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Abstract

A fractional generalized pure birth process is studied based on the
master equation approach. The exact analytic solution of the generating
function of the probability density for the process is given in terms of the
Gauss hypergeometric function. The expressions of moments are also
obtained in an explicit form. The effects of fixed and distributed initial
conditions are also elucidated. The effect of memory is demonstrated
quantitatively in terms of the mean, variance, and the Fano factor. It
is also shown how to discriminate a fractional generalized birth pro-
cess from the fractional Yule-Furry process. Further, the appearance
of composite fractional time evolutions of cumulants is elucidated in
conjunction with the fractional Poisson and the fractional Yule-furry
processes.

Keywords: fractional generalized birth processes, Master equation, exact
solution, composite fractional time evolutions of cumulants

1 Introduction

Fractional generalizations of models with long memory in complex systems
have been studied extensively [1-11]. There are various approaches for the
fractional generalizations:

1Permanent adress: Chalmers University of Technology, Göteborg, Sweden
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(1) A naive method is that the normal time derivative is replaced by a frac-
tional derivative: in this respect (a) fractional Master equation (Saichev and
Zaslavsky [5]; Laskin [6], Orsingher and Polito, [7-8], Konno [9]), (b) frac-
tional Fokker-Planck equation (Barkai [10]) and (c) fractional Langevin equa-
tion (Franosch et al. [11]) were studied.
(2) When a normal spatial derivative is replaced by a spatial fractional deriva-
tive, one obtains a fractional diffusion equation (Lévy diffusion) [3]
(3) When normal spatial and temporal derivatives are replaced by fractional
derivatives, one obtains fractional spatial-temporal derivative diffusion equa-
tion (Zaslavsky [5]) and various fractional transport equations.
(4) non-stationary (non-homogeneous) generalization of time-functions (Kubo
[16], Tokuyama-Mori [17], Konno [12-13], Bedford and Cooke [18])
(5) Conventional Memory function approach based on the Langevin equation
(Kubo [14], Mori [15]) and Master equation (Montroll-Schlesinger [3]).

In spite of the numerous studies made, the origin of the fractional deriva-
tives and the theoretical and experimental correspondence have not been clari-
fied completely. This kind of fractional formulation is considered to incorporate
the effect of memory in complex systems to understand various unexplained
features of complicated dynamics in the real world.

Actually, we have discussed the fractional Poisson process in conjunction
with the counting statistics of neural systems [9]. It is found that the Fano
factor takes a larger value than 1 (super-Poisson statistics). The waiting time
distribution has a fat tail, and the related moments diverge. Then, the loga-
rithmic cumulants are proposed as a convenient measure without divergence
[9].

The paper presents the effect of memory upon the nature of fluctuations
in a model of fractional generalized birth process (GBP), which is organized
as follows. Section 2 describes the model equation, and exact solutions of the
generating function for various initial conditions are given. Section 3 gives the
expressions of the moments, and the Fano factor associated with various initial
condition is given. Section 4 discusses the appearance of composite fractional
time evolution of cumulants, the method of discriminating the fractional GBP
from the fractional Yule-Furry process and the fractional Poisson process in
detail. Section 5 is devoted to summary and remarks.

2 Fractional Generalized Linear Birth Process

2.1 Model

Let us consider the fractional generalized birth process (FGBP) with fractional
derivative (0 < µ ≤ 1)

0D
µ
t pµ(n, t) = [α(n − 1) + β]pµ(n − 1, t) − (αn + β)pµ(n, t) , (n ≥ 1) (1)
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and 0D
µ
t pµ(0, t) = −βpµ(0, t) , (n = 0), where 0D

µ
t is the Caputo fractional

derivative defined by

0D
µ
t f(t) ≡ 1

Γ(1 − µ)

∫ t

0

f ′(τ)

(t − τ)µ
dτ . (2)

The other definition of fractional derivative due to Riemann-Liouville is defined
by

0Dµ
t f(t) ≡ 1

Γ(1 − µ)

d

dt

∫ t

0

f(τ)

(t − τ)µ
dτ . (3)

The relation between the two derivatives is

0Dµ
t f(t) =0 Dµ

t f(t) +
m−1∑
k=0

tk−µ

Γ(k − µ + 1)
f (k)(0+) . (4)

Rewriting Eq.(1) in the form,

∂

∂t
pµ(n, t) =0 D1−µ

t

[
(α(n − 1) + β)pµ(n − 1, t) − (αn + β)pµ(n, t)

]
, (5)

one can see that the model in Eq.(5), a fractional generalized birth process,
can be regarded as a memory function type Master equation.

Since Caputo’s definition gives

0D
µ
t 1 ≡ 0 , (6)

it is quite natural to consider the physical processes depending on the initial
value. When the Riemann-Liouville fractional derivative is adopted, one must
insert an additional term in the right hand side of the model in Eq.(1) on
account of the relation:

0Dµ
t 1 =

t−µ

Γ(1 − µ)
. (7)

In considering the initial transient under an environment with long-memory,
it is important to set up the initial condition (IC) properly. Here, we will con-
sider two simple cases: case 1, i.e.,

pµ(n, 0) = δn,n0 (8)

and case 2, i.e.,

pµ(n, 0) = δn,n0

θn

n!
e−θ . (9)

We will refer to case 1 as either IC0 (n0 = 0) or IC1 (n0 ̸= 0), and to case 2 as
IC2. When the initial condition is controllable in experiments, one can choose
case 1. On the other hand, when the initial condition is not controllable in
experiments, one must choose, for example, case 2. Here we will not consider
more sophisticated initial distributions for brevity. The fractional linear birth
process in Eq.(1) with β = 0 under the initial condition n0 = 1 is studied by
Orsingher and Polito [7] from the mathematical point of view.
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2.2 Inverse Lévy Transform

An inverse Lévy transform is defined [5,10] by

pµ(n, t) =
∫ ∞

0
Kµ(τ, t)p1(n, τ) dτ , (10)

where the integral kernel Kµ(τ, t) is expressed in terms of the one-sided cumu-
lative Lévy distribution Lµ(z) (cf. Appendix A):

Kµ(τ, t) =
d

dτ

[
1 − Lµ(t/τ 1/µ)

]
. (11)

When the analytic solution for µ = 1 (i.e., p1(n, t)) is given, the solution of
the FGBP pµ(n, t) can be obtained. The generating function in the FGBP (1)
can be derived from g1(z, t) as

gµ(z, t) =
∫ ∞

0
Kµ(τ, t)g1(z, τ) dτ . (12)

2.3 Probability mass

Now let us derive the exact solution for the probability mass function (pmf)
pµ(n, t) via the generating function g1(z, t) for µ = 1, which is subjected to

∂

∂t
g1(z, t) = αz(z − 1)

∂

∂z
g1(z, t) + β(z − 1)g1(z, t) . (13)

The solution under IC1 (p1(n, 0) = δn,n0) is given by

g1(z, t) = zn0(exp(−αt))n0+ β
α

(
1 − z(1 − exp(−αt))

)−(n0+ β
α

)

. (14)

With the use of the inverse Lévy transform of Eq.(10), one obtains gµ[z, s] in
the Laplase domain for the IC1 (i.e.,gµ(z, 0) = zn0) as

gµ[z, s] = zn0

(
sµ−1

α

) ∫ 1

0
(1 − x)

sν

α
+n0+ β

α
−1(1 − xz)−(n0+ β

α
)dx , (15)

= zn0

(
sµ−1

sµ + n0α + β

)
F

(
n0 +

α

β
, 1,

sµ

α
+ n0 +

β

α
+ 1; z

)
(16)

where F (a, b, c; z) is Euler’s integral representation of the Gauss hypergeomet-
ric function defined by

F (a, b, c; z) =
Γ(c)

Γ(b)Γ(c − b)

∫ 1

0
xb−1(1 − x)c−b−1(1 − zx)−adx , (17)
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where Γ(z) is the Gamma function: Γ(z) =
∫ ∞
0 tz−1e−tdt. The probability mass

pµ[z, s] under IC1 (pµ(n, 0) = δn,n0) is obtained from gµ[z, s] as

pµ[n, s] =

(
n + β

α
− 1

n − n0

)
· sµ−1

α
· B

(
n − n0 + 1,

sµ

α
+ n0 +

β

α

)
, (18)

where B(x, y) is the Beta function defined by

B(x, y) =
∫ 1

0
ux−1(1 − u)y−1du . (19)

The explicit expression of the pmf in the time domain can be obtained from
this in terms of the Mittag-Leffler function.

When the initial condition is not controllable, one must take average over
the initial values. For the initial condition (IC2) p(n, 0) = δn,n0(θ)

n exp(−θ)/n!
(i.e., a Poisson distribution with the parameter θ), one obtains the generating
function which is averaged over the initial condition as

g1(z, t) = [exp(−αt)]
β
α

(
1−z[1−exp(−αt)]

)− β
α

exp
(
− (1 − z)θ

1 − z[1 − exp(−αt)]

)
.

(20)
By virtue of the Levy transform, we have

gµ[z, s] =
sµ−1

α

∫ 1

0
(1 − x)

sµ

α
+ β

α
−1(1 − xz)−

β
α exp

(
− 1 − z

1 − xz
θ
)
dx . (21)

This solution can be written as (cf. Appendix B for derivation)

gµ[z, s] =
sµ−1

sµ + α
Fg

(
α

β
, 1,

sµ

α
+

β

α
+ 1, θ; z

)
, (22)

in terms of a generalized hypergeometric function defined by

Fg(a, b, c, θ; z) =
Γ(c)

Γ(b)Γ(c − b)

∫ 1

0
xb−1(1 − x)c−b−1(1 − zx)−ae−

1−z
1−xz

θdx . (23)

An explicit expression for pµ[n, s] can be obtained by the formula,

pµ[n, s] =
1

n!

∂n

∂zn
gµ[z, s]|z=0 . (24)

The general expression becomes complicated. An explicit expression for pµ(n, t)
can be obtained recursively (n = 0, 1, 2, . . .) in terms of the Migttag-Leffler
function, e.g.,

pµ(1, t) = θe−θEµ(−(α + β)tµ) +
β

α
e−θ(Eµ(−βtµ) − Eµ(−(α + β)tµ)) . (25)
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3 Moments and Fano Factor

3.1 Moments

The moments of the counting number during the time interval T in the FGBP
under IC0 (n0 = 0) are obtained with the generating function in Eq.(15) as

〈n(T )〉 =
(

β

α

)(
Eµ(αT µ) − 1

)
, (26)

〈n(T )2〉 =
(

β

α

)(
Eµ(2αT µ)−Eµ(αT µ)

)
+

(
β

α

)2(
Eµ(2αT µ)− 2Eµ(αT µ) + 1

)
,

(27)
and

σ2
n(T ) =

(
β

α

)(
Eµ(2αT µ)−Eµ(αT µ)

)
+

(
β

α

)2(
Eµ(2αT µ)−Eµ(αT µ)2

)
, (28)

where 〈X(n)〉 denotes the statistical average of a variable X(n) as a function
of n: 〈X(n)〉 =

∑∞
n=0 X(n)P (n, t). It is an interesting observation that the

second moment in Eq.(27), hence also the variance, is composed of two terms:
One is proportional to (β/α), and the other is to (β/α)2. When µ → 1, the
last term with (β/α)2 in Eq.(28) tend to vanish.

It is easy to see that the variance becomes for µ = 1 as

〈n(T )〉 =
β

α
(eαT − 1) (29)

and

σ2
n(T ) =

β

α
(eαT − 1)eαT . (30)

The moments of the counting number during the interval T in the FGBP
under IC1 (n0 ̸= 0) are also obtained by the generating function as

〈n(T )〉 = n0Eµ(αT µ) +
(

β

α

)
(Eµ(αT µ) − 1) , (31)

〈n(T )2〉 =
(
n0+

β

α

)
(Eµ(2αT µ)−Eµ(αT µ))+

(
n0+

β

α

)2(
Eµ(2αT µ)−2Eµ(αT µ)+1

)

+2n0

(
n0 +

β

α

)
(Eµ(αT µ) − 1) + n2

0 . (32)

where 〈X(n)〉 is defined as above. It is easy to see that the variance depends
on n0 as

σ2
n(T ) =

(
n0+

β

α

)(
Eµ(2αT µ)−Eµ(αT µ)

)
+

(
n0+

β

α

)2(
Eµ(2αT µ)−Eµ(αT µ)2

)
.

(33)
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Figure 1: The variation of the mean as a function of T for (a) n0 = 0 and
(b) n0 = 1 in Eq.(31) with α = 1 and β = 2. Solid line µ = 1, dotted line
µ = 0.75, dashed line µ = 0.50 and dash-dot line µ = 0.25.
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Figure 2: The variation of the variance as a function of T for (a) n0 = 0 and
(b) n0 = 1 in Eq.(33) with α = 1 and β = 2. Solid line µ = 1, dotted line
µ = 0.75, dashed line µ = 0.50 and dash-dot line µ = 0.25.

Figure 1 shows the variation of the mean 〈n(T )〉 as a function of T for (a)
n0 = 0 and (b) n0 = 1 in Eq.(31) with α = 1 and β = 2. Solid line µ = 1,
dotted line µ = 0.75, dashed line µ = 0.50 and dash-dot line µ = 0.25. It is
clear that the growth rate increases as the value of µ decreases.

Figure 2 shows the variation of the variance as a function of T for (a) n0 = 0
and (b) n0 = 1 in Eq.(33) with α = 1 and β = 2. Solid line µ = 1, dotted line
µ = 0.75, dashed line µ = 0.50 and dash-dot line µ = 0.25. It is clear that
the growth rate increases as the value of µ decreases. The profiles of the two
types of evolution are slightly different due to the n0−dependence.

Figure 3 shows the features of the Mittag-Leffler function (a) Eµ(−T µ) and
(b) Eµ(T µ) as a function of time T . Solid line µ = 1, dotted line µ = 0.75,
dashed line µ = 0.50 and dash-dot line µ = 0.25. One can see how the features
of decreasing and increasing vary as a function of value of the parameter µ.

When IC2 is adopted, one obtains the result with the generating function
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Figure 3: The feature of the Mittag-Leffler function (a) Eµ(−T µ) and (b)
Eµ(T µ) as a function of time T . Solid line µ = 1, dotted line µ = 0.75, dashed
line µ = 0.50 and dash-dot line µ = 0.25.

in Eq.(21) as

〈n(T )〉 = θEµ(αT µ) +
(

β

α

)(
Eµ(αT µ) − 1

)
, (34)

〈n(T )2〉 =
(
θ+

β

α

)
(Eµ(2αT µ)−Eµ(αT µ))+

(
θ+

β

α

)2(
Eµ(2αT µ)−2Eµ(αT µ)+1

)
+2θ

(
θ +

β

α

)
(Eµ(αT µ) − 1) + θ2 + θEµ(2αT µ) . (35)

and

σ2
n(T ) =

(
θ +

β

α

)
(Eµ(2αT µ) − Eµ(αT µ)) +

(
θ +

β

α

)2

(Eµ(2αT µ) − Eµ(αT µ)2)

+θEµ(2αT µ) . (36)

The averaged variance σ2
n(T ) in Eq.(36) does not take the same form as the

variance σ2
n(T ) in Eq.(33) due to the last term of Eq.(36). This term comes

from the averaging effect over the distribution of initial value n0 (cf. Ap-
pendix C for derivation). When the distribution of initial value is taken into
account (IC2), more additional terms appear in the expressions of higher order
moments (See section 4.3).

3.2 Fano factor

The nature of fluctuations is often discussed in conjunction with the Fano
factor [17-22]. Let the sequence of event numbers (counts) be denoted by
{Zn}. The Fano factor FF (T ) in the time interval T is defined as the event-
number variance divided by the event-number mean:

FF (T ) ≡ V ar(Zn(T ))

E[Zn(T )]
=

σ2
µ(T )

〈n(T )〉
. (37)
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The quantity FF (T ) has been used as an indicator of random, coherent and
squeezed states (i.e., super-Poisson FF (T ) > 1, Poisson FF (T ) = 1 and sub-
Poisson FF (T ) < 1 statistics) of light in the photon counting processes.

When p(n, 0) = δn,0 (i.e., the IC0 with n0 = 0), one obtains

FF (T ) =
Eµ(2αT µ) − Eµ(αT µ)

Eµ(αT µ) − 1
+

(
β

α

)
Eµ(2αT µ) − Eµ(αT µ)2

Eµ(αT µ) − 1
. (38)

Namely, the FGBP process (0 < µ < 1) in the initial condition p(n, 0) = δn,0 is
subject to the super-Poissonian statistics (FF (T ) > 1). One must recall that
when µ = 1, i.e., in the FGBPprocess, 〈n(T )〉 = σ2

n(T ) = FF (T ) = exp(αT ).
When using IC1 with the initial value n0 = 1 (p(n, 0) = δn,1), one obtains

FF (T ) =
(
1 +

β

α

)
Eµ(2αT µ) − Eµ(αT µ)

Eµ(αT µ) +
(
1 + β

α

)
(Eµ(αT µ) − 1)

+
(
1 +

β

α

)2 Eµ(2αT µ) − Eµ(αT µ)2

Eµ(αT µ) +
(
1 + β

α

)
(Eµ(αT µ) − 1)

. (39)

Namely, the FGBP process (0 < µ < 1) in the initial condition p(n, 0) = δn,n0

is subject to the FF (T ) described above. The first term is independent of the
initial value n0. On the other hand, the second term depends on n0. This is an
interesting observation in this system with memory in Eq.(1). One must recall
that when µ = 1, i.e., in the FGBP process for n0 = 0 gives FF (T ) = exp(αT )
and for n0 = 1 gives FF (T ) = (1 + β/α)eαT (eαT − 1)/(eαT + (β/α)(eαT − 1)).

Figure 4 shows the variation of the Fano factor as a function of T for (a)
n0 = 0 in Eq.(38) and (b) n0 = 1 in Eq.(39) with α = 1 and β = 2. Solid line
µ = 1, dotted line µ = 0.75, dashed line µ = 0.50 and dash-dot line µ = 0.25.
It is clear that the growth rate increases as the value of the parameter µ
decreases.

4 Discussion

4.1 Comparison with fractional Poisson process

As is shown in the previous papers, the mean and the variance of the fractional
Poisson process (FPP) under IC1 (pµ(n, 0) = δn,n0) becomes [9]

〈n(T )〉 = n0 +
βT µ

Γ(µ + 1)
(40)

and

σ2
n(T ) =

βT µ

Γ(µ + 1)
+ β2

(
2

Γ(2µ + 1)
− 1

Γ(µ + 1)2

)
T 2µ . (41)
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Figure 4: The variation of the Fano factor as a function of T for (a) n0 = 0
in Eq.(38) and (b) n0 = 1 in Eq.(39) with α = 1 and β = 2. Solid line µ = 1,
dotted line µ = 0.75, dashed line µ = 0.50 and dash-dot line µ = 0.25.

The variance is independent of n0. The nonlinear mode of evolution appears
in the right hand side of Eq.(41). This term vanishes when µ = 1. This is the
origin of the super-Poisson nature (FF (T ) > 1) in the FPP.

It is an interesting observation that the third order cumulant [19] becomes

C3(T ) ≡ 〈(n(T ) − 〈n(T )〉)3〉 =
βT µ

Γ(µ + 1)
+ 3β2

(
2

Γ(2µ + 1)
− 1

Γ(µ + 1)2

)
T 2µ

+2β3
(

3

Γ(1 + 3µ)
− 3

Γ(2µ + 1)Γ(1 + µ)
+

1

Γ(µ + 1)3

)
T 3µ . (42)

The cumulant C3(T ) is also independent of n0. The second and the third term
can be regarded as the nonlinear evolution modes in the FPP which vanish in
the limit µ → 1.

Figure 5 shows the variation of the mean in the cases of (a) n0 = 0 and (b)
n0 = 1 in Eq.(40) as a function of T with β = 1 for µ = 1.0, 0.75, 0.50 and
0.25. One can see the simple scaling law in the Fano factor for large values of
T in the FPP.

Figure 6 shows the variation of the variance in the cases of (a) n0 = 0 and
(b) n0 = 1 in Eq.(41) as a function of T with β = 1 for µ = 1.0, 0.75, 0.50 and
0.25. The existence of two nonlinear modes of evolution is evident from the
two different scaling laws in the FPP. Only one picture is shown since there is
no n0−dependence in the expression of the variance.

Figure 7 shows the variation of the Fano factor in the cases of (a) n0 = 0
and (b) n0 = 1 as a function of T with β = 1 for µ = 1.0, 0.75, 0.50 and 0.25.
It is clear from the figure that the origin of the super-Poisson nature in the
fractional Poisson process can be ascribed to the appearance of the nonlinear
mode of evolution.
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Figure 5: The variation of the mean in the cases of (a) n0 = 0 and (b) n0 = 1
in Eq.(40) as a function of T with β = 1 for µ = 1.0, 0.75, 0.50 and 0.25.

0.001 0.010 0.100 1.000 10.000
Time T(s)

0.01

0.10

1.00

10.00

V
a

ri
a

n
c
e

(T
)

Figure 6: The variation of the variance in the cases of n0 = 0 and n0 = 1 in
Eq.(41) as a function of T with β = 1 for µ = 1.0, 0.75, 0.50 and 0.25.
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Figure 7: The variation of the Fano factor in the cases of (a) n0 = 0 and (b)
n0 = 1 as a function of T with β = 1 for µ = 1.0, 0.75, 0.50 and 0.25.
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4.2 Comparison with fractional Yule-Furry process

Compare now these results with the situation in the case of fractional Yule-
Furry process (FYFP). The FYFP under the initial condition pµ(n, 0) = δn,1

(n0 = 1) has been studied by Orsingher and Polito [7]. The mean and the
variance under the initial condition are given by

〈n(T )〉 = Eµ(αT µ) (43)

and

σ2
n(T ) = 2Eµ(2αT µ) − Eµ(αT µ) − Eµ(αT µ)2 . (44)

Rewriting the expression of the variance in the form,

σ2
n(T ) = (Eµ(2αT µ) − Eµ(αT µ)) + (Eµ(2αT µ) − Eµ(αT µ)2) , (45)

one can see that the last term tends to vanish as µ → 1. One can expect that
(Eµ(2αT µ) − Eµ(αT µ)2) is the nonlinear mode of evolution.

4.3 Composite fractional time evolutions in FGBP

The result of the fractional generalized birth process (FGBP) in Section 3.1
shows that the appearance of the term with the nonlinear coefficient (β/α)2 is
due to the memory effect under the interaction of two transition terms with α
and β. Putting n0 = 1 in Eqs.(31) and (33), we have

〈n(T )〉 = 1 +
(
1 +

β

α

)
(Eµ(αT µ) − 1) (46)

and

σ2
n(T ) =

(
1+

β

α

)
(Eµ(2αT µ)−Eµ(αT µ))+

(
1+

β

α

)2

(Eµ(2αT µ)−Eµ(αT µ)2) .

(47)

In summarizing the results, the evolution function of the mean becomes

M1(1) =
(
Eµ(αT µ) − 1

)
. (48)

In the case of variance, there are two different nonlinear modes of evolution:

M2(1) = (Eµ(2αT µ) − Eµ(αT µ)) (49)

and

M2(2) = (Eµ(2αT µ) − Eµ(αT µ)2) . (50)
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One can see that M2(1) → e2αT − eαT and M2(2) → 0 as µ → 1. The result
suggests that there are three different nonlinear modes of evolution appear-
ing in the third order cumulant. Actually, the expression of the third order
cumulant [19] C3(T ) for IC1 with n0 = 1 is calculated in the form:

C3(T ) =
(
1 +

β

α

)
M3(1) +

(
1 +

β

α

)2

M3(2) +
(
1 +

β

α

)3

M3(3) , (51)

where

M3(1) =
(
2Eµ(3αT µ) − 3Eµ(2αT µ) + Eµ(αT µ)

)
, (52)

M3(2) = 3
(
Eµ(3αT µ) − Eµ(2αT µ)Eµ(αT µ)

)
− 3M2(2) (53)

and

M3(3) =
(
Eµ(3αT µ) + 2Eµ(αT µ)3 − 3Eµ(2αT µ)Eµ(αT µ)

)
. (54)

These are the three nonlinear modes of evolution in the FGBP. One can also
see that M3(1) → eαT (2eαT −1)(eαT −1), M3(2) → 0 and M3(3) → 0 as µ → 1.
The result for the fourth order cumulant can be inferred from these.

The expression of the third order cumulant for IC2 is obtained in the form:

C3(T ) =
(
θ +

β

α

)
M3(1) +

(
θ +

β

α

)2

(3L3(1) − 3M2(2)) +
(
θ +

β

α

)3

M3(3)

+3θ
(
θ +

β

α

)
L3(1) + θ(4Eµ(3αT µ) − 3Eµ(2αT µ)) , (55)

where L3(1) = Eµ(3αT µ) − Eµ(2αT µ)Eµ(αT µ) and L3(2) = Eµ(αT µ)2 −
Eµ(2αT µ). Note here that M3(2) = 3L3(1) − 3M2(2). Namely, there appear
the nonlinear modes of evolution M3(1), L3(1), M2(2) and M3(3). Among
them, L3(1), M2(2) and M3(3) tend to vanish as µ → 1. Also, the last term
in Eq.(55) θ(4Eµ(3αT µ) − 3Eµ(2αT µ)) is the new additional one.

4.4 Characterization of anomalous diffusion

Mathematical descriptions of anomalous diffusion have been discussed with
the use of deterministic and stochastic equations in complex systems [20-22].
The coefficient of anomalous diffusion γ is related to the scaling exponent ℓ
of the detrended fluctuation analysis (DFA) [21] as γ = ℓ/2. In the case of
the fractional Poisson process, the coefficient of anomalous diffusion µ can be
estimated from the scaling exponent of the Fano factor as shown in Fig.7. On
the other hand, one needs to identify the coefficient µ with the use of the
nonlinear modes of evolution described by the Mittag-Leffler function in the
limit of large T in Figs 1, 2 and 4 due to the multi-fractal nature.
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From the expressions of the mean, the variance and the third order cu-
mulants, one can understand the importance in considering the distribution of
initial values for the generalized birth process, especially when the initial value
is not controllable in real experiments. The mean value is characterized only
by M1(1). It is difficult to identify the process only with the information of
the mean evolution. On the other hand, one can distinguish the nature of the
FGPP form the FYFP and the FPP based on the information of fluctuations
(the higher order cumulants) with nonlinear evolution modes M2(1), M2(2),
M3(1), L3(1) and M3(3).

5 Summary and Remarks

A fractional generalized pure birth process was studied based on the mas-
ter master equation approach. The exact analytic solution for the process
was given in terms of the Gauss hypergeometric function. The equations of
moments and the cumulants were also obtained in the explicit form by the gen-
erating function. Further, the effect of distribution of the initial Poisson law
was also elucidated. Numerical examples are given for displaying the features
of the FGBP with the use of the Fano factor. The fractional generalization
can tell us how the effect of memory influences the observed features of fluc-
tuation. The appearance of composite fractional time evolutions of cumulants
are displayed in comparison with the FPP which can give us a new method
how to discriminate the FYFP from the fractional GBP.

The fractional generalized birth-death process is investigated from the com-
posite fractional time evolutions, which will be published elsewhere. It is a
challenging problem to perform fractional generalization, and to apply the
method of theoretical analysis to multiple-component complex stochastic sys-
tems [23].
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Appendix A

Integral Kernel of Lévy Transform and Its Laplace Transform

The density of the one-sided Lévy distribution ℓµ(z) is expressed in terms of
the Gamma function as

ℓµ(z) =
1

2πi

∫ c+i∞

c−i∞

Γ(1/µ − s/µ)

µΓ(1 − s)
z−s ds . (A1)

In terms of Fourier series, (A1) is written in the form:

ℓµ(z) =
1

π

∞∑
n=0

Γ(1 + nµ)

n!
(−1)n sin(πnµ)z−1+nµ . (A2)

The cumulative distribution should be integrated in the range [0, t] as

Lµ(t) =
∫ t

0
ℓµ(z)dz . (A3)

Therefore, the kernel function in Eq.(9) is expressed as

Kµ(τ, t) =
d

dτ

[
1 − Lµ(t/τ 1/µ)

]
=

1

µ

t

τ 1+1/µ
ℓµ

(
t

τ 1/τ

)
. (A4)

The Laplace transform of the kernel function (A4) is given by

K̂µ[τ, s] =
∫ ∞

0
e−stKµ(τ, t) dt = sµ−1 exp(−sµτ) . (A5)

Appendix B

Derivation of the solution of Eq.(12) with the Gauss
hypergeometric function

The Laplace transform of the generating function gµ[z, s] with the initial
condition gµ(z, 0) = zn0 is subject to

z(z − 1)
d

dz
gµ[z, s] +

β

α
(z − 1)gµ[z, s] =

sµ

α
gµ[z, s] − sµ−1

α
zn0 . (B1)
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Rewriting (B1) leads to the differential equation with an external force:

z(1 − z)
d

dz
gµ[z, s] +

(
sµ

α
+

β

α
− β

α
z
)
gµ[z, s] − sµ−1

α
zn0 = 0 . (B2)

Let us put gµ[z, s] = zz0Hµ[z, s] to eliminate the external force. Then, taking
derivative with respect to z, we have

z(1 − z)
d2

dz2
Hµ[z, s] +

[
n0 + 1 +

sµ

α
+

β

α
−

(
n0 +

β

α
+ 2

)
z
]

d

dz
Hµ[z, s]

−
(
n0 +

β

α

)
Hµ[z, s] = 0 . (B3)

This is the Gauss hypergeometric differential equation with the set of param-
eters

(a, b, c) =
(
n0 +

β

α
, 1, n0 + 1 +

sµ

α
+

β

α

)
. (B4)

The solution takes the form: gµ[z, s] = g0z
z0F (a, b, c; z), where g0 is determined

from the constraint gµ[z = 1, s] = 1/s as g0 = sµ−1/(sµ+αn0+β). This solution
is exactly identical with the one which is derived from Eq.(1) by the inverse
Lévy transform.

Appendix C

Derivation of the expressions of moments in Eqs.(34)-(36)

Taking derivative of gµ[z, s] with respect to z once, we have

g′
µ[z, s] =

sµ−1

α

(
β

α

) ∫ 1

0
x(1 − x)

sµ

α
+ β

α
−1(1 − xz)−

β
α
−1 exp

(
− 1 − z

1 − xz
θ
)
dx

+
sµ−1

α
θ

∫ 1

0
(1 − x)

sµ

α
+ β

α
−1(1 − xz)−

β
α
−1 exp

(
− 1 − z

1 − xz
θ
)
dx

−sµ−1

α
θ(1 − z)

∫ 1

0
x(1 − x)

sµ

α
+ β

α
−1(1 − xz)−

β
α
−2 exp

(
− 1 − z

1 − xz
θ
)
dx . (C1)

Substituting z = 1 in Eq.(C1), one obtains

g′[z = 1, s] =
(

sµ−1

α

)(
β

α

)
B

(
2,

sµ−1

α
− 1

)
+

(
sµ−1

α

)
θB

(
1,

sµ

α
− 1

)

=
(

β

α

)(
sµ−1

sµ − α
− 1

s

)
+ θ

sµ−1

sµ − α
. (C2)
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〈n(t)〉 = θEµ(αtµ) +
(

β

α

)
(Eµ(αtµ) − 1). (C3)

Similarly, taking derivative of gµ[z, s] with respect to z twice, we have

g′′[z, s] =
sµ−1

α

(
β

α

)2 ∫ 1

0
x2(1 − x)

sµ

α
+ β

α
−1(1 − xz)−

β
α
−2 exp

(
− 1 − z

1 − xz
θ
)
dx

+
sµ−1

α

(
β

α

) ∫ 1

0
x2(1 − x)

sµ

α
+ β

α
−1(1 − xz)−

β
α
−2 exp

(
− 1 − z

1 − xz
θ
)
dx

+
sµ−1

α
2
(

β

α

)
θ

∫ 1

0
x(1 − x)

sµ

α
+ β

α
−1(1 − xz)−

β
α
−2 exp

(
− 1 − z

1 − xz
θ
)
dx

−sµ−1

α
2
(

β

α

)
θ(1 − z)

∫ 1

0
x2(1 − x)

sµ

α
+ β

α
−1(1 − xz)−

β
α
−3 exp

(
− 1 − z

1 − xz
θ
)
dx

+
sµ−1

α
2θ

∫ 1

0
x(1 − x)

sµ

α
+ β

α
−1(1 − xz)−

β
α
−2 exp

(
− 1 − z

1 − xz
θ
)
dx

−sµ−1

α
2θ(1 − z)

∫ 1

0
x2(1 − x)

sµ

α
+ β

α
−1(1 − xz)−

β
α
−3 exp

(
− 1 − z

1 − xz
θ
)
dx

+
sµ−1

α
θ2

∫ 1

0
(1 − x)

sµ

α
+ β

α
−1(1 − xz)−

β
α
−2 exp

(
− 1 − z

1 − xz
θ
)
dx

−sµ−1

α
2θ2(1 − z)

∫ 1

0
x(1 − x)

sµ

α
+ β

α
−1(1 − xz)−

β
α
−3 exp

(
− 1 − z

1 − xz
θ
)
dx

+
sµ−1

α
θ2(1− z)2

∫ 1

0
x2(1− x)

sµ

α
+ β

α
−1(1− xz)−

β
α
−4 exp

(
− 1 − z

1 − xz
θ
)
dx . (C4)

Substituting z = 1 in Eq.(C4), one obtains

g′′[z = 1, s] =
(

sµ−1

α

)(
β

α

)2

B
(
3,

sµ

α
− 2

)
+

(
sµ−1

α

)(
β

α

)
B

(
3,

sµ

α
− 2

)
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+
(

sµ−1

α

)
2θ

(
β

α

)
B

(
2,

sµ

α
−2

)
+

(
sµ−1

α

)
2θB

(
2,

sµ

α
−2

)
+

(
sµ−1

α

)
θ2B

(
1,

sµ

α
−2

)
(C5)

〈n(t)2〉 =
((

θ +
β

α

)2

+2θ +
β

α

)
Eµ(2αtµ)−

(
θ +

β

α

)(
1+2

β

α

)
Eµ(αtµ)+

(
β

α

)2

.

(C4)
In deriving these results, the mathematical formulae for the Beta function
are utilized: B(3, sµ

α
− 2) = 2α3

sµ(sµ−α)(sµ−2α)
, B(2, sµ

α
− 2) = α2

(sµ−α)(sµ−2α)
and

B(1, sµ

α
− 2) = α

(sµ−2α)
. It can be shown that the expression of the variance

reduces to

σ2
n(T ) =

(
θ +

β

α

)
(Eµ(2αT µ) − Eµ(αT µ)) +

(
θ +

β

α

)2

(Eµ(2αT µ) − Eµ(αT µ)2)

+θEµ(2αT ν) . (C6)

The last term in Eq.(C6) is the additional term which can be ascribed to
the averaging effect over the Poisson distribution of the initial value with the
parameter θ.
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