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Abstract

Sparsity-based estimation techniques deal with the problem of retrieving a
data vector from an undercomplete set of linear observations, when the data

vector is known to have few nonzero elements with unknown positions. It
is also known as the atomic decomposition problem, and has been carefully

studied in the field of compressed sensing. Recent findings have led to
a method called basis pursuit, also known as Least Absolute Shrinkage

and Selection Operator (LASSO), as a numerically reliable sparsity-based

approach. Although the atomic decomposition problem is generally NP-
hard, it has been shown that basis pursuit may provide exact solutions

under certain assumptions. This has led to an extensive study of signals
with sparse representation in different domains, providing a new general

insight into signal processing. This thesis further investigates the role of
sparsity-based techniques, especially basis pursuit, for solving parameter

estimation problems.
The relation between atomic decomposition and parameter estimation

problems under a so-called separable model has also led to the application
of basis pursuit to these problems. Although simulation results suggest a

desirable trend in the behavior of parameter estimation by basis pursuit, a
satisfactory analysis is still missing. The analysis of basis pursuit has been

found difficult for several reasons, also related to its implementation. The
role of the regularization parameter and discretization are common issues.

Moreover, the analysis of estimates with a variable order, in this case, is not

reducible to multiple fixed-order analysis. In addition to implementation
and analysis, the Bayesian aspects of basis pursuit and combining prior

information have not been thoroughly discussed in the context of parameter
estimation.

In the research presented in this thesis, we provide methods to over-
come the above difficulties in implementing basis pursuit for parameter

estimation. In particular, the regularization parameter selection problem
and the so-called off-grid effect is addressed. We develop numerically stable

algorithms to avoid discretization and study homotopy-based solutions for
complex-valued problems. We use our continuous estimation algorithm, as

a framework to analyze the basis pursuit. Moreover, we introduce finite set
based mathematical tools to perform the analysis. Finally, we study the

Bayesian aspects of basis pursuit. In particular, we introduce and study
a recursive Bayesian filter for tracking the sparsity pattern in a variable
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parameter estimation setup.

Keywords: Sparsity based techniques, parameter estimation, com-
pressed sensing, off-grid effect, continuous basis pursuit, sparsity

based tracking
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Chapter 1

Introduction

The last two decades witnessed the advent of so-called sparsity-based tech-

niques, which concern a variety of different signal processing applications.
They have been originally introduced and studied for the specific purpose

of data acquisition, where they are often referred to as Compressed Sens-
ing (CS). The sparsity-based techniques were soon discovered to be useful in

many different applications with similar mathematical representations [1–7].
Here, we refer to this model as Atomic Decomposition (AD), which does not

imply any specific application. The atomic decomposition model leads to
NP-hard 1 computational problems. Accordingly, approximate techniques

are since long considered in the literature. These techniques are developed
and presented in different contexts and under different model representa-

tions. The AD formalism provides an occasion to present them in a unified
framework.

Sparsity-based techniques appeared first in the context of image pro-
cessing, where they were applied to the so-called Compressed Sensing (CS)

problem [9,10]. The invention of ℓ1 regularization and the convexifying tech-
nique had a great impact on the later developments in this field [11–13]. The

ℓ1-regularization, known as Basis Pursuit (BP) or Least Absolute Shrinkage
and Selection Operator (LASSO) rapidly received attention in the machine

learning and data acquisition societies, where pioneering studies showed in-
teresting characteristics of LASSO [10, 14–18]. It was, for example, shown

that BP can be solved in a polynomial time to provide ideal signal recovery

1A NP-hard problem is informally defined as the one, being as difficult as the most
complex problem in the family of Non-deterministic Polynomial (NP) problems. The
NP family consists of the problems, which can be solved in a so-called non-deterministic
(or oracle) computing machine in a polynomial time. However, the simulation of a non-
deterministic machine in a deterministic one (such as ordinary computers) generally needs
an exponentially growing amount of computation, which indicates a higher amount of
complexity for the NP problems. Nevertheless, it is not still clear, whether NP problems
can be polynomially solved in a deterministic machine or not. See [8] for more details.

1



Chapter 1. Introduction

for certain large matrices.

The sparsity-based techniques are also getting more popular in param-

eter estimation problems with an underlying atomic decomposition model,
where the model is often referred to as separable [19, 20]. This approach

was first introduced and studied in the pioneering studies by Fuchs [21],
Stoica [22] and others [23, 24]. Although it is generally believed that BP

has unique estimation properties, its theoretical analysis has found to be
difficult. Particularly, its super-resolution properties as well as technical

issues, such as the choice of regularization parameter and the effect of the
grid is still under question. The computational aspects of sparsity based

techniques should also be discussed. It is often observed that sparsity based
methods need a higher computational demand than other parameter esti-

mation techniques.

A great potential is observed in applying BP to problems with Bayesian

prior information [25,26]. In the case of large dimensions, where the Bayesian
interpretation is replaced by the deterministic concept of typicality, this is

currently being widely studied under the title of structured sparsity [27–31].
However, this potential has not been exploited in the parameter estimation

case. A few papers have addressed the weighted BP approach, but the
general principles of weighted BP design is not well-understood.

Accordingly, this thesis is devoted to investigating the particular ap-

plication of BP to separable parametric estimation problems with an AD
nature. The following issues are highlighted throughout this work:

Implementation Issues

The implementation of BP is well discussed, and usually involves discretiza-
tion [32–37]. The current grid-based implementation of BP limits is poten-

tial to provide accurate parameter estimates. For example, the discrete
nature of BP leads to the so-called off-grid problem, restricting its resolu-

tion [38–41]. Different studies suggest techniques to mitigate the off-grid
effect [42–46]. In this thesis, we discuss a framework, under which the di-

cretization step can be avoided and a continuous sparsity-based estimator is
obtained. In this regard, the outcome of this thesis is a numerical method

which guarantees global convergence. This method implements a contin-
uous extension of LASSO, referred to in the literature as Atomic Norm

DeNoising (ANDN) [44]. Throughout this study, we have also developed
other implementation techniques to treat the order selection and noiseless

estimation, for which the reader is also referred to [47].

2



1.1. Thesis Outline

Analysis of Parameter Estimation

We also provide a parametric analysis of LASSO, which is suitable for the

application of interest herein. The analysis is difficult for multiple reasons.
For example, the effect of the grid complicates the analysis of BP. Due to

the unpredictable relation of the regularization parameter to the order, it is
also impossible to analyze the estimates for a fixed order. To respond to the

above, we consider the continuous framework, developed for implementa-
tion, and present the analysis of the estimates, obtained by BP or (ANDN)

in a high SNR scenario. This also includes the miss detection properties.

Application to Dynamic Parameter Estimation

Finally, we address the dynamic parameter estimation problem [48–51]. In

the problems of interest herein, a dynamic model for the parameters of in-
terest leads to another NP-hard problem, called data association. This is

mainly due to the variable order of the parameter set. We present methods
to utilize the sparsity-based estimation framework to simplify calculations.

In particular, we investigate re-weighting schemes for BP to incorporate

the information from past to the current estimation problem in a recur-
sive Bayesian framework. In this context, we have examined a number of

different approaches, for which the reader is also referred to [52–54].

1.1 Thesis Outline

This thesis includes two main parts. In the first part, an introduction to

the topics of interest in this research is presented. The second part consists
of three papers, summarizing our main contributions. More details about

the first part is presented in the sequel.

1.1.1 Introductory Part

In Chapter 2, the problem of Atomic Decomposition (AD) is presented and

mathematically formulated. A number of popular examples of AD are intro-
duced. AD can be derived using two different mathematical representations,

namely parametric and spectral, the latter of which leads to sparsity based
techniques. This is clarified in Section 2.3.

Chapter 3 discusses the previous atomic decomposition techniques, mainly

developed in the field of parameter estimation, but widely used in a larger
range of applications. We refer to some of the more popular approaches.

A typical analysis of popular AD solutions is included in Chapter 3. Main

3



Chapter 1. Introduction

issues and related research, such as model order selection and statistical

analysis of these techniques are also considered in this chapter.
In Chapter 4, different sparsity-based techniques are discussed. The

focus is mainly on Basis Pursuit (BP). The main difficulties in applying BP
to parametric estimation are introduced. Moreover, the previous analysis of

these techniques is considered, which mainly revolves around large matrix-
based atomic decomposition. The lack of relation between these studies

and the parametric approaches, introduced in Chapter 3 is addressed in
this chapter.

The extension of these methods to dynamic models is also considered and
briefly discussed in Chapter 5, where also the possibility of sparse estimation

under time evolution is presented. Finally, Chapter 6 introduces the papers,
included in the second part of the thesis and clarifies the main contributions

in each of them.

4



Chapter 2

Atomic Decomposition Problem

2.1 Mathematical Modeling

Consider a set of m−dimensional complex-valued bases A ⊂ Cm, referred

to as the dictionary, and a sequence of complex-valued observation vectors
{x(t) ∈ Cm} for t = 1, 2, . . . , T . The expression

x(t) =

n∑

k=1

sk(t)ak + n(t) (2.1)

is called an atomic decomposition, where the vectors {ak ∈ A} are the
bases incorporated in the decomposition, and the coefficients {sk(t) ∈ C}
are called amplitudes. The term n(t) ∈ Cm denotes either the observation
noise or the modeling error at time t. It is assumed to be a centered,

temporally white and circularly symmetric Gaussian vector with covariance
matrix σ2I, where σ2 is the noise variance. The number of incorporated

bases n is known as the order of the decomposition.
Often in practice, the set A is indexed by real numbers. Take a d-

dimensional real-valued index set Θ ⊆ Rd and consider an injective func-

tion a(θ) : Θ → C
m. The function a(θ) is called a representation for the

dictionary A if

A = {a(θ) | θ ∈ Θ} (2.2)

We mainly consider a case, where the index set Θ is closed, connected and

bounded; and the function a(θ) is smooth. In this case, A is a d-dimensional
manifold embedded in Cm.

When the observation noise n(t) is zero, or equivalently σ = 0, the
atomic decomposition in (2.1) is called noiseless. Given a sequence of ob-

servations {x(t)}, a noiseless atomic decomposition with the smallest order
is referred to as an ideal atomic decomposition. Clearly, an ideal decompo-

sition of order n is the unique ideal decomposition if any set of 2n bases in
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Chapter 2. Atomic Decomposition Problem

A is linearly independent. The smallest number of linearly dependent basis

vectors in A is denoted by Spark(A). Thus, any ideal decomposition of an
order smaller than or equal to (Spark(A)− 1) /2 is unique. Throughout

this thesis, we always assume that this condition holds.

Given the sequence of observations, the atomic decomposition problem

is to provide an AD with a suitable order and noise level. For the reasons,
discussed in Chapter 3, this cannot be easily formulated in mathematical

terms. We postpone a more detailed discussion to Section 3.2.

2.2 Atomic Decomposition in Practice

The AD problem concerns a large and increasing range of applications.
Here, we consider few more popular examples, with different dictionary

characteristics. In the first example, the dictionary is a low-dimensional
manifold, while in the second one, the dictionary is finite. The third example

shows a dictionary with a weak (high-dimensional) representation. In the

latter chapters, we focus on cases similar to the first example, though, to
some extent, the arguments are applicable to the other two examples.

2.2.1 Sensor-Based Estimation Problems

In this setup, the state θ of a finite number of unknown objects are to be

estimated by sensing a scalar field at the position of a finite number of
sensors. The field can be, for example, electromagnetic or sound1. The

state may also include, the object’s position, velocity, etc; depending on
the application of interest. Although this setup includes many different

problems, depending on the choice of parameters, it can always be written in
the atomic decomposition form, as long as the field superposition law holds

[24,55–59]. Denoting the local field observations at discrete time t = 1, 2, . . .
by x(t) = [x1(t) x2(t) . . . xm(t)]

T , where xk(t) represents the observation

from the kth sensor, the relation in (2.1) holds, where sk characterizes the
local field at the objects position and ak = a(θk) represents the relation

between sk and the observation field, and is obtained by the field equation.

We take a more specific example, where θ includes only the direction

of an object with respect to the origin of a fixed coordinate system. For
simplicity, only a planar case is considered. We further assume that the

sensors are located in the vicinity of the origin, constituting a sensor array.

In contrast, the sources are relatively far. The scalar field is electromagnetic.

1The electromagnetic field is vector-valued. However, the sensing apparatus of interest
herein usually observe a scalar projection of the vector-field, which can be interpreted as
an individual scalar field with similar dynamics to the electromagnetic wave.
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2.2. Atomic Decomposition in Practice

It is originated from narrow-band sources, such that the field fluctuation

at any point is represented by a narrow-band signal centered around the
frequency f0, corresponding to the wavelength d0 = c/(2πf0), where c is

the speed of light. Taking {xk(t)} and {sl(t)} as the baseband complex
envelope of their corresponding fields, we obtain that

a(θ) =











e
j
2πρ1
d0

cos(θ−θ1)

e
j
2πρ2
d0

cos(θ−θ2)

...

e
j 2πρm

d0
cos(θ−θm)











− π ≤ θ < π, (2.3)

where (ρk, θk) is the polar coordinate of the kth sensor [59]. In this case, the

dictionary is represented by a(θ). Hence, it is a one-dimensional manifold,
called the array manifold.

In a case, where θk = 0 and ρk = (k − 1)d0/2, the array is called half-

wavelength Uniform Linear Array (ULA). Then, defining the electrical angle
φ = π cos(θ), the basis representation in (2.3) is simplified to

a(φ) =












1

ejφ

ej2φ

...

ej(m−1)φ












− π ≤ φ < π, (2.4)

The dictionary in (2.4) is also known as the Fourier manifold, which is re-
lated to the problem of estimating spectral lines (finite number of frequency

components) of a signal by observing m uniform samples of it [5, 60, 61].

2.2.2 Compressive Image Acquisition

In this setup, the goal is to compress and store a high-resolution image. It

is well known that images have sparse representations in certain domains.
This means that denoting by y the vectorized 2D image intensity values,

the following relation holds

y = Ψs, (2.5)

where the vector s is assumed to contain few non-zero elements [7, 62–64].

The number of non-zero elements in s is denoted by ‖s‖0. Suppose that s

contains exactly n non-zero elements, denoted by s1, s2, . . . , sn, correspond-

ing to the columns ψ1,ψ2, . . . ,ψn of Ψ, respectively. Note that the indexes
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Chapter 2. Atomic Decomposition Problem

of s and ψ, do not represent their place in the vector s and the matrix Ψ,

respectively. Then, (2.5) can be compactly represented by

y =
∑

k

skψk. (2.6)

It is generally difficult to obtain a generic transform Ψ based on the physical
process of imaging. Thus, different heuristic transforms are considered.

The FFT, wavelet and curvelet transforms are popular examples, for the
details of which the reader is referred to [65, 66]. It is also possible to

append two domains Ψ1,Ψ2 to obtain an overcomplete domain [Ψ1 Ψ2] [12].

To reduce the complexity of image processing, it is further suggested to
apply a linear compression Φ to the data vector y to obtain x = Φy,

with a substantially smaller dimension than y. This is generally known as
compressed sensing [7, 10, 67]. In this case, the model in (2.6) yields to

x =
∑

k

skak, (2.7)

where ak = Φψk is the corresponding column in A = ΦΨ to sk. In practice,

the observation noise should also be included in (2.7), leading to the AD
model with the dictionary A, comprising of the columns of A.

2.2.3 Learning Gaussian Models

In this case, the relation between a number of input random variables
X1, X2, . . . , XR and a number of output ones Y1, . . . , YL is to be discovered.

For simplicity, the variables are assumed to be centered Gaussian. Then,
the relation is simply expressed by the cross-correlation matrix M = (Mr,l),

where Mr,l = E(XrYl). Using the SVD, we obtain that

M =
n∑

k=1

skukv
H
k , (2.8)

where uk and vk are the left and right singular vectors, respectively, corre-

sponding to the positive singular value sk of M. The parameter n denotes

the rank of M. Note that although the bases uk and vk should satisfy a
set of orthogonality conditions, this can be neglected as long as only the

rank of M is considered. Then, the model in (2.8) is an AD with positive
amplitudes sk, where the dictionary is the set of all rank-1 matrices, given

by
A = {uvH | u ∈ C

R, v ∈ C
L, ‖u‖2 = ‖v‖2 = 1} (2.9)

Note that m = RL and d = m+ n− 2. This problem is useful, for example

in social network learning. It can be applied after the compressed sensing
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2.3. Spectral Representation

process (obtaining few linear combinations), where it is sometimes referred

to as matrix completion [68, 69] or the Netflix prize problem [70, 71].

2.3 Spectral Representation

The AD model in (2.1) can be generally represented in a different way.

According to (2.1), define the function

s̃(a, t) =

{

sk(t) a = ak

0 Otherwise
, (2.10)

called the spectrum. Then, the expression in (2.1) can be equivalently

written as2

x(t) = n(t) +
∑

a∈A

s̃(a, t)a (2.11)

Note that while in (2.1) the amplitudes {s1, . . . , sn}, together with the set

of bases {a1, . . . , an} provide the representation, the expression in (2.11)
only relies on s̃(a, t). The former can still be obtained from the latter by

taking the set of bases corresponding to the nonzero values, also known as
the support, of the spectrum.

The methods utilizing the formalism in (2.11) are known as spectral

techniques. Mathematically speaking, the expression in (2.11) is only inter-
esting when the spectrum is sparse, i.e. it has a finite support. However,

many spectral techniques deal with non-sparse, and often continuous spec-
tra. Nevertheless, those techniques should include a sparsifying step, some-

times referred to as focusing. If the underlying dictionary A is equipped by
a topology, the focusing step may simply consist of identifying the set of

local maxima in the spectrum A as the support.
Another issue with spectral techniques is that the spectrum needs to be

stored. One solution is to consider a large finite subset Ã = {ã1, ã2, . . . , ãN}
of A, known as a grid, and only store the on-grid spectrum, s̃k(t) = s̃(ak, t).

In a case, where the dictionary is represented by an index set Θ, this can
be performed by discretizing Θ, to obtain Θ̃ = {θ̃1, θ̃2, . . . , θ̃N}.

2For the rigorous definition of summation over infinite sets, see [72]. In short, sum-
mation of positive values is defined as the supremum (maximum) of all the summations
over finite subsets of the original set. The summation of real numbers is performed by
dividing the summation over the positive and the negative part. The summation of com-
plex values is performed by decomposing the values to the real and imaginary part and
so on.
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Chapter 3

Solutions to the Atomic

Decomposition Problem

3.1 General Approaches

There are several approaches to solve the ADP problem. Some of them use
special structure of certain AD problems. Hence, they may not be generally

applied. Examples of the latter can be found, for example, in [73–75]. Here,
we focus on techniques that are applicable to any AD problem. However,

the quality of their result clearly depends on the structure of the dictionary
they are applied to.

3.1.1 Parametric Approaches

Methods that directly provide estimates for the parameters in (2.1) are

called parametric. Usually, the dictionary is represented by a label pa-
rameter θ. Then, the parametric approaches provide estimates for {θk} and

{sk(t)}. In this case, the atomic decomposition problem can be studied from
a statistical perspective. If the order n < Spark(A) is known, the ADP is

equivalent to estimating a vector of parameters θ(n) = [θ1 θ2 . . . θn]
T as

well as s(n)(t) = [s1(t) s2 . . . , sn(t)]
T . Due to the statistical assumptions

on the noise, we obtain the following likelihood function for the parameters
θ(n), {s(n)(t)}:

L
(
θ(n), {s(n)(t)}; {x(t)}

)
= p({x(t)} | θ(n), {s(n)(t)}) =

1

(πσ2)mT e
−

T
∑

t=1

∥

∥

∥

∥

∥

x(t)−
n
∑

k=1
a(θk)sk(t)

∥

∥

∥

∥

∥

2

2
σ2 (3.1)
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Chapter 3. Solutions to the Atomic Decomposition Problem

Thus, the Maximum Likelihood estimates are given by the global minimum

of the following optimization problem

(θ̂(n), {ŝ(n)(t)}) = arg min
θ(n),{s(n)(t)}

T∑

t=1

∥
∥
∥
∥
∥
x(t)−

n∑

k=1

a(θk)sk(t)

∥
∥
∥
∥
∥

2

2

(3.2)

The ML estimates in (3.2) are optimal in a statistical sense, but it is dif-

ficult to obtain them by solving (3.2). The optimization is often highly
nonlinear and contains a large number of local minima. Nevertheless, many

optimization techniques are considered to solve (3.2) locally [76–78].
Note that the optimization in (3.2) can be solved for {s(t)} to obtain

ŝ(n)(t) = A†(θ̂(n))x(t), (3.3)

where A†(θ(n)) denotes the Moore-Penrose pseudoinverse of the matrix
A(θ(n)) = [a(θ1) a(θ1) . . .a(θn)], and we used the fact that A has a sin-

gleton null-space {0} due to n < Spark(A). Substituting (3.3) into (3.2)

and simplifying the result leads to

θ̂(n) = argmin
θ(n)

Tr
(

P⊥
A(θ(n))R̂

)

(3.4)

where R̂ =
T∑

t=1

x(t)xH(t)/T is the data sample covariance matrix and P⊥
A(θ) =

I−A(θ)A†(θ) is the projection matrix into the orthogonal complement of

the range space of A(θ).
Standard optimization techniques such as cyclic coordinate descent, gra-

dient descent or Newton’s method have been applied to both (3.4) and (3.2).
In every case, achieving the global optimum has been observed to depend

highly on the choice of the initial point [77, 79]. However, a specific ap-

plication of cyclic coordinate descent to (3.2), called RELAX, has gained
attention for its simplicity and good performance [80]. As a cyclic coordi-

nate descent realization, RELAX iteratively performs cycles, consisting of
n iterations, at the kth of which, only parameters θk, {sk(t)} are updated by

minimizing (3.2). This yields to the following updating rule

θk ← θ̂k = argmax
θ

aH(θ)R̂ka(θ)

‖a(θ)‖22

sk(t)← aH (θ̂k)x(t)

‖a(θ̂k)‖
2
2

(3.5)

where defining zk(t) = x(t)−∑
l 6=k

a(θl)sl(t), we denote

R̂k =

T∑

t=1

zk(t)z
H
k (t)

T
(3.6)
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3.1. General Approaches

The RELAX method may also be interpreted as a Space-Altering General-

ized Expectation (SAGE) maximization [81], where at the kth iteration of
each cycle the parameter space (θ, {s(t)}) is augmented by

{y(t)} = a(θk)sk(t) + n(t) (3.7)

In the same manner as SAGE, one can utilize an Expectation Maximization
(EM) algorithm to solve (3.2) through augmenting the parameter set by the

set {yk(t) = a(θk)sk(t) + nk(t)}, where nk(t) is a noise term with variance
σ2
k, such that σ2 =

∑

k

σ2
k [82, 83].

More generally when the order n is unknown, one of the solutions from
the estimates (θ̂(n), {ŝ(n)(t)}) for n = 1, 2, . . . , Spark(A)− 1 is selected, by

for example an Information Criterion (IC) or a statistical test [84,85]. These
techniques are discussed in detail, in Section 3.2.

3.1.2 Spectral-Based Approaches

The spectral formulation of atomic decomposition in (2.11) can be exploited
to obtain the desired AD. Note that denoting the spectrum s̃(a, t) by s̃t, we

can write the relation in (2.11), in an abstract form, as

x(t) = A s̃t + n(t) (3.8)

where A denotes the linear operator transforming the spectrum into the

observed vector. Notice that the transformation by A is well-defined if

the spectrum s̃t is sparse, and generally does not have an interesting ana-
lytical extension on the entire space of spectra (including non-sparse ones).

Hence, A does not generally possess interesting properties over the space of
spectra. For example, it does not have a pseudo-inverse. Nevertheless, the

possibility of inverting the relation in (3.8) by multiplying by a dual linear
operator W has been considered. In the field of sensor array processing,

where the spectrum s̃t has a spatial interpretation, this is generally known
as beamforming [19, 86–88]. The operator W is known as a beamformer.

Mathematically speaking, a beamformer is represented by a collection of
vectors {w(a) ∈ Cm}. It acts on an observation vector x to produce a

spectrum s̃(a) = wH(a)x. Now, it is intended to devise a beamformer W ,
such that its application to (3.8) leads to

W x(t) = W A s̃t + W n(t) ≈ s̃t (3.9)

Apart from the noise effect, the precision of the approximation above is
generally limited. For example, the result of beamforming is not sparse,

and often leads to a blurred spectrum. This is sometimes referred to as the
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Chapter 3. Solutions to the Atomic Decomposition Problem

spectral leakage effect [89]. The lack of rigorous statistical foundation, has

also motivated for different heuristic design frameworks, discussed below.
From one perspective, the beamforming design is closely related to the

filter design problem. In this case, the element w(a) is interpreted as a linear
filter, removing the effect of every basis a′ in A from x, except a′ = a. The

matched filtering criterion suggests to consider a filter wmf(a), maximizing
the output Signal to Noise Ratio (SNR)

wmf(a) = argmin σ2‖w‖22
subject to wHa = 1

= a

‖a‖22
(3.10)

where the last equality follows from the Cauchy-Schwarz inequality. This is

also known as the conventional beamforming technique. Since the matched
filter does not consider the filtering aspects, it is expected that it provides

poor results in terms of resolution. In fact, the result of the matched filter is
inconsistent, when local-maximum-based focusing is considered. However,

it turns out that the uncertainty principle prevents the improvement of the

matched filter by a generic design. This is well-known in the linear filter de-
sign literature as the windowing effect, and motivated to incorporate the ob-

served data in the beamformer design. This is generally known as adaptive
beamforming [87,90,91]. Perhaps, the most popular adaptive beamformer is

the Minimum Variance Distortionless Response (MVDR), also known as the
Capon beamformer [92, 93]. The idea in MVDR is to learn the minimum-

variance projection wH
MVDR

(a)x(t), maintaining a constant correlation with
a. Since variance is not observable, the sample variance is instead used.

wMVDR(a) = argmin
T∑

t=1

|wHx(t)|2

subject to wHa = 1

= R̂−1a

aHR̂−1a
, (3.11)

where R̂ =
T∑

t=1

x(t)xH(t)/T . The Capon beamformer is consistent in a high

SNR or when T is large, but requires a full-rank sample covariance R̂. Thus,

it is not applicable to a case with few data snapshots.

3.1.3 Subspace-Based Approaches

The subspace techniques are motivated by the observation that the basis
estimation process in the AD problem is equivalent to finding the linear

subspace R, spanned by these bases. Once this subspace is found, the
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condition n <Sparke(A) − 1 guarantees that no other base a ∈ A resides

in R, since otherwise, A will include n + 1 <Spark(A) linearly dependent
bases.

The relation between the AD and the subspace estimation problems is
clearly seen in (3.4), where the projection matrix intoR is considered. Now,

we may rewrite (3.4) as

max
R

Tr
(

PRR̂
)

subject to R ∈ {(a1, a2, . . . , an) | a1, a2, . . . , an ∈ A} , (3.12)

where PR is the projection matrix into R, and (a1, a2, . . . , an) denotes the

linear span of the bases a1, . . . , an. The subspace may be simply estimated
by relaxing (3.12) to obtain

max
R

Tr
(

PRR̂
)

subject to R ∈ {(a1, a2, . . . , an) | a1, a2, . . . , an ∈ C
m} (3.13)

The solution to (3.13) is found by obtaining the Singular Value Decompo-
sition of R̂ as

R̂ = UHΛU (3.14)

where U = [u1 u2 . . .um] is a unitary matrix and Λ is the diagonal elements
of the singular values λ1, λ2, . . . , λm, written in a descending order. Then,

the solution to (3.13) is given by R = (u1,u2 . . . ,un), the subspace spanned
by the singular vectors, corresponding to the n largest singular values. This

solution is known as the signal subspace, while its orthogonal complement
is often referred to as the noise subspace. Finally, the closest bases to

the subspace R is selected. For this, the MUltiple SIgnal Classification

technique suggests to calculate the spectrum as

P (a) =
1

‖a‖22 −
n∑

k=1

|aHuk|2
=

1
m∑

k=n+1

|aHuk|2
(3.15)

and take the largest local maxima as the estimates [78]. The MUSIC tech-
nique is consistent and offers high-resolution at high SNR or large T . How-

ever, it is sensitive to the noise model and the precision of the sample

covariance matrix.

3.2 Model Order Selection Problem

The techniques discussed in section 3.1 are based on the assumption that the

order n is known. In a case, where the order is unknown, those techniques
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Chapter 3. Solutions to the Atomic Decomposition Problem

can still be used over a range of orders, but eventually one of their solutions

should be selected. This is called Model Order Selection (MOS). The model
order selection problem can be put in a statistical framework. However, this

needs careful considerations. To elaborate on this, suppose that the ML
principle is to be applied. It is simple to see that the result is obtained by

extending the minimization in (3.2) over the space of orders n ∈ N. For a
fixed n, denote the minimum in (3.2) by Vn. Then, the ML principle selects

the minimum value of Vn. On the other hand, it is simple to see that Vn
is monotonically decreasing. Hence, the ML solution is the largest possible

order.

Different approaches are proposed in the literature to tackle the tendency
to over estimate the model order. For example, the Minimum Description

Length proposes a different framework, inspired by the research on data
compression [94]. Another simple approach is to use statistical inference

techniques and obtain tests to decide on the model order. The Generalized
likelihood ratio test (GLRT) is a popular example [85, 95]. The popular

statistical techniques focus on the following Bayesian framework [96, 97]:

n̂ = min
n
Vn + kn (3.16)

where the constant k varies among different techniques, according to their

underlying problem formulation. For example, the Akaike Information Cri-
terion (AIC) suggests to apply k = σ2(3T + 1) [97, 98]. Other information

criteria such as the Bayesian Information Criterion (BIC) [99] are also intro-
duced. Although the AIC criterion requires a large number of observations,

it is commonly used in practice. However, the parameter k needs to be
tuned.

3.3 Analysis

In this section, we review a statistical analysis for the ADP problem from
a parameter estimation point of view. In the problems of interest herein,

the dictionary is labeled by a parameter θ and the error in terms of θ
is considered. In general, the analysis is complicated. This is not only

because of the nonlinear nature of estimation, but also due to the fact that
it is difficult to quantify the estimation precision in a variable order scenario.

Hence, the analysis is usually restricted to nearly ideal scenarios, where it
is remarkably simplified by Taylor expansion. There are three main near

ideal scenarios: asymptotically low noise σ2, large sample size T and large
dictionary dimensions. The latter concerns a case, where a well-related

family of ADP problems of different size are considered. For example, the
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sensor array example may be analyzed for a large number sensors [100].

Another example of this case is considered in the next Chapter, where the
conventional analysis of basis pursuit is reviewed. Here, we focus on the

two first cases. For the low-noise case, we consider a single-snapshot AD
problem, where only the ML approach works. For the case with a large

sample size, we consider the analysis of MUSIC.

3.3.1 Analysis of Maximum Likelihood in a High SNR

Case

We consider a case, where a single-snapshot data x = x(1) is analyzed by
the ML rule. We assume that the dictionary is indexed by θ and the true

AD is given by θ1, θ2, . . . , θn and s1, s2, . . . , sn, where n < (Spark(A)−1)/2,
guaranteeing the uniqueness of the ideal decomposition. We denote the ML

estimates by θ̂1, θ̂2, . . . , θ̂n and ŝ1, ŝ2, . . . , ŝn, where we assume that the order
is known.

The first step of the analysis is to show that the low-noise assumption
indeed leads to a near-ideal case. That is to show that for every k =

1, 2, . . . , n,

|∆θk| →p 0, |∆sk| →p 0 (3.17)

as σ → 0, where ∆θk = θ̂k − θk, ∆sk = ŝk− sk and→p denotes convergence

in probability [101]. Note that since θk is deterministic, the convergence
can be expressed in the distribution sense as well. Obtaining consistency is

not straightforward and it might not be generally true, even if uniqueness
is guaranteed in a noiselss case. However, the assumptions in Section 2.1

guarantee convergence in the case of interest herein. 1. Now, we assume
that consistency holds. The second step is to consider a sufficiently small

noise variance such that in the Taylor expansion of (3.2), the terms of an
order higher than 2 can be neglected. Using (2.1) and after straightforward

1Although the exact proof is omitted in favor of simplicity, a sketch is given in the
sequel. Denote the relation between the vector θ and the linear subspace spanned by
its corresponding bases by L. The range of this correspondence is a closed subspace of
the Grassman manifold, known as the Union of Subspaces (UoS). It is not difficult to
show that the ML rule induces a neighborhood relation on the UoS, under which L is
continuous. Note that every continuous bijection on a compact set is also bi-continuous,
i.e. it is inversely continuous. Thus, L is inversely continuous. The estimates converge
to their true values as the estimated subspace converges to the true subspace under
the ML-induced topology. The compactness of the label set is crucial in this proof. For
example, the case in (2.4) does not satisfy the compactness of the index set, thus violating
the proof assumptions. As a result, a jump from π to −π may occur in the estimation
problem. The solution is either to restrict the analysis to the true parameters with a
local isomorphism, or consider a modified metric, respecting the topology on the label
set Θ, induced by the process of indexing.
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manipulations, this leads to the following approximate ML optimization

(∆θML,∆sML) = arg min
∆θ,∆s

∥
∥
∥
∥
∥
n−

n∑

k=1

a(θk)∆sk −
n∑

k=1

d(θk)sk∆θk

∥
∥
∥
∥
∥

2

2

, (3.18)

where d(θ) = da(θ)/dθ. Define the linear operator Ω as

Ω(∆θ,∆s) =
n∑

k=1

a(θk)∆sk +
n∑

k=1

d(θk)sk∆θk (3.19)

Then, the optimization in (3.18) is an ordinary LS problem and can be

solved to obtain (∆θML,∆sML) = PΩn, where PΩ is the orthogonal projec-
tion operator into the range space of Ω. Explicit terms for the error can be

found in [102].

3.3.2 Analysis of MUSIC in a Large Sample Size Case

Now, we consider the estimates θ̂1, θ̂2, . . . , θ̂n, obtained by MUSIC. The true
parameters are θ1, . . . , θn and the true amplitudes are sampled from white,

centered and uncorrelated sources. The order n <Spark(A) − 1 is known.
Again, we need to establish the two analysis steps. For the first step, we

note that by the strong law of large numbers

lim
T→∞

R̂ = R = E
(
x(t)xH(t)

)
= A(θ)ΣAH(θ) + σ2I = Rs + σ2I (3.20)

where Σ is the amplitude correlation matrix. Note that the SVD of R

is obtained by only adding the term σ2 to the singular values of Rs, and

letting the subspaces remain unchanged. Now, it is clear that if the MUSIC
method is applied to R, the subspace obtained by the n largest singular

values of R, coincides with that of Rs, corresponding to the range space
of A(θ). Thus, the MUSIC method, in this case, calculates the parameters

exactly. It is also simple to see that convergence for R leads to convergence
of the subspace, guaranteeing a vanishing error vector 2 denoted by ∆θ.

For the second step, we consider a small error in R̂, denoted by ∆R =

R̂−R. Since the error converges to zero, we can use Taylor expansion similar
to Section 3.3.1. Note that the MUSIC estimates are the local maxima of the

spectrum p(θ, R̂) =
n∑

k=1

|aH(θ)ûk|2 where û1, û2, . . . , ûm are the eigenvectors

of R̂, sorted in the descending order of their corresponding singular values3.

2This is again obtained by noting that the covariance R is a continuous map from
the compact space of a bounded number of bases. Thus, it is bicontinuous and the two
spaces are isomorphic.

3The matrix R̂ is symmetric positive semidefinite. Thus its singular vectors coincide
with its eigenvectors. Furthermore, the singular values are the squared eigenvalues.
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3.3. Analysis

Denoting the estimates by θ̂k for k = 1, 2 . . . , n and defining ∆θk = θ̂k − θk,
we obtain that

∆θk = argmax
∆θ

p(θk +∆θk,R+∆R) (3.21)

which using Taylor expansion and after straightforward calculations leads
to

∆θr =
∂p
∂θ
(θr,R+∆R)
∂2p
∂θ2

(θr,R)
(3.22)

The denominator is simple to calculate to obtain ∂2p
∂θ2

(θr,R) = −2‖P⊥
A(θ)d(θr)‖22.

We can further simplify the result in (3.22) by introducing u1,u2, . . . ,um

as the eigenvectors of R and ∆uk = ûk − uk. Then, linearization leads to

∂p

∂θ
(θr,R+∆R) = 2ℜ

[
n∑

k=1

dH(θr)(uk∆uH
k +∆uku

H
k )a(θr)

]

(3.23)

Note that the variation ∆uk is a result of the variation ∆R. Up to first

order, this can be analytically calculated to obtain.

∆uk =
∑

l∈{1,2,...,m}\{k}

ulu
H
l

λk − λl
∆Ruk k = 1, 2, . . . , n (3.24)

where λl for l = 1, 2 . . . , m is the singular value corresponding to ul and it

is assumed that λk is simple (has algebraic multiplicity 1). Plugging (3.24)
into (3.23) and combining the result to (3.22), the relation between θr and

∆R is obtained.
It is often desirable to identify the statistics of the error ∆θr. Note

that by the central limit theorem, it is simple to see that ∆R is asymp-
totically centered Gaussian and the error terms ∆θr are linear functions of

∆R. Hence, they are also centered and jointly Gaussian and can be totally
identified by the correlation elements E(∆θk∆θl). This can be performed

using (3.24), (3.23) and (3.22), and noting that the correlation elements of
∆R are given by a 2× 2 tensor T defined as

T (eH1 , eH2 , e3, e4) = E
(
eH1 ∆Re3e

H
2 ∆Re4

)

= 1
T
E
(
eH1 x(t)e

H
2 x(t)x

H(t)e3x
H(t)e4

)
(3.25)

This shows that the error covariance decreases with rate 1/T . More detailed

results can be found in [102].
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Chapter 4

Sparsity-Based Atomic

Decomposition

This chapter presents a relatively recent approach to solving the atomic
decomposition problem, known as sparsity-based estimation. Similar to

the spectral techniques, the idea is to use the spectral representation in
(2.11). In Section 3.1.2, we discussed linear spectral estimation and argued

that the linear operators, the beamformers, may not directly provide a
sparse spectrum. In contrast to beamforming, the sparsity-based techniques

exploit nonlinear estimators to obtain sparse spectra. Let us take a sequence
of spectra {s̃t ∈ Ψ(A)}, where Ψ(A) denotes the set of all sparse spectra

on (A). Denote Supp({s̃t}) = {a | ∃t, s̃t(a) 6= 0} and define ‖{s̃t}‖0 as
the cardinality of Supp({s̃}t). Sparsity means that ‖{s̃t}‖0 < ∞. Now,

it is clear through the relation between (2.11) and (2.1) that ‖{s̃t}‖0 also
denotes the order n of the atomic decomposition corresponding to {s̃t}. We

can also rewrite the overall procedure of atomic decomposition by ML in
(3.2) and the MOS procedure in (3.16) as

min
{s̃t∈Ψ(A)}

T∑

t=1

∥
∥
∥
∥
∥
x(t)−

∑

a

s̃(a, t)a

∥
∥
∥
∥
∥

2

2

+ k‖{s̃t}‖0, (4.1)

where k > 0 is a suitable constant. In this chapter, we focus on approximate

techniques to solve (4.1).

4.1 Basis Pursuit

One method to solve (4.1) is to approximate its cost by a convex func-

tion. For example, it is proposed to substitute the term ‖{s̃t}‖0 by ‖{s̃t}‖1,
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Chapter 4. Sparsity-Based Atomic Decomposition

defined by

‖{s̃t}‖1 =
∑

a∈A

√
√
√
√

T∑

t=1

|s(a, t)|2. (4.2)

The result is called Basis Pursuit [12] (BP) or Least Absolute Shrinkage

and Selection Operator (LASSO) [13], given by

min
{s̃t∈Ψ(A)}

T∑

t=1

∥
∥
∥
∥
∥
x(t)−

∑

a

s̃(a, t)a

∥
∥
∥
∥
∥

2

2

+ λ‖{s̃t}‖1 (4.3)

It turns out that the optimization in (4.3) is convex on the convex set
Ψ(A) × . . . × Ψ(A). Thus, any local minimum point is the global optimal

point. Note that the parameter k is replaced by λ > 0, which essentially
plays a similar role as k, i.e. it controls the order of the solution. However,

the relation between λ and the order is complicated. Nevertheless, similar
ideas to that of the MOS problem can be applied to the problem of selecting

λ [21].

4.1.1 Implementing Basis Pursuit

In essence, the optimization in (4.3) is nonparametric, which complicates its
numerical evaluation. There are different methods to tackle this problem,

many of which are not compatible with the sparsity assumption on the spec-
trum. A promising approach is to take a discretization Ã = {ã1, ã2, . . . , ãN}
and restrict the spectrum to Ã. We denote s̃(t) = [s̃1(t) s̃2(t) . . . s̃N(t)]

T ,

where s̃k(t) = s̃(ãk, t). Then, the BP optimization is written as

min
{s̃(t)∈CN }

T∑

t=1

∥
∥
∥
∥
∥
x(t)−

N∑

k=1

s̃k(t)ãk

∥
∥
∥
∥
∥

2

2

+ λ
N∑

k=1

√
√
√
√

T∑

t=1

|s̃k(t)|2 (4.4)

It is easy to show that the optimization (4.4) has a solution with few nonzero
elements, corresponding to a linearly independent set of bases. Once this

solution is obtained, the atomic decomposition bases are selected as the
ones, corresponding to nonzero elements in s̃(t). Since the solution for the

amplitudes sk(t) is biased, it is instead suggested to recalculate sk(t) by
using the LS solution in (3.3). This is called debiasing.

Convex Optimization

The optimization in (4.4) is convex and can be solved by general convex

optimization techniques. The difficulty with (4.4) is in the non-smooth
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4.1. Basis Pursuit

behavior of the cost function. In fact, the desired solution of BP is at a

singularity point, promoting sparsity. On the other hand, the numerical
solution of such optimization problems has been under extensive study for

decades, resulting in strong convex optimization solvers such as SeDuMi
[103] and SDPT3 [104], used in the CVX toolbox [37, 105]. Also, note

that the BP problem can be represented in different dual forms, including
constraints. Thus, cone and linear programming techniques are commonly

used for solving BP. In this work, we focus on the form introduced in (4.4).

Specific Approaches

The special structure of LASSO allows for special type of optimization tech-
niques. We explain some of these techniques in the sequel.

The so-called homotopy-based techniques rely on the observation that

the solution path of BP (4.4), resulting from modifying the value of λ (and
keeping other parameters unchanged) is continuous. If the problem is real

valued and based on single snapshot (T = 1), it is further shown that

the path is piecewise linear [11,32,106]. In the solution path, the transition
points are related to adding and removing new non-zero positions with small

amplitudes. The position of each transition point can be predicted from the
previous transition point, leading to a recursive optimization technique by

following the homotopy path. In [33], it is shown that the complexity of
this method equals that of solving an ordinary LS of size n. However, in

the case of complex-valued parameters, multi-snapshot data or a continuous
dictionary, the path is not piecewise linear anymore, but it is still piecewise

smooth. We have considered a generalization of the homotopy method to
these cases in [36]. The main advantage of the homotopy techniques is that

they provide flexibility in selecting the regularization parameter, since they
essentially provide the solutions for every possible value of λ, in a tractable

way.

The Iterative Soft Thresholding Algorithm (ISTA) provides an iterative

optimization technique, where the optimal point is updated at each itera-
tion, based on locally approximating the cost function [35,107,108]. Rewrite

(4.4) as

min
S̃

ΦLS(S̃) + λ‖S̃‖1 (4.5)

where S̃ = [s̃(1) . . . s̃(NT ] is a matrix representation of {s̃(t)} and ΦLS(S̃)

denotes the first LS part in (4.4). In the kth iteration, the ISTA solves the
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Chapter 4. Sparsity-Based Atomic Decomposition

following approximate optimization

S̃(k) = argmin
S̃

ΦLS(S̃
(k−1)) +∇TΦLS(S̃

(k−1))
(

S̃− S̃(k−1)
)

+ 1
αk

∥
∥
∥S̃− S̃(k−1)

∥
∥
∥

2

F
+ λ‖S̃‖1 (4.6)

where S̃(k) denotes the estimate at the kth iteration and αk is the stepsize,
insuring stability of the algorithm. The optimization in (4.6) has simple

closed-form solution, which can be found in [108].
As a first-order programming technique, the ISTA typically has a slow

convergence rate. It is proposed in [34] to apply the so-called Nesterov’s
gradient acceleration technique ( [109]) to improve ISTA, resulting in the

Fast Iterative Soft Thresholding Algorithm (FISTA). The Nesterov’s ac-
celeration technique suggests to incorporate, not only the previous S̃(k−1),

but also S̃(k−2). The associated Nesterov’s theorem states that this method
achieves the convergence bound for the generic, first-order, convex opti-

mization techniques [110, 111]. The Approximate Message Passing (AMP)
algorithm is a similar algorithm to FISTA, derived under more statistical

assumptions on the dictionary A. The AMP algorithm is developed for
the cases, where the dictionary set consists of the columns of a dictionary

matrix, whose entries are generated independently by a Gaussian distribu-

tion [111–114]. However, some universality considerations suggest that it is
also useful for other types of "sample" dictionaries. Note that this setup is

less relevant to our consideration than that of the other techniques. Due
to their simple calculations at each iteration, both FISTA and AMP are

suitable in problems with a large dimension.
The SParse Iterative Covariance based Estimator (SPICE) is a different

approach to solving BP [22,115]. It exploits the interesting observation that
√
√
√
√

T∑

t=1

|s̃k(t)|2 =
1

2
min
pk>0

∑

t=1T
|s̃k(t)|2

pk
+ pk (4.7)

Hence, the optimization in (4.4) can be written as

min
{s̃(t)∈CN },{pk}

T∑

t=1

∥
∥
∥
∥
∥
x(t)−

N∑

k=1

s̃k(t)ãk

∥
∥
∥
∥
∥

2

2

+
λ

2

N∑

k=1

T∑

t=1

|s̃k(t)|2

pk
+ pk (4.8)

The SPICE solves (4.8) for {pk} and {s̃(t) ∈ CN}, alternatingly, where
both steps have closed form solutions, found in [22]. This method has a

good speed of convergence, but needs a higher amount of calculations at
each iteration. Thus, it is not suitable for problems with a large dictionary

dimension m.
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4.2. Analysis of Basis Pursuit for Large Dimensions

4.1.2 Regularization Parameter Selection

The regularization parameter λ in (4.3) and (4.4) plays an important role in

the process of estimation by BP. Changing λ, typically leads to a remarkable
effect in the AD estimate. However, λ is often identified by its role in the

order selection. In general, it is not clear how to select λ. Notice that even if
the order n is known, there is no simple way to decide on a value of λ, leading

to the desirable order n. In this case, the homotopy techniques provide an
opportunity to sweep a large range of λ values to select the desired estimate.

In a more general case, the situation is more or less similar to MOS, where
it is not clear how the selection should be performed.

Similar attempts to MOS can be considered for selecting λ. For example,

a statistical perspective can be employed. This, for example, has led to the
cross-validation approaches [12,116]. More elaborate studies considered the

regularization parameter selection as a hyper parameter estimation, where
the BP estimator is treated as a Bayesian estimator with a Laplacian prior

[25, 26, 117]. In [25], the Laplacian prior is also expanded in a hierarchical
way and the estimation of λ is performed by considering non-informative

priors for the hierarchical model. We have considered the Bayesian aspects
of regularization parameter selection in [118].

More recent suggestions on the choice of λ is provided by the analysis

of BP in the asymptotic cases. For example, the resent error analysis for
the large random matrix based AD problem, provided an asymptotically

optimal value of λ, for which the ℓ2 error is minimized [119]. We have
also considered the role of regularization parameter in a parametric AD

scenario, where the SNR is high. Our semi-parametric results also lead to
an approximate optimal value for the regularization parameter in Paper 2.

4.2 Analysis of Basis Pursuit for Large Dimen-

sions

The application of BP originated from the field of image processing, where

AD problems, related to large matrices were involved. Later, the technique
was found useful in other application fields, concerning large matrices. For

this reason, the analysis of BP traditionally revolves around dictionaries
obtained by large matrices and the compressive characteristics of the AD

problem. Here, we refer to the main outcomes of this type of analysis.
For simplicity, a single-snapshot case is considered and the dictionary is

obtained as the columns of an m×N dictionary A.

As mentioned in Section 3.3, the analysis is pursued in two stages. In the

first one, convergence to the ideal estimates is considered in an asymptotic
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Chapter 4. Sparsity-Based Atomic Decomposition

case. In the second one, a near optimal analysis is provided. The analysis,

presented here is carried out in a high SNR regime, where the first stage is
referred to as the ideal atomic decomposition. In Section 2.1, we show that

the uniqueness of the ideal decomposition is guaranteed by the condition
n < (Spark(A)− 1)/2. It is not clear that BP is generally able to recover

an ideal decomposition under the above assumption. It turns out that
BP does not guarantee the recovery of the ideal decomposition under the

Spark condition only. Hence, stronger conditions are necessary. However,
selecting the regularization parameter is not an issue, since the high SNR

case is naturally related to a vanishingly small choice of λ. In the limit,
when λ shrinks to zero, the BP optimization in (4.4) approaches

min
s̃

∑

k

|s̃k|

subject to x = As̃, (4.9)

known as the noiseless BP optimization. The ideal decomposition question
is that under which assumptions the optimization in (4.9), where x is gen-

erated by x = As̃0 and ‖s̃‖0 < (Spark(A)−1)/2, leads to the true s̃0 as the
solution.

4.2.1 Null Space Property

The null-space property identifies a necessary and sufficient condition for
the ideal decomposition question, which can be expressed as follows [67,120,

121]:

Theorem 1. For any observation x = As̃0, the solution to (4.9) is given
by s̃ = s̃0 if, for any non-zero vector ν = (ν1, . . . , νN) in the null space of

A, the following condition holds

∑

k∈Supp(s0)

|νk| <
∑

k/∈Supp(s0)

|νk| (4.10)

where Supp(s0) denotes the set of indexes, corresponding to the n nonzero

elements of s0. In particular, the optimization (4.9) can recover any ideal
decomposition of order n, if and only if for any subset I ⊂ {1, 2, . . . , N}
of n indexes and any nonzero vector ν in the null space of A the following
relation holds.

∑

k∈I

|νk| <
∑

k/∈I

|νk| (4.11)

This is known as the n−null space property.
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4.2. Analysis of Basis Pursuit for Large Dimensions

4.2.2 Restricted Isometry Property

The null-space property is not practically useful, since it is difficult to verify,

or intuitively understand. Other stronger conditions are therefor developed,
implying the null space property. These conditions are easier to verify, at

least for a certain type of matrices. One condition, frequently considered in
practice, is based on the mutual coherence, given by the maximum cosine

of the angle between two distinct bases [61, 122]. However, a condition on
the mutual coherence provides too conservative results. For this reason,

the restricted isometry property is introduced [15, 123]. A dictionary A is
said to satisfy the n-restricted isometry property with restricted isometry

constant δ if, for any choice of n distinct bases a1, . . . , an ∈ A, we have that

(1− δ) ≤ σmin([a1 a2 . . . ..an]) ≤ σmax([a1 a2 . . . ..an]) ≤ (1 + δ), (4.12)

where σmin and σmax denote the smallest and the largest singular value of

their arguments, respectively. Note that if δ = 0, then the basis a1, . . . , an

is orthonormal (isometric). For an infinite dictionary, the n−RIP constant

δn is larger than 1, since in that case, one can always find a subset of n
bases with an arbitrarily high mutual coherence.

If the n−RIP constant is small enough, the dictionary also satisfies the
n−null space property, thus guaranteeing perfect recovery. For example,

in [15] the bound δ <
√
2 − 1 is obtained. This is improved in [124]. It

is also generally NP-hard to verify the RIP condition. However, a large

body of results are provided, identifying cases, where randomly generated
large matrices satisfy a suitable RIP condition. The underlying argument

in these works is as follows1: Assume that the desired order n, the size
of dictionary N and the dictionary dimension m grow to infinity; and the

dictionary is generated randomly with independent entries, such that for
a random matrix Φ = [a1 a2 . . . an] and a unit vector x ∈ Cn, we may

conclude that

Pr(|‖Φx‖22 − ‖x‖22| > δ)) < e−cm (4.13)

for a proper value of c and δ. Then, it is possible to show by the union
bound that2

Pr(max
‖x‖=1

|‖Φx‖22 − ‖x‖22| > δ)) < e−c′m (4.14)

where c′ is another positive constant. Since there exist
(
N
n

)
≤ (eN/n)n

combinations of bases, the union bound gives that the probability of the

1See [125] for more details.
2For this, one needs to take an exponentially growing number of maximally separated

points on a unit sphere and use the triangle inequality for an arbitrary point x on the
sphere.
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Chapter 4. Sparsity-Based Atomic Decomposition

n−RIP constant being larger than δ is bounded by

e−c′m ×
(
eN

n

)n

= en log( eN
n

)−c′m (4.15)

Thus the probability goes to zero if the number of measurements (the size of
the observation vector) m grows faster than n log(N/n), which is a popular

result. The threshold rate n log(N/n) has also been shown to be maximal
in this setup.

4.2.3 Error Analysis

Recently, the second step of error analysis has been taken by two indepen-

dent research groups [126, 127] and [18, 119, 128]. These papers establish
results for randomly generated Gaussian dictionaries, though it is empir-

ically observed that the result is universal for a large family of random
dictionaries [129]. It is shown that the error term ‖s̃− s̃0‖2, where s̃ is ob-

tained by (4.4) has a deterministic limit when dimensions grow. The study

in [126] is based on AMP and demonstrates more characteristics of the error.
The work in [18] utilizes the so-called comparison inequalities and considers

a more general framework than the AMP-based approach and LASSO.

4.3 The Off-Grid Problem

Remember that for the infinite dictionaries, the parametric form of BP in
(4.4) is obtained by considering a discretization. When the data vector is

obtained by basis vectors, excluded from the discretized basis frame Ã, the
so-called off-grid problem occurs. If the discretization is fine enough, such

that an excluded base can be approximated by nearby elements in Ã, and
the true order is small enough, the off-grid effect is not severe, but still

degrades the high SNR properties of estimates. Usually, the off-grid base is

approximated by multiple nearby on-grid elements, which we refer to as its
cloud. In a high-SNR case, the cloud for each base is easily distinguished

in the exact solution of BP. Once a cloud is calculated, its elements should
be combined to obtain a focused solution.

To tackle the off-grid effect, some techniques have recently been consid-

ered for a case, where the bases are represented by a real number θ. To
explain the main idea, we focus on the single-snapshot case. Using the

Taylor expansion, we obtain

a(θ) ≈ a(θ̃l) + d(θ̃l)∆θ (4.16)
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4.3. The Off-Grid Problem

where θ̃l is the nearest element to θ in Ã and ∆θ = θ − θl. Then, (2.1) can

be written as

x ≈
∑

k

(

a(θ̃lk) + d(θ̃lk)∆θk

)

sk + n =
∑

k

a(θ̃lk)sk + d(θ̃lk)βk + n (4.17)

where θlk is the nearest grid point to θk and ∆θk = θlk − θk. Moreover,
βk = sk∆θk.

Accordingly, the Sparse Total Least Square (S-TLS) approach suggests

to solve the following optimization 3 [45]:

min
{∆θ̃l,s̃l}

1

2
‖xk −

N∑

l=1

(

a(θ̃l) + d(θ̃l)∆θ̃l

)

s̃l‖22+ λ

N∑

l=1

|s̃l|+
µ

2

∑

l

|∆θ̃l|2 (4.18)

where µ is practically a tuning parameter. The S-TLS method can be

solved exactly with the method, explained in [45]. It can also be solved by
alternatingly minimizing over {∆θ̃k} and {s̃k}.

Another approach is to use the last expression in (4.17), where the re-

lation between βk and sk is generally non-convex. An exception is when
sk > 0 is real and ∆θk is bounded in a convex set. In a general case, the

nonconvex relation can be convexified to obtain the following optimization

min
{β̃l,s̃l}

1

2
‖xk −

N∑

l=1

a(θ̃l)s̃k + d(θ̃l)β̃l‖22 + λ
N∑

l=1

√

|s̃l|2 + |β̃k|2 (4.19)

which is referred to in [38] as the Joint LASSO (J-LASSO) optimization.
The J-LASSO optimization is convex and can be solved by off-the-shelf

optimization techniques, or simplified methods [38, 46].

In all of the above techniques, the final result still suffers from a de-
focused cloud of estimates. In [46], it is suggested to use the following

merging technique. Denoting by {ŝl, θ̂l}, the cloud related a true set of
parameters (s, θ), it is proposed to combine the cloud by

ŝ =
∑

l

ŝl θ̂ =

∑

l

|ŝl|θ̂l
∑

l

|ŝl|
(4.20)

to obtained weighted average estimates, which has an interesting physical

interpretation as center of gravity.

3The original definition in [45] is slightly different. It is based on an unstructured
basis perturbation e instead of d(θ)∆θ.
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4.4 Other Approaches

The problem of atomic decomposition has a long history, and has been dis-

cussed in a variety of different applications. The sparsity-based approaches
are relatively recent. However, different approaches are also discussed in this

context. One of the first approaches is Matching Pursuit (MP), which is a
forward stagewise algorithm, i.e. it selects a new base at each stage [130].

Having an ADP estimate and the remainder term at a given stage, the next
stage adds a new pair (a, s) to the AD by taking the largest projection of

the remainder vector onto the basis vectors a. The previous parameter es-
timates do not change. Orthogonal Matching Pursuit (OMP) modifies MP

by replacing the remainder vector by the projection vector into the orthog-

onal complement of the linear span of the previous estimates [131]. Inspired
by basis pursuit, the Dantzig Selector (DS) was introduced in [132], which

promotes stronger sparsity than BP. Inspired by different numerical imple-
mentations of the BP, other modified approaches have also been introduced.

For example, the homotopy implementation and its modifications is usually
referred to as Least Angle Regression (LARS), first termed by Efron [33].

The approximate message passing technique has also introduced the belief
propagation ideas to the field of sparse regression [133]. The SPICE ap-

proach has also been extended by Stoica to obtain the LIKelihood based
Estimation of Sparse parameters (LIKES) [115], the Iterative Adaptive Ap-

proach (IAA) [134, 135] and Sparse Learning via Iterative Minimization
(SLIM) [136]. The idea of weighted ℓ1 regularization is further frequently

discussed [137]. Finally, regularization by the so-called p < 1 semi-norm is
also studied. A good example of the latter is the FOCal Underdetermined

System Solver (FOCUSS) [138]. It should be remembered, though, that for

p < 1 the norm is not convex.
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Chapter 5

Dynamic Atomic Decomposition

In this chapter, we consider a generalization of the atomic decomposition
model, introduced in (2.1). Here, we assume that the bases ak may vary by

time, such that the data model is given by

x(t) =

n(t)
∑

k=1

ak(t)sk(t) + n(t) (5.1)

This is the case in applications such as sensor array processing, seismology
and medical tomography. It is further assumed that the bases are tempo-

rally correlated, such that the observations at different time instants can be
combined to improve the estimation performance at a certain time instant.

In this manner, different types of questions can be considered. For example,
the filtering problem concerns estimating the AD at a time instant t, based

on the vectors x(t′), observed up to time t ≥ t′. Although the focus here
is on filtering, it should be noted that other types of problems also exist,

depending on the amount of observation data presented for a specific esti-

mate. The problem of estimating the parameter trajectories is also widely
considered.

To obtain a desired AD, the process of filtering is vague, unless clear

statistical assumptions on the temporal relation of the parameters are made.
On the other hand, the main characteristics of the dynamic AD model in

(5.1) is its dynamic parameter size (order). Hence, the temporal models
of AD are complicated. The sparsity-based techniques have recently been

applied to simplify these types of problems. However, it seems problematic
to rely on the spectral model to express the temporal relation. Toward

this goal, simple steps are taken in [48, 51, 139–141]. In the sequel, we first
present a general framework for statistical filtering and then relate it to the

dynamic AD problem.
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Chapter 5. Dynamic Atomic Decomposition

5.1 Recursive Bayesian Estimator

In this section, we present the general theory of filtering by a Bayesian re-

cursion. Later, we relate this to the AD problem. Although, a variety of
different statistical models may be considered, a fairly general and popular

one is the state space based model. Consider a system, described by the
state S, belonging to a state space S. Suppose a sequence of observations

{x(t)} is obtained by the system at the corresponding states {St = S(t)}.
The state space model assumes that the statistics of the state at a time in-

stant t+1 is completely identified by the previous state at the time instant
t. Mathematically speaking, this is described by a Markov Chain (MC) pro-

cess given by the following joint distribution over an arbitrary time window

t, t+ 1, . . . , t+ T :

pSt,St+1,...,St+T−1
(st, st+1, . . . , st+T−1) = pSt(st)×

pSt+1|St(st+1 | st)pSt+2|St+1(st+2 | st+1) . . . pSt+T−1|St+T−2
(st+T−1 | st+T−2)

(5.2)

where pSt+1|St
(s1 | s0) is called the transitional probability density. If the

transitional probability density is constant, i.e. pSt+1|St(s1 | s0) = Q(s1 | s0),
for a fixed function Q, then the MC is called time homogeneous. We only

consider time homogeneous systems. According to the state space model,
the observation vector x(t) is inclusively determined by the state St through

a conditional distribution px(t)|S(t)(x(t) | s(t)), in short denoted by p(x(t) |
s(t)). At a certain time instant t, the question of interest is to estimate a
group of parameters based on the observations x(1), . . . ,x(t). For example,

the entire state trajectory can be estimated by the Maximum a’ Posteriori1

(MAP) estimator as

(ŝ1, ŝ2, . . . , ŝt) = arg max
s1,s2,...,st

p(s1, s2, . . . , st | x(1),x(2), . . . ,x(T )) =
arg max

(s1,s2,...,st)

p(x(1) | s1)p(x(2) | s2) . . . p(x(t) | st)× p(s1)×
Q(s2 | s1)Q(s3 | s2) . . .Q(st | st−1) (5.3)

It is seen that the final optimization in (5.3) can be efficiently solved in a

recursive way. Define

Vt(st) = max
s1,s2,...,st−1

p(x(1) | s1)p(x(2) | s2) . . . p(x(t− 1) | st−1)× pS1(s1)×
Q(s2 | s1)Q(s3 | s2) . . .Q(st | st−1) (5.4)

1See [142].

32



5.2. Filtering Theory for Atomic Decomposition

which may be obtained by

Vt(st) = max
st−1

Vt−1(st−1)Q(st | st−1)p(x(t− 1) | st−1) (5.5)

where the maximum point is denoted by ŝt−1(st). For the final time t, we
can write

ŝt = argmax
st

p(x(t) | st)Vt(st) (5.6)

The estimates at the previous times t′ < t can also be found backward
recursively as ŝt′ = ŝt′(ŝt′+1). This is know as the Viterbi algorithm [143],

which is closely related to the Bellman recursive decision algorithm [144].

Another case of interest is when only St is under question at time t.
Then, the (MAP) estimator is given by

ŝt = max
st

pSt|x(1),x(2),...,x(t)(st | x(1),x(2), . . . ,x(t)) (5.7)

Interestingly, the MAP estimator is again solved in a recursive way. For
simplicity, define X(t) = [x(1),x(2), . . . ,x(t)]. Then, by the Bayes rule, we

have that

pSt|X(t)(st | X(t)) =
pSt|X(t−1)(st | X(t−1))p(x(t) | st)

p(x(t) | X(t−1))
(5.8)

where

pSt|X(t−1)(st | X(t−1)) =

∫

st−1∈S

Q(st | st−1)dPSt−1|X(t−1)(st−1 | X(t−1)) (5.9)

The steps in (5.8) and (5.9) are known as update and prediction, respec-
tively. The overall algorithm by recursively applying them is referred to as

Recursive Bayesian Filtering (RBF) [145, 146]. Similarity is observed be-
tween the Viterbi algorithm and RBF. In a sense, both approaches follow

the evolution of a spectrum over the state space. The difference is that the
Viterbi algorithm uses recursive optimization, while RBF employs integra-

tion.

5.2 Filtering Theory for Atomic Decomposi-

tion

Now, we discuss the application of filtering to the AD model. The first

issue is to define the state space. Clearly, the state space is given by the
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set of all desirable decompositions for a single snapshot T = 1. Mathemati-

cally speaking, such a decomposition, consisting of the bases a1, . . . , an and
amplitudes s1, s2, . . . , sn, can be represented by a state

S = {(a1, s1), (a1, s2), . . . , (an, sn)}. (5.10)

We are particularly interested in decompositions of an order n < (Spark(A)−
1)/2. Thus, S is identified as the collection of all finite sets of A× C with
a cardinality smaller than n < (Spark(A) − 1)/2. The second issue is to

define probability densities on S, which essentially gives a random finite
set characteristic to the state. To the best of our knowledge, this approach

has not been directly applied to the problem of our interest. However, the
random finite set theory is well-studied in mathematics and also applied in

the signal processing literature, for example in target tracking [147–149].

Simpler models for ADP is obtained, when the order n is assumed
to be fixed and the dictionary is labeled by θ. In this case, similar to

the parametric approaches, the state St is given by two vectors θ(t) =
(θ1(t), θ2(t), . . . , θn(t)) and s(t) = (s1(t), s2(t), . . . , sn(t)). Then, S = (Rd)n×
Cn, where we remind that θ ∈ Rd. Simple models for the parameter evolu-

tion (Q(St | St−1)) are considered. For example, the linear case

θ(t+ 1) = Hθθ(t) +wθ(t)

s(t + 1) = Hss(t) +ws(t) (5.11)

where Hθ and Hs are known (and often identity). Moreover, wθ and ws are
two independent, uncorrelated, white, centered Gaussian processes, known

as the process noise and the observation noise, respectively. The observation

model p(x(t) | St) is given by (5.1), where ak(t) = a(θk(t)). Given the evo-
lution and the observation model, it is possible to obtain a RBF. However,

it is generally difficult to solve the integrals and store the posteriors in a
computing machine. Thus, different approximate solutions are considered.

5.2.1 Extended Kalman Filter

If the parameter variation is small at each time and the SNR is high, it is

possible to approximate the filter. We assume that the distributions p(st |
X(t−1)) and p(st | Xt) are Gaussian with mean ŝt|t−1, ŝt|t and covariance

matrices Pt|t−1,Pt|t, respectively. Notice that by Taylor expansion,

x(t) ≈
n∑

k=1

a(θ̂k(t | t− 1))sk + d(θ̂k(t | t− 1))(θk − θ̂k(t | t− 1))ŝk(t | t− 1)

(5.12)
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where we used the notation ŝt|t−1 = ({θ̂k(t | t − 1)}, {ŝk(t | t − 1)}) and2

d(θ) = da(θ)/dθ. Using the approximate relation in (5.12) and the Gaus-
sian assumption, (5.9) and (5.8) are solved to obtain the so called Kalman

Filter (KF) [150], recursively updating the parameters ŝt|t−1, ŝt|t and vari-
ance Pt|t−1,Pt|t. The approach of obtaining a KF by linear approximations

is called Extended Kalman Filter (EKF) [151]. The EKF can also be im-
proved by other techniques such as Unscented Kalman (UKF) Filter [152],

but due to their locality, they generally have poor results in highly nonlinear
cases.

5.3 Sparsity-Based Filtering

The problem of tracking a dynamic set of parameters is also addressed in
a sparsity-based framework. The focus in these works has been on the

finite dictionary case, where a sparse vector s̃(t) represents the spectrum
s̃(θ, t) [48, 51, 140, 141]. It is difficult to connect the model in (5.11) to this

setup and often no clear statistical assumptions on the dynamics of s̃(t) are
made. Thus, lacking a rigorous Bayesian framework motivated to replace

the RBF approach by heuristic methods. We present two popular examples

below. We assume that a sparse vector s̃(t) slowly evolves in time. This
means that both, the sparsity pattern (support) and the amplitudes of this

vector may slowly vary by time. For the methods presented herein, no more
rigorous statistical assumptions are made.

The study in [48] considers a more general setup than the AD model,

where the observation at time instant t is obtained by x(t) = Ats̃(t)+n(t),
where the dictionary At may also vary by time. Assuming that the sparse

vector s̃(t) evolves slowly and motivated by the Recursive Least Squares
method, [48] suggests to obtain the estimate at time t by solving the fol-

lowing optimization

argmin
s̃

t∑

τ=0

γt,τ‖x(τ)−Aτ s̃‖22 + λ‖s̃‖1 (5.13)

where γt,τ > 0 is a predefined sequence of weights that usually decreases
with increasing time difference t − τ . The idea with (5.13) is that at each

time instant, the vector s̃(t) is assumed to be constant for the time interval
τ = 0, 1, . . . , t, and the modeling error induced by such an assumption is

reflected by the weight γt,τ . The optimization in (5.13) can also be written

2If θ is multidimensional, the derivative should be replaced by gradient, and its cor-
responding manipulations should be replaced by proper tensorial ones. This is neglected
in favor of simplicity.
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as

argmin
s̃

s̃(t)HR̃ts̃(t) + 2ℜ(z(t)H s̃(t)) + λ‖s̃‖1 (5.14)

where

R̃t =
t∑

τ=0

γt,τA
H
τ Aτ

z(t) =
t∑

τ=0

γt,τA
H
τ x(τ) (5.15)

The interesting fact about this method is that if one selects γt,τ = βt−τ for
a given value of β, then R̃t and z(t) can be recursively calculated.

Another approach is introduced in [51] for models, where the sparsity
pattern varies slowly by time. Clearly, this is not generally compatible with

the model introduced in (5.11). Still, it is useful in particular applications
such as MRI imaging. The idea is that obtaining a new observation, a

Kalman filter iteration is applied over the previously estimated support.
Then, a statistical test is performed to detect support change. If a support

change is detected, a sparsity-based estimation technique, such as LASSO

or Dantzig selector [132] is applied over the off-support elements. The new
support is added to the previous one and the Kalman step is corrected by

taking the new support. Finally the indexes corresponding to small elements
is removed from the support.

As seen, the above techniques are not based on clear statistical assump-
tions and do not follow the general RBF methodology. Thus, it is difficult

to discuss their performance. We have considered this problem and pro-
vided approximate techniques to apply RBF to the sparsity-based tracking

problem [52, 54]. In this thesis, Paper 3 is related to this topic.
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Chapter 6

Thesis Contributions

In this thesis, we study the application of the basis pursuit approach in
parameter estimation problems, which can be represented by atomic de-

composition. First we study the regularization parameter selection and its
Bayesian aspects. Later, we consider deterministic selection of the parame-

ters, which motivates investigating the homotopy methods in complex val-
ued problems. Next, we provide methods to overcome the off-grid problem

and formulate a continuous extension of BP, closely related to atomic norm
de-noising. We develop a numerical approach to solve the extended BP. The

method is guaranteed to converge to the global optimum with a moderate

computational effort. Using the framework of continuous extension, we
present the analysis of LASSO in a high-SNR scenario. We also utilize the

continuous BP framework to develop a random finite set based Bayesian
interpretation for sparsity-based estimation. Considering dynamic set of

parameters, we used this approach to design improved recursive Bayesian
filters, avoiding the NP-hard problem of association.

6.1 Summary of Appended Papers

Paper 1 proposes a numerical implementation of the continuously extended

BP, in the recently developed framework of atomic norm de-noising. The
paper includes comparisons with other techniques, proposed to alleviate the

off-grid effect. The design of the proposed algorithm is presented, such that
global convergence is evident. Numerical results on the speed of convergence

are also included.

Paper 2 presents the analysis of BP, by linking BP, in a case with a

highly dense grid, to the continuous framework, developed in Paper 1. New
mathematical tools are developed to perform analysis in a high-SNR sce-

nario. According to the variable order of estimates, these tools essentially
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formulate the perturbation theory of finite sets and connect it to the existing

terminology in the field of parameter estimation. In this paper, interesting
properties of BP, such as its resolution limit and the biasing effect of the ab-

solute shrinkage operator, as well as the choice of regularization parameter
is discussed.

Motivated by the findings in Papers 1 and 2, we later considered the con-
tinuous extension of BP as a finite set estimator and attempted to interpret

it in a Bayesian sense. This finally led to a framework presented in Paper
3, where the developed Bayesian method was incorporated in a RFS-based

recursive Bayesian filter to enhance estimation of dynamic parameter sets.
We present results suggesting an improvement in estimation performance.

6.2 Suggestions for Future Work

Today, the sparsity-based estimation area is highly active. The need for ap-
plying the sparsity-based estimation methods to emerging applications with

a potentially unaccustomed data model, naturally calls for further research
on adapting the existing techniques to these applications. Furthermore, our

analysis shows deficiency in parameter estimation by the existing sparse es-
timation techniques. Accordingly, we propose the following possibilities for

a future study.

From our current understanding of sparsity-based parameter estima-
tion techniques, it is clear that the convex methods, such as LASSO lead

to statistically inefficient estimates, due to a structured model mismatch.
There are opportunities, such as re-weighting to improve the result in the

literature. Their relation with parameter estimation and our continuous
interpretation of LASSO can be clarified in a future study. Note that this

study focused on the parametric aspects of LASSO, while many proposed
improvements essentially deal with the spectral interpretation of LASSO.

Another important issue is to consider different observation models, such

as the ones representing practical observation impairments. The phase re-
trieval and the 1-bit compressed sensing are popular examples. While little

is known about the general behavior of this type of problems, the parameter
estimation perspective not only frames them into a more practical frame-

work, but also provides a new opportunity to analyze them.

Last but not least, we propose to study the role of dictionary learning

techniques in parameter estimation. Dictionary learning is the process of
simultaneously learning the dictionary and atomic decomposition from a

sequence of observed data. A great potential is observed in parametric
dictionary learning as it is simply seen to be related to the well-know family

of blind estimation problems, such as blind deconvolution, blind source
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separation and blind channel estimation. Again, the mixture of parametric

and sparsity-based estimation perspectives is seen to be highly useful in
developing related techniques.
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