?

Having access to the original data of a study is of great help when replicating
the study. Therefore, Research Question 2 aims at describing the current state
of practice when it comes to data availability in SE studies.

RQ2: To what extent is data available in research papers and in
which form is the data made available?

The connection between the two hypotheses and the focus of the two research
questions are visualized in Figure 1.

2

Outliers Replication

H0Outliers

H0Concl

RQ1 RQ2

Rejected

Figure 1: The relationship between hypotheses and research questions.

3

2 Related Work and Theoretical Background

In this section two areas of importance for this study, outliers and replication
will be presented. In Section 2.1 outliers will be defined, look at issues regarding
outliers and finally present related work regarding this area. Section 2.2 aims at
presenting replication as a concept and its importance as well as some related
work regarding replication within SE.

2.1 Outliers

Outliers are data points that differ significantly from other data points in a
data set. A commonly used definition for outliers is “an outlying observation,
or outlier, is one that appears to deviate markedly from other members of the
sample in which it occurs” (Osborne and Overbay, 2004). It is also stated by
Osborne and Overbay (2004) that the effect of outliers can impair the statistical
analysis. Therefore, determining if the collected data contains any data values
that should be regarded as outliers is of importance.

There are several approaches for classifying outlier detection methods, three
of them are mentioned by Hodge and Austin (2004) as unsupervised, supervised
and semi-supervised detection techniques. Unsupervised detection determines
if a data point is an outlier with no prior knowledge of the data set and flags
the data points most separated from the normal data as outliers. Supervised
detection use data that is pre-labeled as normal or not normal in order to
determine if the other data points are outliers or not. Finally, semi-supervised
detection uses a small set of training data to detect outliers (Hodge and Austin,
2004).

Rousseeuw and Van Zomeren (1990) state that in data sets with more than
two dimensions it can be difficult to detect outliers because visual inspection
is not as reliable. Therefore, it is important to use other methods than vi-
sual inspection to detect outliers in multi-dimensional data. However, some
outlier detection techniques require information about the distribution of the
data set. Determining this distribution for data sets with more than two di-
mensions can be challenging. Hence, if one is not certain of the distribution,
choosing a method for outlier detection that does not make assumptions about
the distribution is prefered (whether having a large, multidimensional data set,
or not).

Seo and Bae (2013) studied the effect of outliers in software effort estima-
tion. This was done by investigating the effect outliers have on the estimation
accuracy of commonly used software estimation methods. The methods are
evaluated on industrial data collected from publicly available repositories such
as PROMISE and ISBSG. A Wilcoxon ranked sum test was used to see if
removing outliers made a significant difference. Seo and Bae (2013) reported
that there was a positive effect in estimation accuracy when removing outliers
but not enough to say that it is significantly better. The study by Seo and
Bae (2013) differs from this study by being focused on effort estimation and
using publicly available data sets only. Furthermore, this study relies on data
retrieved from recently published papers within SE and takes a more automated

4

approach to outlier detection. The focus in this study is on describing the state
of practice when it comes to data availability and how research data is made
available (RQ2).

Yuan and Bentler (2001) evaluates how outliers distorts the results in co-
variance structure analysis and the quantitative effect of outliers on statistical
tests. Covariance tests are used to determine how different variables are af-
fected of each other. Since covariance tests are used within SE, see e.g. Card
et al. (1987), it may be of importance for the SE community to understand
what impact outliers have on the end result. Yuan and Bentler (2001) reports
that effects of a few outliers can discredit the value of using a model. They
also report that outliers does not need to be very extreme to break down the
covariance analysis.

2.2 Replication

As empirical studies have become more common within SE the importance of
being able to replicate studies increases. Such replications are important since
they help increase the body of knowledge around SE, which in turn leads to an
increased maturity of the field. A replication of a study also comes with ben-
efits for the original study in terms of increased confidence for the conducted
experiment and the reported findings (e.g. tightened confidence intervals). Fur-
thermore, the success of a conducted replication is not mainly depending on
how well the replicated result conforms to the original but on the contribution
to the body of knowledge (Basili et al., 1999; Shull et al., 2008; Brooks et al.,
2008).

There are in general two forms of replication, internal and external. Internal
replication is carried out by the original researcher or team while external repli-
cation is carried out by someone else than the original author (Brooks et al.,
2008). Furthermore, the degree to which a replication is carried out can be di-
vided into exact and conceptual replication. An exact replication is a replication
which follows the original procedure as closely as possible, whereas a conceptual
replication is a replication where the same hypothesis is validated through a dif-
ferent procedure (Shull et al., 2008). However, Juristo and Vegas (2011) states
that exact replication within SE is close to non-existent due to the difficulties
in recreating the exact conditions from the original experiment. Furthermore,
Juristo and Vegas (2011) also propose that promoting non-exact experiments
could encourage more researchers to perform replication experiments.

Sjøberg et al. (2005) found in their survey that only 18% of the surveyed
papers from SE were replications. This was a surprising finding considering
that replication is seen as important in science (Lindsay and Ehrenberg, 1993).
The reason for this lack of replication studies is interesting and Lindsay and
Ehrenberg (1993) propose that it might be due to that replicated experiments
do not reward the researcher as much as an original experiment.

The previously referenced papers regarding replication within SE are focus-
ing mostly around replicating the experiment and do not regard data analysis to
a great extent. Though, within the field of bioinformatics, where large data sets
are common, more work has been carried out in order to promote a more repro-
ducible way of presenting the analysis for a study Tan et al. (2010); Gentleman
(2004); Preeyanon and Brown (2014). The main purpose of these proposals is
to make the analysis clear to the reader and reproducing a study’s report is

5

merely executing an accompanying script in the report’s repository. This allows
the reader to easily reproduce artifacts such as plots and tables, and the reader
can even perform changes to the analysis and study the result of them in vivo.
If it is assumed that the amount of data used by empirical studies within SE
is increasing, the need for standardized tools for handling data, such as those
promoted for bioinformatics, increases as well.

Although it might sound simple in theory to ensure that a study is re-
producible, the previously mentioned low outcome of replications could be an
indicator that it is harder in practice.

In this study ‘reproducibility’ will be referred to as the ability to replicate
a study’s ‘result’ based on the information stated in the original study. The
‘result’ can refer to intermediate results as well as the final result of a study. In
this study the focus is on reproducibility of the analysis, known as “re-analysis”
(Gómez et al., 2010) i.e. verifying the results of the analysis based on data from
the original study.

6

3 Methodology

By using a method for conducting a study the steps taken can be communicated
more clearly. Furthermore, by using known methods for a study the credibility
of it increases since it will be easier for the reviewer to understand the steps
conducted. Using known methods also has the benefit of not needing to define
each step but only motivate why this method is suitable. Lastly, by using a
method for a study, compared to doing it ad hoc, it is more likely that the
study is reproducible since, as stated before, the understandability is likely to
be higher.

There are multiple methods to choose from when conducting research within
SE. Two common ways of conducting research are experiments and case studies.
Experiments can be conducted both within a controlled environment such as a
laboratory setting or a real life setting. Common for both settings are that some
of the variables can be controlled and changed in order to observe effects and
compare outcomes of the experiment (Wohlin et al., 2012). Case studies are well
suited for investigating a single entity or comparing two different methods for
conducting a task within a certain context. They are also suitable for industrial
evaluation of SE methods. However, case studies have the disadvantage of being
difficult to generalize as a representative for the population (Runeson and Höst,
2009). This study can be seen as a case study in a broader context. In this case
the context is SE and the phenomenon under investigation is outlier detection.

The method used in this study consisted of a pre-study, the application of
algorithms and a replication of analysis for selected papers.

3.1 Pre-Study

The pre-study consisted of two different parts, the search for papers and the
search for algorithms. The result from both of these tasks were then used for
the application of algorithms where the algorithms were applied on the papers
in order to be able to answer the hypotheses. A description of how the search
was conducted for papers is presented in Section 3.1.1 and for the search for
algorithms in Section 3.1.2.

3.1.1 Search Process for Papers

The process of searching and reviewing papers was carried out in a systematic
way albeit not strictly following the guidelines for conducting systematic liter-
ature reviews in SE. Selection and quality assessment criteria were defined and
used to determine which papers to include for the study. The process was meant
to provide a sample of published papers to give an idea of the current state of
the research field. Therefore, an exhaustive review over all papers published
within the field was not carried out. Due to this limitation, this review cannot
be considered a “systematic literature review” as defined in (Kitchenham and
Charters, 2007). The methodology used for the review is further elaborated in
the following paragraphs.

Papers used in this study were selected from the research field SE. To re-
fine the scoop only papers from recognizable sources within SE were considered.

7

Papers from ICSE, ESEJ, PROMISE

Candidates for quality assessment

Candidates for application of algorithms

Candidates for replication of analysis

Initial filtering

Data available and post-process is reproducible

Has outliers and analysis is reproducible

Figure 2: The figure describes how the paper filtering process was implemented. The
filtering done in “Data available and post-process reproducible” refers to the pre-study
while the filtering carried out in “Has outliers and analysis is reproducible” refers to
the replication of analysis.

More specifically the sources were the Empirical Software Engineering Journal
(ESEJ), International Conference on Software Engineering (ICSE) and Inter-
national Conference on Predictive Models in Software Engineering (PROMISE).
ESEJ was chosen since it is a journal featuring articles on empirical research
within SE. Proceedings from ICSE was chosen since the conference is consid-
ered to be among the leading conferences within SE. The PROMISE conference
proceedings include empirical research and associated to this is an online repos-
itory1 containing paper data. Therefore, PROMISE was deemed as suitable
source for elicitation. Furthermore, only papers from 2013–2014 were consid-
ered, in order to get a current sample of the field, i.e. an exhaustive search was
not conducted. As a final filter only papers regarding empirical studies and nu-
merical data were chosen. The papers that passed the mentioned criteria were
then considered for this study.

After the previously mentioned initial filtering a selection based on quality
attributes was carried out. A selection process containing two steps was created
to assess data availability and data post-processing reproducibility.

In the first step a paper’s data availability was assessed. If the paper’s data
was published in the paper, or accessible online, or provided directly by the
authors it passed the first step. The purpose of this step was to filter out papers
where the raw data set is not accessible.

In the second step the possibility of being able to replicate exactly any
processing done on the raw data set was assessed. If a paper’s post-processing
was deemed reproducible, or if none was conducted, the paper was kept and
outlier detection algorithms were applied on its data set. Being able to reproduce
the post-processing is important if further analysis of the paper’s data set is to
be possible. The filtering process is visualized in Figure 2.

The data needed to answer RQ1 (“To what extent is the presence of out-

1https://code.google.com/p/promisedata/

8

https://code.google.com/p/promisedata/

liers and outlier detection documented in software engineering studies?”) was
gathered simultaneously as the paper search was conducted. In order to answer
the research question the extent to which the presence of outliers and outlier
detection is documented in the studies selected, from the previous filtering and
selection, was investigated.

To answer RQ2 (“To what extent is data available in research papers and
in which form is the data made available?”) it was investigated how the data
used in the reviewed papers are made available to the public. This was carried
out by trying to access the raw data from the papers selected previously. As the
first step, a check was made to see if the data was available in the paper. If no
data was found in the paper a search was made for references to webpages or
online repositories in the paper to see if the data was made available online. The
third, and last, step was contacting the lead author via email and asking for the
data. The email sent was a short email acknowledging the author’s paper and
asking for access to the study’s data without elaborating the intentions further.
However, if an author asked about the intentions a description of this study was
given. By sending a sparse email the willingness of the author to give access to
the study’s data was tested. If a reply did not come within four weeks the data
was regarded as not being available.

All papers assessed during the pre-study can be found in Appendix B to-
gether with the assessment of the different attributes.

3.1.2 Search Process for Algorithms

The search for suitable candidate algorithms was carried out with the aim of
finding algorithms that can be used in an automated environment. That is,
algorithms that can be used in, for example, a script that takes a data set
as input. In order to conduct this search three criteria were defined that an
algorithm must fulfill in order to be considered for this study:

• The algorithm has to be unsupervised. The reason for this being that un-
supervised algorithms requires no training data and with this requirement
the effort and information needed to use the algorithm should be lower,
compared to a supervised algorithm.

• The algorithm does not make any assumptions about the distribution of
the data set, also known as being robust. This criterion was important
due to the difficulties of determining the distribution using an automated
approach, and due to the fact that SE research many times contain data
sets of various (small) sizes leading to the conclusion that a non-parametric
approach is more applicable, generally speaking.

• The algorithm must not require any input parameters, except for the data
set destined to analyze, as algorithms not requiring parameters have the
benefit of being suitable for use in an automated environment.

3.2 Application of Algorithms

The goal of this step was to run the candidate algorithms on the data sets
from the pre-study. In order to achieve this an automated process was created,
referred to as the pipeline. This pipeline takes a data set as input and applies

9

a suitable outlier detection algorithm on the set depending on if the data set is
one-dimensional or multi-dimensional.

For each one-dimensional data set that was processed, the following infor-
mation was produced:

• The original data set with the identified outliers labelled.

• Descriptive statistics for original and modified data sets:

– Mean

– Median

– Standard deviation

– Number of outliers

• Density and QQ-plots2 for the original data set and the modified data set.

• Plot with outliers marked and the change of mean if they are removed.

• Output of a Shapiro-Wilks normality test for both the original and mod-
ified data set.

• Output of a Welch’s t-test. Significance testing for difference between the
original and modified data set.

• Output of a Mann-Whitney U test. Significance testing for difference
between the original and modified data set.

In order to make this study reproducible all results are automatically gen-
erated and can be recreated at any time by downloading the study’s resources3

and executing the analysis script as described in the accompanying documenta-
tion. This script then inputs all data sets into the pipeline and the results can
then be viewed in the result folder. Software requirements for using the pipeline
can be found in Appendix A.

3.2.1 Analyzing the Results

The analysis of the results consisted of two parts. In the first part, the presence
of outliers was determined in order to see if H0Outliers

could be rejected. While
in the second part it was investigated if the original data set without outliers
differed significantly from the original data set. This comparison was conducted
in order to get a general overview of the impact of outlier removal on the data
set.

The criterion for rejecting H0Outliers
was that at least one outlier was found

in any data set investigated after the application of algorithms was performed.
If H0Outliers

could be rejected H0Concl
was investigated.

In order to pick a suitable significance test for one-dimensional data a nor-
mality test of both the original and modified data set was carried out. For
this purpose the Shapiro-Wilk test was chosen as it has been shown capable
of performing normality tests (Razali and Wah, 2011). To complement the

2QQ-plots are probability plots that compare two distributions. In this case, the studied
data set’s distribution is compared with that of a normal distribution.

3https://github.com/linqcan/odser2014

10

https://github.com/linqcan/odser2014

Shapiro-Wilk test, QQ-plots and density plots were used to allow visual inspec-
tion of the distribution. If any of the two data sets were reported as having a
non-normal distribution a non-parametric significance test, Mann-Whitney U ,
was used. Contrary, if both data sets were normally distributed a parametric
significance test, Welch’s t-test, was used to decide if they were significantly
different. If nothing else is mentioned, a significance level of 95% was used for
all significance testing.

The output from using a multi-dimensional algorithm was unknown before-
hand. Therefore, the design of the analysis for multi-dimensional algorithms was
postponed until the pre-study was conducted. The result from the pre-study
and the changes to the analysis can be found in Section 4.3 and Section 4.3.5.

3.3 Replication of Analysis

In order to determine if H0Concl
can be rejected the original analysis of the data

set was investigated for its reproducibility. If the data set had outliers and the
analysis was deemed reproducible further analysis was conducted. This analysis
was a replication of the original analysis but with the outliers removed from the
data set. H0Concl

was rejected if at least one case existed where the conclusion
in the original study did not hold when the modified data set was used.

11

.

Table 1: Descriptive statistics of the paper search pre-study

Papers gathered 43

Papers missing contact information 2

Data requests made 30

Replies stating data is confidential 3

Replies stating ‘other reason’ to data not available 2

Replies with data 5

Papers with data available (online, paper, from author) 16

Papers with data online 4

Papers with data in the paper 7

Papers disregarded 2

Papers documenting outliers 16

Papers describing their outlier detection 4

4 Results from Pre-Study

The goal of the pre-study is to provide papers and algorithms that could be
used for the application of algorithms in Section 5.

In this section descriptive statistics regarding the paper search will be pre-
sented before the results from the same search is presented. Furthermore, results
from the algorithm search will be presented in the proceeding section.

4.1 Descriptive Statistics for the Paper Search

In Table 1 descriptive statistics for the paper search is presented. From this
table one can note that 39% of the papers had data available after a request
was sent to the authors. As additional information regarding data availability,
the source with the highest rate of papers with data available was PROMISE
(60%) followed by ESEJ (35%) and ICSE (33%). Furthermore, it is stated in
the table that two replies were given as ‘other reasons’, these reasons were that
the data’s size was too large for it to be handed over and that the data was not
easily available to the author. Additionally, two papers were disregarded due to
their unsuitability to outlier detection. This unsuitability is further elaborated
in Section 6.3.

Regarding RQ1, PROMISE (80%) had the largest percentage of papers
documenting outliers and was followed by ESEJ (53%) and ICSE(14%). The
descriptive statistics in Table 1 will be used to answer RQ1 and RQ2 in Sec-
tion 6.1.

4.2 Candidates from the Paper Search

In this section, the papers that were chosen based on the criteria described in
Section 3.1.1 are presented. That is, papers whose data was available and whose
pre-process was deemed possible to replicate were selected as candidates. All
papers reviewed in the paper search are presented in Appendix B with their

12

corresponding assessment. Information regarding the sample sizes for all data
sets part of this study can be found in Appendix D.1.

4.2.1 An empirical study on the developers’ perception of software
coupling

The study by Bavota et al. (2013) looks into how coupling is perceived by
developers by letting two groups of developers study coupling in three software
systems. Developers assessed the level of coupling using a 1–5 Likert scale. In
total there are 48 data sets available divided over two groups of developers,
three applications and eight coupling measures. For the purpose of this study
the data sets for one application (jEdit) and one group (external developers) was
investigated which sums up to eight data sets. The jEdit data is described as
confirming the findings of JHotDraw and ArgoUML by Bavota et al. (2013) and
therefore jEdit was chosen. The group “original developers” was disregarded in
this study with the same motivation as in the original study, the sample size is
too low. The data from this study was made available online by the authors.

4.2.2 Are test cases needed? Replicated comparison between ex-
ploratory and test-case-based software testing

Itkonen and Mäntylä (2013) replicates a previous study that compared two man-
ual testing techniques, Exploratory Testing (ET) and Test-Case-based Testing
(TCT). This new study compares the two testing techniques using 51 students,
who conducted testing on the jEdit text editor. The results from this new study
reports that there were no significant difference in effectiveness when detecting
defects between ET and TCT. This result is inline with the original study.
For the purpose of this study all four data sets in the paper were chosen. The
data sets were related to the defect count and testing effort for both of the
evaluated techniques. Furthermore, Itkonen and Mäntylä (2013) conducts out-
lier detection with the help of box-plots. The outliers identified, subjects that
are performing exceptionally well or poorly, are still included in their statistical
analysis. The data for this study was available online via a reference in the
paper.

4.2.3 Mining SQL injection and cross site scripting vulnerabilities
using hybrid program analysis

Shar et al. (2013) are studying how SQL injections and Cross Site Scripting
(XSS) can be predicted from code analysis. Two different classifiers, Logistic
Regression (LR) and multi-layer perceptron, were tested on 10 projects and
three attributes were assessed (probability of defect, probability of false alarm
and precision). For the purpose of this study outlier detection data from the
LR results (all three attributes individually) including both analysis methods
presented in the paper (hybrid and static) was chosen. These data sets were
selected since they are used when conclusions are drawn in the original paper.
In total 6 data sets with 10 data points in each was chosen. The data was
available in the paper.

13

4.2.4 Parameter tuning or default values? An empirical investiga-
tion in search-based software engineering

Arcuri and Fraser (2013) investigates how parameter tuning impacts search re-
sults by conducting more than one million experiments. The authors claims
that tuning parameters has an impact, but are not able to find settings that
significantly outperforms the default search parameters. Three data sets con-
taining information about the time budget used for the search were chosen for
this study. The three different data sets have the same parameters except for
population size which is set to 4, 10 and 50 for the different runs. These data
sets were chosen because the authors claims that the population size could be
set as a linear function of the search budget. The data from this paper was
made available online via a reference in the paper.

4.2.5 An analysis of multi-objective evolutionary algorithms for train-
ing ensemble models based on different performance measures
in software effort estimation

Minku and Yao (2013) analyzes how Multi-objective Evolutionary Algorithms
can be used for software effort estimation. This is achieved with the help of
data sets from PROMISE and ISBSG. For this study five data sets claimed to
be from the PROMISE repository were chosen. However, only two out of these
five data sets were available in the PROMISE repository as of today. The other
three data sets were made available by the author after an email request. The
data sets from ISBSG were not available for free and were therefore disregarded
in this study. Furthermore, Minku and Yao (2013) conducts outlier detection on
the data using k-means clustering and this is described in an extended version
of the paper. The outliers were not included in the statistical analysis. Part
of the data was available online via PROMISE and part of it after an email
request.

4.2.6 Improving feature location practice with multi-faceted inter-
active exploration

In their paper Wang et al. (2013) present a tool for locating features in a system’s
code base. They compare their tool with Eclipse using two groups with ten
participants in each. For this study the results presented in Table 2-3 in their
paper was used. Furthermore, each attribute per group was considered as a
variable. Performing the analysis on these sets are of interest since they are
used in the significance testing carried out by the authors. In total six data sets
were chosen. The data was available in the paper.

4.2.7 Transfer defect learning

Nam et al. (2013) are studying cross project defect prediction and propose an
extension to Transfer Component Analysis (TCA) called Transfer Component
Analysis Plus (TCA+). The authors compare TCA and TCA+ by using two
already existing defect benchmarking data sets, ReLink and AEEEM. From
the comparison the authors conclude that TCA+ significantly improves cross
project prediction performance. For this study the F -measures were chosen
since it is the measure used to compare TCA with TCA+. More specifically,

14

the ReLink and AEEEM data sets for both TCA and TCA+ techniques were
chosen. This summed up to 4 data sets in total. The data sets were made
available in the paper.

4.2.8 Do background colors improve program comprehension in the
#ifdef hell?

Feigenspan et al. (2013) performed three controlled experiments to validate if
background colors improve program comprehension in preprocessor-based imple-
mentations. All data sets visualized in Figure 4 in the original paper (Feigenspan
et al., 2013) was chosen as well as the data used to answer their Research Hy-
pothesis 4. In total twenty-four data sets were assessed. The data was made
available by the author after a request was sent.

4.2.9 Reverb: Recommending code-related web pages

Sawadsky et al. (2013) explores how to provide useful web page recommenda-
tions to developers. The recommendations is a subset of pages already visited
by the developer. The authors introduce a tool called Reverb that recommends
previously visited web pages that relate to the code visible in the developers ed-
itor. The authors also conduct a field study on nine participants and find that
Reverb on average can recommend a useful web page in 51% of the revisitation
cases. For this study two data sets that describe the hit rates of Reverb, initial
hit rate and optimized hit rate, was chosen. The two data sets were available
in the paper.

4.2.10 Drag-and-drop refactoring: Intuitive and efficient program
transformation

Lee et al. (2013) introduces a new approach to refactoring through a drag-and-
drop tool called Drag-and-Drop Refactoring. An empirical study is conducted to
validate the usefulness of the introduced tool. For this study the data collected
regarding the configuration time was selected as it is used to draw conclusions
about the efficiency of the new tool. More specifically, the data collections called
the “Extract Method”, “Move Method”, “Collated Refactorings” and “Extract
Class”, which all contains two data sets each named “Eclipse” and “DNDR”,
were chosen. However, “Extract Class DNDR” was excluded since it is missing
data. In total, four data sets are. The data was gathered from Table 4 in the
original paper.

4.2.11 The impact of parameter tuning on software effort estimation
using learning machines

In their paper, Song et al. (2013) investigates to what extent parameters affect
performance of learning machines within SE estimation. Furthermore, they are
also studying learning machines’ sensitivity to parameter settings. Five learning
machines were tested on three data sets and the parameters were varied to study
the result. For the purpose of this study the data sets regarding performance
for “MLPs” on the “Kitchenham” data set was chosen as the performance of
“MLPs” was of particular interest of the original authors. Descriptive statistics

15

for these three sets are presented in Table 3a in the original paper. The data
was sent by the author upon request.

4.2.12 Adoption and use of Java generics

Parnin et al. (2013) conducted an empirical investigation on how Java generics
had been integrated into open source projects. They investigated this by com-
paring 40 open source projects and how they implement Java generics. Out of
these projects, 20 of the investigated projects were started before Java gener-
ics was introduced (established projects) and 20 of the projects were started
after Java generics was introduced (recent projects). This setup, with having
established projects and recent projects was chosen to compare the difference
in number of days between when Java generics and Java annotations was in-
troduced. In this study two datasets were chosen. The data sets regarded the
difference in days between introducing generics and annotations, for recent and
established projects. This data relates to RQ3 in their study. From the dataset
representing the established projects three data points were missing values and
they were removed as they were removed in the original paper. The removal
was carried out in order to replicate the original study to the highest possible
extent. There were replication tools available online from the authors but for
the intermediate data needed in this study the authors needed to be contacted.

4.2.13 Training data selection for cross-project defect prediction

In their study Herbold (2013) proposes distance-based strategies for the selec-
tion of training data used for defect prediction. Several predictor models are
studied, however, only one of them (Support Vector Machine, SVM) is used for
the analysis regarding the success rate, mean recall and mean precision. Fur-
thermore, they conclude that one strategy for this model performs better than
the others, neighborhood size 25 (NN-25). Therefore, for the purpose of this
study the model SVM for strategy NN-25 was chosen. This summed up to three
data sets in total. The data was provided by the authors after a request was
sent.

4.3 Candidate algorithms from the algorithm search

Based on the criteria stated in Section 3.1.2 the following three algorithms were
deemed suitable: Modified Z Score (MZS) (Garcia, 2012), LOcal Correlation
Integral (LOCI) (Papadimitriou et al., 2003) and Angle Based Outlier Detec-
tion (ABOD) (Kriegel et al., 2008). MZS is an algorithm for one-dimensional
data, i.e. data concerning only one attribute. The other two algorithms, LOCI
and ABOD, have been created with the purpose of detecting outliers in multi-
dimensional data. Multi-dimensional data is defined in this study as data that
concerns two or more attributes/dimensions.

The excluded algorithms and their accompanying motivation can be found
in Appendix C.

4.3.1 Modified Z Score (MZS)

The Modified Z Score algorithm measures how much a particular data point dif-
fers from the rest of the data set, using a score calculated by Equations 1 and 2.

16

Modified Z Score is applicable for one dimensional data and calculates the score,
Mi, from the Median Absolute Deviation (MAD). Therefore, the algorithm is
more robust than algorithms using the mean to score outliers (Garcia, 2012).
In the exceptional case where MAD equals zero the same alternative algorithm
as used by SPSS (2007) is implemented. Furthermore, to label outliers both
algorithms uses the Mi score and compares it to the average Mi score of the
data set. Iglewicz and Hoaglin (1993) suggests that if Mi is > 3.5σ it should be
considered as an outlier and using this cutoff value will make the method more
robust. Since MZS is a robust algorithm, does not take any input parameters
and does not require training data it is deemed to conform to the criteria for
choosing algorithms in this study.

MAD = mediani(|Xi −medianj(Xj)|) (1)

Mi =
0.6745(|Xi −medianj(Xj)|)

MAD
(2)

4.3.2 Local COrrelation Integral (LOCI)

Local correlation integral method is an unsupervised and density based outlier
detection algorithm. It is based on the idea of a Multi-granularity DEviation
Factor (MDEF) and provides an “automatic” method for detecting outliers.
MDEF can be explained as a technique that describes how much a data point
p’s neighborhood density, on a distance αr from p, deviates from its neigh-
borhoods’ average density. The neighborhoods chosen for comparison are the
neighborhoods within r from p. A point in a very populated neighborhood will
have a MDEF of 0 and points that could be suspected outliers will have a MDEF
closer to 1 (Papadimitriou et al., 2003).

The LOCI algorithm is described as not being sensitive to the choice of
parameters and the authors also suggests how to set the required parameters
in (Papadimitriou et al., 2003). In this study a value of 20 was used for the
parameter nmin, number of neighbors, as proposed by the authors. However,
this choice requires the data set to be evaluated to consist of at least 20 data
points. To determine if a data point should be considered as an outlier, or
an inlier, a cutoff value is required. In this study the cutoff value is set to
3σ, again, as recommended by the authors. Furthermore, α, the scaling factor
for the neighborhood, is set to 0.5 in this study, also as recommended by the
authors. Finally, the parameter rmax can be calculated by using the definition
in original paper. Therefore, LOCI does not fulfill the criterion regarding being
parameterless. However, the authors propose default values for the required
parameters that would make the algorithm robust. For that reason LOCI was
chosen despite it not being truly parameterless.

By setting the required parameters to the proposed values, and calculating
one according to the original paper, LOCI can be considered parameterless and
robust. This, combined with LOCI being unsupervised, makes the algorithm
fulfill the selection criteria.

17

4.3.3 Angle Based Outlier Detection (ABOD)

ABOD is an unsupervised algorithm that takes on a different approach than
LOCI. Instead of using a distance measure ABOD is focusing on the angle
between two distance vectors for two points seen from a point p under inspection.
After the angles for each two pairs of distance vectors have been computed the
total variance is calculated for the angles. This total variance is then called the
Angle Based Outlier Factor (ABOF) which also represents the score for point
p. The output from ABOD is a list of all points sorted by their score. The
lower the score, the more likely it is that the point is an outlier. ABOD does
not, however, tell you which points are outliers, it only tells you the level of
‘outlierness’ of each point. Deciding which point that is an outlier needs to be
done by the user. An important feature of ABOD is that is does not require
any input parameter, except the data, to operate. Finally, in the beginning of
this section it is mentioned that distances are not used for ABOD, this however
is not completely true. The distance is used but only as a weighting factor to
ensure that the angle for points far away from P is contributing less to the
variance (Kriegel et al., 2008).

Due to the large amount of pairs that need to be analyzed, ABOD has a
time-complexity of O(n3) which results in long computation times. To solve
this Kriegel et al. (2008) propose an approximation of ABOD called FastA-
BOD. This version uses k nearest neighbors and computes the angle value only
for pairs among these k neighbors. The result of this is an algorithm not as com-
putationally intensive. However, this algorithm was disregarded in this study
since it is dependent on an input parameter, i.e. k nearest neighbors, which is
non-trivial to determine for an arbitrary data set. Furthermore, Kriegel et al.
(2008) states that “the quality of the approximation depends on the number k
of nearest neighbors” which further indicates that this algorithm is not suitable
for this study.

The ABOD algorithm is parameterless in its definition (Kriegel et al., 2008),
however, the implementation requires a kernel function to be supplied which is
used for similarity checks. The default polynomial kernel function with a degree
of 2 was chosen for this purpose.

ABOD fulfills the criteria by being unsupervised, not making any assump-
tions about the distribution and by not requiring any input parameters.

4.3.4 Changes to the Automated Process

As a result of the found algorithms the planned automated process was changed
and those changes are defined further in this section and visualized in Ap-
pendix E.

Modified Z Score was implemented in R4 and is available in this study’s
repository5. The LOCI and ABOD algorithms used were supplied by the ELKI
Data Mining Framework6(Achtert et al., 2013) and this software was also used
to run the algorithms. Python was used to connect the different tools with each
other as well as for data parsing.

4http://www.r-project.org/
5https://github.com/linqcan/odser2014
6http://elki.dbs.ifi.lmu.de

18

http://www.r-project.org/
https://github.com/linqcan/odser2014
http://elki.dbs.ifi.lmu.de

For a one-dimensional data set the MZS algorithm is run in R. The result
is stored in a comma separated value (CSV) file. This CSV file contains the
original data set and a boolean flag for each point stating if it is an outlier or
not.

A data set which contains more than one dimension is evaluated with both
LOCI and ABOD using ELKI. Before LOCI is run the parameter rmax, required
by ELKI, is calculated and passed on to ELKI. The results from the outlier
detection in ELKI are written to a CSV file. This file is then parsed in Python
to remove strings inserted by ELKI. For LOCI this result file contains the
original data points and the MDEFσ value for each point. Similarly, the ABOD
contains the original data points and the ABOD outlier score. The CSV file for
LOCI is then fed to a R script that takes the original data set and labels data
points as outliers with a boolean flag if their respective MDEFσ value is above
a specified cutoff value, 3σ. The result of this labelling is then stored in a CSV
file. No further processing is to be done on the ABOD results. The CSV files
with the results from the outlier detection algorithms is then used in the analysis
phase.

4.3.5 Changes to the Analysis

As ABOD does not explicitly tell which points are outliers, an addition to the
analysis presented in Section 3.2.1 is needed. The results from applying ABOD
on a data set is compared with that of LOCI to see if the n detected outliers by
LOCI are the top n reported by ABOD. The motivation behind this is to see
if the result from an angle-based method differs much from a distance-based.
Furthermore, for multi-dimensional data, no intermediate significance testing
is carried out. Instead, only the conclusion, after the removal of the reported
outliers from LOCI, is validated.

19

5 Results

This section presents the results from applying outlier detection and removal
on the papers selected in the pre-study as well as a deeper analysis of a few
selected papers.

5.1 Application of Outlier Detection Algorithms

The results from applying outlier detection algorithms and removing outliers
are presented in Table 2 and data sets containing outliers are presented by the
plots in Figure 3, Figure 4 and Figure 5.

5.2 Analysis of Selected Papers

This section describes a more in depth analyze of the papers from Section 5.1
that contained outliers. The purpose of this analysis is to determine if the re-
moval of outliers affect the result of analysis in the original paper. Hence, the
original analysis is reproduced on a modified data set that does not contain out-
liers. The sample sizes of the modified data sets are presented in Appendix D.2
and the R code for the analysis conducted in Appendix G.

5.2.1 Do background colors improve program comprehension in the
#ifdef hell?

In this analysis the focus is on on research hypotheses RH1, RH2 and RH4 from
(Feigenspan et al., 2013) since they are all regarding non-binary data and their
data was made accessible by the authors.

For RH1 and RH2 post-processing was carried out on all the data sets re-
garding the maintenance tasks (Mx) as the authors had omitted response times
for questions that were answered incorrectly. This omission was mentioned in
the original paper and clarified by the authors via email correspondence.

The authors answer RH1 (“In static tasks, colors speed up program compre-
hension compared to ifdef directives”) and RH2 (“In maintenance tasks, there
are no differences in response time between colors and ifdef directives”) by con-
ducting a significance test and an effect size test for the static and maintenance
tasks to compare the test using colors with the test using ifdef. To reproduce
these tests a Mann-Whitney U test was used for non-parametric and Welch’s
t-test for parametric significance testing. Only the data sets with possible out-
liers, S1-ifdef, M1-ifdef and M2-ifdef was considered for the reproduction. The
new significance tests carried out in this study, Mann-Whitney U for S1 and
M2 and Welch’s t-test for M1, showed no different conclusion than those carried
out by the original authors. The effect size test, calculated using Cliff’s delta,
for S1 was slightly altered (−0.6417 compared to −0.61) but it resulted in no
different conclusions as well.

RH4 was validated using significance tests in the original study. The data
sets used in RH4 consisted of results from a survey using a 1–5 Lickert scale.
After outlier detection was conducted on the data sets used for this research

20

Table 2: Papers whose data outlier detection and removal was conducted on. Number
of data sets containing outliers is presented within parentheses. ‘Difference’ refers to
if the modified data sets were significant different to their original counterparts.

Paper Dimensions Outliers Difference Reference

An empirical study on
the developers percep-
tion of software coupling

1 Yes
(3/8)

No Bavota et al.
(2013)

Are test cases needed?
Replicated comparison
between exploratory and
test-case-based software
testing

1 No No Itkonen and
Mäntylä
(2013)

Mining SQL injection
and cross site scripting
vulnerabilities using hy-
brid program analysis

1 Yes
(1/6)

No Shar et al.
(2013)

Parameter tuning or
default values? An
empirical investigation
in search-based software
engineering

1 No No Arcuri
and Fraser
(2013)

An analysis of multi-
objective evolutionary
algorithms for training
ensemble models based
on different performance
measures in software
effort estimation

1 Yes
(5/5)

No Minku and
Yao (2013)

Improving feature lo-
cation practice with
multi-faceted interactive
exploration

1 Yes
(2/6)

No Wang et al.
(2013)

Transfer defect learning 1 No No Nam et al.
(2013)

Do background colors
improve program com-
prehension in the #ifdef
hell?

1 Yes
(6/24)

No Feigenspan
et al. (2013)

Reverb: recommending
code-related web pages

1 No No Sawadsky
et al. (2013)

Drag-and-drop refactor-
ing: intuitive and efcient
program transformation

1 Yes
(2/4)

No Lee et al.
(2013)

The impact of parameter
tuning on software effort
estimation using learning
machines

1 Yes
(3/3)

No Song et al.
(2013)

Adoption and use of Java
generics

1 Yes
(2/2)

No Parnin et al.
(2013)

Training data selection
for cross-project defect
prediction

1 No No Herbold
(2013)

21

●●●

●

●●

●

●●●

●●

●●●

●

● ●●●●●

●

●

●

●

●

●●

●●

●

●●●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●●●●

●

●

●●

●

●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●●

●

●

●

●

●●

●

●

0 20 40 60 80 100 120

1
2

3
4

5

Index

Le
ve

l o
f c

ou
pl

in
g

(a) jEdit logical low (Bavota
et al., 2013)

●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●

●

●●●

●●

●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●

●

● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●

●●

●

●

●● ●●

●●

●●●●●●●

●

0 20 40 60 80 100 120

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

Index

Le
ve

l o
f c

ou
pl

in
g

(b) jEdit semantic (Bavota
et al., 2013)

●

●●

●

●

●

●●●●●●●

●

●

●

●

●●●●●

●●

●

●

●

●●

●

●

●●●

● ●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●●●●●●●

●

●

●

●

●

●

●

●●●

●

●●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●● ●

●

●

●●

●

●

●

●

●

●

●●

●

● ●

●

●●● ●

●

●

●

● ●

●●

●

0 20 40 60 80 100 120

1
2

3
4

5

Index

Le
ve

l o
f c

ou
pl

in
g

(c) jEdit structural (Bavota
et al., 2013)

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

5 10 15 20

50
0

10
00

15
00

Index

R
es

po
ns

e
tim

e
in

 s
ec

on
ds

(d) M1-ifdef (Feigenspan
et al., 2013)

● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ●

5 10 15 20

2.
0

2.
5

3.
0

3.
5

4.
0

Index

R
es

po
ns

e
tim

e
in

 m
in

ut
es

(e) M1-ifdef performance
(Feigenspan et al., 2013)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

5 10 15 20

0
20

0
40

0
60

0
80

0
10

00

Index

R
es

po
ns

e
tim

e
in

 s
ec

on
ds

(f) M2-ifdef (Feigenspan
et al., 2013)

● ● ● ●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ●

5 10 15 20

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

Index

R
es

po
ns

e
tim

e
in

 m
in

ut
es

(g) M2-ifdef performance
(Feigenspan et al., 2013)

● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ●

5 10 15 20

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

Index

R
es

po
ns

e
tim

e
in

 m
in

ut
es

(h) M3-ifdef performance
(Feigenspan et al., 2013)

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

5 10 15 20

0
50

0
10

00
15

00

Index

R
es

po
ns

e
tim

e
in

 s
ec

on
ds

(i) S1-ifdef (Feigenspan et al.,
2013)

Figure 3: Plots displaying outliers for the analyzed papers. Outliers are marked with
a cross. The original mean is displayed as a solid horizontal line whereas the mean
after outlier removal is shown as a dotted line.

22

●

●

●
●

●
●

● ●

2 4 6 8

20
40

60
80

10
0

12
0

14
0

Index

C
on

fig
ur

at
io

n
tim

e
in

 s
ec

on
ds

(a) Extract Class Eclipse
(Lee et al., 2013)

●

●

●

●

●

●

●

●

2 4 6 8

0
5

10
15

20
25

Index

C
on

fig
ur

at
io

n
tim

e
in

 s
ec

on
ds

(b) Move Method DNDR
(Lee et al., 2013)

●●
●●●●●

●

●●●

●

●

●

●

●●

●●●●

●

●●
●

●●

●

●●
●●

●●●●●

●

●
●

●
●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●●

●

●
●

●●●
●

●

●

●

●●

●

●●

●

●

●
●

●

●

0 20 40 60 80 100 120

0
20

00
40

00
60

00
80

00

Index

E
ffo

rt
 a

pp
lie

d
in

 p
er

so
n−

m
on

th
s

(c) Cocomo81 Effort: per-
son months (Minku and Yao,
2013)

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 20 40 60 80

0
50

00
10

00
0

15
00

0
20

00
0

Index

E
ffo

rt
 a

pp
lie

d
in

 h
ou

rs

(d) Desharnais Effort: hours
(Minku and Yao, 2013)

●●
●●●●●

●

●●●

●

●

●

●

●●

●●●●

●

●●
●

●●

●

●●
●●

●●●●●

●

●
●

●
●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

0 20 40 60 80

0
20

00
40

00
60

00
80

00

Index

E
ffo

rt
 a

pp
lie

d
in

 p
er

so
n−

m
on

th
s

(e) NASA93 Effort: per-
son months (Minku and Yao,
2013)

●

●

●

●

●

●
● ●

●

● ● ●

●

●

●

●

●

●

●

● ● ●

●

● ●

● ● ● ●
●

●
●

●

●

●

● ● ●
● ●

●
●

●

●

●

●

●

●

●

●

●
●

0 10 20 30 40 50 60

0
50

0
10

00
15

00
20

00
25

00
30

00

Index

E
ffo

rt
 a

pp
lie

d
in

 p
er

so
n−

m
on

th
s

(f) NASA Effort: person
months (Minku and Yao,
2013)

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10 12

5
10

15
20

Index

E
ffo

rt
 a

pp
lie

d
in

 p
er

so
n−

m
on

th
s

(g) SDR Effort: person
months (Minku and Yao,
2013)

●
●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

5 10 15 20

0
20

0
40

0
60

0

Index

D
ay

s
be

tw
ee

n
in

tr
od

uc
tio

n
of

 J
av

a
ge

ne
ric

s
an

d
Ja

va
 a

nn
ot

at
io

ns

(h) Projects started after
generics was introduced
(Parnin et al., 2013)

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

5 10 15

0
50

0
10

00
15

00

Index

D
ay

s
be

tw
ee

n
in

tr
od

uc
tio

n
of

 J
av

a
ge

ne
ric

s
an

d
Ja

va
 a

nn
ot

at
io

ns

(i) Projects started before
generics was introduced
(Parnin et al., 2013)

Figure 4: Plots displaying outliers for the analyzed papers. Outliers are marked with
a cross. The original mean is displayed as a solid horizontal line whereas the mean
after outlier removal is shown as a dotted line.

23

●

●

●

●

●

●

●

●

●

2 4 6 8 10

40
50

60
70

80
90

10
0

Index

P
ro

ba
bi

lit
y

of
 d

et
ec

tio
n

(a) Static defect (Shar et al.,
2013)

●

●

●●●

●
●

●
●

●●●

●●●

●
●

●

●●●
●●●●

●●
●

●

●

●●●
●●●●

●●

●●●●
●●

●

●●
●●●

●●●●

●●●●●●●●

●
●

●●

●●●
●

●
●

●●●●●
●

●
●●●

●
●●●

●●
●●

●●●
●●

●
●

●●●
●●

●●●●
●

●●●●●

●●●●

●

●●●●●

●
●

0 20 40 60 80 100 120 140

0
20

00
40

00
60

00
80

00
10

00
0

12
00

0

Index

''P
er

fo
rm

an
ce

''

(b) MLP Kitchenham Best
(Song et al., 2013)

●
●●●●

●
●

●

●●●
●

●●●

●●
●

●
●

●
●

●●●●
●

●●

●

●●

●
●

●●
●

●●
●

●

●●●●

●

●●●●
●

●

●●●

●
●

●●
●

●●●

●

●

●●
●●●

●●

●

●

●
●●

●
●

●

●

●
●●●

●●
●

●
●●

●

●
●

●
●●●●

●●●●

●●●
●

●

●●●●
●

●
●●

●

●●
●

●

●●

●
●

0 20 40 60 80 100 120 140

0
20

00
40

00
60

00
80

00
10

00
0

12
00

0

Index

''P
er

fo
rm

an
ce

''

(c) MLP Kitchenham Default
(Song et al., 2013)

●●●●●●●●●● ●●● ●●●

0 20 40 60 80 100 120 140

0e
+

00
2e

+
14

0
4e

+
14

0
6e

+
14

0
8e

+
14

0
1e

+
14

1

Index

''P
er

fo
rm

an
ce

''

(d) MLP Kitchenham Worst
(Song et al., 2013)

●

●

●

●

●

●

●

●

2 4 6 8 10

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Index

F
−

m
ea

su
re

(e) Eclipse F-measure (Wang
et al., 2013)

●

●

●

●

●

●

● ●

2 4 6 8 10

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Index
R

ec
al

l

(f) Eclipse recall (Wang
et al., 2013)

Figure 5: Plots displaying outliers for the analyzed papers. Outliers are marked with
a cross. The original mean is displayed as a solid horizontal line whereas the mean
after outlier removal is shown as a dotted line.

question, three data sets were reported to have potential outliers: M1-ifdef
performance, M2-ifdef performance and M3-ifdef performance. Since these were
the only modified data sets, significance tests were only reproduced for these
three data sets. The reproduction of the statistical analysis, using a Mann-
Whitney U test, showed no other results than those reported in the original
study.

5.2.2 Improving feature location practice with multi-faceted inter-
active exploration

The study by Wang et al. (2013) fits the criterions stated in the method as a
suitable candidate for outlier detection as well as for further analysis. However,
in the analysis, a paired t-test is used to determine if there is a significant
difference in performance between using Eclipse and Multi-Faceted Interactive
Explorer (MFIE). Therefore, further analysis is not possible and this will be
elaborated in Section 6.2.

5.2.3 Drag-and-drop refactoring: Intuitive and efficient program
transformation

Although this study matched the specified criteria for further analysis such
analysis was not possible for (Lee et al., 2013). The reason for this being that the
statistical analysis (significance test) conducted in the paper was conducted as
pairwise analysis. Further elaboration regarding this can be found in Section 6.2.

24

5.2.4 Mining SQL injection and cross site scripting vulnerabilities
using hybrid program analysis

Reproducing the analysis of this study, with outliers removed, was not possible,
even though it matched the specified criteria, since the study uses a pair-wise
statistical test. The motivation behind this decision is discussed in Section 6.2.

5.2.5 The impact of parameter tuning on software effort estimation
using learning machines

In their research question RQ1 Song et al. (2013) draw conclusions about the
methods studied independently from each other. However, the analysis, of de-
termining which parameter setting that is better for each approach on each set,
uses a pair-wise comparison (“Wilcoxon sign-rank test with Holm-Bonferroni
corrections”). Further analysis of the impact of outlier removal on this study is
therefore not possible and the reason for this is discussed in Section 6.2.

5.2.6 An empirical study on the developers’ perception of software
coupling

The results from the experiment are reported using a 1–5 Lickert scale and
were not processed before being analyzed. In the original analysis the different
coupling techniques’ p-values are compared with each other. The p-values are
calculated with a Mann-Whitney U test, this test is then used to determine if
there is a perceived difference between the different coupling techniques. Out of
the eight investigated data sets from jEdit only three of them contained outliers:
Semantic-low, structural-low and logical-low. After removing all outliers from
the three data sets the same Mann-Whitney U tests as used in the original
study was executed. This lead to six tests and in one of those tests the p-values
changed noticeable, in the comparison between structural low and logical low.
However, this change does not affect the overall conclusion of the original study.

5.2.7 Adoption and use of Java generics

The study by Parnin et al. (2013) matched the specified criteria for being a
suitable candidate for all except the reproducibility of the analysis as it was
deemed as not being reproducible. The authors of Parnin et al. (2013) base their
conclusions both on statistical significance tests such as t-tests and reasoning
which makes it difficult to evaluate how the the investigated research question is
affected by removing outliers. Therefore, this study will be excluded for further
analysis.

5.2.8 An analysis of multi-objective evolutionary algorithms for train-
ing ensemble models based on different performance measures
in software effort estimation

Minku and Yao (2013) is suitable as a candidate for further analysis on the
basis that it is an empirical study which clearly describes how empirical data,
suitable for outlier detection, was collected and processed. However, it was
excluded from further analysis in this study since part of the data needed for
evaluating the conclusions is not available for free and can not be re-published.

25

Including Minku and Yao (2013) would therefore hinder this report from being
reproducible.

26

6 Discussion

In this section we will discuss and answer the previously defined hypothesis and
research questions. This will be done by using the data collected during the
pre-study, application of algorithms and replication of analysis. Furthermore,
improvements to our review process will be discussed and finally guidelines will
be presented.

6.1 Results from Pre-Study

From the pre-study we obtained data, presented in Table 1, showing the current
status of outlier detection within ESE. Based on this data we can answer our
research questions as follows.

RQ1: 37% of the surveyed papers did document presence of outliers and
25% of those documenting outliers document some kind of outlier detection.
Unfortunately, it is not possible to see any trends or draw any conclusions
regarding how documentation is conducted as all of the papers documenting
outlier detection do this in different ways. This is clearly troublesome and
hinders reproducibility in the long term. Additionally, we did not observe any
paper that conducted outlier detection without documenting it.

RQ2: 37% of the papers collected had data available and 26% of those
offered their data in the paper or online. In total, 16% of the papers in the
sample offered data in the paper and 9% online. The result presented here is
far from surprising for an immature research field such as SE. There could be
many reasons for the low outcome and we propose two reasons which we believe
are more important:

First, there is a lack of consensus on how to treat and make raw data available
within SE. This is, according to us, a major issue and something that the field
of SE needs to address. In our guidelines, in Section 6.5, we elaborate more on
this.

The second reason, proposed by us, for the low outcome is that replication is
not kept in mind by researchers while conducting their research. This might have
to do with replication not being common within SE as it is a fairly immature
research field (compared to physics and medicine). Also, we have observed that
the replication mentioned in SE research literature concerns full experiment
replication and does rarely mention replication of the data analysis, so called
re-analysis. However, we believe that re-analysis is of importance as well since
it can be used to validate if conclusions based on, for example, significance tests
are correct. As an example of this, one of the papers included in this study
was found by us to have incorrect calculations in the analysis. This error was
later confirmed and corrected by the author who stated that it fortunately had
no impact on the conclusions in the paper. In addition, being able to conduct
re-analysis would further encourage meta-analysis in SE research, since access
to data and statistical analysis procedures would be readily available.

During the course of the pre-study we encountered some issues, except those
mentioned earlier, regarding data handling and analysis worth mentioning. We
will present our proposal for solutions for the following issues in Section 6.5:

27

• Some authors use data from repositories such as the PROMISE database.
However, they do not clearly state how the data was extracted from the
repository which makes replication tedious and in some cases impossible.
For example, in one of the investigated papers, the data sets were divided
into subsets and it was not described how the division was done. This
hindered us from recreating the post processing of the data and we had
to exclude the paper.

• Even though we were given access to raw data, this data was at times ‘too’
raw. Meaning that to get the data needed to reproduce their analysis
we also needed to perform some kind of data extraction. This is both
a difficult and time consuming procedure (thus prone to errors) which
further complicates the replication of a study.

• The connection between the raw data and the paper was not obvious for
some of the studies we reviewed. For example, one data set used column
names which were a combination of abbreviations and words in the author
native language (not english). This led to some confusion and we needed
to contact the author several times in order to understand the published
data.

• For some of the papers analyzed in Section 5.2 we had to contact the
authors to have them explain their analysis and motivation behind the
choices they made. For example, some papers mention that they use a
“Wilcoxon” significance test without specifying if it is one or two-sided
and/or a paired test. This created unnecessary uncertainty about the
analysis conducted and made replication more difficult.

When taking into account all the above items it is clear that journals and
conference should require authors to be more explicit in describing study exe-
cution and analysis.

6.2 Results from the Application of Algorithms

After applying outlier detection with the parameters described in Section 3 on
the candidate papers from Section 4 we found that 24 out of the 77 data sets
contained outliers. As an additional test we removed the data points suggested
as outliers by the detection algorithm and compared the modified data set with
the original one. This comparison, using a significance test, showed that there
was no significant difference between the two sets in any of the 24 cases. As we
did find outliers using our outlier detection method we reject our null-hypothesis
H0Outliers

in favour for our alternative hypothesis H1Outliers
. As described in

Section 3, we chose a robust method for detecting outliers since we wanted a
method that fitted a wide range of data sets in order to implement an automatic
process. However, this probably led to less outliers being found in comparison
to if we would have chosen a suitable outlier detection method for each data
set. This fact should be taken into account when interpreting our results and is
mentioned in our threats to validity in Section 7.

Two of the analyzed papers in Section 5.2, (Itkonen and Mäntylä, 2013) and
(Minku and Yao, 2013), did document some kind of outlier detection. After
conducting our own outlier detection on these papers we noticed that the number

28

of detected outliers differed. However, this difference is probably due to the
type of method used and the accuracy of it. Itkonen and Mäntylä (2013) uses
a standard box plot which has a narrower span for the definition of an inlier
than our MZS method. Minku and Yao (2013) uses a k-means clustering-based
method which is fundamentally different from MZS; but as MZS reported more
outliers than theirs we assume that our MZS uses a more narrow span for
defining an inlier than their clustering method.

For the analysis of the effect on the conclusion after removing outliers, 6
papers had matched our criteria (outliers exist, analysis explained) and were
candidates for being further analyzed. However, we had to disregard 4 papers
due to their use of a pair-wise test in the analysis. The motivation behind this
decision was that if we remove data points from one of the sets we will break
pairs. A countermeasure would be to remove the whole pair and this method
would work in some cases but not in this case. If we were to remove pairs we
would also remove potential non-outliers from a data set. This would introduce
uncertainty regarding the effect of the outlier detection and removal we have
conducted. While researching the area we did not find any other methods for
handling outliers in data sets used for pair-wise testing. In Section 7 we present
the method of removing a whole pair as a possible threat to validity. The two
remaining papers did not provide results from which we could reject our second
hypothesis, H0Concl

. Though, it should be noted that we did have a small sample
size. We do, however, believe that further expanding the sample size would be a
difficult task as our results show that it is difficult to obtain data from recently
published studies as well as conducting a re-analysis.

Even though the removal of outliers did not affect any conclusions, the algo-
rithm used (MZS) did identify outliers in some cases. As the algorithm is easy
to use it could still be of interest for researchers to use this method to quickly
identify outliers. However, even though the algorithm proposes a data point to
be an outlier, this alone is not enough to exclude it from a data set. Researchers
are encouraged to use simple detection algorithms, such as MZS, and use the
result from these to discuss the inclusion or exclusion of data points in their
study.

6.3 Regarding the Review Process

During the pre-study two papers were deemed to fit our initial criteria but were
later disregarded. The reason for this was that the data sets found in these
papers did not have enough samples to conduct outlier detection. In hindsight,
a criterion stating the minimum amount of samples needed for a paper to be a
candidate would have been an improvement to our review process.

Another improvement to our review process would be a criterion stating that
all data used to draw conclusions has to be free of charge and that republishing
of it is allowed. Since this criterion did not exist (Minku and Yao, 2013) was
excluded late in the process.

6.4 Multi-Dimensional Outlier Detection

During the set up of this study we planned for having outlier detection algo-
rithms for both one-dimensional and multi-dimensional data. However, as the
pre-study turned out we did not encounter any multi-dimensional data sets. As

29

our sample was a ‘current’ sample one could say that ESE today does not in-
volve analysis of multi-dimensional data, according to our sample. However, we
believe that the field will progress into handling larger data sets on which one
would like to perform multi-dimensional analysis. As an example, one could
assess how a developer is performing based on several attributes over several
projects (open source contribeutors for example). The use of large data sets
will also be facilitated through the access of big data storage and computing
clusters. So, we propose that the field of SE starts discussing if/how multi-
dimensional outlier detection should be conducted within the field in the future
and how this should be documented. Our pre-study regarding algorithms can
be used as a small and limited introduction to multi-dimensional algorithms and
their issues. To conclude, there is still a lot of work to be done in regards to
multi-dimensional outlier detection within SE.

6.5 Guidelines

In the beginning of this study we sat out to propose guidelines for conducting
outlier detection. However, as our study included replication, and this was
easier said than done, we have come across more challenges. In this section we
propose solutions for those challenges as well since they can be a contribution
to the body of knowledge of SE.

Guidelines for Outlier Detection

• Outlier detection algorithms are only tools to help suggest what data
points could be outliers based on the specification of the algorithms.
Therefore, researchers should view these suggestions critically and not
remove data points without reflecting over the suggestions.

• A motivation to why a data point is an outlier should always be provided
no matter if detection algorithms with cutoff values or scoring is used.

• When conducting outlier detection, one should present which data points
were regarded as outliers by the algorithm. This can be done with the
help of a scatter plot for example. Also, motivate which potential outliers
that were disregarded and excluded from the statistical analysis.

• Reflect and argue for the usefulness of outlier removal before conducting
it. As in the case with pair-wise tests (discussed in Section 6.2), it might
not always make sense to remove deviating data points.

• Always document. It is important that no tacit knowledge is needed to
replicate the outlier detection and removal conducted.

Guidelines for Facilitating Replication

• When using already available data, such as data from the PROMISE
database, it is important to present how the information was extracted.
This is proposed by us to be done by giving instructions or, preferably,
providing extraction scripts. Furthermore, we propose that the data from
the extraction and post-processing steps are made available to ease the
verification of the replication.

30

• Use online data storage solutions such as the PROMISE database, Figshare,
Dropbox or Github instead of hosting data on personal university pages
that might be terminated when the authors leave.

• The information presented in the paper should clearly correspond to the
information in the raw data set. Preferably, the authors should provide a
key stating the mapping between the paper and the data set.

• The kind of significance test conducted should be clearly stated together
with a motivation of why this test was chosen. If the test is conducted
using a statistical software tool, mentioning which tool and providing all
parameters used for the test is of importance.

31

7 Threats to Validity

7.1 Internal

Internal threats to validity involves factors, such as instrumentation settings,
that could have affected the outcome.

• For conducting outlier detection robust methods were used. These meth-
ods used parameters settings that were meant to fit a wide range of data
sets and were not specialized. Having used specialized settings for each
data set we might discover more/less outliers than we did in this study.

• Removing a full pair in data sets used for pair-wise testing could be a
validity threat as we could potentially remove non-outliers from one data
set. This would then make it difficult to conclude anything about the effect
of the outlier detection we did initially. However, we did not conduct this
ourselves in this study but we like to underline the threat in conducting
such elimination of data points.

7.2 External

External threats to the validity are factors that affect the ability to generalize
the results outside the scope of this study.

• We only collected a current sample from the last one and a half year. This
limited sample might not be representable for studies conducted earlier,
but we deemed them to be a representative sample of current SE research.

7.3 Conclusion

Threats to the conclusion validity are factors that might affect how the conclu-
sions are drawn.

• Some of the data sets gathered during the pre-study did have a small
sample size to begin with (see Appendix D.1). The size became even
smaller when we removed data points suggested as outliers. The initial
small sample size is a validity threat to the original study, but the new
smaller size is a validity threat to our study and how we draw conclusions
regarding the significant difference of a data set before and after outliers
are removed.

7.4 Construct

Threats to the construct validity can be design errors in the study which could
lead to the wrong phenomena being studied. These errors could be caused by
social factors.

• Only having one researcher reviewing each study might have caused a bias.
To try and mitigate this risk we discussed issues regarding the studies
among us.

32

8 Conclusions

In this study we have investigated the presence of outliers in ESE studies as
well as the effect outliers have on conclusions drawn. In order to conduct this
study we needed the original data, documented post-processing and documented
analysis as input. Therefore, this study also investigates to what extent the
presence of outliers is documented, outlier detection is conducted and data is
available from ESE studies.

An automated process was created to conduct outlier analysis and create the
results used to answer our hypotheses. This process is available for download7

and all results can be reproduced for replication and verification purposes.
Based on the results gathered from the application of an outlier algorithm

we can conclude that outliers do exist in ESE studies.
From the information we collected while preparing our replications we found

that 37% of the investigated studies document outliers in some way and that
25% out of those do conduct some kind of outlier detection. Regarding the
data availability, we found that 26% of the studies have their data directly
available either in the paper or online. Additionally, 12% of the studies’ authors
replied with data after we sent out an email request. In total, 37% of the
studies investigated had data available. From this we conclude that the state of
replication, in regards to replicating data analysis, is less than desirable within
ESE and we think it is in need of improvement.

In order to help the research field improve our study provides the following
contributions to the body of knowledge:

• Outliers exists within recently published ESE studies and can be found
with robust methods.

• The extent to which recently published ESE studies document outliers
and conduct outlier detection.

• The extent to which recently published ESE studies make their data avail-
able and how it is made available.

• Guidelines for conducting and presenting outlier detection for ESE.

• Guidelines for how to improve the reproducibility of ESE studies.

• An analysis of recently published results and reproducibility within ESE.

7https://github.com/linqcan/odser2014

33

https://github.com/linqcan/odser2014

9 Future Work

For future work we recommend not to conduct more studies regarding outliers
and outlier detection on already published studies. Instead, we propose that this
should be done on to-be-published studies by journal and conference authors and
reviewers through the use of mandatory outlier detection. For example, a journal
could make it mandatory for all submitted papers to include information about
how outliers were handled and “did not handle outliers” can not be an answer.
This information would include information about the outlier detection method
used, actions taken based on the result from the detection and motivations for
the method used as well as the actions taken. The reason we propose to not
conduct more studies on already published studies is that our results shows that
it is difficult to obtain data from recently published studies. Hence, we assume
that trying to get hold of data from older studies could be even more difficult.

34

35

A Software Requirements for Using Developed
Tools

This section lists which software packages that were used to develop the tools
for the pipeline. In order to recreate the results of this study the software
dependencies mentioned in this section needs to be fulfilled. The pipeline and
generation of results have been verified to work on Linux and OS X.

• Python 2.7

• R 2.15.1 or greater

– xtables

– rjson

• TEX Live 2013 (required packages are listed below)

– caption

– float

– graphicx

– hyperref

– longtable

– natbib

– pdflscape

– subcaption

– tabu

– tikz

• ELKI 0.6.0 (for multi-dimensional data sets)

– OpenJDK 7

36

B Papers Reviewed in the Pre-Study

37

Table B.1: All papers used in the study. Post-process refers to if replication of the data post-processing was possible. Analysis refers to if replication
of the data analysis was possible.

Paper Data avail-
able

Post-
process

Analysis Excluded Has out-
liers

Analyzed Reference

Software bertillonage Online Not evalu-
ated

Not evalu-
ated

Yes No No Davies et al.
(2013)

Are test cases needed?
Replicated comparison
between exploratory and
test-case-based software
testing

Online Yes Yes No No No Itkonen and
Mäntylä
(2013)

Training data selection
for cross-project defect
prediction

From Au-
thor

Yes No No No No Herbold
(2013)

Adoption and use of Java
generics

From Au-
thor

Yes No No Yes No Parnin et al.
(2013)

Effectiveness for detect-
ing faults within and out-
side the scope of testing
techniques: an indepen-
dent replication

Paper No No No No No Apa et al.
(2014)

Drag-and-drop refactor-
ing: intuitive and efcient
program transformation

Paper Yes Yes No Yes Yes Lee et al.
(2013)

Program transformations
to fix C integers

Paper Not evalu-
ated

Not evalu-
ated

Yes No No Coker and
Hafiz (2013)

38

Table B.1: All papers used in the study. Post-process refers to if replication of the data post-processing was possible. Analysis refers to if replication
of the data analysis was possible.

Paper Data avail-
able

Post-
process

Analysis Excluded Has out-
liers

Analyzed Reference

Software defect pre-
diction using bayesian
networks

No response Yes No No No No Okutan
and Yıldız
(2014)

A replicated quasi-
experimental study on
the influence of personal-
ity and team climate in
software development

No response No No No No No Gómez
and Acuña
(2013)

How do open source com-
munities blog?

No response Not evalu-
ated

Not evalu-
ated

No No No Pagano
and Maalej
(2013)

How (and why) devel-
opers use the dynamic
features of programming
languages: the case of
smalltalk

No response Not evalu-
ated

Not evalu-
ated

No No No Callaú et al.
(2013)

Performance and reliabil-
ity prediction for evolv-
ing service-oriented soft-
ware systems

Confidential Not evalu-
ated

Not evalu-
ated

No No No Koziolek
et al. (2013)

39

Table B.1: All papers used in the study. Post-process refers to if replication of the data post-processing was possible. Analysis refers to if replication
of the data analysis was possible.

Paper Data avail-
able

Post-
process

Analysis Excluded Has out-
liers

Analyzed Reference

Parameter tuning or
default values? An em-
pirical investigation in
search-based software
engineering

Online Yes Yes No No No Arcuri
and Fraser
(2013)

The limited impact of
individual developer
data on software defect
prediction

No response Not evalu-
ated

Not evalu-
ated

No No No Bell et al.
(2013)

Using error abstraction
and classification to im-
prove requirement qual-
ity: conclusions from a
family of four empirical
studies

No response Not evalu-
ated

Not evalu-
ated

No No No Walia and
Carver
(2013)

An empirical study of
the state of the practice
and acceptance of model-
driven engineering in four
industrial cases

Confidential Not evalu-
ated

Not evalu-
ated

No No No Mohagheghi
et al. (2013)

40

Table B.1: All papers used in the study. Post-process refers to if replication of the data post-processing was possible. Analysis refers to if replication
of the data analysis was possible.

Paper Data avail-
able

Post-
process

Analysis Excluded Has out-
liers

Analyzed Reference

Using tabu search to
configure support vec-
tor regression for effort
estimation

No response Not evalu-
ated

Not evalu-
ated

No No No Corazza
et al. (2013)

Do background colors im-
prove program compre-
hension in the #ifdef hell?

From Au-
thor

Yes Yes No Yes Yes Feigenspan
et al. (2013)

X-PERT: accurate identi-
cation of cross-browser is-
sues in web applications

No response Not evalu-
ated

Not evalu-
ated

No No No Roy Choud-
hary et al.
(2013)

Can traditional fault pre-
diction models be used for
vulnerability prediction?

No response Not evalu-
ated

Not evalu-
ated

No No No Shin and
Williams
(2013)

Building a second opin-
ion: learning cross-
company data

No response Not evalu-
ated

Not evalu-
ated

No No No Kocaguneli
et al. (2013)

Effort estimation of
FLOSS projects: a study
of the Linux kernel

No response Not evalu-
ated

Not evalu-
ated

No No No Capiluppi
and
Izquierdo-
Cortázar
(2013)

41

Table B.1: All papers used in the study. Post-process refers to if replication of the data post-processing was possible. Analysis refers to if replication
of the data analysis was possible.

Paper Data avail-
able

Post-
process

Analysis Excluded Has out-
liers

Analyzed Reference

Mining SQL injection and
cross site scripting vul-
nerabilities using hybrid
program analysis

Paper Yes Yes No Yes Yes Shar et al.
(2013)

An analysis of multi-
objective evolutionary
algorithms for training
ensemble models based
on different performance
measures in software
effort estimation

From Au-
thor

Yes Yes No Yes No Minku and
Yao (2013)

An empirical study on the
developers perception of
software coupling

Online Yes Yes No Yes Yes Bavota et al.
(2013)

Are comprehensive qual-
ity models necessary
for evaluation software
quality

No response Not evalu-
ated

Not evalu-
ated

No No No ?

A learning-based method
for combining testing
techniques

No response Not evalu-
ated

Not evalu-
ated

No No No Cotroneo
et al. (2013)

42

Table B.1: All papers used in the study. Post-process refers to if replication of the data post-processing was possible. Analysis refers to if replication
of the data analysis was possible.

Paper Data avail-
able

Post-
process

Analysis Excluded Has out-
liers

Analyzed Reference

The impact of parameter
tuning on software effort
estimation using learning
machines

From Au-
thor

Yes Yes No Yes Yes Song et al.
(2013)

POPT: a problem-
oriented programming
and testing approach for
novice students

No response Not evalu-
ated

Not evalu-
ated

No No No Neto et al.
(2013)

Human performance re-
gression testing

No response Not evalu-
ated

Not evalu-
ated

No No No Swearngin
et al. (2013)

Guided test generation
for web applications

No contact
info

Not evalu-
ated

Not evalu-
ated

No No No Thummalapenta
et al. (2013)

Reverb: recommending
code-related web pages

Paper Yes Yes No No No Sawadsky
et al. (2013)

Comparing multi-point
stride coverage and
dataow coverage

No Not evalu-
ated

Not evalu-
ated

No No No Hassan and
Andrews
(2013)

Predicting bug-fixing
time: an empirical study
of commercial software
projects

No response Not evalu-
ated

Not evalu-
ated

No No No Zhang et al.
(2013a)

43

Table B.1: All papers used in the study. Post-process refers to if replication of the data post-processing was possible. Analysis refers to if replication
of the data analysis was possible.

Paper Data avail-
able

Post-
process

Analysis Excluded Has out-
liers

Analyzed Reference

Automatic patch genera-
tion learned from human-
written patches

Confidential Not evalu-
ated

Not evalu-
ated

No No No Kim et al.
(2013)

Bridging the gap be-
tween the total and addi-
tional test-case prioritiza-
tion strategies

No response Not evalu-
ated

Not evalu-
ated

No No No Zhang et al.
(2013b)

Improving feature lo-
cation practice with
multi-faceted interactive
exploration

Paper Yes Yes No Yes Yes Wang et al.
(2013)

What good are strong
specications?

No Not evalu-
ated

Not evalu-
ated

No No No Polikarpova
et al. (2013)

Partition-based regres-
sion verication

No response Not evalu-
ated

Not evalu-
ated

No No No Böhme et al.
(2013)

How to effectively use
topic models for software
engineering tasks? An
approach based on ge-
netic algorithms

No response Not evalu-
ated

Not evalu-
ated

No No No Panichella
et al. (2013)

Transfer defect learning Paper Yes Yes No No No Nam et al.
(2013)

44

Table B.1: All papers used in the study. Post-process refers to if replication of the data post-processing was possible. Analysis refers to if replication
of the data analysis was possible.

Paper Data avail-
able

Post-
process

Analysis Excluded Has out-
liers

Analyzed Reference

How, and why, process
metrics are better

No response Not evalu-
ated

Not evalu-
ated

No No No Rahman and
Devanbu
(2013)

Not going to take this
anymore: multi-objective
overtime planning for
software engineering
projects

No contact
info

Not evalu-
ated

Not evalu-
ated

No No No Ferrucci
et al. (2013)

45

C Algorithms Reviewed in the Pre-Study

46

Table C.2: Algorithms reviewed in this study.

Name Dimensions Type Unsupervised Robust Parameterless Reference Comment
Modified
Z Score

One Median
Abso-
lute
Devia-
tion

Yes Yes Yes Garcia (2012) See Section 4.3

ABOD Multi Angle
based

Yes Yes Yes Kriegel et al.
(2008)

See Section 4.3

LOCI Multi Density
based

Yes Yes No Papadimitriou
et al. (2003)

See Section 4.3

LOF Multi Density
based

Yes No No Breunig et al.
(2000)

Difficult to calculate
parameter needed

PCOut Multi Median
Abso-
lute
Devia-
tion

Yes Yes No Filzmoser et al.
(2008)

Difficult to esti-
mate the parameters
needed

FastABODMulti Angle
based

Yes Yes No Kriegel et al.
(2008)

k nearest neighbor

ORCA Multi Distance
based

Yes Yes No Bay and
Schwabacher
(2003)

k nearest neighbor

47

D Sample Sizes for Data Sets Used in this Study

D.1 Before Outlier Detection and Removal

Table D.3: Sample sizes for the original data sets used in this study

Data set name Reference Sample size
popsize10 Arcuri and Fraser (2013) 15
popsize4 Arcuri and Fraser (2013) 15
popsize50 Arcuri and Fraser (2013) 15
jEdit dynamicHigh Bavota et al. (2013) 128
jEdit dynamicLow Bavota et al. (2013) 128
jEdit logicalHigh Bavota et al. (2013) 128
jEdit logicalLow Bavota et al. (2013) 128
jEdit semanticHigh Bavota et al. (2013) 128
jEdit semanticLow Bavota et al. (2013) 128
jEdit structuralHigh Bavota et al. (2013) 128
jEdit structuralLow Bavota et al. (2013) 128
m1color Feigenspan et al. (2013) 21
m1color performance Feigenspan et al. (2013) 22
m1ifdef Feigenspan et al. (2013) 21
m1ifdef performance Feigenspan et al. (2013) 21
m2color Feigenspan et al. (2013) 21
m2color performance Feigenspan et al. (2013) 22
m2ifdef Feigenspan et al. (2013) 21
m2ifdef performance Feigenspan et al. (2013) 21
m3color Feigenspan et al. (2013) 19
m3color performance Feigenspan et al. (2013) 22
m3ifdef Feigenspan et al. (2013) 21
m3ifdef performance Feigenspan et al. (2013) 21
m4color Feigenspan et al. (2013) 15
m4color performance Feigenspan et al. (2013) 22
m4ifdef Feigenspan et al. (2013) 21
m4ifdef performance Feigenspan et al. (2013) 21
s1color Feigenspan et al. (2013) 22
s1color performance Feigenspan et al. (2013) 22
s1ifdef Feigenspan et al. (2013) 21
s1ifdef performance Feigenspan et al. (2013) 21
s2color Feigenspan et al. (2013) 22
s2color performance Feigenspan et al. (2013) 22
s2ifdef Feigenspan et al. (2013) 21
s2ifdef performance Feigenspan et al. (2013) 21
nn25 precision Herbold (2013) 44
nn25 recall Herbold (2013) 44
nn25 success Herbold (2013) 44
et defect count Itkonen and Mäntylä (2013) 51
et effort Itkonen and Mäntylä (2013) 51
tct defect count Itkonen and Mäntylä (2013) 51

48

Table D.3: Sample sizes for the original data sets used in this study

Data set name Reference Sample size
tct effort Itkonen and Mäntylä (2013) 51
collatedref dndr Lee et al. (2013) 9
collatedref eclipse Lee et al. (2013) 9
extractclass eclipse Lee et al. (2013) 9
extractmethod dndr Lee et al. (2013) 9
extractmethod eclipse Lee et al. (2013) 9
movemethod dndr Lee et al. (2013) 9
movemethod eclipse Lee et al. (2013) 9
coc81effort Minku and Yao (2013) 124
desharnaiseffort Minku and Yao (2013) 77
nasa93effort Minku and Yao (2013) 93
nasaeffort Minku and Yao (2013) 60
sdreffort Minku and Yao (2013) 12
aeeem tca Nam et al. (2013) 20
aeeem tcaplus Nam et al. (2013) 20
relink tca Nam et al. (2013) 7
relink tcaplus Nam et al. (2013) 7
new Parnin et al. (2013) 20
old Parnin et al. (2013) 16
initial Sawadsky et al. (2013) 9
optimized Sawadsky et al. (2013) 9
hybrid defect Shar et al. (2013) 10
hybrid fault Shar et al. (2013) 10
hybrid precision Shar et al. (2013) 10
static defect Shar et al. (2013) 10
static fault Shar et al. (2013) 10
static precision Shar et al. (2013) 10
kitchenham mlp meanBest Song et al. (2013) 135
kitchenham mlp meanDflt Song et al. (2013) 135
kitchenham mlp meanWorst Song et al. (2013) 135
eclipse fmeasure Wang et al. (2013) 10
eclipse precision Wang et al. (2013) 10
eclipse recall Wang et al. (2013) 10
mfie fmeasure Wang et al. (2013) 10
mfie precision Wang et al. (2013) 10
mfie recall Wang et al. (2013) 10

49

D.2 After Outlier Detection and Removal

Table D.4: Sample sizes for the data sets from which outliers were removed.

Data set name Reference Sample size
jEdit logicalLow Bavota et al. (2013) 124
jEdit semanticLow Bavota et al. (2013) 121
jEdit structuralLow Bavota et al. (2013) 122
m1ifdef Feigenspan et al. (2013) 20
m1ifdef performance Feigenspan et al. (2013) 18
m2ifdef Feigenspan et al. (2013) 20
m2ifdef performance Feigenspan et al. (2013) 19
m3ifdef performance Feigenspan et al. (2013) 19
s1ifdef Feigenspan et al. (2013) 17
extractclass eclipse Lee et al. (2013) 8
movemethod dndr Lee et al. (2013) 8
coc81effort Minku and Yao (2013) 114
desharnaiseffort Minku and Yao (2013) 76
nasa93effort Minku and Yao (2013) 85
nasaeffort Minku and Yao (2013) 52
sdreffort Minku and Yao (2013) 10
new Parnin et al. (2013) 19
old Parnin et al. (2013) 15
static defect Shar et al. (2013) 9
kitchenham mlp meanBest Song et al. (2013) 125
kitchenham mlp meanDflt Song et al. (2013) 125
kitchenham mlp meanWorst Song et al. (2013) 124
eclipse fmeasure Wang et al. (2013) 8
eclipse recall Wang et al. (2013) 8

50

E Pipeline

Original
data set
(CSV)

ELKI MZS in R

Result
(CSV)

Result
(CSV)

ParserParser

R,
Labelling

Labelled
result
(CSV)

Labelled
result
(CSV)

Result
(CSV)

Analysis in
R

ABOD, LOCI

LOCIABOD

Modified Z Score (MZS)

Figure E.1: Flowchart showing the steps involved in the pipeline. Analysis in R
involves creating all the artifacts mentioned in Section 3.2.

51

F Papers Documenting Outliers

52

Table F.5: Papers that document the presence of outliers and outlier detection. Used in experiment refers to if the paper was part of the application
of outliers in Section 5.1

Paper Documents
outliers

Outlier
detection

Used in
experiment

Reference Comment

Are test cases needed? Replicated com-
parison between exploratory and test-
case-based software testing

Yes Yes Yes Itkonen and
Mäntylä
(2013)

Finds outliers and men-
tions that they include the
outliers in the analysis.

Adoption and use of Java generics Yes No Yes Parnin et al.
(2013)

Mentions outlier but does
not describe how they were
detected or if they exclude
or include them.

Effectiveness for detecting faults within
and outside the scope of testing tech-
niques: an independent replication

Yes No No Apa et al.
(2014)

Does not mention if they
include or exclude the out-
liers found.

A replicated quasi-experimental study
on the influence of personality and team
climate in software development

Yes No No Gómez and
Acuña (2013)

Does not mention how
outlier detection is con-
ducted just mentions that
the “analyst” is responsi-
ble for identifying possible
outliers.

Using tabu search to configure support
vector regression for effort estimation

Yes No No Corazza et al.
(2013)

Mention that outliers can
be a problem problems in
some cases.

Do background colors improve program
comprehension in the #ifdef hell?

Yes No Yes Feigenspan
et al. (2013)

Uses a box-plot but does
not say if they remove the
data points or not.

53

Table F.5: Papers that document the presence of outliers and outlier detection. Used in experiment refers to if the paper was part of the application
of outliers in Section 5.1

Paper Documents
outliers

Outlier
detection

Used in
experiment

Reference Comment

Can traditional fault prediction models
be used for vulnerability prediction?

Yes No No Shin and
Williams
(2013)

Mentions that they found
outliers, but not with
which method.

Building a second opinion: learning
cross-company data

Yes Yes No Kocaguneli
et al. (2013)

Describes a reproducible
process but does not show
which data points they
exclude.

Effort estimation of FLOSS projects: a
study of the Linux kernel

Yes No No Capiluppi
and
Izquierdo-
Cortázar
(2013)

Determining if a point is
an outlier by using manual
inspection.

Mining SQL injection and cross site
scripting vulnerabilities using hybrid
program analysis

Yes No Yes Shar et al.
(2013)

Uses a clustering algo-
rithm, k-means clustering,
but does not present any
cutoff value.

An analysis of multi-objective evolu-
tionary algorithms for training ensemble
models based on different performance
measures in software effort estimation

Yes Yes Yes Minku and
Yao (2013)

References an extended
version of the paper where
outlier detection is de-
scribed using k-means
clustering.

Are comprehensive quality models nec-
essary for evaluating software quality?

Yes Yes No Lochmann
et al. (2013)

Calculates quartiles and
presents thresholds.

54

Table F.5: Papers that document the presence of outliers and outlier detection. Used in experiment refers to if the paper was part of the application
of outliers in Section 5.1

Paper Documents
outliers

Outlier
detection

Used in
experiment

Reference Comment

The impact of parameter tuning on soft-
ware effort estimation using learning
machines

Yes No Yes Song et al.
(2013)

Mentions that outlier de-
tection could be done as fu-
ture work.

Human performance regression testing Yes No No Swearngin
et al. (2013)

Does 5 runs of a experi-
ment in order to lower the
probability for any outliers
present.

How, and why, process metrics are better Yes No No Rahman and
Devanbu
(2013)

They say that they see alot
of outliers in the proximity
to a box-plot but they do
not elaboate on this in the
text.

55

G R Code for the Replication of Analysis

You will find R code for the replication of the analysis in Section 5.2 in our
repository8 in the folder report/appendix.

8https://github.com/linqcan/odser2014

56

https://github.com/linqcan/odser2014

References

Ian Sommerville. Software Engineering: (Update) (8th Edition) (International
Computer Science). Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2006. ISBN 0321313798.

Andrew J Ko, Thomas D LaToza, and Margaret M Burnett. A practical guide to
controlled experiments of software engineering tools with human participants.
Empirical Software Engineering, pages 1–32, 2013.

Hans-Peter Kriegel, Arthur Zimek, et al. Angle-based outlier detection in high-
dimensional data. In Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 444–452. ACM,
2008.

Andrew Brooks, Marc Roper, Murray Wood, John Daly, and James Miller.
Replication’s role in software engineering. In Guide to advanced empirical
software engineering, pages 365–379. Springer, 2008.

Jason W Osborne and Amy Overbay. The power of outliers (and why researchers
should always check for them). Practical assessment, research & evaluation,
9(6):1–12, 2004.

Victoria J Hodge and Jim Austin. A survey of outlier detection methodologies.
Artificial Intelligence Review, 22(2):85–126, 2004.

Peter J Rousseeuw and Bert C Van Zomeren. Unmasking multivariate outliers
and leverage points. Journal of the American Statistical Association, 85(411):
633–639, 1990.

Yeong-Seok Seo and Doo-Hwan Bae. On the value of outlier elimination on
software effort estimation research. Empirical Software Engineering, 18(4):
659–698, 2013.

Ke-Hai Yuan and Peter M Bentler. Effect of outliers on estimators and tests in
covariance structure analysis. British Journal of Mathematical and Statistical
Psychology, 54(1):161–175, 2001.

David N Card, Frank E. Mc Garry, and Gerald T. Page. Evaluating software
engineering technologies. Software Engineering, IEEE Transactions on, (7):
845–851, 1987.

Victor R Basili, Forrest Shull, and Filippo Lanubile. Building knowledge through
families of experiments. Software Engineering, IEEE Transactions on, 25(4):
456–473, 1999.

Forrest J Shull, Jeffrey C Carver, Sira Vegas, and Natalia Juristo. The role of
replications in empirical software engineering. Empirical Software Engineer-
ing, 13(2):211–218, 2008.

Natalia Juristo and Sira Vegas. The role of non-exact replications in software en-
gineering experiments. Empirical Software Engineering, 16(3):295–324, 2011.

57

Dag IK Sjøberg, Jo Erskine Hannay, Ove Hansen, Vigdis By Kampenes, Amela
Karahasanovic, N-K Liborg, and Anette C Rekdal. A survey of controlled ex-
periments in software engineering. Software Engineering, IEEE Transactions
on, 31(9):733–753, 2005.

R Murray Lindsay and Andrew SC Ehrenberg. The design of replicated studies.
The American Statistician, 47(3):217–228, 1993.

Tin W Tan, Joo C Tong, Asif M Khan, Mark de Silva, Kuan S Lim, and Shoba
Ranganathan. Advancing standards for bioinformatics activities: persistence,
reproducibility, disambiguation and minimum information about a bioinfor-
matics investigation (miabi). BMC genomics, 11(Suppl 4):S27, 2010.

Robert Gentleman. Reproducible research: A bioinformatics case study. 2004.

Black Pyrkosz Alexis Preeyanon, Likit and C. Titus Brown. Reproducible bioin-
formatics research for biologists. In Victoria Stodden, Friedrich Leisch, and
Roger D. Peng, editors, Implementing Reproducible Computational Research.
Chapman and Hall/CRC, 2014. URL http://www.crcpress.com/product/

isbn/9781466561595. ISBN 978-1466561595.

OS Gómez, N Juristo, and S Vegas. Replication, reproduction and re-analysis:
Three ways for verifying experimental findings. In Proceedings of the 1st in-
ternational workshop on replication in empirical software engineering research
(RESER 2010), Cape Town, South Africa, 2010.

Claes Wohlin, Per Runeson, Martin Hst, Magnus C Ohlsson, Bjrn Regnell, and
Anders Wessln. Experimentation in software engineering. Springer Publishing
Company, Incorporated, 2012.

Per Runeson and Martin Höst. Guidelines for conducting and reporting case
study research in software engineering. Empirical software engineering, 14(2):
131–164, 2009.

Barbara A Kitchenham and Stuart Charters. Guidelines for performing system-
atic literature reviews in software engineering. 2007.

Nornadiah Mohd Razali and Yap Bee Wah. Power comparisons of shapiro-
wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests. Journal of
Statistical Modeling and Analytics, 2(1):21–33, 2011.

Gabriele Bavota, Bogdan Dit, Rocco Oliveto, Massimiliano Di Penta, Denys
Poshyvanyk, and Andrea De Lucia. An empirical study on the developers’
perception of software coupling. In Proceedings of the 2013 International
Conference on Software Engineering, pages 692–701. IEEE Press, 2013.

Juha Itkonen and Mika V Mäntylä. Are test cases needed? replicated com-
parison between exploratory and test-case-based software testing. Empirical
Software Engineering, pages 1–40, 2013.

Lwin Khin Shar, Hee Beng Kuan Tan, and Lionel C Briand. Mining sql injection
and cross site scripting vulnerabilities using hybrid program analysis. In
Proceedings of the 2013 International Conference on Software Engineering,
pages 642–651. IEEE Press, 2013.

58

http://www.crcpress.com/product/isbn/9781466561595
http://www.crcpress.com/product/isbn/9781466561595

Andrea Arcuri and Gordon Fraser. Parameter tuning or default values? an em-
pirical investigation in search-based software engineering. Empirical Software
Engineering, 18(3):594–623, 2013.

Leandro L Minku and Xin Yao. An analysis of multi-objective evolutionary algo-
rithms for training ensemble models based on different performance measures
in software effort estimation. In Proceedings of the 9th International Confer-
ence on Predictive Models in Software Engineering, page 8. ACM, 2013.

Jinshui Wang, Xin Peng, Zhenchang Xing, and Wenyun Zhao. Improving feature
location practice with multi-faceted interactive exploration. In Proceedings of
the 2013 International Conference on Software Engineering, pages 762–771.
IEEE Press, 2013.

Jaechang Nam, Sinno Jialin Pan, and Sunghun Kim. Transfer defect learning.
In Proceedings of the 2013 International Conference on Software Engineering,
pages 382–391. IEEE Press, 2013.

Janet Feigenspan, Christian Kästner, Sven Apel, Jörg Liebig, Michael Schulze,
Raimund Dachselt, Maria Papendieck, Thomas Leich, and Gunter Saake.
Do background colors improve program comprehension in the# ifdef hell?
Empirical Software Engineering, 18(4):699–745, 2013.

Nicholas Sawadsky, Gail C Murphy, and Rahul Jiresal. Reverb: recommending
code-related web pages. In Proceedings of the 2013 International Conference
on Software Engineering, pages 812–821. IEEE Press, 2013.

Yun Young Lee, Nicholas Chen, and Ralph E Johnson. Drag-and-drop refac-
toring: intuitive and efficient program transformation. In Proceedings of the
2013 International Conference on Software Engineering, pages 23–32. IEEE
Press, 2013.

Liyan Song, Leandro L Minku, and Xin Yao. The impact of parameter tuning
on software effort estimation using learning machines. In Proceedings of the
9th International Conference on Predictive Models in Software Engineering,
page 9. ACM, 2013.

Chris Parnin, Christian Bird, and Emerson Murphy-Hill. Adoption and use of
java generics. Empirical Software Engineering, 18(6):1047–1089, 2013.

Steffen Herbold. Training data selection for cross-project defect prediction.
In Proceedings of the 9th International Conference on Predictive Models in
Software Engineering, page 6. ACM, 2013.

Francisco Augusto Alcaraz Garcia. Tests to identify outliers in data series.
Pontifical Catholic University of Rio de Janeiro, Industrial Engineering De-
partment, Rio de Janeiro, Brazil, 2012.

Spiros Papadimitriou, Hiroyuki Kitagawa, Phillip B Gibbons, and Christos
Faloutsos. Loci: Fast outlier detection using the local correlation integral.
In Data Engineering, 2003. Proceedings. 19th International Conference on,
pages 315–326. IEEE, 2003.

59

IBM SPSS. IBM SPSS modified z score, 2007. URL http://pic.dhe.ibm.

com/infocenter/spssas/v1r0m0/index.jsp?topic=%2Fcom.ibm.spss.

analyticcatalyst.help%2Fanalytic_catalyst%2Fmodified_z.html.

Boris Iglewicz and David C Hoaglin. How to detect and handle outliers, vol-
ume 16. ASQC Quality Press Milwaukee (Wisconsin), 1993.

Elke Achtert, Hans-Peter Kriegel, Erich Schubert, and Arthur Zimek. Interac-
tive data mining with 3d-parallel-coordinate-trees. In SIGMOD Conference,
pages 1009–1012, 2013.

Julius Davies, Daniel M German, Michael W Godfrey, and Abram Hindle. Soft-
ware bertillonage. Empirical Software Engineering, 18(6):1195–1237, 2013.

Cecilia Apa, Oscar Dieste, EdisonG. Espinosa G., and EfranR. Fonseca C. Ef-
fectiveness for detecting faults within and outside the scope of testing tech-
niques: an independent replication. Empirical Software Engineering, 19(2):
378–417, 2014. ISSN 1382-3256. doi: 10.1007/s10664-013-9267-7. URL
http://dx.doi.org/10.1007/s10664-013-9267-7.

Zack Coker and Munawar Hafiz. Program transformations to fix c integers. In
Proceedings of the 2013 International Conference on Software Engineering,
pages 792–801. IEEE Press, 2013.

Ahmet Okutan and Olcay Taner Yıldız. Software defect prediction using
bayesian networks. Empirical Software Engineering, 19(1):154–181, 2014.

Marta N Gómez and Silvia T Acuña. A replicated quasi-experimental study
on the influence of personality and team climate in software development.
Empirical Software Engineering, pages 1–35, 2013.

Dennis Pagano and Walid Maalej. How do open source communities blog?
Empirical Software Engineering, 18(6):1090–1124, 2013.

Oscar Callaú, Romain Robbes, Éric Tanter, and David Röthlisberger. How
(and why) developers use the dynamic features of programming languages:
the case of smalltalk. Empirical Software Engineering, 18(6):1156–1194, 2013.

Heiko Koziolek, Bastian Schlich, Steffen Becker, and Michael Hauck. Perfor-
mance and reliability prediction for evolving service-oriented software sys-
tems. Empirical Software Engineering, 18(4):746–790, 2013.

Robert M Bell, Thomas J Ostrand, and Elaine J Weyuker. The limited impact
of individual developer data on software defect prediction. Empirical Software
Engineering, 18(3):478–505, 2013.

Gursimran S Walia and Jeffrey C Carver. Using error abstraction and classi-
fication to improve requirement quality: conclusions from a family of four
empirical studies. Empirical Software Engineering, 18(4):625–658, 2013.

Parastoo Mohagheghi, Wasif Gilani, Alin Stefanescu, and Miguel A Fernandez.
An empirical study of the state of the practice and acceptance of model-driven
engineering in four industrial cases. Empirical Software Engineering, 18(1):
89–116, 2013.

60

http://pic.dhe.ibm.com/infocenter/spssas/v1r0m0/index.jsp?topic=%2Fcom.ibm.spss.analyticcatalyst.help%2Fanalytic_catalyst%2Fmodified_z.html
http://pic.dhe.ibm.com/infocenter/spssas/v1r0m0/index.jsp?topic=%2Fcom.ibm.spss.analyticcatalyst.help%2Fanalytic_catalyst%2Fmodified_z.html
http://pic.dhe.ibm.com/infocenter/spssas/v1r0m0/index.jsp?topic=%2Fcom.ibm.spss.analyticcatalyst.help%2Fanalytic_catalyst%2Fmodified_z.html
http://dx.doi.org/10.1007/s10664-013-9267-7

Anna Corazza, Sergio Di Martino, Filomena Ferrucci, Carmine Gravino, Feder-
ica Sarro, and Emilia Mendes. Using tabu search to configure support vector
regression for effort estimation. Empirical Software Engineering, 18(3):506–
546, 2013.

Shauvik Roy Choudhary, Mukul R Prasad, and Alessandro Orso. X-pert: accu-
rate identification of cross-browser issues in web applications. In Proceedings
of the 2013 International Conference on Software Engineering, pages 702–711.
IEEE Press, 2013.

Yonghee Shin and Laurie Williams. Can traditional fault prediction models
be used for vulnerability prediction? Empirical Software Engineering, 18(1):
25–59, 2013.

Ekrem Kocaguneli, Bojan Cukic, Tim Menzies, and Huihua Lu. Building a
second opinion: learning cross-company data. In Proceedings of the 9th Inter-
national Conference on Predictive Models in Software Engineering, page 12.
ACM, 2013.

Andrea Capiluppi and Daniel Izquierdo-Cortázar. Effort estimation of floss
projects: a study of the linux kernel. Empirical Software Engineering, 18(1):
60–88, 2013.

Domenico Cotroneo, Roberto Pietrantuono, and Stefano Russo. A learning-
based method for combining testing techniques. In Software Engineering
(ICSE), 2013 35th International Conference on, pages 142–151. IEEE, 2013.

Vicente Lustosa Neto, Roberta Coelho, Larissa Leite, Dalton S Guerrero, and
Andrea P Mendonça. Popt: a problem-oriented programming and testing
approach for novice students. In Software Engineering (ICSE), 2013 35th
International Conference on, pages 1099–1108. IEEE, 2013.

Amanda Swearngin, Myra B Cohen, Bonnie E John, and Rachel KE Bellamy.
Human performance regression testing. In Software Engineering (ICSE), 2013
35th International Conference on, pages 152–161. IEEE, 2013.

Suresh Thummalapenta, K Vasanta Lakshmi, Saurabh Sinha, Nishant Sinha,
and Satish Chandra. Guided test generation for web applications. In Software
Engineering (ICSE), 2013 35th International Conference on, pages 162–171.
IEEE, 2013.

Mohammad Mahdi Hassan and James H Andrews. Comparing multi-point stride
coverage and dataflow coverage. In Proceedings of the 2013 International
Conference on Software Engineering, pages 172–181. IEEE Press, 2013.

Hongyu Zhang, Liang Gong, and Steve Versteeg. Predicting bug-fixing time: an
empirical study of commercial software projects. In Proceedings of the 2013
International Conference on Software Engineering, pages 1042–1051. IEEE
Press, 2013a.

Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. Automatic
patch generation learned from human-written patches. In Proceedings of the
2013 International Conference on Software Engineering, pages 802–811. IEEE
Press, 2013.

61

Lingming Zhang, Dan Hao, Lu Zhang, Gregg Rothermel, and Hong Mei. Bridg-
ing the gap between the total and additional test-case prioritization strate-
gies. In Software Engineering (ICSE), 2013 35th International Conference
on, pages 192–201. IEEE, 2013b.

Nadia Polikarpova, Carlo A Furia, Yu Pei, Yi Wei, and Bertrand Meyer. What
good are strong specifications? In Proceedings of the 2013 International
Conference on Software Engineering, pages 262–271. IEEE Press, 2013.

Marcel Böhme, Bruno C d S Oliveira, and Abhik Roychoudhury. Partition-based
regression verification. In Proceedings of the 2013 International Conference
on Software Engineering, pages 302–311. IEEE Press, 2013.

Annibale Panichella, Bogdan Dit, Rocco Oliveto, Massimiliano Di Penta, Denys
Poshyvanyk, and Andrea De Lucia. How to effectively use topic models for
software engineering tasks? an approach based on genetic algorithms. In
Proceedings of the 2013 International Conference on Software Engineering,
pages 522–531. IEEE Press, 2013.

Foyzur Rahman and Premkumar Devanbu. How, and why, process metrics
are better. In Proceedings of the 2013 International Conference on Software
Engineering, pages 432–441. IEEE Press, 2013.

Filomena Ferrucci, Mark Harman, Jian Ren, and Federica Sarro. Not going to
take this anymore: multi-objective overtime planning for software engineering
projects. In Proceedings of the 2013 International Conference on Software
Engineering, pages 462–471. IEEE Press, 2013.

Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander. Lof:
identifying density-based local outliers. In ACM Sigmod Record, volume 29,
pages 93–104. ACM, 2000.

Peter Filzmoser, Ricardo Maronna, and Mark Werner. Outlier identification in
high dimensions. Computational Statistics & Data Analysis, 52(3):1694–1711,
2008.

Stephen D Bay and Mark Schwabacher. Mining distance-based outliers in near
linear time with randomization and a simple pruning rule. In Proceedings
of the ninth ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 29–38. ACM, 2003.

Klaus Lochmann, Jasmin Ramadani, and Stefan Wagner. Are comprehensive
quality models necessary for evaluating software quality? In Proceedings of the
9th International Conference on Predictive Models in Software Engineering,
page 3. ACM, 2013.

62

	Introduction
	Problem and Purpose
	Hypotheses and Research Questions

	Related Work and Theoretical Background
	Outliers
	Replication

	Methodology
	Pre-Study
	Search Process for Papers
	Search Process for Algorithms

	Application of Algorithms
	Analyzing the Results

	Replication of Analysis

	Results from Pre-Study
	Descriptive Statistics for the Paper Search
	Candidates from the Paper Search
	An empirical study on the developers' perception of software coupling
	Are test cases needed? Replicated comparison between exploratory and test-case-based software testing
	Mining SQL injection and cross site scripting vulnerabilities using hybrid program analysis
	Parameter tuning or default values? An empirical investigation in search-based software engineering
	An analysis of multi-objective evolutionary algorithms for training ensemble models based on different performance measures in software effort estimation
	Improving feature location practice with multi-faceted interactive exploration
	Transfer defect learning
	Do background colors improve program comprehension in the #ifdef hell?
	Reverb: Recommending code-related web pages
	Drag-and-drop refactoring: Intuitive and efficient program transformation
	The impact of parameter tuning on software effort estimation using learning machines
	Adoption and use of Java generics
	Training data selection for cross-project defect prediction

	Candidate algorithms from the algorithm search
	Modified Z Score (MZS)
	Local COrrelation Integral (LOCI)
	Angle Based Outlier Detection (ABOD)
	Changes to the Automated Process
	Changes to the Analysis

	Results
	Application of Outlier Detection Algorithms
	Analysis of Selected Papers
	Do background colors improve program comprehension in the #ifdef hell?
	Improving feature location practice with multi-faceted interactive exploration
	Drag-and-drop refactoring: Intuitive and efficient program transformation
	Mining SQL injection and cross site scripting vulnerabilities using hybrid program analysis
	The impact of parameter tuning on software effort estimation using learning machines
	An empirical study on the developers' perception of software coupling
	Adoption and use of Java generics
	An analysis of multi-objective evolutionary algorithms for training ensemble models based on different performance measures in software effort estimation

	Discussion
	Results from Pre-Study
	Results from the Application of Algorithms
	Regarding the Review Process
	Multi-Dimensional Outlier Detection
	Guidelines

	Threats to Validity
	Internal
	External
	Conclusion
	Construct

	Conclusions
	Future Work
	Software Requirements for Using Developed Tools
	Papers Reviewed in the Pre-Study
	Algorithms Reviewed in the Pre-Study
	Sample Sizes for Data Sets Used in this Study
	Before Outlier Detection and Removal
	After Outlier Detection and Removal

	Pipeline
	Papers Documenting Outliers
	R Code for the Replication of Analysis

