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Abstract. This paper describes Hipster, a system integrating theory
exploration with the proof assistant Isabelle/HOL. Theory exploration
is a technique for automatically discovering new interesting lemmas in
a given theory development. Hipster can be used in two main modes.
The first is exploratory mode, used for automatically generating basic
lemmas about a given set of datatypes and functions in a new theory
development. The second is proof mode, used in a particular proof attempt,
trying to discover the missing lemmas which would allow the current
goal to be proved. Hipster’s proof mode complements and boosts existing
proof automation techniques that rely on automatically selecting existing
lemmas, by inventing new lemmas that need induction to be proved. We
show example uses of both modes.

1 Introduction

The concept of theory exploration was first introduced by Buchberger [2]. He
argues that in contrast to automated theorem provers that focus on proving
one theorem at a time in isolation, mathematicians instead typically proceed
by exploring entire theories, by conjecturing and proving layers of increasingly
complex propositions. For each layer, appropriate proof methods are identified,
and previously proved lemmas may be used to prove later conjectures. When a
new concept (e.g. a new function) is introduced, we should prove a set of new
conjectures which, ideally, “completely” relates the new with the old, after which
other propositions in this layer can be proved easily by “routine” reasoning.
Mathematical software should be designed to support this workflow. This is
arguably the mode of use supported by many interactive proof assistants, such
as Theorema [3] and Isabelle [17]. However, they leave the generation of new
conjectures relating different concepts largely to the user. Recently, a number
of different systems have been implemented to address the conjecture synthesis
aspect of theory exploration [15,13,16,5]. Our work goes one step further by
integrating the discovery and proof of new conjectures in the workflow of the
interactive theorem prover Isabelle/HOL. Our system, called Hipster, is based
on our previous work on HipSpec [5], a theory exploration system for Haskell
programs. In that work, we showed that HipSpec is able to automatically discover
many of the kind of equational theorems present in, for example, Isabelle/HOL’s
libraries for natural numbers and lists. In this article we show how similar



techniques can be used to speed up and facilitate the development of new theories
in Isabelle/HOL by discovering basic lemmas automatically.

Hipster translates Isabelle/HOL theories into Haskell and generates equational
conjectures by testing and evaluating the Haskell program. These conjectures are
then imported back into Isabelle and proved automatically. Hipster can be used
in two ways: in exploratory mode it quickly discovers basic properties about a
newly defined function and its relationship to already existing ones. Hipster can
also be used in proof mode, to provide lemma hints for an ongoing proof attempt
when the user is stuck.

Our work complements Sledgehammer [18], a popular Isabelle tool allowing
the user to call various external automated provers. Sledgehammer uses relevance
filtering to select among the available lemmas those likely to be useful for proving
a given conjecture [14]. However, if a crucial lemma is missing, the proof attempt
will fail. If theory exploration is employed, we can increase the success rate of
Isabelle/HOL’s automatic tactics with little user effort.

As an introductory example, we consider the example from section 2.3 of the
Isabelle tutorial [17]: proving that reversing a list twice produces the same list.
We first apply structural induction on the list xs.

theorem rev_rev : "rev(rev xs) = xs"

apply (induct xs)

The base case follows trivially from the definition of rev, but Isabelle/HOL’s
automated tactics simp, auto and sledgehammer all fail to prove the step case.
We can simplify the step case to:

rev(rev xs) = xs =⇒ rev((rev xs) @ [x]) = x#xs

At this point, we are stuck. This is where Hipster comes into the picture. If we
call Hipster at this point in the proof, asking for lemmas about rev and append
(@), it suggests and proves three lemmas:

lemma lemma_a: "xs @ [] = xs"

lemma lemma_aa : "(xs @ ys) @ zs = xs @ (ys @ zs)"

lemma lemma_ab : "(rev xs) @ (rev ys) = rev (ys @ xs)"

To complete the proof of the stuck subgoal, we need lemma ab. Lemma ab
in turn, needs lemma a for its base case, and lemma aa for its step case. With
these three lemmas present, Isabelle/HOL’s tactics can take care of the rest. For
example, when we call Sledgehammer in the step case, it suggests a proof by
Isabelle/HOL’s first-order reasoning tactic metis [11], using the relevant function
definitions as well as lemma ab:

theorem rev_rev : "rev(rev xs) = xs"

apply (induct xs)

apply simp

sledgehammer

by (metis rev.simps(1) rev.simps(2) app.simps(1) app.simps(2) lemma_ab)



The above example shows how Hipster can be used interactively in a stuck
proof attempt. In exploratory mode, there are also advantages of working in an
interactive setting. For instance, when dealing with large theories that would
otherwise generate a very large search space, the user can instead incrementally
explore different relevant sub-theories while avoiding a search space explosion.
Lemmas discovered in each sub-theory can be made available when exploring
increasingly larger sets of functions.

The article is organised as follows: In section 2 we give a brief overview of
the HipSpec system which Hipster uses to generate conjectures, after which we
describe Hipster in more detail in section 3, together with some larger worked
examples of how it can be used, both in proof mode and exploratory mode.
In section 4 we describe how we deal with partial functions, as Haskell and
Isabelle/HOL differ in their semantics for these. Section 5 covers related work
and we discuss future work in section 6.

2 Background

In this section we give a brief overview of the HipSpec system which we use as a
backend for generating conjectures, and of Isabelle’s code generator which we
use to translate Isabelle theories to Haskell programs.

2.1 HipSpec

HipSpec is a state-of-the-art inductive theorem prover and theory exploration
system for Haskell. In [5] we showed that HipSpec is able to automatically discover
and prove the kind of equational lemmas present in Isabelle/HOL’s libraries,
when given the corresponding functions written in Haskell.

HipSpec works in two stages:

1. Generate a set of conjectures about the functions at hand. These conjectures
are equations between terms involving the given functions, and have not yet
been proved correct but are nevertheless extensively tested.

2. Attempt to prove each of the conjectures, using already proven conjectures
as assumptions. HipSpec implements this by enumerating induction schemas,
and firing off many proof obligations to automated first-order logic theorem
provers.

The proving power of HipSpec comes from its capability to automatically discover
and prove lemmas, which are then used to help subsequent proofs.

In Hipster we can not directly use HipSpec’s proof capabilities (stage (2)
above); we use Isabelle/HOL for the proofs instead. Isabelle is an LCF-style
prover which means that it is based on a small core of trusted axioms, and
proofs must be built on top of those axioms. In other words, we would have to
reconstruct inside Isabelle/HOL any proof that HipSpec found, so it is easier to
use Isabelle/HOL for the proofs in the first place.



The part of HipSpec we directly use is its conjecture synthesis system (stage
(1) above), called QuickSpec [6]), which efficiently generates equations about a
given set of functions and datatypes.

QuickSpec takes a set of functions as input, and proceeds to generate all
type-correct terms up to a given limit (usually up to depth three). The terms
may contain variables (usually at most three per type). These parameters are
set heuristically, and can be modified by the user. QuickSpec attempts to divide
the terms into equivalence classes such that two terms end up in the same
equivalence class if they are equal. It first assumes that all terms of the same
type are equivalent, and initially puts them in the same equivalence class. It then
picks random ground values for the variables in the terms (using QuickCheck
[4]) and evaluates the terms. If two terms in the same equivalence class evaluate
to different ground values, they cannot be equal; QuickSpec thus breaks each
equivalence class into new, smaller equivalence classes depending on what values
their terms evaluated to. This process is repeated until the equivalence classes
stabilise. We then read off equations from each equivalence class, by picking one
term of that class as a representative and equating all the other terms to that
representative. This means that the conjectures generated are, although not yet
proved, fairly likely to be true, as they have been tested on several hundred
different random values. The confidence increases with the number of tests, which
can be set by the user. The default setting is to first run 200 tests, after which the
process stops if the equivalence classes appear to have stabilised, i.e. if nothing
has changed during the last 100 tests. Otherwise, the number of tests are doubled
until stable.

As an example, we ask QuickSpec to explore the theory with list append, @, the
empty list, [], and three list variables xs, ys, zs. Among the terms it will generate
are (xs @ ys) @ zs, xs @ (ys @ zs), xs @ [] and xs. Initially, all four will be
assumed to be in the same equivalence class. The random value generator for lists
from QuickCheck might for instance generate the values: xs 7→ [], ys 7→ [a]

and zs 7→ [b], where a and b are arbitrary distinct constants. Performing the
substitutions of the variables in the four terms above and evaluating the resulting
ground expressions gives us:

Term Ground Instance Value
1 (xs @ ys) @ zs ([] @ [a]) @ [b] [a,b]

2 xs @ (ys @ zs) [] @ ([a] @ [b]) [a,b]

3 xs @ [] [] @ [] []

4 xs [] []

Terms 1 and 2 evaluate to the same value, as do terms 3 and 4. The initial
equivalence class will therefore be split in two accordingly. After this, whatever
variable assignments QuickSpec generates, the terms in each class will evaluate to
the same value. Eventually, QuickSpec stops and the equations for associativity
and right identity can be extracted from the resulting equivalence classes.



2.2 Code Generation in Isabelle

Isabelle/HOL’s code generator can translate from Isabelle’s higher-order logic
to code in several functional programming languages, including Haskell [9,8].
Isabelle’s higher-order logic is a typed λ-calculus with polymorphism and type-
classes. Entities like constants, types and recursive functions are mapped to
corresponding entities in the target language. For the kind of theories we consider
in this paper, this process is straightforward. However, the code generator also
supports user-given code lemmas, which allows it to generate code from non-
executable constructs, e.g. by replacing sets with lists.

3 Hipster: Implementation and Use

We now give a description of the implementation of Hipster, and show how it
can be used both in theory exploration mode and in proof mode, to find lemmas
relevant for a particular proof attempt. An overview of Hipster is shown in figure
1. The source code and examples are available online1.
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Fig. 1. Overview of Hipster

Starting from an Isabelle/HOL theory, Hipster calls Isabelle/HOL’s code
generator [9,8] to translate the given functions into a Haskell program. In order to
use the testing framework from QuickCheck, as described in the previous section,
we also post-process the Haskell file, adding generators, which are responsible for
producing arbitrary values for evaluation and testing. A generator in Haskell’s

1 https://github.com/moajohansson/IsaHipster

https://github.com/moajohansson/IsaHipster


QuickCheck is simply a function which returns a random ground value for a
particular datatype [4]. In our case, the generators pick a random constructor and
then recursively generate its arguments. To ensure termination, the generators
are parametrised by a size; the generator reduces the size when it invokes itself
recursively and when the size reaches zero, it always picks a non-recursive
constructor.

Another important issue in the translation is the difference in semantics for
partial functions between Isabelle/HOL and Haskell. In order for HipSpec not
to miss equations that hold in Isabelle/HOL, but not in Haskell, we have to
translate partial functions specially. This is explained in more detail in section 4.

Once the Haskell program is in place, we run theory exploration and generate
a set of equational conjectures, which HipSpec orders according to generality.
More general equations are preferred, as we expect these to be more widely
applicable as lemmas. In previous work on HipSpec, the system would at this
stage apply induction on the conjectures and send them off to some external
prover. Here, we instead import them back into Isabelle as we wish to produce
checkable LCF-style proofs for our conjectures.

The proof procedure in Hipster is parametrised by two tactics, one for easy
or routine reasoning and one for difficult reasoning. In the examples below, the
routine reasoning tactic uses Isabelle/HOL’s simplifier followed by first-order
reasoning by Metis [11], while the difficult reasoning tactic performs structural
induction followed by simplification and first-order reasoning. Metis is restricted
to run for at most one second in both the routine and difficult tactic. If there are
several possible variables to apply induction on, we may backtrack if the first
choice fails. Both tactics have access to the theorems proved so far, and hence
get stronger as the proof procedure proceeds through the list of conjectures.

As theory exploration produces rather many conjectures, we do not want to
present them all to the user. We select the most interesting ones, i.e. those that
are difficult to prove, and filter out those that follow only by routine reasoning.
Depending on the theory and application we can vary the tactics for routine and
difficult reasoning to suit our needs. If we want Hipster to produce fewer or more
lemmas, we can choose a stronger or weaker tactic, allowing for flexibility.

The order in which Hipster tries to prove things matters. As we mentioned,
it will try more general conjectures first, with the hope that they will be useful
to filter out many more specific routine results. Occasionally though, a proof will
fail as a not-yet-proved lemma is required. In this case, the failed conjecture is
added back into the list of open conjectures and will be retried later, after at
least one new lemma has been proved. Hipster terminates when it either runs
out of open conjectures, or when it can not make any more progress, i.e. when
all open conjectures have been tried since it last proved a lemma.

Below we give two typical use cases for Hipster. In both examples, Hipster
has been instantiated with the routine and difficult reasoning tactics that we
described above.



3.1 Exploring a Theory of Binary Trees

This example is about a theory of binary trees, with data stored at the leaves:

datatype ’a Tree =

Leaf ’a

| Node "’a Tree" "’a Tree"

Let us define some functions over our trees: mirror swaps the left and right
subtrees everywhere, and tmap applies a function to each element in the tree.

fun mirror :: ’a Tree => ’a Tree

where

mirror (Leaf x) = Leaf x

| mirror (Node l r) = Node (mirror r) (mirror l)

fun tmap :: (’a => ’b) => ’a Tree => ’b Tree

where

tmap f (Leaf x) = Leaf (f x)

| tmap f (Node l r) = Node (tmap f l) (tmap f r)

Now, let us call theory exploration to discover some properties about these two
functions. Hipster quickly finds and proves the two expected lemmas:

lemma lemma_a [thy_expl]: "mirror (tmap x y) = tmap x (mirror y)"

by (tactic {* Hipster_Tacs.induct_simp_metis . . .*})

lemma lemma_aa [thy_expl]: "mirror (mirror x) = x"

by (tactic {* Hipster_Tacs.induct_simp_metis . . . *})

The output produced by Hipster can be automatically pasted into the proof script
by a mouseclick. Recall that Hipster discards all lemmas that can be proved
by routine reasoning (here, without induction). The tactic induct simp metis

appearing in the proof script output is the current instantiation of “difficult
reasoning”. Note that the lemmas discovered are tagged with the attribute
thy expl, which tells Hipster which lemmas it has discovered so far. If theory
exploration is called several times, we can use these lemmas in proofs and avoid
rediscovering the same things. The user can also inspect what theory exploration
has found so far by executing the Isabelle command thm thy expl.

Next, let us also define two functions extracting the leftmost and rightmost
element of the tree:

fun rightmost :: ’a Tree => ’a

where

rightmost (Leaf x) = x

| rightmost (Node l r) = rightmost r

fun leftmost :: ’a Tree => ’a

where

leftmost (Leaf x) = x

| leftmost (Node l r) = leftmost l



Asking Hipster for lemmas about all the functions defined so far, it provides one
additional lemma, namely:

lemma lemma_ab [thy_expl]: "leftmost (mirror x2) = rightmost x2"

by (tactic {* Hipster_Tacs.induct_simp_metis . . . *})

Finally, we define a function flattening trees to lists:

fun flat_tree :: ’a Tree => ’a list

where

flat_tree (Leaf x) = [x]

| flat_tree (Node l r) = (flat_tree l) @ (flat_tree r)

We can now ask Hipster to explore the relationships between the functions on
trees and the corresponding functions on lists, such as rev, map and hd. Hipster
produces four new lemmas and one open conjecture:

lemma lemma_ac [thy_expl]: "flat_tree (tmap x y) = map x (flat_tree y)"

by (tactic {* Hipster_Tacs.induct_simp_metis . . . *})

lemma lemma_ad [thy_expl]: "map x (rev xs) = rev (map x xs)"

by (tactic {* Hipster_Tacs.induct_simp_metis . . . *})

lemma lemma_ae [thy_expl]: "flat_tree (mirror x) = rev (flat_tree x)"

by (tactic {* Hipster_Tacs.induct_simp_metis . . . *})

lemma lemma_af [thy_expl]: "hd (xs @ xs) = hd xs"

by (tactic {* Hipster_Tacs.induct_simp_metis . . . *})

lemma unknown: "hd (flat_tree x) = leftmost x"

oops

Lemmas ad and af are perhaps not of much interest, as they only relate functions
on lists. In fact, lemma ad is already in Isabelle/HOL’s list library, but is not
labelled as a simplification rule, which is why Hipster rediscovers it. Lemma af is
a variant of a conditional library-lemma: xs 6= [] =⇒ hd(xs @ ys) = hd xs.
Observe that lemma af holds due to the partiality of hd. Hipster can not discover
conditional lemmas, so we get this version instead.

In addition to the four lemmas which have been proved, Hipster also outputs
one interesting conjecture (labelled unknown) which it fails to prove. To prove
this conjecture, we need a lemma stating that, as the trees store data at the
leaves, flat tree will always produce a non-empty list: flat tree t 6= []. As
this is not an equation, it is not discovered by Hipster.

This example shows that Hipster can indeed find most of the basic lemmas we
would expect in a new theory. The user has to provide the constants Hipster should
explore, and the rest is fully automatic, thus speeding up theory development.
Theory exploration in this example takes just a few seconds, no longer than
it takes to run tools like Sledgehammer. Even if Hipster fails to prove some
properties, they may still be interesting, and the user can choose to prove them
interactively.



Exploring with different tactics. To illustrate the effects of choosing a slightly
different tactic for routine and difficult reasoning, we also experimented with
an instantiation using only Isabelle/HOL’s simplifier as routine reasoning and
induction followed by simplification as difficult reasoning. The advantage of
this instantiation is that the simplifier generally is faster than Metis, but less
powerful. However, for this theory, it turns out that the simplifier is sufficient to
prove the same lemmas as above. Hipster also suggests one extra lemma, namely
rightmost (mirror x) = leftmost x, which is the dual to lemma ab above.
When we used Metis, this lemma could be proved without induction, by routine
reasoning, and was thus discarded. Using only the simplifier, difficult reasoning
and induction is required to find a proof, and the lemma is therefore presented
to the user.

3.2 Proving Correctness of a Small Compiler

The following example is about a compiler to a stack machine for a toy expression
language2. We show how theory exploration can be used to unblock a proof on
which automated tactics otherwise fail due to a missing lemma.

Expressions in the language are built from constants (Cex), values (Vex) and
binary operators (Bex):

type_synonym ’a binop = ’a => ’a => ’a

datatype (’a, ’b) expr =

Cex ’a

| Vex ’b

| Bex "’a binop" "(’a,’b) expr" "(’a,’b) expr"

The types of values and variables are not fixed, but given by type parameters ’a
and ’b. To evaluate an expression, we define a function value, parametrised by
an environment mapping variables to values:

fun value :: (’b => ’a) => (’a,’b) expr => ’a

where

value env (Cex c) = c

| value env (Vex v) = env v

| value env (Bex f e1 e2) = f (value env e1) (value env e2)

A program for our stack machine consists of four instructions:

datatype (’a, ’b) program =

Done

| Const ’a "(’a, ’b) program"

| Load ’b "(’a, ’b) program"

| Apply "’a binop" "(’a, ’b) program"

A program is either empty (Done), or consists of one of the instructions Const,
Load or Apply, followed by the remaining program. We further define a function
sequence for combining programs:

2 This example is a slight variation of that in §3.3 in the Isabelle tutorial [17].



fun sequence :: (’a, ’b) program => (’a, ’b) program => (’a, ’b) program

where

sequence Done p = p

| sequence (Const c p) p’ = Const c (sequence p p’)

| sequence (Load v p) p’ = Load v (sequence p p’)

| sequence (Apply f p) p’ = Apply f (sequence p p’)

Program execution is modelled by the function exec, which given a store for
variables and a program, returns the values on the stack after execution.

fun exec :: (’b => ’a) => (’a,’b) program => ’a list => ’a list

where

exec env Done stack = stack

| exec env (Const c p) stack = exec env p (c#stack)

| exec env (Load v p) stack = exec env p ((env v)#stack)

| exec env (Apply f p) stack =

exec env p ((f (hd stack) (hd(tl stack)))#(tl(tl stack)))

We finally define a function compile, which specifies how expressions are compiled
into programs:

fun compile :: (’a,’b) expr => (’a,’b) program

where

compile (Cex c) = Const c Done

| compile (Vex v) = Load v Done

| compile (Bex f e1 e2) =

sequence (compile e2) (sequence (compile e1) (Apply f Done))"

Now, we wish to prove correctness of the compiler, namely that executing a
compiled expression indeed results in the value of that expression:

theorem "exec env (compile e) [] = [value env e]"

If we try to apply induction on e, Isabelle/HOL’s simplifier solves the base-case
but neither the simplifier or first-order reasoning by Sledgehammer succeeds in
proving the step-case. At this stage, we can apply Hipster’s theory exploration
tactic. It will generate a set of conjectures, and interleave proving these with
trying to prove the open sub-goal. Once Hipster succeeds in finding a set of
lemmas which allow the open goal to be proved by routine reasoning, it presents
the user with a list of lemmas it has proved, in this case:

Try first proving lemmas:

lemma lemma_a: "sequence x Done = x"

by (tactic {* Hipster_Tacs.induct_simp_metis . . . *})

lemma lemma_aa: "exec x y (sequence z x1) xs = exec x y x1 (exec x y z xs)"

by (tactic {* Hipster_Tacs.induct_simp_metis . . . *})

lemma lemma_ab: "exec x y (compile z) xs = value x y z # xs"

by (tactic {* Hipster_Tacs.induct_simp_metis . . . *})



Our theorem is a trivial instance of lemma_ab, whose proof depends on lemma_aa.
Hipster takes about twenty seconds to discover and prove the lemmas. Pasting
them into our proof script we can try Sledgehammer on our theorem again. This
time, it succeeds and suggests the one-line proof:

theorem "exec env (compile e) [] = [value env e]"

by (metis lemma_ab)

4 Dealing With Partial Functions

Isabelle is a logic of total functions. Nonetheless, we can define apparently partial
functions, such as hd:

fun hd :: ’a list => ’a where

hd (x#xs) = x

How do we reconcile hd being partial with Isabelle functions being total? The
answer is that in Isabelle, hd is total, but the behaviour of hd [] is unspecified:
it returns some arbitrary value of type ’a. Meanwhile in Haskell, head is partial,
but the behaviour of head [] is specified: it crashes. We must therefore translate
partially defined Isabelle functions into total but underspecified Haskell functions.

Hipster uses a technique suggested by Jasmin Blanchette [1] to deal with
partial functions. Whenever we translate an Isabelle function that is missing
some cases, we need to add a default case, like so:

hd :: [a] -> a

hd (x:xs) = x

hd [] = ???

But what should we put for the result of hd []? To model the notion that
hd [] is unspecified, whenever we evaluate a test case we will pick a random
value for hd []. This value will vary from test case to test case but will be
consistent within one run of a test case. The idea is that, if an equation involving
hd in Haskell always holds, for all values we could pick for hd [], it will also
hold in Isabelle, where the value of hd [] is unspecified.

Suppose we define the function second, which returns the second element of
a list, as

second (x#y#xs) = y

It might seem that we should translate second, by analogy with hd, as

second :: [a] -> a

second (x:y:xs) = y

second _ = ???

and pick a random value of type a to use in the default case. But this translation
is wrong! If we apply our translated second to a single-element list, it will give



the same answer regardless of which element is in the list, and HipSpec will
discover the lemma second [x] = second [y]. This lemma is certainly not true
of our Isabelle function, which says nothing about the behaviour of second on
single-element lists, and Hipster will fail to prove it.

We must allow the default case to produce a different result for different
arguments. We therefore translate second as

second :: [a] -> a

second (x:y:xs) = y

second xs = ??? xs

where ??? is a random function of type [a] -> a. (QuickCheck can generate
random functions.) As before, whenever we evaluate a test case, we instantiate
??? with a new random function3. This second translation mimics Isabelle’s
semantics: any equation that holds in Haskell no matter how we instantiate the
??? functions also holds in Isabelle.

In Hipster, we first use Isabelle/HOL’s code generator to translate the theory
to Haskell. Then we transform every function definition, whether it is partial or
not, in the same way we transformed second above. If a function is already total,
the added case will simply be unreachable. This avoids having to check functions
for partiality. The extra clutter introduced for total functions is not a problem
as we neither reason about nor show the user the generated program.

5 Related Work

Hipster is an extension to our previous work on the HipSpec system [5], which
was not designed for use in an interactive setting. HipSpec applies structural
induction to conjectures generated by QuickSpec and sends off proof obligations
to external first-order provers. Hipster short-circuits the proof part and directly
imports the conjectures back into Isabelle. This allows for more flexibility in the
choice of tactics employed, by letting the user control what is to be considered
routine and difficult reasoning. Being inside Isabelle/HOL provides the possibility
to easily record lemmas for future use, perhaps in other theory developments.
It gives us the possibility to re-check proofs if required, as well as increased
reliability as proofs have been run through Isabelle’s trusted kernel. As Hipster
uses HipSpec for conjecture generation, any difference in performance (e.g. speed,
lemmas proved) will depend only on what prover backend is used by HipSpec
and what tactic is used by Hipster.

There are two other theory exploration systems available for Isabelle/HOL,
IsaCoSy [13] and IsaScheme [16]. They differ in the way they generate conjectures,
and both discover similar lemmas as HipSpec/Hipster. A comparison between
HipSpec, IsaCoSy and IsaScheme can be found in [5], showing that all three

3 To avoid having to retranslate the Isabelle theory every time we evaluate a test case,
in reality we parametrise the generated program on the various ??? functions. That
way, whenever we evaluate a test case, we can cheaply change the default cases.



systems manage to find largely the same lemmas on theories about lists and
natural numbers. HipSpec does however outperform the other two systems on
speed. IsaCoSy ensures that terms generated are non-trivial to prove by only
generating irreducible terms, i.e. conjectures that do not have simple proofs
by equational reasoning. These are then filtered through a counter-example
checker and passed to IsaPlanner for proof [7]. IsaScheme, as the name suggests,
follows the scheme-based approach first introduced for algorithm synthesis in
Theorema [3]. IsaScheme uses general user-specified schemas describing the shape
of conjectures and then instantiates them with available functions and constants.
It combines this with counter-example checking and Knuth-Bendix completion
techniques in an attempt to produce a minimal set of lemmas.

Unfortunately, the counter-example checking in IsaCoSy and IsaScheme is
often too slow for use in an interactive setting. Unlike IsaCoSy, Hipster may gen-
erate reducible terms, but thanks to the equivalence class reasoning in QuickSpec,
testing is much more efficient, and conjectures with trivial proofs are instead
quickly filtered out at the proof stage. None of our examples takes more than
twenty seconds to run.

Neither IsaCoSy or IsaScheme has been used to generate lemmas in stuck
proof attempts, but only in fully automated exploratory mode. Starting from
stuck proof attempts allows us to reduce the size of the interesting background
theory, which promises better scalability.

Proof planning critics have been employed to analyse failed proof attempts
in automatic inductive proofs [12]. The critics use information from the failure
in order to try to speculate a missing lemma top-down, using techniques based
on rippling and higher-order unification. Hipster (and HipSpec) takes a less
restricted approach, instead constructing lemmas bottom-up, from the symbols
available. As was shown in our previous work [5], this succeeds in finding lemmas
that the top-down critics based approach fails to find, at the cost of possibly also
finding a few extra lemmas as we saw in the example in section 3.2.

6 Further Work

The discovery process is currently limited to equational lemmas. We plan to
extend the theory exploration to also take side conditions into account. If theory
exploration is called in the middle of a proof attempt, there may be assumptions
associated with the current sub-goal, which could be a useful source of side
conditions. For example, if we are proving a lemma about sorting, there will most
likely be an assumption involving the “less than” operator; this suggests that
we should look for equations that have “less than” in a side condition. Once we
have a candidate set of side conditions, it is easy to extend QuickSpec to find
equations that assume those conditions.

The parameters for Hipster, e.g. the number of QuickSpec generated tests,
the runtime for Metis and so on, are largely based on heuristics from development
and previous experience. There is probably room for fine-tuning these heuristics
and possibly adapt them to the theory we are working in. We plan to add and



experiment with additional automated tactics in Hipster. Again, we expect that
different tactics will suit different theories.

Another interesting area of further work in theory exploration is reasoning by
analogy. In the example in section 3.1, theory exploration discovers lemmas about
mirror and tmap which are analogous to lemmas about lists and the functions rev
and map. Machine learning techniques can be used to identify similar lemmas [10],
and this information could then be used to for instance suggest new combinations
of functions to explore, new connections between theories or directly suggest
additional lemmas about trees by analogy to those on lists.

7 Summary

Hipster integrates lemma discovery by theory exploration in the proof assistant
Isabelle/HOL. We demonstrated two typical use cases of how this can help
and speed up theory development: by generating interesting basic lemmas in
exploration mode or as a lemma suggestion mechanism for a stuck proof attempt
in proof mode. The user can control what is discovered by varying the background
theory, and by varying Hipster’s “routine reasoning” and “difficult reasoning”
tactics; only lemmas that need difficult reasoning (e.g. induction) are presented.

Hipster complements tools like Sledgehammer: by discovering missing lem-
mas, more proofs can be tackled automatically. Hipster succeeds in automating
inductive proofs and lemma discovery for small, but non-trivial, equational
Isabelle/HOL theories. The next step is to increase its scope, to conditional
equations and to bigger theories: our goal is a practical automated inductive
proof tool for Isabelle/HOL.
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