

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering

Göteborg, Sweden, June 2013

An Approach to Improve Quality of Software Using

Metrics and Technical Debt
A case study within Model-Driven Development Environment

Master of Science Thesis in the Programme Software Engineering and

Technology

BJÖRN PETERSSON

SHENG ZHANG

The Author grants to Chalmers University of Technology and University of Gothenburg

the non-exclusive right to publish the Work electronically and in a non-commercial

purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work

does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a

publisher or a company), acknowledge the third party about this agreement. If the Author

has signed a copyright agreement with a third party regarding the Work, the Author

warrants hereby that he/she has obtained any necessary permission from this third party to

let Chalmers University of Technology and University of Gothenburg store the Work

electronically and make it accessible on the Internet.

An Approach to Improve Quality of Software Using Metrics and Technical Debt

A case study in Model-Driven Development Environment

BJÖRN PETERSSON

SHENG ZHANG

© BJÖRN PETERSSON, October 2012.

© SHENG ZHANG, October 2012.

Examiner: MIROSLAW STARON

Supervisor: ROBERT FELDT

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering

Göteborg, Sweden June 2013

ACKNOWLEDGMENT

The authors would like to express appreciation and thanks to Volvo GTT for providing time

and resources supporting the study. The authors are particularly thankful for the support and

guidance given by Rolf Nilsson and Kristian Kinderlöv throughout the conducted study, as

well as the important contribution by the development team at the studied Volvo unit.

Furthermore, the authors are grateful of academic supervision and support from Professor

Robert Feldt, Chalmers University of Technology.

Preface

This Master of Science Thesis is reported here in a hybrid format, i.e. the main content of the

Work is reported as a scientific article conforming to the Empirical Software Engineering

Journal’s template, complemented by additional appendices relevant for the examination

at Chalmers University of Technology.

Table of Contents

Scientific Article... 1

Introduction .. 1

Literature Review.. 2

Methodological Design... 6

Solution and Implementation.. 7

Result and Analysis... 10

Discussion and Further Work.. 13

Conclusion... 14

Appendix... 17

Received: date / Accepted: date

An Approach to Improve Quality of Software Using

Metrics and Technical Debt
A case study within Model-Driven Development Environment

Björn Petersson

Department of Computer Science and Engineering

Chalmers University of Technology

SE-412 96 Göteborg, Sweden

bjorpe@student.chalmers.se

Sheng Zhang

Department of Computer Science and Engineering

Chalmers University of Technology

SE-412 96 Göteborg, Sweden

shengz@student.chalmers.se

Abstract

BACKGROUND: As software products play vital roles in

embedded systems, software quality has raised much attention in

the software engineering field, especially those using model-

driven development. However, software doesn’t have physical

features, so it is hard to measure and monitor its quality.

OBJECTIVE: To cope with the difficulty of measuring and

monitoring software quality, a framework was developed and

proposed to Volvo Group Truck Technology (GTT). After studies,

analyses and discussions, software metrics and technical debt

have been chosen and applied in this framework.

METHODS: The framework was developed based on research

result from surveys, interviews, workshops and literature reviews.

Software metrics were picked and applied in the framework to

get basic measurements, the raw data was transferred, analyzed

and presented with a modified form of technical debt so to fit this

development team’s requirements. Finally, the validity of the

study was confirmed by another survey and historical data

analysis. The framework is built to fit a model-driven

development environment.

RESULTS: Team members - including developers, testers,

architects and product managers - gave positive feedback to this

framework after it was applied in the development environment.

Furthermore, statistical analyses carried out on historical data

supported the correctness of the framework.

CONCLUSIONS: Software metrics can help to analyze,

measure and monitor software quality. Furthermore, potential

risks could be reduced by improvements suggested in the report,

such as i.e. splitting a method because it has too many lines of

code or too high complexity. It can be found in this study that by

combining software metrics and technical debt, the framework in

the project proved to be an efficient support-tool to improve

software quality. Furthermore, the framework has the potential

to be adopted in other model-driven development teams and

environments.

Key Words - Code Quality, software metrics, Technical Debt,

Model-Driven Development, Software Quality Improvement

I. INTRODUCTION

In software systems not only functionality and the outward

design are important, but also how it is coded, and designed

architecturally with modules and connections between them.

Software can function even if the quality of the written code

and modules are low, though the software code may hide or

introduce bugs when changed [50]. The quality of written code,

modules and connection between modules are hereafter

mentioned as Internal Software Quality (ISQ).

ISQ is connected with success of software projects and

related costs; one of the reasons is that a project with good ISQ

has reduced cost of maintenance [50, 51, 54]. However, there is

no easy way to define measurements of software quality [3,4]

and therefore also ISQ. As software systems increase in size as

well as complexity, the importance of software quality rise and

at the same time the software quality becomes harder to

measure [5,6,50].

Studies also show that fixing defects in the late phases of a

software development process is costly and can delay the

whole development process [40]. That considerable cost can be

saved if defects are prevented at an early stage is an accepted

concept in the software engineering research field. Bad code-

design can lead to defects and it does also increase the cost of

maintenance, some reasons for this is reduced readability and

complexity of the code, and thereby, system [7,53].

Model-Driven Development (MDD) is when development

is based on models as a primary artifact and from which code,

documentation and tests are derived [52]. Rational Rhapsody is

a tool that automatically derives code based on models created

by developers and which is the tool used at GTT. ISQ of MDD

projects remain a neglected topic in the academic area. Only

few papers can be found focusing on this, none of them

offering detailed solutions to measure or improve ISQ for

MDD projects. Moreover, none of the papers focused on using

the combination of metrics [1] and Technical Debt (TD)[2].

The purpose of this study was to measure and monitor the

ISQ and indirectly increase it in a system using Rational

Rhapsody. This was done by gathering metrics on the state-

charts and code written by the programmers. An important part

of gathering metrics and measuring the ISQ was to pinpoint

2 Björn Petersson, Sheng Zhang

special classes and methods, which were poorly designed and

written, and that had a risk of containing bugs [53].

In the end of this study, a framework has been proposed for

the team. The framework, which not only focused on ISQ of

MDD project but also on visualizing the quality trends and

monitoring them, it has also been evaluated with positive result.

This approach included some detailed implementation and

definition for code metrics as well as some general suggestions

for the whole development process. The proposed framework

was combined by tools which run analyzes of source

code/models. The tools were also integrated with auto-

compiling system to regularly generate a report based on TD,

which is a term that is used to describe artifacts in code that

will cost more and provide less quality in the long run [25].

This report is shown to managers and related personnel in the

development team (in the following frequently referred to as

the “team” or the “development team”).

Since the topic ISQ is firmly connected to implementation

of software code (models, in case of MDD), the main focus of

this study was on the metrics and the ways to analyze and

monitor them. Furthermore, the introduction of the concept of

TD made it possible for developers and managers to

communicate in a new way. The ISQ was not only reflected

and visualized but also shown in the form of TD which is

important for managers, especially for project managers.

In the earlier stages of the study research-questions with

sub-questions were created to be answered:

RQ1. How to measure software quality in a MDD project?

SQ1.1 Which metrics are useful in a MDD project?

SQ1.2 How to apply metrics in a MDD project using

Rational Rhapsody?

RQ2. How to improve software quality in a MDD project?

SQ2.1 Which approach is suitable for GTT’s situation?

SQ2.2 How can results from metrics help with

improving software quality?

SQ2.3 How to measure the improvement?

RQ3. How to present the result of ISQ improvement study?

SQ3.1 How to raise attention of ISQ for both

developers and managers?

SQ3.2 Can technical debt works as a bridge between

developers and managers when it comes to quality?

SQ3.3 How to present the result in a more

understandable way?

II. LITERATURE REVIEW

The literature review consist of three topics; i) studies on

metrics – fundament of the whole study; ii) ISQ improvement

studies in practice; and iii) MDD quality researches and metric

collecting.

A. Metric Studies

“Software metrics” is used as a name for many different

areas, it varies from being used for measurements in software

engineering to models predicting software quality or the

amount of resources needed [9,10]. In this study, the term

“software metrics” is referred to measurements, in numbers, of

the software product at the development team in Volvo GTT.

Software metrics were used almost as early as the

beginning of software engineering and some metrics from that

time are still used. These early metrics from the late 1960’s,

Lines Of Code and other size-based metrics, are regarded both

as successes and failures. The reason for them being a failure is

that they were often misused [9] or lacked comprehensive

definition [10]. There are many papers that discuss the

usefulness of metrics, an example is Mills [1] that states that

metrics can be a resource to increase software productivity and

software quality [1]. Another example is Fenton and Neil [9]

who write that its most significant role is to help in managerial

decisions in software development [9].

There are also many papers that warn about risks related to

using metrics. Often metrics are gathered in large quantities,

and then never used, or needed. Sometime right metrics are

gathered but never looked at because there are too many

metrics and too much information to search through [10].

Judging by this information it is very important to have a

goal/reason for integrating a metric into the system [1,10].

A very important part within the field of metrics is proper

definitions, a metric without definition can be hard to

understand and read. Westfall [10] compared metrics without

definition with the speed of a car, to know the speed of a car

the unit for speed (kilometers per hour/miles per hour) is

required [10]. This means that there must be a proper definition

to each metric to explain what the metric is measuring and how

to read the metric. Mills [1] also mentions the importance of

definitions when writing how a good metric should be: “simple,

precisely definable - so that it is clear how the metric can be

evaluated” [1].

Metrics that can be used in all projects and by all

companies are hard to create, instead specific metrics can be

constructed based on stakeholders wishes [1,10]. There exist

metrics which are constructed and tested specifically for

object-oriented environments. It also exists metrics that can be

adopted into object-oriented environments [11,12]. Below is

eight metrics which were chosen as the backbone for

discussions in the study. The reason for them to be chosen was

to test if object-oriented environment metrics could be used in

a MDD environment and also because they have been tested in

older studies [11,12]:

Cyclomatic Complexity (CC): Measures the complexity

of a method, calculated by a summarization of all linearly

independent paths through a software source code. CC should

be below ten in a method, else the complexity is deemed to be

too high [11].

Size: Evaluates how easily the code can be understood by

developers and maintainers. Size can be measured in a variety

of ways; some ways consist of counting physical Lines Of

Code (LOC), number of statements and number of blank lines.

Size thresholds differ depending on the code language used,

but generally bigger size means the code will be harder to

understand and this results in having less understandability,

maintainability and reusability [11].

Comment Percentage (CP): CP is calculated by taking the

number of comments, in any form, and dividing it by the

number of physical lines of codes less the number of blank

lines. Comments ease understandability, maintainability and

reusability when they come in the right amount. Software

Assurance Technology Center (SATC) has found that the most

efficient comment percentage is when it is close to 30% [11].

Weighted Method per Class (WMC): The sum of the

complexity of all methods in a class or sum of all methods in a

class is the definition of WMC. The complexity of methods is

calculated in the same way as CC. Measuring the complexity

of the methods can be hard depending on whether the methods

are accessible due to inheritance. The higher the methods the

An Approach to Improve Quality of Software Using Metrics and Technical Debt 3

more application specific the class becomes and it will also

reduce the reusability of the class [11,12].

Coupling Between Object Classes (CBO): Classes are

coupled when one class uses methods or instance variables

defined in another class. CBO is the number of classes a class

is coupled to. High coupling increases complexity, decreases

reusability and a class with high coupling needs more rigorous

testing [11,12].

Response For a Class (RFC): This metric looks at the

complexity of a class by comparing the amount of methods it

has combined with how much communication it has with other

classes. The higher number of methods that can respond to a

call the more complex the class becomes and by that testing

and debugging will become more difficult [11,12].

Lack of Cohesion in Methods (LCOM): Cohesion in a

class means that the methods in the class perform actions that

are related. When there is no cohesion the code becomes more

complex but may work as well as a class with high cohesion

[11,12]. There exist different ways of calculating cohesion, the

one that is explained below is a version proposed by

Henderson-Sellers:

If m is the number of methods in the class, a is the number

of attributes in the class, mA is the number methods that access

the attribute a and sum(mA) is the sum of all mA over all the

attributes in the class. The method to calculate LCOM is:

Formula 1:

 ()

This method results in a number between zero and two and

if the value is higher than one it should be seen as a warning

and the class should be divided into subclasses [13].

Depth of Inheritance Tree (DIT): DIT is calculated for

each class and from the number of ancestors that class has. The

depth of the class is determined by how far it is from the top of

the inheritance tree, the root, to the class node. The higher the

number of ancestors a class has the more methods are used and

the more complex the class becomes. With increasing

inheritance the system will get a higher design complexity, but

it also increases the chance of reuse of methods that is inherited

[11,12].

Number of Children (NOC): NOC measures the number

of direct subclasses to a class. Higher NOC in a class means

that it may have more influence on the system design and

therefore require more testing of the class and its methods, but

it also comes with greater reuse of its methods. A high NOC

also warns of possible misuse of sub-classing [11,12].

B. ISQ improvement studies in practice

The quality improvement studies chapter consists of short

studies on techniques and methods to improve the ISQ of a

system. All these studies are connected to metrics or technical

debt in some way.

Static analyzing tools do in some cases collect metrics, in

other cases compares code against metrics or both. Coding

standards and quality gates often use metrics; coding standards

use them as guidelines on how to write the code (e.g. should be

less that 400 LOC for each method) and quality gates use

metrics to compare the code so that the code clears the

minimum requirements (e.g. a method got a CC of less than

10).

Technical debt is widely used nowadays, it is very useful to

connect quality to measurable concept thus it can benefit in

measuring and understanding software quality. Unit Test and

Code Coverage and organizational structure metrics are metrics

in them self but are not collected within the study, instead they

are worth to mention as important metrics.

Knowledge sharing is an important topic when discussing

ISQ because some errors and bugs exist because lack of

knowledge when programming. Knowledge sharing can be

done in different ways; one way is through review of code,

metrics can help choose what code to review by showing if

there exists code that have to many lines of code or too high

complexity etc.

At the end of the study, those improvements studies are

presented to GTT as further actions to improve ISQ.

1) Coding standards

Another name for coding standards, is coding conventions.

Coding conventions are styles and coding guidelines. It is a

way to write code so that code is consistent in a project. Some

aspects the coding convention brings up/guide programmers to

write are [14,15]:

 Naming

 Comments

 Formatting

 Classes

 Indentations

At Google they express the importance of the coding

conventions in C++ because of many features in the coding

language. They continue by mentioning that this can make the

coding language complex which increases the risks of bugs and

makes it more difficult to maintain [14].

Further reasons to implement and heed the code

conventions are mentioned by many; Java, ISO 9000 and the

Capability Maturity Model (CMM) amongst them. Below are

reasons why conventions are important and should be used

[15,16]:

 There will be less common type errors

 Many different programmers will maintain the

program

 It will be ported more easily to other operating

systems

 It is easier to read and understand

 The style will be more consistent

 The cost of software is 80% due to the

maintenance

ISO 9000 and CMM go as far as saying that coding

standards are mandatory for any company that has any sort of

quality goals [16]. It is also said that perhaps the first and

easiest way to improve ISQ is to introduce a reasonable coding

standard [17].

2) Quality gates

Quality gates are controls on code which works as an extra

step after implementation of a feature before it can be marked

as complete. For a feature to be declared as complete when

using quality gates the feature has to pass all the criteria that

are established beforehand by the team [18,19]. Here are five

examples of criteria that Microsoft has established in one of

their projects [18]:

 No unit test created for the code may fail

 80% code coverage has to be met for the unit tests

 The public methods shall have documentation

4 Björn Petersson, Sheng Zhang

 Code that does not have unit tests should have no

errors or warnings from static analysis tools

 The build must compile on the highest level and it

shall not get warnings or errors

These criteria are specific for one team in one project at

Microsoft; there can be more or less criteria depending on the

team decisions. Quality gates is a technique that has been

created with the goal of increasing software quality and is one

that has been applied successfully for assuring quality in a

piece of software code [18,19,20].

The use of quality gates increases implementation time but

it also increases the quality of the code. It can also improve

communication within the team depending on how the controls

of quality gates are done [18,19]. Furthermore, features do not

get implemented and labeled complete before they are robust

enough to handle real-life activities [18].

As quality gates can be seen as best practice and therefore

also include that the coding conventions should be followed,

errors and faults in the code should be found earlier. Making

code following coding conventions and having unit tests etc.

makes the code more maintainable and reduces the cost of the

whole project [21].

3) Static analysis tools

Static analysis is a tool used when controlling code in

different ways and when to find defects early [22,23]. There

exist different types of analyses that can be done; syntactic

analysis, data-flow analysis and flow-graph analysis. Syntactic

analysis checks code against earlier defined patterns like

coding conventions. Data-flow analysis monitors variables and

their states in all flows which predict null-pointer exceptions,

not closed database objects in flows and more. Flow-graph

analysis checks complexities of methods; this complexity is

called CC (see A. Metric Studies) [22]. So by using static

analysis tools metrics on the system can be gathered, code can

be matched against patterns and reviewed for defects and bad

habits of programmers [22,23].

There are many benefits from using static analysis tools

[22,24]:

 Early bug detection

 Improving development productivity

 End-product reliability

 Enforces coding conventions

 Making maintainability easier

 Increases quality

 Finding potential performance issues

 Finds design defects

 Reduces need of manual coding reviews for

finding cosmetic defects

 Makes review process more manageable and

predictable

 Helps increasing the security of the software

4) Technical Debt

Technical Debt (TD) is a metaphor which stands for

potential risks and cost of neglecting standards. The standard

should determine the minimum quality requirements of the

system (e.g. a method should not have more than 400 lines of

code). The standard could cover many different aspects of

software quality, e.g., coding conventions, test coverage,

comments, architecture, review coverage etc.

The concept of TD is first mentioned in Cunningham’s

paper: “Neglecting the design is like borrowing money.

Refactoring, it’s like paying off the principal debt.” [2] Seaman

and Guo have given out their own explanation of TD:

“Technical debt is a metaphor for immature, incomplete, or

inadequate artifacts in the software development lifecycle that

cause higher cost and lower quality in the long run.” [25]

During this study, TD has been defined as a measure of

how much a piece of code is deviating from standards which

the company has set up for their source code. In this study, the

calculation of TD has been simplified into the effort of fixing a

certain amount of code with “poor quality” to code with “good

quality”. Here, “poor quality” and “good quality” were

referring to code-standards set by the company.

“Developing slower because of this debt is like paying

interest on the loan. Every minute spent on not-quite-right-code

counts as interest on that debt.” [2]. As long as TD exists in the

project, there will be more cost and resources needed to

maintain the project. The interest of TD stands for the

additional cost of maintenance is added to the Accumulated

Technical Debt (ATD) as well. Thus we can introduce a TD

Interest Rate (TDIR) to the study. TDIR is another key issue to

determine the ISQ. Their relationship can be explained as

follow formula:

Formula 2: ATD = TD + interest = TD × (1 + TDIR)

Usually TD is calculated in the unit of man-hours, man-

days or man-months and from there translated over to a cost of

how much this will cost.

An example of this can be that a company has a debt of 26

man-weeks and one man-week costs around 5’000 dollars, then

the debt will sum up to: 26 x 5’000 which is 130’000 dollars.

This TD is also calculated in percentage, how much the code

deviates from the standards totally in percentage. This

percentage can also be seen as an interest, because this

percentage can be added to the time it will take to solve the

deviations. When having an interest of 10 percent all fixes will

take 10 percent longer time.

TD allows:

 To provide a common language for all teams.

 To monitor trends.

 To report comparative data.

 To proactively manage application asserts.

During this study, a customized calculation of TD was

created. This customization used a paper from Seaman and

Guo [25] as a theoretical background.

The TD calculated in this study consists of two parts: the

cost of fixing a deviation from standards and the interest

caused by the debt during maintenance activities. The details of

the calculation of this TD can be found below.

As mentioned above, to measure TD the team needs to have

established a standard to follow. When the standard are decided

a database is created with numbers for the time it takes to fix

deviations, the meaning to do this is to know how much time

the different deviations will take to fix, excluding the interest.

This will be used when summarizing the time later on in the

process of calculating the TD. The time should be decided in

man-hours so that the estimation in the end will be as accurate

as possible.

When time is decided upon, an average cost of a man-hour

will be needed. This will be done if the team wants to put a

An Approach to Improve Quality of Software Using Metrics and Technical Debt 5

cost, a number of dollars on the debt, which is preferred for

understanding of the importance. Otherwise the debt can be

calculated in man-hours to man-years.

When these preparations are finished, the deviations from

the standards are calculated. To acquire the actual number the

time to fix all deviations is summed and multiplied with the

man-hour cost.

The interest of TD can be calculated in many different

ways. During the study, a customized method of calculating

interest was adopted [25]. The interest was calculated based on

the levels of deviations collected by metrics. The higher

deviation level has been set with higher interest rate. Then the

interest of each object (model, class or function) was calculated

by multiplying the set interest rate and the deviation. The total

interest was the sum of all interest from all objects. TDIR can

be calculated according to Formula 2, it can be predicted that

the higher TDIR implies higher cost in maintenance in the

future.

TD can be easily understood by managers without going

into too many technical details, since is directly shown in a

form of cost, important enough to catch attention. Comparing

TD values of different period of a project is a good way to

monitor the ISQ trend of the life-cycle of that project [25].

Using TD is also a good way for developers and employees

in the lower part of the hierarchy in the company to show the

higher-ups, the managers, that a quality check is needed or that

the project needs more time to be finished. TD can be used by

developer to verify their work as well [25].

5) Unit Tests and Code Coverage

A unit test (UT) is a test written by the developers or testers

to white-box test the code in the earlier stages of developing

[26].

UTs are used for finding bugs early, before the code goes to

the testing phase [26]. Having established UT they can be

relied upon when changing the code, the reason of this is

because if the UT does not fail then the code is still working

and can be sent to the test department or testers, but if it fails

then the code needs to be rewritten. To be able to rewrite code

which has faults before sending it to the testers can save lot of

time and money [8].

Code coverage indicates the percentage of code that has

been covered by different tests (sometimes it only refers to UT).

Code coverage is a term used for many different forms of

coverage in code; it can be statement coverage, branch

coverage or an indicator telling how many lines of the code

which was covered [26]. The ideal code coverage percentage

should lie between 70 to 90% where more trivial modules can

be at 70% and critical modules at 90% [8].

6) Organizational Structure metrics

Nagappan et al. [27] made a study about the influence

organizational structure has on software quality and created

some metrics to present it. Organizational structure metrics are

metrics focused on the organization and the developers of the

software. The metrics contains information on how many

developers had edited the measured code, if there is a master of

the code (a person that has made more than 75% of the editing

of the code), etc. The results of these researches indicate that

the measurement had around 86.2% failure proneness [27].

7) Knowledge management

Knowledge sharing regards sharing information on

techniques for coding, information of standards, knowledge on

the written code. Knowledge sharing can be done using

different methods, for example; code review, peer review and

pair programming.

Code reviewing takes place when a group of developers

take a part of code, it can be a method or a class or just some

rows, it depends on the developers or if they use some special

method for reviewing. The code is looked at manually by the

developers and discussed between them. Usually code reviews

are done to code known to have poor design, and/or do not

follow best practices, or to find code with such [28].

Peer reviews are done through letting a person, with similar

expertise as the creator of a snippet of code, doing an

assessment on the code. Peer reviewing is a short version of

code reviewing and can find many bugs or errors undetected by

the developer who wrote the code [29].

Pair programming is done when two developers work

together on the same code. The method of Pair programming

can be modified to fit the organization way of working, but

usually there are two developers who take turns between the

roles “driver” and “navigator”. The driver is the one who is

actively writing code on the computer and the navigator is the

one who watches the driver work, constantly identifying

defects and coming with suggestions [30].

C. Early studies on MDD quality and metric collecting

Heijstek and Chaudron [57] have done a quality study in a

large-scale MDD process, which gave a good overview of

relations between metrics and software quality. However, only

model size and complexity related metrics was discussed in

their study. Their study only analyzed connections, no concrete

solution was provided.

Staron and Nilsson [34] presented a framework to build

measure system for software quality [34], which has inspired

the study in many aspects: i) automation of metrics collection;

ii) configuration options for stakeholders; iii) integration of

current infrastructures.

Monperrus et al. [35] has conducted a case study about

model-driven engineering metrics for real-time systems [35].

The study from Monperrus el. had different focus than this

study, metamodels were used to avoid big cost and redundancy;

however, it still gave some inspiration on measurement of

models. Furthermore, it also pointed out that to minimize the

cost, measurement tool should focus on one particular area.

Another source of inspiration is a position paper by McQuillan

and Power [36]. The paper didn’t provide any industrial

evaluation, and their observations are very practical. For

example: “Observation 4. We can ‘lift’ code metrics to the

model level”. The suggested metrics also contributed to the

study.

Lange [37] discussed the importance of “Model Size

Metrics” and what kind of metrics to be used in MDD [37].

This study showed the importance of model size metrics and is

the reasons they have a role in this study.

At last, the EMISQ method discussed by Plösch el. [38] is

not related with MDD, but did offer a good model of

measuring ISQ.

None of the studies mentioned above used TD as an

intuitionistic expression to relate software quality to concrete

value in reality.

6 Björn Petersson, Sheng Zhang

III. METHODOLOGICAL DESIGN

As shown in Figure 1, the study was divided into three

parts: investigation, implementation and evaluation.

Investigation means collecting information, analyzing a

problem field and determining requirements. Those

requirements with higher priority which were considered

feasible under particular circumstances were implemented

during the implementation phase. Finally, the evaluation part

offered support for the metric tool through both customer

feedback and statistical analysis.

Initially an execution phase was planned but was merged

with the evaluation phase as the scope and schedule of the

thesis project evolved. An additional reason for eliminating a

separate execution phase was the long duration (2-4 months) of

the development life-cycle at the development team. Time

constraints of the project made running both execution and

evaluation process unfeasible.

A. Investigation

This phase had the purpose to set the scope and

requirements of the study. ISQ is a wide and open topic and

many factors could affect ISQ [39]. To narrow down the scope

and set a feasible goal, much research work needed to be done

early on, including literature reviews, discussions, meetings

and surveys among managers, testers and developers in the

development team.

Literature reviews and discussions offered theoretical basis

and a choice of ready approaches to consider. Meetings and

surveys revealed key problem areas, at least thought of as such

by team members. By combining results of different research

methods, a list of approaches to improve ISQ could be

identified and implemented. Basing on that information, a

collection of suggestions was presented to competent personnel

at the development team.

Software code metrics (the measurement of the software

product and the process by which it is developed [1]) was

decided as the main focus of the study during the investigation

part.

B. Implementation

The MetricAnalyzer is a Java™ application which uses

IBM ® Rational Rhapsody (hereafter shortened to just

Rhapsody ®) Application Programming Interface (API) to

collect various metrics results from software models and then

generates a report on ISQ of the analyzed software. It can also

be used to compare historical statistics to generate a report on

ISQ trends for a specified time period.

The implementation of the metric tool MetricAnalyzer was

vital for the study. First, without implementation of a running

program/tool, the result in the study would lack substance.

Second, the improvement of ISQ is a continuous and step-by-

step process, which needs support from automated

measurement and report tools. Finally, the costs of running

measurements without an appropriate code program/tool are

considerable. To initiate the implementation phase, a workshop

was held with the participation of several key members of the

development team. Participants discussed various suggestion

points from the investigation part. Some feasible solutions

were also discussed. The outcome of the workshop included a

prioritized list of metrics to implement, a prioritized list of

functionalities and other requirements (see Appendix C for

detailed outcome for the workshop).

Many “Agile Software Development Processes”

characteristics such as small deliveries, frequent customer

meetings and iterative improvement based on feedback were

introduced during the implementation phase. This is partly

because many requirements were not fixed beforehand.

Limited time and resources was another reason for elaborating

an intensive development process that could quickly adapt to

changes.

C. Evaluation

The evaluation phase had two parts: feedback collection

and statistical analysis. Interviews with related personnel and

an anonymous survey were the main element of the feedback.

Historical statistical results are collected from the tool and

compared with project bug numbers. This offered a numerical

and objective basis for the evaluation.

Figure 1: Methodological design overview

An Approach to Improve Quality of Software Using Metrics and Technical Debt 7

Statistical analyses proved that the result from the

framework can reveal the ISQ to some extent. Feedback

collection also gave a positive estimation on the effort of the

framework. Details of evaluation could be found in chapter V

Result and Analysis.

IV. SOLUTION AND IMPLEMENTATION

The framework built in the study consists of many parts: a

collection of metrics, thresholds for metrics, the

MetricAnalyzer tool to calculate TD, visualizing tools to show

the report and the integration with auto-compile server. A brief

structure can be seen in Figure 2.

A. Developing environment

The development team is developing an embedded system

for trucks. This system is developed using the model-driven

environment (MDE) Rhapsody ® (for more information about

Rhapsody ® see IV.A.2 Rational Rhapsody ®), which means

that the development team is using a model driven

development technique. There were no findings of metric

gathering tools that could be directly integrated into Rhapsody

® within the allotted time. Therefore, based on that and on the

findings of the organized workshop it was decided to

implement the MetricAnalyzer tool using the API that comes

with Rhapsody ®. During the workshop and interviews it was

decided that using only plain text was not good enough as a

report and that the report would rather be the form of a

webpage showing the most relevant information. This webpage

was constructed with the JavaScript ® library Data-Driven

Documents (see IV.A.4 Data-Driven Documents (D3) for more

information).

1) Model-driven development (MDD)

 “Model-driven development is simply the notion that we

can construct a model of a system that we can then transform

into the real thing.” [41].

Working with MDD is one of the bigger steps made in

software programming since the compiler was released. It is

used to create a more abstract level of systems and to help

understanding more complex software system [42,43]. A

general aim of MDD is to create an abstract model of a system.

In some of the models code for specific purposes can be

implemented. Lastly in MDD a tool is used to auto generate

source code from the models [44].

2) Rational Rhapsody®

Rhapsody ® is a big tool of great functionality and support

for software engineers and software developers in their work.

The biggest highlight of Rhapsody® is that it provides system

engineers and software developers with a MDD environment

for real-time and embedded software which is based on UML.

Furthermore, Rhapsody® generates applications/systems in

various programming languages including: C, C++, Java and

Ada. When generating the behavioral and architectural view is

also included [45].

3) Rhapsody® API

Rhapsody® API accompanies the installation of

Rhapsody®. This API exists for Java™ programming and for

COM and allows creation of applications that can access and

modify Rhapsody® model elements. Accessing and modifying

Figure 2: The Framework used in this study to analyze ISQ

Figure 3: Data Model of MetricAnalyzer

8 Björn Petersson, Sheng Zhang

implies reading, changing, adding and deleting of all model

elements that exist within the Rhapsody® Browser [46].

4) Data-Driven Documents (D3)

“D3.js is a JavaScript library for manipulating documents

based on data. D3 helps you bring data to life using HTML,

SVG and CSS.” [47].

D3 allows and helps to bind data to a Document Object

Model (DOM) and to visualize data, either in the form of bar-

charts, pie-charts, creating/populating tables etc. It also allows

interaction in the form of mouse action or keyboard actions and

smooth transitions to the visualizations [47].

B. Implemented tools

This chapter focuses on the implementation of two parts; a

Java
TM

 program called MetricAnalyzer which analyzes models

and a web page which summarizes and shows the report

created from the result of the MetricAnalyzer. The description

and reasoning for implementation and design can be found in

this chapter.

1) MetricAnalyzer

MetricAnalyzer is a program written in Java
TM

 which

analyzes models in Rhapsody® with the help of Rhapsody®

API. It reads configuration from a customized configuration-

file and then generates results for different metrics. The results

are put into CSV files and TXT files for the report program to

read.

a) Overall design

MetricAnalyzer works closely with Rhapsody® API.

Rhapsody® API enables the program to read data and statistics

from Rhapsody® models needed by different metrics. With the

data and statistics gathered from Rhapsody® models, the

MetricAnalyzer filter out useful information and generate

readable data according to needs from metrics and

configuration. The readable results are stored in generated

CSV- and TXT-files.

b) Detailed design

A detailed data flow design can be found in Figure 4. A

description of all sub-models can be found in Table 1.

Sub-model

name

Description

UI (User

Interface)

This is where the program interacts with users. A

simple command line handler which takes a

command parses it and sends parameters to

Engine if the command is complete. It also

prompts help messages, error messages and other

event messages.

Engine Works closely with UI and runs Model Analyzer.

Model

Analyzer

Reads data from Rhapsody Connector, interacts

with metrics, filters out useful information and

then generates result data.

Rhapsody

Connector

Helps Model Analyzer to connect with

Rhapsody® models through Rhapsody® API.

Metrics This is where all the metrics are calculated, every

metric class represents a specific kind of metric,

they parse information passed from Model

Analyzer and send back results after their own

functions been executed.

Configuration Handles user-configuration and metric-settings,

gives the settings to Model Analyzer and metrics

when needed.

Utilities Gives general support for all other models, offers

functionalities such as file-accessing and logging.

An end-to-end data flow for the MetricAnalyzer can be

described as follow: UI gets user command, parses it, and then

sends it to engine if the command is correct and complete.

Engine calls the Model Analyzer as the command indicates and

Figure 4: Data flow of sub-models of MetricAnalyzer.

Table 1: Sub-models and descriptions in MetricAnalyzer

An Approach to Improve Quality of Software Using Metrics and Technical Debt 9

passes the parameters. The Model Analyzer reads

configurations and initiates metrics according to information in

configuration file. After the metrics are ready, the Model

Analyzer connects to Rhapsody Connector, goes through every

project found in Rhapsody® and reads packages and classes

from models. While Model Analyzer is processing data from

Rhapsody Connector, it also checks settings from metrics. For

example, Model Analyzer is dealing with package A, it checks

with every metric, it only sends details of package A to those

metrics which need package data and skips others. After the

Model Analyzer has processed all the projects, it summarizes

all the data collected, filters useful data and writes it into files

through Utilities. Utilities also handle other operations such as

reading/writing files and managing data, which can be very big.

At last, the results are written into CSV- and TXT-files, the

report program reads the results and then generates a graphical

web page which contains different charts and forms to

visualize the results.

c) Metrics Applied in MetricAnalyzer

Metrics were taken from two papers [11,12], these were

both older metrics and also metrics constructed for OOP, for

more information on the metrics that were chosen, see II.A

Metric studies. Firstly, the metrics were mentioned in the

interviews for personal opinions from the key-persons.

Secondly, they were brought up in the workshop to create a

discussion and discern a prioritized list indicating which

metrics that would be implemented in the MetricAnalyzer,

which metrics that had the highest prioritization of

implementation and also which thresholds they would have.

Before the metrics could be included in the MetricAnalyzer

many of them had to be discussed and reconstructed to fit

Rhapsody®. All metrics were gathered from within

Rhapsody® with the aid of the Rhapsody® API.

After the Workshop two classical metrics were chosen; CC

and LOC. Two metrics were taken from research papers about

metrics for OOP; DIT and NOC. Lastly five were implemented

based on ideas from the workshop and feedback, metrics that

key-employees wanted. Of these five three can be labeled size

metrics; size of statechart, number of non-constant attributes

and numbers of methods, the last two were comment

percentage of description and number of descendants. In total

there were nine metrics which were chosen for the

MetricAnalyzer, below are all described, if and how they were

modified to fit MDD.

Cyclomatic Complexity (CC): CC is from the beginning a

source code metric that was, in this study, configured to better

fit Rhapsody®. In Rhapsody® there exist implementation tabs

in functions and operations which can contain code. The

functions and operations were looped through and CC was

calculated for each implementation that had code. The CC is

calculated through adding all “if”, “else”, “while”, “for”,

“switch”, “||”, “&&” that could be found, into a variable.

Lines of Code (LOC): The modification that was made to

CC was also made to LOC. The only LOC counted were the

lines in the implementation tab. Furthermore all comments

were excluded when counting the number of LOC.

Size of Statechart (SOS): The size of statechart is the sum

of the number of all transitions, states and events in each

statechart.

Comment Percentage of Descriptions (CPD): Usually the

Comment Percentage (CP) metric is the percentage of code

which is commented. For the team at Volvo GTT this was not

the most important sort of commenting. The comments CPD

was created to count were how many of the different model

element that were commented in the form of having a

description explaining what that element were doing. CPD has

a minimum requirement of five characters to be counted as

described.

Depth of Inheritance Tree (DIT): This metric is

unmodified in its behavior, it counts how many steps it is from

one class to the root class of the particular hierarchy tree.

Number of Children (NOC): The NOC is the number of

classes that directly inherit from one class.

Number of Descendants (NOD): This metric was added to

the list of metrics because the team at Volvo thought that it was

needed, not because of findings in the literature. The NOD

calculates all classes that inherit from one class or inherit from

classes that inherit from that class etc.

Number of Non Constant Attributes (NCA): NCA

calculates the number of non-constant attributes for each class.

This metric was requested in the workshop.

Number of Methods (NOM): NOM was requested from

the development team and as the name suggests it counts the

number of methods for each class.

d) Configuration-file and thresholds

This sub-chapter contains the description and reasoning of

configurations and thresholds.

In this study all deviations from standards got the umbrella-

name violation. The range of violations has been divided into

three levels (green, yellow and red) according to the values

which been calculated for each metric. Red gives the highest

TD, yellow gives lower TD and green gives zero TD. As an

example: if the value for one metric is above the red threshold,

the TD for that metric is red and the time to fix that violation is

the number in the column “Time to Fix Red” (see Table 2). So

if the result of CC for one function is 280 then the time to fix

that violation is five hours, and to make the concept of TD

easier, each man-hour counts as one TD.

M
e
tr

ic
 N

a
m

e

G
re

e
n

T
h

r
e
sh

o
ld

Y
e
ll

o
w

T
h

r
e
sh

o
ld

R
e
d

T
h

r
e
sh

o
ld

T
o

p
 L

is
t

T
h

r
e
sh

o
ld

T
im

e
 t

o
 F

ix

Y
e
ll

o
w

T
im

e
 t

o
 F

ix

R
e
d

LOC 1 80 200 100 2 5

CC 1 7 10 10 2 4

NCA 0 10 20 10 1.5 3

NOM 0 10 20 10 4 8

CPD* 100 99 50 50 4 8

SOS 1 20 50 10 4 8

DIT 1 4 6 10 8 16

NOC 1 4 6 10 2 5

NOD 1 4 12 10 2 5

Table 2: Thresholds and TD for Metrics

*CPD is not included when calculating TD.

10 Björn Petersson, Sheng Zhang

The thresholds and “time to fix” are made by referring the

Sonar standard and then adjusted to suit the MDD environment

at the development team. The configuration-file was created

externally so that the employees easily could go into the file

and modify it without changing inside the code or the

MetricAnalyzer. The configuration-file holds information on

the thresholds and debt given from violations. Furthermore the

configuration was created to be able to decide which projects

within the system that would be measured. The development

team wished for the possibility for packages, modules, and

classes’ etc. to be excluded from the measurement. This was

wished because they were finalized and would not be modified

again and therefore the data from those classes would be

useless [10].

2) Visualizing Tool - Report Web Page

The tool was created based on the information collected

and calculated from the MetricAnalyzer, and it had to be

visualized in such way that the result could be easily

interpreted. This was done by using the MetricAnalyzer reports

to generate a visualized report, to construct an overall view and

evaluation of the quality of the project, for more information

on the evaluation see Chapter V Results and analysis. The

program was created with the JavaScript library D3.js and this

subchapter describes the visualizing program with a summary

of its functions and parts. To read more detailed information on

the information shown in the Visualizing Tool see Appendix A.

a) Main Page

The main page (see Figure 5) of the visualizing tool is the

general information board which was constructed by many

parts. Each part display results of different metrics which were

collected from the models of the system which the

development team worked on. It was designed to make users to

be able to catch the overview of the project in a glance and to

catch everything through one page. All values shown in the

main page was calculated into TD.

b) Project details page

Project details page (see Figure 6) was created to give more

detailed information for each project, specific information. All

information shown in the details page was in raw values and

not calculated to TD.

V. RESULTS AND ANALYSIS

This chapter contains the results of the thesis, this includes;

information gathering, results from comparing historical data

and feedback from the development team on the framework

with reports.

A. Information gathering from developers

To narrow the scope and help make the study fit the

development team’s goals and needs information gathering

were carried out among developers. This was done by one

questionnaire in the beginning and a workshop in the mid-time

Figure 5: General Information Board of visualization program that is based on MetricAnalyzer report

(1) TD for projects, (2a) System debt difference, (2b) Metric debt difference, (2c) Metric debt per class for

projects, (3) History chart, (4) Technical Debt, (5) Changed Classes, (6) The ten worst classes, (7) Comment

percentage, (8) Information.

An Approach to Improve Quality of Software Using Metrics and Technical Debt 11

of the study.

1) Questionnaire

In order to analyze the existing problem and find out

possible solutions, a questionnaire was created and sent out to

all employees in the development team (testers, managers and

developers). The questionnaire was also made to get some

information on what the staff wanted to do to improve ISQ. In

the questionnaire there were some choices they could choose

but also text areas where they could write if no choice suited

them. The questionnaire was sent out to 36 team members of

which 23 answered.

For the multi-choice questions “What is software quality to

you?” and “How would you measure software quality if you

can decide?” the most popular answer was “fulfills the

functionality requirements” and “bug number” in that order, for

the most frequent answers see Table 3 and Table 4.

Question: “What is software quality to you?”

Answer choices Nr votes

“fulfills the functionality requirements” 16

“Code is easy to understand and has clear

logic”

13

“is easy to maintain” 13

“is bug free” 13

“good performance” 9

“everything is well documented” 5

Based especially in Table 3 it can be seen that the

employees in the development team at Volvo GTT wanted tidy

code that was easy to read and maintain.

Question: “How would you measure software quality

if you can decide?”

Answer choices Nr votes

“bug number” 20

“unit test coverage, test coverage” 19

“complexity of code logic, connections

between classes”

15

For the question “What do you think about current product

quality? Please give a score from 1 to 10”. The average score

was 5.3 out of 23 answers. From this it can be seen that there is

big potential for the quality of the product to increase.

A summary was made from the questionnaire and with the

summary as a start, information was gathered which included

methods and implementations which were feasible to

implement in the period of the study. Because of limitation

some of the topics had to remain as suggestions to the team at

Volvo GTT. For example, one suggestion was to increase UT

coverage and test coverage. What can be seen in the

questionnaire that also got captured in the framework was the

interest of clean code, code that was maintainable and had few

code smells.

Furthermore, through semi-formal interviews, needs of

tools to show the product have been revealed. More

information on the questions and answers in the questionnaire

can be found in Appendix B.

2) Interviews

The questionnaire helped to capture a draft of the problem.

To make the draft more focused on a smaller subject area,

interviews with key team members were carried out.

The most mentioned areas/topics in the interviews were:

 Every participant thinks software quality,

especially ISQ, is important for the product.

 More code reviews are needed.

 To implement metrics measurements for system.

o Using metrics as a means to know which

code to look at in the code reviews.

 Working more with UT and increasing UT

Coverage.

 More knowledge sharing in many in form of: code

reviews, pair programming and educations.

 To be more careful with coding guidelines and

best practices.

Table 3: Question answers for questionnaire

Table 4: Question answers for questionnaire

Figure 6: Detailed TD and metric information for projects

1. Bar-chart with weighted metrics, 2. Top ten classes within all metrics in that project

12 Björn Petersson, Sheng Zhang

 That TD could be good but hard to implement.

3) Workshop

The workshop was, in contrast to the questionnaire, held to

get some more specific information on what to do in the next

step in that phase in the study. It was done by inviting the key-

personnel in the development team to two workshops on two

hours each. Within these four hours quality improvement

studies were presented, some were discussed and some were

only brought up as information for the attendees. The main

topic in the workshops was to go through the backbone of the

metrics and see if there was anything which was to be changed

in them. Furthermore, if there needed to be additional metrics

or less of them and how to create the metrics so that they could

be used within a MDD environment. The result of the chosen

metrics was introduced in chapter IV.b.c Metrics Applied in

MetricAnalyzer. There were discussions on how to handle lack

of findings when it came to freeware tools to calculate metrics

for MDE. It was also discussed that a possibility would be to

create one with the help of the Rhapsody API. The discussion

continued with how the information should be shown, which

resulted in a website. There the information would be displayed

so developers could go there and watch the development of the

system through the metrics. The summary of the workshop can

be seen in Appendix C.

B. Comparison of Historical Data

The development life cycle in the studied environment has

been divided into Work Periods (WPs). The investigation of

relation between TD and bug numbers was done based on six

selected WPs. In Figure 7, total TD was collected for each of

the six WPs to visualize the TD over time for the system.

In order to find out relationship between TD calculated in the

study and ISQ, an investigation was done in the active WPs.

Increase of TD for each WP (total TD in one WP minus the

total TD of previous WP) and the number of bugs found in that

WP was selected as key values to be compared. Figure 8 show

that the two values have the same trend. An assumption was

made based on the result: there is a firm relation between those

two values. Thus, under normal situation, if the assumptions

are right, whenever the introduced amount of TD has increased

in one WP, then the bug number should be higher than the

previous WP as well.

 However, many issues should be considered, for example,

time span of a WP, number of changes added in that WP and

complexity of changes.

Another important aspect of the framework was to show

how the calculated TD, the ISQ, changed over time. Also, it

was wanted to visualize how much it changed for each week, if

it changed much and if it increased or decreased. Figure 9 is a

history chart which shows the trend of the ISQ in the system. It

can be seen in Figure 9 that compared to other measures it was

introduced much TD in the system before the record

“12082109”. Such record is a possible indicator that there was

modifications and added code containing high-risk

code/designs checked in to the repository.

C. Feedback of The Study from the development team

After the results were presented to the developers, a

questionnaire was handed out to the audience who attended the

presentation. There were 22 valid replies collected.

Among the 22 valid replies, 22 (100%) have answered

“Yes” to the question of “Do you think the framework can help

to improve ISQ?”. To the question: “To what extent do you

think the framework is helpful? Please choose a number from 5

- very helpful to 0 - not helpful.”, 4 answered 5, 8 answered 4

and 9 answered 3. Only 1 answered 2 and no answers for 1 and

0. This makes an average result of 4.14. This shows that the

team has confidence in the framework and positive expectation

of the result.

Figure 7: Total TD for Work Periods (WPs).

Figure 8: Relations between introduced TD and bug numbers in

different WP.

Figure 9: A chart in the report web page shows the increase of

TD in a long term timespan.

An Approach to Improve Quality of Software Using Metrics and Technical Debt 13

VI. DISCUSSION AND FURTHER WORK

This chapter brings up a discussion on the results, the

reasoning behind different parts like the questionnaire and why

certain metrics were chosen. Furthermore the discussion and

future work discusses where this study can lead and further

studies which can be done based on this study.

A. Findings and Importance of study

The primary findings of this study are: i) that the TD

calculated from MDD models based on a collection of selected

metrics has direct relationship with ISQ; ii) that the metric

analyzing tool MetricAnalyzer combined with the report

visualizing tool is efficient in tracking problem-prone models.

A secondary finding is showing the metric result in the

form of TD with the support of a visualizing tool could help

project managers to have a better vision and control over the

project.

From the result, it also can be seen that the

MetricAnalyzer’s feasibility to predict bug numbers even

before the testing process is positive.

ISQ is the first gate of software quality; it is the one of the

keys to successful software projects. ISQ is vital in the long run

of software development life-cycle and many researches have

been done is this area. However, seldom research has

combined software metrics (both basic and MDD oriented) and

TD together in a MDD environment. This study carried out a

valuable case study in that situation and the result is promising.

B. Alternative Explanation of Findings

Wilson [39] mentioned that some studies show that many

existing metrics actually offer nothing more than the basic

metric “Lines Of Code” [39]. The fact is that in the collection

of metrics, which have been used by MetricAnalyzer, are

related with size in one way or another, for example SOS,

NCA etc. One possibility that can be seen based on Wilsons

statement is that if the MetricAnalyzer only use the one metric

“Size Of Model” (SOS + LOC), it would give out the same or

even better result. However, more research is needed to prove

those assumptions.

C. Metrics: reasoning and decisions.

The metrics which has been selected and applied in the

metric analyzer tool MetricAnalyzer is the backbone of this

study. The question of how to choose right/useful metrics from

the many existing metrics emerged as a major problem. There

are many experienced software engineers in the development

team, the workshop was held with several experienced key-

persons in the development team. In that workshop many

questions was discussed: if the metrics were to be used, if they

were useful, if there were needed some change to them, how

the metrics could be useful in a MDE, and if there were metrics

they wished for but was not in the list of metrics prepared

before the workshop. This workshop helped filtering between

the many metrics and to create metrics that suited the

development team.

The list of metrics that were selected before the workshop

and that was discussed during the workshop, originated from

earlier defined object-oriented environment metrics. The main

reasons for using these metrics during the workshop were that

some of the metrics are easy to implement and understand, and

the others are created and tested for measuring quality. These

metrics were tested in earlier studies where many of them got

positive results [11,12]. Concerns were raised that some of

those basic metrics that were chosen would not be appropriate

MDD. To cope with that, some metrics were customized and

some metrics was created based on personnel’s requests and

added into the implementation.

D. Reasoning of Quality improvement studies

The quality improvement studies were done to give

information on quality improvement other than metrics and

code analyzing tools (see II.A.b Quality improvement studies).

Due to time constraints and the fact that, there were many

changes that could not be authorized, the quality improvement

studies got low prioritization. Therefore these studies were

made to notify developers and managers of methods that exist

to improve quality.

E. Validity of study

The metrics that has been chosen as the backbone of this

study are chosen from studies which has tested them in projects

[12] or proposed by the Software Assurance Technology

Center [11]. By assuming that these papers has some validity it

can be assumed that the result in this study has a certain degree

of validity.

Another important aspect with metric validity is that an

important factor is what the stakeholders wish. This means that

the metrics may be useless unless someone is surveying them

and that they are used [10]. The metrics used are discussed,

each one specifically, and only chosen if seen appropriate in

the developing environment. Based on that information the

metrics gets further validity.

F. Limitation of current work and suggestions for further

research

This section discuss things which can be done to improve

the constructed framework in the future and researches which

can be performed using this study as a foundation.

1) Further configuration options

The configuration-file of the MetricAnalyzer was made to

be an external file so it would be easy for the company

employees to adjust. This was done because the configuration

created in the study was set based on information and

configurations from other sources than the developers.

Therefore the configuration file should be calibrated by key-

personnel so it is customized specifically for their system. This

customization is important for many reasons, one of the

Figure 10: Replies to Question 2 in the questionnaire.

14 Björn Petersson, Sheng Zhang

foremost reasons is that parts in the systems which should not

be measured by the MetricAnalyzer can be excluded using the

configuration-file.

2) More rigid standard and more accurate numbers for TD

Standards and thresholds made and used for the

MetricAnalyzer are created partially by referring the sonar

standard [49], partially by some preferences from team

members in the development team. And also from online

sources (this were done knowing the problem of validity but

with modification in mind) then modified by the authors to fit

MDD. The configuration needs to be changed by the

developers and testers in the team. The reason for them to do

the change is because their experience with coding and their

system. For example; the time which need to fix different

deviations, how high the thresholds should be, which parts of

the system that is not supposed to be measured and other

configurations that affect TD.

3) More customized metrics for rhapsody & MDD

The nine metrics applied in this study are partially decided

within a workshop held with key-personnel and partly added

during the implementation of the framework according to the

requests from developers.

Due to uncertainty of the implementation-time of the

framework, the decision made in the workshop was to

implement the basic metrics first (see Chapter IV Metrics

Applied in MetricAnalyzer). Then, if allowed by the available

resources, more metrics would be added. Further reason for

this was that the basic metrics are easy to understand by users

who do not have the background knowledge of metrics. Thus,

the process of adding and customizing metrics lasted till the

late phase of implementing the framework.

Although the authors and the key-personnel in the team

tried to include all metrics considered useful, there is a

possibility that not all useful metrics were included. A potential

research topic for the future is to search for more metrics

suitable for their system and environment.

4) Test MetricAnalyzer on more projects

The results in this study are based on one project, using its

timeline, to compare historical data with the number of

increased bugs for each WP. More researches could be

performed on projects using MDD to compare the result data

against each other. Another valid test would be to test the

framework against other projects also created in Rhapsody.

5) Further investigation on individual metrics

Future studies can be carried out on the metrics used in this

study. This to see individually which metric has the most

relevance when measuring ISQ.

6) More benchmarking of ISQ

Currently the result of the MetricAnalyzer only compares

with bug numbers as can be seen in Figure 8. There is a

common consideration that bug numbers is related with

software quality but even so, researches based on other data

could be carried out to get more results that can validate the

results of the study.

VII. CONCLUSION

The topic of ISQ within MDD has been discussed before.

However, this study has its own unique aspects. For example, it

used TD to shown the result of model metrics and visualized

the result into an auto-updating web page.

In this study, nine metrics has been applied in MDD. Some

of them are basic metrics, some of them are OOP metric and

some of them are specially made for the development team

where the study was carried out. Based on the metrics, a

framework has been built to measure and monitor the ISQ of

the product constructed by that team. The results show that the

TD calculated from those metrics has the same trend as the bug

numbers over time on the same project. Thus, software metrics,

which has been proved by at least two studies [11,12] in non-

MDD environments, also can be used in MDD environment.

The combination of the metrics used in this study can possibly

give a promising result in other similar environments as well.

TD was also introduced to the team through the framework

which was constructed during this study. The metric results

needed a platform to be shown at and in a form that was

readable and understandable for both developers and managers.

TD is a metaphor which describes the result vividly and is easy

to understand. According to the feedback gathered, the

development team had a positive attitude for the combination

of metrics and TD.

The visualization tool (the auto-updating webpage) that

shows the result in a webpage with different chart is vital to the

study, developers and project managers at that team. Team

members and project managers have given positive feedback

on using TD to track the ISQ and monitor the development

process through the visualization tool. Without the

visualization tool, the result would be harder to understand and

therefore it plays a crucial role in monitoring ISQ. Furthermore

the visualizing tool makes the information easier to access and

used

This study got positive result from both analyzed statistics

and feedback from related personnel, and in the future, further

studies should be carried out to improve the framework with

more metrics and validation tests.

The framework created in this study can be a good start for

further studies with focus on ISQ of MDD.

REFERENCES

[1] Mills, E. 1988. Software Metrics, Curriculum Module SEI-CM-

12-1.1. Software Engineering Institute, Carnegie-Mellon

University.

[2] Cunningham, W., 1992. The WyCash Portfolio Management

System. OOPSLA '92.

[3] Briand, L., Wüst, J., Daly J., W., Porter, V., 2000 Exploring the

Relationships between Design Measures and Software Quality

in Object-Oriented Systems, Journal of Systems and Software,

51, pp. 245-273.

[4] Geoff, D., 1996. Cornering the Chimera, Australian Software

Quality Research Institue, EE Software 0740-7459/96.

[5] Kearney, J., K., et al., 1986. Software Complexity Measurement.

Commun. ACM 29(11) pp. 1044-1050

[6] Robert N., C., 2005. Why software fails, IEEE Specfurm article.

[7] Jorgensen, M., Molokken, K. 2006. How large are software cost

overruns? A review of the 1994 Chaos Report. Information and

Software Technology 48, 4.

[8] McLean Hall, G., 2010. Pro WPF and Silverlight MVVM:

Effective Application Development with Model-View-

ViewModel. New York:Apress.

[9] Fenton, E., N., Neil, M., 1999. Software metrics: success,

failures and new directions. Journal of Systems and Software,

47(2-3), pp.149-157.

An Approach to Improve Quality of Software Using Metrics and Technical Debt 15

[10] Westfall, L., 2005. “12 Steps to Useful Software Metrics”, The

Westfall Team, Plano.

[11] Rosenberg, L., H., Hyatt, L., E., 1997. Software Quality Metrics

for Object-Oriented Environments, The Journal of Defense

Software Engineering, STSC.

[12] Kumar, S., A., Kumar, T., A., Swarnalatha, P., 2010.

Significance of Software Metrics to Quantify Design and Code

Quality. International Journal of Computer Applications [e-

journal], 11(9) Available through: .ijcaonline.org [Accessed 17

July 2012].

[13] Henderson-Sellers, B., 1996. Object-oriented metrics: measures

of complexity, New Jersey: Prentice-Hall.

[14] Weinberger, B. et al., n.d. Google C++ Style Guide.[online]

Avaliable at: <http://google-

styleguide.googlecode.com/svn/trunk/cppguide.xml> [Accessed

29 August 2012].

[15] Sun Microsystems, 1995. Code Conventions for the Java™

Programming Language. [Online] Available at:

<http://www.oracle.com/technetwork/java/javase/documentation

/codeconvtoc-136057.html> [Accessed 29 August 2012].

[16] Paoli, S., 1999. C++ Coding Standard Specification. [Online]

Available at:

<http://pst.web.cern.ch/PST/HandBookWorkBook/Handbook/Pr

ogramming/CodingStandard/c++standard.pdf> [Accessed 29

August 2012].

[17] Quantum Leaps, LCC, 2008. Application Note C/ C++ Coding

Standard. [Online] Available at: <http://www.state-

machine.com/doc/AN_QL_Coding_Standard.pdf> [Accessed 29

August 2012].

[18] Williams, L., Brown, G., Meltzer, A. and Nagappan, N., 2011.

Scrum + Engineering Practices: Experiences of Three Microsoft

Teams. Empirical Software Engineering and Measurement

(ESEM), 2011 International Symposium, pp.463-471.

[19] Ambartsoumian, V., et al., 2011. Implementing Quality Gates

Throughout The Enterprise It Production Process. Journal of

Information Technology Management Volume XXII, Number 1,

pp. 2028-2038. Available at: <http://jitm.ubalt.edu/XXII-

1/article3.pdf> [Accessed 29 August 2012].

[20] Pasi Ojala. 2010. Industrial experiences of developing quality

gates for software development process. In Proceedings of the

4th WSEAS international conference on Computer engineering

and applications (CEA'10), Stephen Lagakos, Leonid Perlovsky,

Manoj Jha, Brindusa Covaci, Azami Zaharim, and Nikos

Mastorakis (Eds.). World Scientific and Engineering Academy

and Society (WSEAS), Stevens Point, Wisconsin, USA, 33-37.

Avaliable at: <http://www.wseas.us/e-

library/conferences/2010/Harvard/CEA/CEA-03.pdf> [Accessed

29 August 2012]

[21] Laskowski, J., 2009. Increase quality and decrease costs with

IBM Rational quality gates. [Online] Available at:

<http://www.ibm.com/developerworks/rational/library/09/qualit

ygates/index.html> [Accessed 29 August 2012].

[22] Chaturvedi, A., 2005. Java & Static Analysis. Dr. Dobb’s

Journal, 30(7). pp 25, 27-29. Available at:

<http://search.proquest.com.proxy.lib.chalmers.se/docview/2026

92862> [Accessed 29 August 2012].

[23] Brew, W., Johnson, M., 2001. Value lattice static analysis. Dr.

Dobb’s Journal, 26(3), pp. 30-38. Available at:

<http://search.proquest.com.proxy.lib.chalmers.se/docview/2026

90314> [Accessed 29 August 2012].

[24] Chess, B., McGraw, G., 2004. Static Analysis for Security.

IEEE Security and Privacy, 2(6), pp. 76-79. Available at:

<http://ieeexplore.ieee.org.proxy.lib.chalmers.se/stamp/stamp.js

p?tp=&arnumber=1366126> [Accessed 29 August 2012].

[25] Seaman, C., Guo, Y., 2011. Measuring and monitoring technical

debt. Advances in Computers, volume 82, pp. 25-46.

[26] Thornton, S., Wang, Y., H., 2003. Software Testing, SENG 623

Software Quality Management. University of Calgary. Available

at: <http://www.slideshare.net/Softwarecentral/software-testing-

3744255> [Accessed 31 August 2012].

[27] Nagappan, N., Murphy. B., Basili, V., R., 2008. The Influence

of Organizational Structure on software Quality: An Empirical

Case Study. In: Proceedings of the 30th International

Conference on Software Engineering. Leipzig, Germany, 10 - 18

May 2008.

[28] Emden, E., Moonen, L., 2002. Java quality assurance by

detecting code smells. In: Proceedings. Ninth Working

Conference on Reverse Engineering, 2002, pp. 97-108, IEEE

Computer Society.

[29] Software Peer Review Guidelines, 2007. Science Infusion

Software Engineering Group (SISEPG). National Weather

Service/OHD. [online] Available at:

<http://www.nws.noaa.gov/oh/hrl/developers_docs/Software_Pe

er_Review_Guidelines.pdf> [Accessed 15 October 2012].

[30] Nagappan, N., Begel, A., 2008. Pair programming: what’s in it

for me?. Proceedings of the Second ACM-IEEE international

symposium on Empirical software engineering and

measurement. In: ESEM (Empirical Software Engineering and

Measurement). ACM, New York, USA, 2008.

[31] Monperrus, M., Jézéquel, J-M., Champeau, J., Hoeltzener, B.,

2008. Model-driven Engineering Metric for Real Time Systems.

In: Proceedings of the 4th European Congress on Embedded

Real Time Software (ERTS’2008).

[32] Arlene Minkiewicz, 2010. Applying Agile Practices to Improve

Software Quality, Journal of Software Technology March 2010

Vol.13. Number 1

[33] Tore Dybå, Torgeir Dingsøyr August 2008. Empirical studies of

agile software development: A systematic review, Information

and Software Technology, Volume 50, Issues 9-10, Pages 833-

859

[34] Staron, M., Meding, W., Nilsson, C., 2009. A framework for

developing measurement systems and its industrial evaluation.

In: Information and Software Technology 51 (2009) 721-737.

[35] Monperrus, M., Jézéquel, J-M., Champeau, J., Hoeltzener, B.,

2008. Model-driven Engineering Metric for Real Time Systems.

In: Proceedings of the 4th European Congress on Embedded

Real Time Software (ERTS’2008).

[36] McQuillan, J., Power, J., 2006. Some observations on the

application of software metrics to UML models. In: Workshop

on Model Size Metrics as MoDELS/UML 2006.

[37] Lange, C., 2006. Model Size Matters. In: Lecture Notes in

Computer Science, 2007, Volume 4364/2007, 211-216

[38] R. Plösch, H. Gruber, A. Hentschel, C. Körner, G. Pomberger,

S. Schiffer, M. Saft, S. Storck, "The EMISQ method – expert

based evaluation of internal software quality", 31st IEEE

Software Engineering Workshop (SEW 2007), pp. 99-108,

2007, doi:10.1109/SEW.2007.71.

[39] Pressman, S., 2005. Software Engineering: A Practitioner's

Approach (Sixth, International ed.), McGraw-Hill Education.

[40] Beck, K., et al, "Manifesto for Agile Software Development",

Agile Alliance, 14

[41] Mellor, S., J., Clark, A., N., Futagami, T., 2003. Model-driven

Development. Software, IEEE, 20(4): 14-18. (Accessed June 13,

2012, from CS Digital Library).

[42] Selic, B., 2003. The Pragmatics of Model-Driven Development.

Software, IEEE, 20(5): 19-25. (Accessed June 14, 2012, from

IEEE Xplore).

16 Björn Petersson, Sheng Zhang

[43] Atkinson, C., Kuhne, T. 2003. Model-driven development: a

metamodeling foundation. Software, IEEE, 20(5): 36-41.

(Accessed June 14, 2012, from IEEE Xplore).

[44] France, R., Rumpe, B. 2007. Model-driven Development of

Complex Software: A Research Roadmap. In: Future of

Software Engineering, 2007. FOSE '07. Minneapolis, MN, USA

23-25 May 2007.

[45] IBM Corporation Software Group, 2009. IBM Rational

Rhapsody Developer. [online] Available at:

<http://public.dhe.ibm.com/common/ssi/ecm/en/rad14043usen/

RAD14043USEN.PDF> [Accessed 14 June 2012].

[46] IBM Corporation, 2009. IBM Rational Rhapsody API Reference

Manual. [online] Available at:

<http://publib.boulder.ibm.com/infocenter/rsdp/v1r0m0/topic/co

m.ibm.help.download.rhapsody.doc/pdf75/rhapsody_api.pdf>

[Accessed 14 June 2012].

[47] Bostock, M., 2012. Data-Driven Documents. [online] Available

at: <www.d3js.org> [Accessed 14 June 2012].

[48] Wilson, G., & Aranda, J. 2011. Empirical software engineering.

American Scientist, 99(6), 466-473.

[49] Gaudin, O., 2009. Evaluate your technical debt with Sonar.

SonarSource S.A, [online] Available at:

<http://www.sonarsource.org/evaluate-your-technical-debt-with-

sonar/> [Accessed 15 June 2012].

[50] McConnel, S., 2004. Code Complete: A Practical Handbook of

Software Construction. 2nd ed. Washington: Microsoft Press.

[51] Stavrinoudis, D., Xenos, M., 2008. Comparing internal and

external software quality measurements. [pdf] Available at:

<http://quality.eap.gr/Publications/XM/Conferences%20English

/C53%20-

%20Comparing%20Int%20and%20Ext%20Sw%20Q%20Measu

rements.pdf> [Accessed 24 January 2013]

[52] Monperrus, M., Jézéquel, J-M., Champeau, J., Hoeltzener, B.,

2009. Measuring Models. In: Rech, J., Bunse, C., 2008. Model-

Driven Software Development: Integrating Quality Assurance.

Hershey: IGI Global. pp.170-203.

[53] D’Ambros, M., Bacchelli, A., Lanza, M., 2010. On the Impact

of Design Flaws on Software Defects. [pdf] Available at:

<http://www.inf.usi.ch/phd/dambros/publications/qsic10.pdf>

[Accessed 28 January 2013].

[54] Emden, E., Moonen, L., 2002. Java Quality Assurance by

Detecting Code Smells. In: Proceedings of the Ninth Working

Conference on Reverse Engineering (WCRE'02) (WCRE '02).

IEEE Computer Society, Washington, DC, USA.

[55] Radjenovié, D., Heričko, M., Torkar, R., Živkovič, A., 2013.

Software Fault Prediction Metrics: A Systematic Literature

Review. Department of Computer Science and Engineering

(GU).

[56] Shah, S., Morisio, M., 2013. Complexity Metrics Significance

for Defects: An Empirical View. Proceedings of the 2012

International Conference on Information Technology and

Software Engineering. London: Springer Berlin Heidelberg.

p29-37.

[57] Heijstek, W., Chaudron, M., 2009. Empirical investigations of

model size, complexity and effort in a large scale, distributed

model driven development process. Software Engineering and

Advanced Applications, 2009. SEAA'09. 35th Euromicro

Conference. IEEE, pp. 113-120

http://quality.eap.gr/Publications/XM/Conferences%20English/C53%20-%20Comparing%20Int%20and%20Ext%20Sw%20Q%20Measurements.pdf
http://quality.eap.gr/Publications/XM/Conferences%20English/C53%20-%20Comparing%20Int%20and%20Ext%20Sw%20Q%20Measurements.pdf
http://quality.eap.gr/Publications/XM/Conferences%20English/C53%20-%20Comparing%20Int%20and%20Ext%20Sw%20Q%20Measurements.pdf
http://quality.eap.gr/Publications/XM/Conferences%20English/C53%20-%20Comparing%20Int%20and%20Ext%20Sw%20Q%20Measurements.pdf
http://www.inf.usi.ch/phd/dambros/publications/qsic10.pdf

17 Björn Petersson, Sheng Zhang

Appendix A: Details of Visualizing Tool

This appendix explains different charts and forms shown in the report web page and detailed

information.

Figure A1: TD for each project

This part is the core chart of the system which shows accumulated technical debt for each

project (Part 1 in Figure 5). The bar chart visualizes the total TD shown in different colors based

on the amount of TD collected from each metric. For example, from figure A1 it can be seen that

the project “DFTGW” has the highest TD out of all the project and the amount of TD in that

project comes mostly from violations of the metrics CC, LOC and NOM. Additionally to the TD it

also visualizes how many red violations a project has within each metric, this was shown as a

red number in the top left corner when holding the mouse-pointer over a specific bar-part.

An Approach to Improve Quality of Software Using Metrics and Technical Debt 18

Figure A2: Other TD charts (Part 2 in Figure 5)

The project weight difference (2a) and metric weight difference (2b) was added to visualize the

total weight in another shape to comprehend some information easier. Instead of showing the

metrics of individual project they show the summed weight of projects compared to each other

and the summed weight of the metrics compared to each other in the form of a pie-chart. To

each pie-chart a list was added to show which part of the pie-chart was which project/metric and

also that parts weight and how many red violations it had in total.

Below the two pie charts is a bar chart which is showing the average TD per class by

normalizing the TD for a project by its number of classes. This was created to enable the

comparison between different projects while omitting their size.

Figure A3: Historical TD Chart Frame

The history chart (Part 3 in Figure 5) is visualizing the total weight of all the projects for up to the

last six runs of the MetricAnalyser. Through this chart, the increased/decreased TD would be

seen clearly as well as the historical trend. The newest run of MetricAnalyser is the rightmost

bar and the oldest one is the leftmost one. The names to each bar in the bar-chart is the date in

which the MetricAnalyser has been run. By the wishes from personnel from the development

team, a longer timespan was added so that by clicking the link “click for longer timespan”, see

figure A3, all historic data will be shown as a broad bar-chart.

Figure A4: Comment Percentage Frame

Comment percentage (Part 7 in Figure 5) shows in percentage that how many of the

classes/methods have a description in the description tag and also all nested packages within

the “ExportedInterfacesPkg” package, in all projects, and the “ExportedInterfacesPkg” itself.

This selection is the wish of personnel from the development team. The numbers shown in the

report are summed together for all system.

19 Björn Petersson, Sheng Zhang

Figure A5: The Worst Classes List Frame

The worst classes (Part 5 of Figure 5) are shown in a list that is ten entries long and was sorted

based upon which classes, in all the projects, had the most red violations. The number of red

violations was the first, smaller, number that are shown and after that, within the parentheses,

were the total weight of the class. Only the name of the class and which project it exist in are

visualized in the report visualizing program.

Figure A6: Technical Debt Summary Frame (Part 7 in Figure 5)

The big number is the left shows the total accumulated technical debt (rework effort * (1+

interest)) in man-hours. Rework effort to the right shows the total man-hours needed to fix all the

violation exist in those projects. Interest rate to the right is the rate according to which the total

technical debt was calculated. The interest rate was calculated by normalizing added time of

maintenance related to different level of violations. Detailed interest rate for each level could be

found in the configuration file.

Figure A7: Changed Classes List Frame

An Approach to Improve Quality of Software Using Metrics and Technical Debt 20

Figure A8: Description and information links (Part 8 in Figure 5)

This part contains information on how to find and reach different parts in the program were listed

in the bottom and there also are two links: one that showed all the raw files generated from

MetricAnalyser and one link that gave basic information about the metrics, thresholds etcetera.

The basic information page (the first link in Figure A8) was created to remove ambiguity from

the report visualizing program and also to show some information which purpose is to ease the

use of the report. Some information was from the configuration file, and that information

contained the threshold of the metrics and the given weight for the violations. Secondly the

abbreviation of metrics were added and given the full name to. Additionally information on what

the threshold was and the definition of weight and how that were used was also added. To

make it clear how to read the numbers of the metrics the definitions of the metrics done in

MetricAnalyser were explained.

By pressing the headlines for any frame/box in the main page, for example “Technical Debt for

projects”, an information page will be opened, describing how to read the information in the box

with the heading just pressed. All information-pages have a picture and text describing each

part of that box, both how they work and how they should be read.

Project Details page:

The project details page included two different things. Firstly it contains a bar-chart (1) that

shows the weight for each metric that were accumulated in that project. Secondly it contains

one list for each metric (2) with the top ten worst classes in that project, these lists were based

on the raw values of the metrics instead of the weight.

21 Björn Petersson, Sheng Zhang

Fulfills the
functionality

reqs
23%

Is bug-free
18%

simple and
clear code

18%

Is easy to
maintain

18%

Is efficient,
fast and
stable.

13%

well
documented

7%

Fulfills
customer

needs
3%

Appendix B: Result of first questionnaire

Q1. What is software quality to you?
Fulfills the functionality requirements 16

Is bug-free 13

Code is easy to understand and has clear logic 13

Is easy to maintain 13

Is efficient and fast, no memory leak, consumes little
resources (i.e. space, memory, CPU time etc.)

9

Everything is well documented 5

Fulfills customer needs 2

Q2. How would you measure software quality if you could decide?
Bug Number 20

Unit test coverage, test coverage 19

Complexity of code logic, connections between classes 15

Lines of code per function 1

Well-defined interfaces 1

Number or relevant comments 1

Profiling 1

Solved bugs that still not pass the retesting phase 1

Chart 1: Pie chart of answers for question 1

An Approach to Improve Quality of Software Using Metrics and Technical Debt 22

Bug Number
34%

Unit test
coverage,

test
coverage

32%

Complexity
of code logic,
connections

between
classes

25%

Others
9%

0

1

2

3

4

5

6

7

8

3 trucks 4 trucks 5 trucks 6 trucks 7 trucks 8 trucks

Q3. What do you think about the current product quality?
3 trucks 4 17%

4 trucks 1 4%

5 trucks 8 35%

6 trucks 6 26%

7 trucks 2 9%

8 trucks 2 9%

Q4. How do you think we can improve the product quality?
The keywords mentioned in the survey was abstracted and categorized into 5 categories.

Category Sum Subject Numbers

General/Team/E
nvironment/HW

5 Improve physical working environment 1

Better machine (X64) 1

Better programmer 1

Chart 2: Pie chart of answers for question 2

Chart 3: Ranking of product quality from team members

23 Björn Petersson, Sheng Zhang

General/Tea
m/Env/HW

8%

Devlopment
37%

Test
14%

Process
23%

Tools
18%

Better team work 1

Open climate 1

Development 24 Better unit test 4

Better code coverage 4

More best practice 3

Easier for developer to test 2

Easier unit test 2

Understanding impact of (change) each function 2

Guidelines for unit test 1

Awareness of quality from developers 1

Pair programming 1

Work rotation 1

Better CM strategy 1

Rebase often 1

TML code more modular 1

Testing 9 More test 2

Better test 2

More fault detection (memory leak, deadlock) 1

More target testing 1

More integration test 1

Test earlier 1

Test requirements and design 1

Process 15 More reviews 6

Wider range of review 1

More strict process 1

More check point 1

More focus on non-functional requirements 1

Meeting &information for best practice 1

Easy solutions to functions 1

Simple architecture 1

Rewrite part code 1

More time on design 1

Tools 12 Remove Rhapsody 4

Better build process 3

Use tools more 2

Better static checking tools 1

Check-in threshold 1

More metrics 1

Chart 4: Percentage of categories for keywords mentioned

in answers for improvement for Question 4

An Approach to Improve Quality of Software Using Metrics and Technical Debt 24

Q5. How do you think we can improve our development process?
Here the keywords mentioned in the answers are abstracted divided into three categories.

Category Sum Subject/Keywords Numbers

Development
Process

26 Shorter Cycle 4

More documents 4

Clear dev process 3

Earlier testing 2

Automated regression test 2

Integration early 1

Agile 1

Strict process 1

Faster build process 1

Use DevTrack process 1

Test Driven Development 1

Unit Test focus on method/small function 1

Focus on coding, less meeting 1

Better requirements 1

Code review 1

Development
practice

19 Share responsibility and pair
programming

3

Best practices 3

Easier for developer to test 2

Better understanding of functions (use
scenarios)

2

Knowledge sharing 2

Unified coding style 1

Double check from developers 1

Rhapsody training 1

Templates and examples 1

Early release of test programs 1

Replace Rhapsody, use java, C#, C++
instead

1

Organization
and team

2 Flatter organization 1

Smaller teams focus on specific area 1

25 Björn Petersson, Sheng Zhang

Appendix C: Result of workshop

Time: 3rd of April (10:00 – 12:00), 4th of April (10:00 – 12:00)

Participants: Fredrik, Kristian K, Mattias, Christian J

Facilitator: Björn, Sean

Workshop I

Metrics (Group I):

1. Prioritization (start with the easies first):

I. Lines of code:

II. Cyclomatic Complexity

III. Size

IV. Comment Percentage

V. The rest

2. Scales, explanations of metrics

I. Lines of code

i. Green < 80

ii. Yellow 81- 199

iii. Red > 200

iv. Lines of code should be calculated on the implementation tabs code. (2 pages

are too much.

II. Cyclomatic complexity

i. Green <= 3

ii. Yellow 4-5

iii. Red > 5

iv. Should be calculated on the implementation tabs code.

III. Size (Model metrics)

i. Number of methods

ii. State-charts

1. Number of states

2. Number of transitions

iii. Number of non-constant attributes

IV. Comment Percentage

i. Should not be over 30% in implementation tab

ii. On interfaces (as description) it should be 100% rest is red

V. Weighted Method per Class (Model metric)

i. Should be combined with depth of inheritance tree to make a sum of how bad it

is because that gives a better number

VI. Coupling Between Object classes (Model metric)

i. Have to differentiate between interface and implementation

An Approach to Improve Quality of Software Using Metrics and Technical Debt 26

ii. Have to measure for both too high and too low values because too low is no

good either

VII. Response For a Class (NOT TO BE IMPLEMENTED)

i. Shouldn’t be implemented, it is too hard to measure and implement

VIII. Lack of Cohesion in Methods (NOT TO BE IMPLEMENTED)

i. Same as for RFC

IX. Depth of Inheritance Tree (Model metric)

i. Have to differentiate between interfaces and implementation

ii. Green < 3

iii. Red > 5

iv. Good to combine with WMC

X. Number Of Children (Model metric)

i. Good to have but should rather warn that it is shouldn’t be changed when the

number is higher, other than that it is ok if the number is high.

3. Other:

I. Must be a possibility to suppress classes that shouldn’t be measured.

II. Warning should be for at least as high as class so that “we” can go deeper into it

afterwards, otherwise there will be too much information (there is thousands of classes)

Metrics (Group II):

Prioritized List:

1. Cyclomatic Complexity

2. Lines Of Code, size

3. Comment Percentage

LOC: In different function level: Application, module/package, class, function

Size: compare historical information could be useful

CC: Green 10, Yellow ?, Red ? (Depend on the average result from current code, not in generated code
but inside Rhapsody)

CP: depend on what kind of code, Green 30% (implementation, 100% for interface, not required on
simple functions) Good to have for information.

CBO: a bit complex to implement, also good to have for information. Cross reference is very interesting,
if can detect that, would be very helpful.

DIT: the number is good in current code, good to have for information.

NOC: instead of children, number of descendants (including children’s chidren) is more interesting.

LCOM: good to have, but complex to understand, hard to implement.

Some metrics should be combined together, e.g. DIT & WMC.

27 Björn Petersson, Sheng Zhang

Conclusion of discussion on metrics:

First implement metrics:

1. Lines of code

2. Code complexity

3. Size

a. Number of methods

b. State-charts

i. Number of states

ii. Number of transitions

c. Number of non-constant attributes

4. Comment Percentage

Continue with the other metrics if there is time (report of metrics is more important). Some of

them are good to have but not very intuitive, also not very feasible to implement.

Coding Standards:

 “Metrics is one way to enforcing coding standards” – Mattias

 We (Björn & Sean) can look on what research (state-of-the-art) say about code review

o Give suggestions from this

 Look into peer review (state-of-the-art)

o Any tools for doing it

 Quality gates are not feasible at check-ins, may work to have them when it is time to ship the

product.

Workshop II

Unit Tests & Coverage:

Unit test coverage would be hard to introduce a standard for since the current coverage is really

low and setting a low standard is not very useful either. One option is to start at a lower

standard and increase it. Problem is that to have a coverage threshold the developers have to

work with coverage in mind which is not what they are doing now.

Today there are only ambitions, “One ambition is to have at least one UT for each module.”

If there is any measurement on standards, it should only consider newly added code/modules

instead of all the code/modules.

According to workshop team it would be good to get numbers on how much coverage other

companies have and what research say about UT & coverage.

Technical Debt:

There was a really long discussion. People in the workshop think TD is really interesting but

might not feasible. The thing that can be done is to make a base to continue working on, see

summary of workshops for what we are going to work on.

The main concerns are:

1. There is no role that is responsible for the TD for a project.

2. No existing standards to calculate the TD.

An Approach to Improve Quality of Software Using Metrics and Technical Debt 28

3. Hard to define how long it takes to fix a problem, would have to be very rough.

There should be different weights for different measures (metrics, coverage and so on) if the TD would

be calculated. Another thing to take in mind is that things can/will not be done with old work and

therefor will give of a huge debt that will not be fixed. This will result in that new debt that is added will

not be seen as important as it otherwise would.

We didn’t manage to reach an agreement, more input are needed and further discussion will be carried

out towards this.

Other topics

We also discussed agile process, knowledge sharing and other metrics (process metrics,

organizational metrics) just for informing the team about the possibilities and methods/best

practices to improve code quality.

Summary of Workshops and what to do next

Start working with metrics first, they shall be implemented by java-scripts in Rhapsody. It is

important to get the numbers so that there is some information to work with. The metrics we

should implement are the metrics that were discussed in the first workshop. When those

numbers and statistics are in the systems the improvement group/workshop group can work on

setting standards and new goals towards better code quality.

The metric scripts shall be configurable, in order to ignore some known issues. This shall make

it possible to exclude code and modules that is not wanted.

All the metrics shall be calculated to one number so that there is a general “quality number” that

for example is showing that the quality trend (as well as details) of past day/week is good or bad

in a single number/line of text /table/chart.

The result collected from metrics shall be calculated in a non-accumulated way. For example,

start from 0 every day/week, to show the impact of newly added code or modified code to the

code quality.

The result shall be shown in a daily/weekly report which is sent to related alias. And all the

reports shall be customized according to the receivers.

Then the scripts should be integrated in the nightly build so that the results can be reported

every day. But the scripts should also have the possibility to be run manually whenever it is

needed and then on any parts wanted.

