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Abstract

Ductile fracture is important to control in many industrial processes, be it a desired
phenomenon (e.g. in metal cutting) or a failure to be prevented (e.g. in structures subject
to blast loading). Increased understanding of the fracture processes can be gained by
using computational homogenization, where the nucleation and growth of microscopic
cracks is explicitly modeled and included in the effective response of a Statistical Volume
Element (SVE)1. Choosing suitable boundary conditions on the SVE is challenging,
because conventional boundary conditions (Dirichlet, Neumann and strong periodic) are
inaccurate when cracks are present in the SVE. In the present work, we instead impose
periodic boundary conditions in a weak sense on the SVE, leading to a mixed variational
format with displacements and boundary tractions as unknowns. By constructing a
suitable traction approximation, the boundary conditions can be adapted to the problem
at hand in order to gain improved convergence. To this end, we propose a stable
traction approximation that is piecewise constant between crack-boundary intersections
and we show analytically that the LBB (inf-sup) condition is fulfilled for the proposed
approximation.

The weakly periodic boundary conditions are combined with the eXtended Finite
Element Method (XFEM), cohesive zones and the concept of material forces to perform
numerical simulations of materials undergoing crack propagation on the microscale. The
numerical examples show that weakly periodic boundary conditions with a suitably chosen
traction approximation are more efficient than conventional boundary conditions in terms
of convergence with increasing SVE size. This observation holds for stationary cracks as
well as for propagating cracks.

The work presented in this thesis is concerned with homogenization of damage evolution
prior to localization, which is a prerequisite for accurate multiscale modeling of localization.

Keywords: XFEM, Computational Homogenization, Weak periodicity, Crack propagation

1Sometimes also called Representative Volume Element (RVE).
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Thesis

This thesis consists of an extended summary and the following appended papers:

Paper A
E. Svenning, M. Fagerström and F. Larsson. Computational homogeniza-
tion of microfractured continua using weakly periodic boundary conditions.
Submitted for international publication.
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E. Svenning, M. Fagerström and F. Larsson. Computational homogeniza-
tion of microstructures undergoing crack propagation. To be submitted.

The appended papers were prepared in collaboration with the co-authors. The author of
this thesis was responsible for the major progress of the work, i.e. took part in planning
the papers, took part in developing the theory, developed the numerical implementation,
carried out numerical simulations and wrote the papers.
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Part I

Extended Summary

1 Introduction

Ductile fracture of metals is relevant in many engineering applications, be it a desired
phenomenon as e.g. in metal cutting or a failure to be prevented as e.g. in structures
subject to blast loading. The importance of damage and fracture phenomena has lead to
the development of a wide range of modeling approaches [1, 2], ranging from local and
nonlocal continuum damage models to discrete crack models represented by cohesive zones,
embedded discontinuities and the eXtended Finite Element Method (XFEM). Within
the framework of discrete crack models, several authors have explored the possibilities of
combining element embedded discontinuities or XFEM with fracture criteria based on
stress intensity factors [3, 4], material crack driving force [5], stress [6, 7], plastic strain
[8] or loss of ellipticity [9].

However, since fracture starts with the nucleation of microscopic cracks that grow and
eventually evolve into macroscopic cracks, it is natural to seek increased knowledge by
studying the nucleation and growth of cracks on the microscale, see e.g. [10] in the context
of crystal plasticity. A suitable tool to connect the scales is computational homogenization
that can be used to determine the effective response of a material sample containing
growing cracks. The growth of microcracks into macrocracks is typically modeled by
injecting a macroscopic discontinuity into the model when some localization criterion is
fulfilled [11], whereby the failure can be represented by means of cohesive zone elements
[12], XFEM [13, 14] or embedded discontinuities [15, 16].

Note, however, that an accurate model of microscale damage progression is a pre-
requisite for accurate localization models. Hence, the topic of this thesis is how to properly
set up the microscale model, including suitable boundary conditions and crack growth
models. Critical steps in this task are to establish a finite element formulation of the
governing equations including a suitable representation of propagating cracks as discussed
in Chapter 3 and to establish a multiscale model of the problem as discussed in Chapter
4.

2 Aim of research

The long term goal of the present work is to develop techniques for multiscale modeling
of ductile fracture in metals. This goal involves the following challenges:

1. Develop suitable boundary conditions on the Statistical Volume Element (SVE) and
investigate how the effective response depends on the SVE size.

2. Develop accurate microscale models that take the damage progression on the
microscale into account.
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3. Develop multiscale modeling techniques capable of handling localization on the
microscale as well as on the macroscale.

4. Use the multiscale modeling framework to develop accurate and efficient phenomeno-
logical models.

Challenge 1 and, partly, challenge 2 are addressed in this thesis, while challenges 3 and 4
are left as future work.

3 A model of a fracturing continuum

3.1 Preliminaries

To establish a suitable finite element formulation for a body containing propagating
cracks, we consider a specimen occupying the domain Ω with boundary Γext as shown in
Figure 3.1. Cracks in the specimen are explicitly modeled as internal boundaries Γint (in
contrast to using an implicit representation in terms of e.g. a smeared crack model). To
be specific, Γint is a two-sided surface with a positive side Γ+

int and a negative side Γ−
int.

Letting superscripts + and − denote quantities on Γ+
int and Γ−

int, respectively, we define

the normal nint to be the outward unit normal on Γ−
int, i.e. nint

def
= n−

int. For future use,

we also define the jump of a quantity over Γ+
int as JuK def

= u+ − u−.

nint

Γ
-
int

Γ
+
int

Ω

Γext

Ω

Γ

Γ
,int

Figure 3.1: Domain Ω with external boundary Γext and internal boundaries Γint. A
Statistical Volume Element (SVE) with domain Ω� and boundary Γ� is also shown.

To proceed, we assume quasistatic loading and small strains. Neglecting the body
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force, the strong form of the equilibrium equations are then written in standard fashion as

− σ ·∇ = 0 in Ω,

t+ + t− = 0 on Γint,

t = t̂ on Γext,N ,

u = û on Γext,D,

(3.1)

where σ = σ([u⊗∇]
sym

) is the Cauchy stress, ∇ is the gradient operator, t̂ is a prescribed
traction and û is a prescribed displacement. The traction on the internal boundaries,
which is linked to the continuum stress by t+ = −σ|Γ+

int
· nint and t− = σ|Γ−

int
· nint,

may be described by a cohesive zone law specifying t
def
= t+ = −t− in terms of the jump

JuK over the crack faces.
The weak solution corresponding to Equation (3.1) is obtained by finding u ∈ U such

that
∫

Ω

σ : [δu⊗∇] dΩ−
∫

Γ+
int

t · JδuK dΓ =

∫

Γext,N

t̂ · δudΓ ∀δu ∈ U0,

U =
{
v : v ∈

[
H1(Ω)

]d
, v = û on Γext,D

}
,

U0 =
{
v : v ∈

[
H1(Ω)

]d
, v = 0 on Γext,D

}
,

(3.2)

where H1(Ω) denotes the Sobolev space of functions with square integrable gradients on
Ω and d denotes the dimension of the problem. We note that u and δu do not need to be
continuous across Γint. More precisely, the internal boundaries Γint represent cracks that
will be modeled using the XFEM as discussed below.

3.2 The eXtended Finite Element Method (XFEM)

The eXtended Finite Element Method (XFEM) is suitable for modeling of crack propaga-
tion since it allows a kinematic crack representation that is independent of the underlying
finite element mesh. The XFEM has been frequently used to model crack propagation
since the classical work by Belytschko and Black [17], and has today reached a quite
high level of maturity, with applications to a wide range of engineering problems [18].
Nevertheless, several challenges need to be addressed in order to successfully apply XFEM
to crack propagation problems.

Since the purpose of applying XFEM is to avoid meshing cracks explicitly, a separate
representation of the crack geometry is needed. Alternatives are to use the level set
method, or to represent the crack explicitly using for example a polygon. In the present
work, a hybrid representation is used, where a polygon representation is used to compute
the necessary level set fields [19]. Furthermore, if branching or intersecting cracks are
considered, it is not sufficient to add enrichments for each crack separately. The crack
intersections need special treatment, e.g. by using so called junction functions [20].

Regarding accuracy, we remark that using a pure step enrichment gives poor accuracy
in the predicted stress field if the mesh is not extremely fine, especially for elastic problems.
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Much better accuracy can be obtained by enriching with asymptotic functions close to
crack tips as first suggested in [21]. To allow straightforward enforcement of boundary
conditions, a shifted enrichment can be used in order to preserve the Kronecker-δ property
of the discretization [22].

Regarding numerical issues, it should also be noted that ill-conditioning occurs if a
crack passes very close to, or exactly in, a node. Possible remedies are, among others, to
simply disallow cracks too close to nodes or to add numerical stabilization based on an
eigenvalue analysis of the stiffness matrix [23].

In the present work, we consider XFEM based on the partition of unity concept [24,
17] and use a hybrid geometry representation as stated above. Crack intersections are
handled using junction functions [20]. A shifted enrichment is employed to preserve the
Kronecker-δ property and elements containing a crack tip are enriched with asymptotic
functions.

The XFEM as described above provides a kinematic representation of cracks in the
material. It can be combined with cohesive zone models describing the constitutive
behavior at the crack faces as well as models for crack propagation as described below.

3.3 Cohesive zone models

The cohesive zone concept [25, 26], which can be used in combination with XFEM [27, 4]
as well as with interface elements [28], allows modeling of ductile fracture by describing the
crack surface traction in terms of the displacement jump over the crack. The most common
approach is to use a pure displacement based formulation, where the traction is computed
directly from the traction discontinuity on the integration point level. Alternatives are
to introduce additional unknowns for the traction, leading to a mixed formulation [29,
30], or to combine cohesive zones with Nitsche’s method [31]. A formulation with only
displacements as unknowns has the obvious advantages of easy implementation and fewer
unknowns in the global system of equations. A serious drawback is that the use of a high
penalty stiffness may lead to ill-conditioning as well as spurious oscillations in the traction
field [32] (see also [33] in the context of contact).

We remark that the problem of formulating a cohesive zone model describing the
interface traction t in terms of the interface displacement discontinuity JuK has been
the subject of many investigations. Here, we are not concerned with the formulation
of new cohesive zone models, but we will use a damage-plasticity model based on the
developments in [34] in some of the numerical examples. Furthermore, we will use a linear
elastic cohesive zone model with low penalty stiffness as regularization in some examples.
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3.4 Crack propagation models

Crack growth can be modeled by combining the XFEM with criteria for the onset and
direction of crack growth. Without attempting to list all developments in the field, we first
note that models describing crack propagation are not fundamentally tied to the chosen
crack representation. For example, crack propagation based on stress intensity factors
was studied by Zi and Belytschko [4] using XFEM, whereas Khoei et al. [35] employed
a remeshing technique. Other examples of crack propagation based on stress intensity
factors can be found in [36] as well as the comparison between different approaches in
[3]. There are also several papers that study crack propagation based on the concept of
material forces, see e.g. the discussion on computational aspects in [37] or the discussion
on different propagation strategies in [38]. Furthermore, crack propagation in combination
with plasticity and damage in the bulk material has been studied by many authors, using
propagation models based on the stress [6, 39] or the plastic strain [8] around the crack
tip.

Regardless of the propagation model chosen, there are a number of issues that will
require special consideration. First, we note that the strong gradients (or singularities
in elastic materials) around the crack tip will most likely cause accuracy problems if
not accounted for in a proper way. In particular, evaluation of material forces can be
sensitive to the mesh resolution around the crack tip. The author’s opinion is that
branch enrichment around crack tips (or other approaches yielding similar convergence
improvements) is necessary to obtain acceptable accuracy for the material force.

Second, propagation models based on state variables (e.g. plastic strain) often require
nonlocal averaging of the state variable under consideration. Since nonlocal averaging in
a strongly varying field is sensitive to simulation parameters, the mesh resolution must be
sufficient and the size of the averaging region must be carefully chosen with respect to
the length scale over which the gradient varies.

Third, we note that the detection of crack propagation and the determination of a
propagation direction need to be supplemented by the determination of the crack increment
length, whereby several options are available. One option is to solve for the increment
length as an additional unknown, leading to complex modeling and implementation.
Another option is to employ a pure semi-explicit time integration, where cracks are
propagated a fixed (predefined) distance at the end of each time step. This approach
works well and is easy to implement, but it may require very small time steps and
increments to obtain converged results. An alternative, which is used in the present work,
is to use semi-explicit time integration for crack propagation, but to recompute the time
steps until no more crack propagation occurs in the time step. This approach allows
significantly larger time steps at the cost of a small complexity increase compared to a
pure semi-explicit approach.

In the numerical examples presented in this thesis, propagation of XFEM cracks is
modeled using the concept of material forces. Branch enrichment is used in elements
containing crack tips in order to make the material force evaluation sufficiently insensitive
to the radius used in the domain integral evaluation and the mesh size. We note, however,
that the framework developed here is not restricted to a particular choice of crack
propagation model. The crack propagation model based on material forces can easily be
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replaced by a criterion based on e.g. plastic deformation around the crack tip.

4 Computational homogenization

4.1 Preliminaries

Simulating the effect of microcracks by using a mesh that is fine enough to resolve
the microstructure everywhere in the domain will in most cases lead to unacceptable
computational costs. A possible remedy, which reduces the computational effort without
giving up the possibility to model microscale features explicitly, is to apply computational
homogenization [40, 41]. The key ingredient in this strategy is the solution of a boundary
value problem on a Statistical Volume Element (SVE)1, followed by homogenization
of the computed response in order to obtain the effective stress and stiffness of the
microstructure. In the present work, we adopt the standard approach of first order
homogenization, whereby the SVE must be sufficiently large to be representative of the
microstructure, yet sufficiently small to justify the scale separation assumption.

Regarding the choice of boundary conditions (BCs) on the SVE, we remark that the
boundary conditions as well as the treatment of strain localization in the SVE have a large
influence on the accuracy of the method. In particular, we emphasize that the conventional
BCs (Dirichlet, Neumann and strong periodic) are inaccurate if cracks intersect the SVE
boundary. Dirichlet BCs suppress crack opening on the SVE boundary leading to overstiff
predictions, while Neumann BCs may predict zero stiffness if cracks intersect the SVE
boundary in certain ways. Strong periodic BCs can be effective, but result in overstiff
predictions if cracks on the SVE boundary are not aligned with the periodicity directions.
Hence, problematic overstiffening effects due to artificial crack closure on the boundary
exist for both Dirichlet BCs [39, 14] and strong periodic BCs [13]. A possible remedy to
the problems associated with conventional BCs is to use weakly periodic BCs as proposed
by Larsson et al. [43] and later used in [44]. By enforcing periodic boundary conditions
in a weak sense on the SVE, this approach allows more freedom to adapt the boundary
conditions to the problem at hand as described in Section 4.3.

The problems associated with conventional BCs are even more pronounced if damage
progression and localization occurs in the SVE. In particular, the SVE loses its represen-
tative character at the onset of localization in the material. Hence, localization in the
SVE requires proper treatment, cf. Coenen et al. [42, 15] or Belytschko et al.[14].

In this thesis, we restrict ourselves to crack propagation in the SVE prior to localization
and leave the proper treatment of localization in the SVE as future work. We note,
however, that accurate modeling of damage progression in the SVE prior to localization
is a prerequisite for accurate modeling of localization. Hence, the construction of proper
boundary conditions on the SVE in the presence of propagating cracks is studied in detail
in the present work.

1In the literature, different authors denote a sample of the microstructure Representative Volume
Element (RVE), Statistical Volume Element (SVE) or Microstructural Volume Element [42]. We choose
to use the term Statistical Volume Element (SVE).
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Paper A contains a derivation of the finite element formulation for the problem
under consideration using computational homogenization and weakly periodic boundary
conditions. As a supplement to the developments in Paper A, we discuss the macroscale
problem in Section 4.2, followed by a discussion on the microscale problem in Section 4.3.

4.2 Macroscale problem

We wish to homogenize the response of an SVE where propagating microcracks are
modeled explicitly. To this end, recall the variational format given by Equation (3.2) as

∫

Ω

σ : [δu⊗∇] dΩ−
∫

Γ+
int

t · JδuK dΓ =

∫

Γext,N

t̂ · δudΓ ∀δu ∈ U0.

Consider the domain decomposition Ω = ∪j Ωj� and the corresponding internal boundary

decomposition Γ+
int = ∪j Γ+,j

�,int, where Γ+,j
�,int = Γ+

int ∩ Ωj
� is the part of Γ+

int located

inside Ω�. By inserting these decompositions in Equation (3.2), we may write
∫

Ω

σ : [δu⊗∇] dΩ =
∑

j

∫

Ωj

�

σ : [δu⊗∇] dΩ, (4.1)

∫

Γ+
int

t · JδuK dΓ =
∑

j

∫

Γ+,j

�,int

t · JδuK dΓ. (4.2)

Inserting Equations (4.1) and (4.2) in Equation (3.2) gives

∑

j

(∫

Ωj

�

σ : [δu⊗∇] dΩ−
∫

Γ+,j

�,int

t · JδuK dΓ

)
=

∫

Γext,N

t̂ · δudΓ ∀δu ∈ U0. (4.3)

Setting Ω�(x) = Ωj� when x ∈ Ωj�, so that |Ω�| = |Ωj�| =
∫

Ωj

�
dV , we note that

∫

Ωj

�

σ : [δu⊗∇] dΩ =
1

|Ωj�|

∫

Ωj

�

dV

∫

Ωj

�

σ : [δu⊗∇] dΩ =

=

∫

Ωj

�

1

|Ωj�|

∫

Ωj

�

σ : [δu⊗∇] dΩ dV,

(4.4)

and, in the same way,
∫

Γ+,j

�,int

t · JδuK dΓ =
1

|Ωj�|

∫

Ωj

�

dV

∫

Γ+,j

�,int

t · JδuK dΓ =

=

∫

Ωj

�

1

|Ωj�|

∫

Γ+,j

�,int

t · JδuK dΓ dV.

(4.5)

Inserting Equations (4.4) and (4.5) in Equation (4.3) gives

∑

j

[∫

Ωj

�

1

|Ωj�|

(∫

Ωj

�

σ : [δu⊗∇] dΩ−
∫

Γ+,j

�,int

t · JδuK dΓ

)
dV

]
=

∫

Γext,N

t̂ · δudΓ.

(4.6)
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To rewrite the above sum as an integral, we consider the homogeneous macroscale domain
Ω̄ = Ω ∪ Γint and express Equation (4.6) as

∫

Ω̄

1

|Ω�|

(∫

Ω�

σ : [δu⊗∇] dΩ−
∫

Γ+

�,int

t · JδuK dΓ

)
dV =

∫

Γext,N

t̂ · δudΓ. (4.7)

We note that Equation (4.7) is exact for perfectly matching, nonoverlapping SVEs, while
smoothing results from choosing overlapping SVEs. In standard fashion, we now split
the solution field according to u = uM + us and employ first order homogenization by
setting uM = ū+ (ū⊗∇) · [x− x̄]. Since u⊗∇ = ū⊗∇ +us ⊗∇, elaborating on the
terms in Equation (4.7) gives

σ : [δu⊗∇] = σ : [δū⊗∇] + σ : [δus ⊗∇] ,

t · JδuK = t · JδūK︸︷︷︸
=0

+t · J(δū⊗∇) · (x− x̄)K︸ ︷︷ ︸
=0

+t · JδusK = t · JδusK.

Inserting in Equation (4.7) yields

∫

Ω̄

1

|Ω�|

(∫

Ω�

σ : [δū⊗∇] dΩ +

∫

Ω�

σ : [δus ⊗∇] dΩ−
∫

Γ+

�,int

t · JδusK dΓ

)
dV =

=

∫

Γext,N

t̂ · δudΓ.

(4.8)

Assuming the pertinent microscale problem to satisfy2

a� (u, δus)
def
=

1

|Ω�|

[∫

Ω�

σ : [δus ⊗∇] dΩ−
∫

Γ+

�,int

t · JδusK dΓ

]
= 0, (4.9)

and exploiting that δū⊗∇ is constant within Ω�, we have
∫

Ω̄

(
1

|Ω�|

∫

Ω�

σ dΩ

)

︸ ︷︷ ︸
def
= σ̄

: [δū⊗∇] dΩ =

∫

Γext,N

t̂ · δudΓ,

which gives us the effective stress as

σ̄
def
=

1

|Ω�|

∫

Ω�

σ dΩ. (4.10)

Finally, neglecting inhomogeneity on the external boundary, we assume
∫

Γext,N

t̂ · δudΓ ≈
∫

Γext,N

t̂ · δūdΓ. (4.11)

2We show below that a� (u, δus) is indeed zero for the weakly periodic boundary conditions considered
here.
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Hence, the macroscale problem is solved by finding ū ∈ Ū such that
∫

Ω̄

σ̄ : [δū⊗∇] dΩ =

∫

Γext,N

t̂ · δūdΓ ∀δū ∈ Ū0,

Ū =
{
v ∈

[
H1
(
Ω̄
)]d

, v = û on Γext,D

}
,

Ū0 =
{
v ∈

[
H1
(
Ω̄
)]d

, v = 0 on Γext,D

}
.

(4.12)

4.3 Microscale problem

4.3.1 Weakly periodic boundary conditions

Variational formulation

Equation (4.10) gives an expression for the effective stress that allows the homogenized
response of an SVE to be computed, provided that the SVE problem has been solved.
Here, we aim to solve the SVE problem by imposing periodic boundary conditions on the
SVE in a weak sense. To this end, we first divide the SVE boundary into an image part
Γ+
� and a mirror part Γ−

� as shown in Figure 4.1. Furthermore, we introduce a mapping
ϕper : Γ+

� → Γ−
� such that x− = ϕper(x

+) and define

Ju(x+)K�
def
= u(x+)− u(x−) = u(x+)− u(ϕper(x

+)).

Weak periodicity is then obtained by requiring JuK� = ε̄ · Jx− x̄K� to hold weakly instead
of pointwise to get the following SVE problem: Find u ∈ U� and tλ ∈ T� such that

a� (u, δu)− d� (tλ, δu) = 0 ∀δu ∈ U�,

−d� (δtλ,u) = −d� (δtλ, ε̄ · [x− x̄]) ∀δtλ ∈ T�,
(4.13)

U� = {v : v ∈
[
H1(Ω�)

]d
,

∫

Γ�

v dΓ = 0}, (4.14)

T� = {v : v ∈
[
L2

(
Γ+
�
)]d}, (4.15)

where we introduced the expressions

a� (u, δu)
def
=

1

|Ω�|

[∫

Ω�

σ : ε [δu] dΩ−
∫

Γ+

�,int

t · JδuK dΓ

]
, (4.16)

d� (tλ, δu)
def
=

1

|Ω�|

∫

Γ+

�

tλ · JδuK� dΓ (4.17)

and L2

(
Γ+
�
)

denotes the space of square integrable functions on Γ+
�.

Now recall the discussion in Section 4.2, where it was claimed that

a� (u, δus) =

∫

Ω�

σ : [δus ⊗∇] dΩ−
∫

Γ+

�,int

t · JδusK dΓ = 0. (4.18)
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p1ϕper(p1)

p2

ϕper(p2)

Image Γ
+

Mirror Γ
-

Figure 4.1: The SVE boundary Γ� is split into an image part Γ+
� and a mirror part Γ−

�.
The mapping ϕper between associated points on Γ+

� and Γ−
� is also indicated.

To show this identity, note that from Equation (4.13), we have a� (u, δus) = d� (tλ, δu
s).

Using the relation

δus = δu− δū− (δū⊗∇) · [x− x̄], (4.19)

we have

d� (tλ, δu
s) = d� (tλ, δu)− d� (tλ, δū)− d� (tλ, (δū⊗∇) · [x− x̄]) . (4.20)

Since d� (tλ, δū) = 0 for a constant δū, and due to the fact that the solution tλ ∈ T�,
we conclude from Equations (4.19) and (4.20) that

a� (u, δus) = d� (tλ, δu)− d� (tλ, [δū⊗∇] · [x− x̄]) = 0. (4.21)

To see the relation to the so-called Hill-Mandel condition, we note that inserting this
relation in Equation (4.8) gives

a� (u, δu) =
1

|Ω�|

∫

Ω�

σ : [δū⊗∇] dΩ = σ̄ : [δū⊗∇] = σ̄ : δε̄,

i.e. the virtual work on the macroscale is equal to the average virtual work on the
microscale. See [43] for further discussion.

Traction discretization

Solving the finite element problem associated to Equation (4.13) requires construction
of Uh� and Th�. A conventional FE mesh will be used to construct Uh�, whereas Th� can
be constructed using a global polynomial basis [44] or by means of a traction mesh on
the SVE boundary [43]. Choosing the latter option, we construct a (one-dimensional)
traction mesh on Γ+

�, defined by traction nodes and two-node traction elements. The
traction is then assumed to be piecewise constant or linear on each traction element.

10



To construct a traction mesh, we start from the approach in [43], where the first step is
to project all (displacement) nodes on the image boundary as well as the mirror boundary
onto the image boundary, as shown in Figure 4.2. Points where cracks or grain boundaries
intersect the boundary are projected in the same way. Next, points that are closer to
each other than a given tolerance are merged, in order to prevent that traction elements
become too small. Performing these steps results in a dense traction mesh that can be
used as it is, or coarsened as indicated to the right in Figure 4.2.

In the present work, we are interested in a particular choice for the traction mesh. We
consider a piecewise constant traction approximation, that is coarsened so much that only
traction nodes at SVE corners and crack-boundary intersections are retained as shown in
Figure 4.3. This approximation often performs very well, as shown in Paper A and Paper
B.

Here, we will supplement the discussion in the appended papers with some additional
remarks regarding the stability properties of the discretization. Since a mixed formulation
is employed, the LBB (inf-sup) condition needs to be fulfilled. Recalling that we consider
piecewise linear and piecewise constant traction approximations, we first remark that
piecewise linear traction approximations generated using the strategy above fulfill the
LBB condition [43]. (Note, however, the discussion on additional periodicity constraints
for the traction in [43].) The situation is less straightforward for a piecewise constant
traction approximation. On the one hand, it is known that a piecewise constant traction
approximation on each linear displacement element fails to fulfill the LBB condition,
cf. El-Abbasi and Bathe [45] in the context of contact. On the other hand, Neumann
boundary conditions, which correspond the coarsest possible piecewise constant traction
approximation, are stable. For piecewise constant traction approximations that are in
between these two extremes (i.e. for a “moderately dense” traction mesh), it is nontrivial
to assess whether the LBB condition is fulfilled or not. In the present work, a traction
approximation that is piecewise constant between crack-boundary intersections and SVE
corners, as shown in Figure 4.3, has shown promising results. Therefore, it is interesting
to investigate if this particular choice for the traction approximation fulfills the LBB
condition. In Paper A, we show analytically that this particular choice of piecewise
constant traction approximation indeed fulfills the LBB condition.

As a supplement to the stability proof in Paper A, we will here give a numerical
example in order to illustrate the assumptions behind the proof and to provide a simple
interpretation. The proof given in Paper A states that the LBB condition is fulfilled
if at least one displacement node is located inside each traction element and the size
of the traction elements is kept constant when refining the displacement elements. To
illustrate this condition with the simplest possible example, we consider a homogeneous
SVE (pure, homogeneous material without cracks or inclusions) discretized with 10× 10
quadrilateral elements. The material is linear elastic with Young’s modulus E = 10 and
Poisson’s ratio ν = 0.3. We use weakly periodic boundary conditions to apply a uniaxial
effective strain ε̄xx = 1, whereby three different traction meshes are considered as shown
in Figure 4.4: Mesh A where all displacement nodes are retained, Mesh B where every
second displacement node is retained and Mesh C where every fifth displacement node
is retained. We note that Mesh B and Mesh C have at least one displacement node inside
each traction element, so we expect these discretizations to give stable response. However,
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Mesh A does not have at least one displacement node inside each traction element, so
we cannot expect Mesh A to give stable response. Solving the SVE problem with these
three meshes and computing the condition number of the global stiffness matrix gives the
following result:

• Mesh A gives a condition number of 1025,

• Mesh B gives a condition number of 108,

• Mesh C gives a condition number of 107.

Mesh A results in a very high condition number that indicates numerical problems,
whereas Mesh B and Mesh C lead to well conditioned matrices. The instability indicated
by the high condition number obtained with Mesh A pollutes the solution for the boundary
traction as shown in Figure 4.5: Mesh B and Mesh C lead to smooth boundary tractions,
whereas Mesh A leads to an oscillatory solution.

With the simple example above in mind, we emphasize that the piecewise constant
traction approximation is stable provided that:

1. At least one displacement node is located inside each traction element. This is
a reasonable assumption for a sufficiently fine displacement mesh, provided that
the traction elements are not allowed to be too small (see also the discussion on
removing traction nodes that are too close in [43]).

2. The length of the traction elements must not tend to zero as the displacement
elements are refined. This requirement is fulfilled in the present work, because the
traction mesh is created based on the locations of cracks or grain boundaries, and
these positions do not change under mesh refinement.

Mesh

Traction node candidates

Cracks

Crack-boundary intersections

Projected nodes

Figure 4.2: Traction discretization: unprocessed (left) and processed (right) traction
meshes. Addition of traction nodes where cracks intersect the boundary is indicated to the
left.
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t1

t2

t3
t4

Figure 4.3: Piecewise constant traction approximation with traction discontinuities at
SVE boundaries and crack-boundary intersections.

(a) Mesh A: all displacement
nodes are retained.

(b) Mesh B: every second displace-
ment node is retained.

(c) Mesh C: every fifth displace-
ment node is retained.

Figure 4.4: Traction meshes for illustration of the LBB condition.

-1.0e+03

0.0e+00

1.0e+03

 0.01  0.015  0.02  0.025  0.03

t x

Arc position along SVE boundary

Mesh A
Mesh B
Mesh C

(a) Y-axis range from −1.0 · 103 to 1.0 · 103.

0.0e+00

5.0e+00

1.0e+01

1.5e+01

 0.01  0.015  0.02  0.025  0.03

t x

Arc position along SVE boundary

Mesh B
Mesh C

(b) Y-axis range from 0.0 to 15.0.

Figure 4.5: Traction along Γ+
� computed with different traction meshes. We display the

results with a wide y-axis range (left) to show the oscillatory response obtained with Mesh
A and a zoomed in plot (right) to show the smooth response obtained with Mesh B and
Mesh C. We note that the densest traction discretization (Mesh A) is obviously unstable.
(We also note that the traction is discontinuous across the SVE corner, since the normal
of the boundary is discontinuous there.)
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4.3.2 Problems with conventional boundary conditions

As discussed previously, conventional BCs perform poorly if cracks intersect the SVE
boundary. Here, a small example is given that demonstrates how the deficiencies of
conventional BCs may affect the solution of the SVE problem in practice. To this end,
consider the SVE shown in Figure 4.6. The side length of the SVE is 0.01 and we assume
that the material is linear elastic with Young’s modulus E = 210 · 103 and Poisson’s ratio
ν = 0.3. To obtain a solvable problem also when Neumann BCs are used, an elastic
cohesive zone with a stiffness of K = 1.0 · 103 is used in all examples. A macroscopic
strain of ε̄xx = 0.1, ε̄yy = 0.1, ε̄xy = 0 is imposed on the SVE using Dirichlet BCs,
weakly periodic BCs with dense traction discretization (corresponding to strong periodic
BCs), Neumann BCs and weakly periodic BCs with piecewise constant traction between
crack-boundary intersections. The solution obtained with the different BCs listed above
is shown in Figure 4.7. We note that Dirichlet BCs as well as strong periodic BCs
enforce crack closure on the SVE boundary, leading to overstiff predictions. Neumann
BCs predict very low stresses, leading to severe underprediction of the stiffness. Weakly
periodic BCs with piecewise constant traction between crack-boundary intersections do
not enforce artificial crack closure on the boundary, but still predict reasonable stresses in
the microstructure.

Figure 4.6: SVE used for illustration of the problems associated to conventional BCs.

Figure 4.7: SVE subject to a macroscopic strain of ε̄xx = 0.1, ε̄xy = 0.1, ε̄xy = 0. The
solution was computed by (from left to right): Dirichlet BCs, weakly periodic BCs with
dense traction discretization (corresponding to strong periodic BCs), Neumann BCs and
weakly periodic BCs with piecewise constant traction between crack-boundary intersections.
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5 Implementation

The model developed in the present work has been implemented in the open source
software package OOFEM [46, 47] and can be downloaded from https://github.com/

erisve/oofem. The grain structures considered in paper B were prepared using Neper
[48, 49] and Phon [50]. The post-processing was done with Paraview [51] and Gnuplot
[52].

6 Summary of appended papers

6.1 Paper A: Computational homogenization of mi-
crofractured continua using weakly periodic bound-
ary conditions

Computational homogenization of an elastic material containing stationary microcracks is
considered, whereby the cracks are modeled using the eXtended Finite Element Method
(XFEM). Weakly periodic boundary conditions are imposed on the Statistical Volume
Element (SVE), leading to a mixed variational formulation with displacements and
boundary tractions as unknowns. We consider the traction approximation as a modeling
choice and develop an approximation that is suitable when cracks intersect the SVE
boundary. The main result is the proposition of a stable traction approximation that
is piecewise constant between crack-boundary intersections. In particular, we prove
analytically that the proposed approximation is stable in terms of the LBB (inf-sup)
condition. The numerical examples show that the proposed traction approximation is more
efficient than conventional boundary conditions (Dirichlet, Neumann, strong periodic) in
terms of convergence with increasing SVE size.

6.2 Paper B: Computational homogenization of mi-
crostructures undergoing crack propagation

The model developed in Paper A is extended to handle propagating cracks. For the
modeling of crack propagation, we consider i) XFEM in combination with the concept of
material forces and ii) conventional cohesive zone elements. The numerical examples show
that weakly periodic boundary conditions, with piecewise constant traction approximation
between crack-boundary intersections, are effective also when damage progression occurs
in the microstructure.
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7 Conclusions and future work

The present work is concerned with computational homogenization of microstructures
containing propagating cracks, whereby the effective response is determined from the
response of Statistical Volume Elements (SVEs). To obtain accurate results, the choice of
boundary conditions (BCs) on the SVE is critical. Choosing suitable BCs is particularly
challenging in the case considered here, since conventional BCs (Neumann, Dirichlet
and strong periodic) are inaccurate when cracks are present in the SVE. We remark
that the problems associated with conventional BCs occur both for stationary cracks as
shown in Paper A and for propagating cracks as shown in Paper B. As a remedy, we
employ weakly periodic BCs with a piecewise constant traction approximation between
crack-boundary intersections. This traction approximation, which can be considered as
the smallest possible refinement of Neumann BCs, turns out to be more effective than
conventional BCs in terms of convergence with increasing SVE size. This is a significant
advantage, because a smaller SVE can be used without loss of accuracy, leading to reduced
computational costs. The efficiency of the proposed approximation is demonstrated for
stationary cracks in Paper A and for propagating cracks in Paper B. Furthermore, we
show in Paper A that the proposed approximation fulfills the LBB (inf-sup) condition.

An interesting conclusion from the present work is that it is possible to outperform
conventional BCs (including strong periodic BCs) by exploiting available geometric
information about the problem at hand. The proposed approach works well for discrete
cracks, where distinct crack-boundary intersections can be readily identified. If damage
progression in the SVE is modeled using a (local or nonlocal) continuum damage model,
additional effort is needed to create a suitable traction discretization. An interesting
possibility is combine the present work with the image analysis technique used by Coenen
et al. [42] in the context of rotated periodic BCs.

Regarding future work, we remark that the results presented in this thesis are restricted
to upscaling of the response prior to localization. An obvious next step is to develop an
FE2-scheme to allow concurrent multiscale modeling. Furthermore, a natural extension
of the present work is to address localization in the SVE leading to the evolution of a
macroscopic crack. Interesting work along these lines is the percolation path aligned BCs
in [42, 15, 16], the Multiscale Aggregating Discontinuities (MAD) method by Belytschko et
al. [14] and the different fracture models adopted in [11, 12, 13]. An alternative approach
could be to refine the macroscale mesh around the localizing SVE in order to resolve the
crack on the macroscale.

We also note that the results presented in this thesis are restricted to linear elastic
bulk material. An interesting extension is to consider material models that better describe
the microscale behavior of metals. A suitable candidate is crystal plasticity [53, 54]
in combination with tailored crack propagation models [10] and models of the grain
microstructure [49].

Finally, since the present work is restricted to 2D, a natural extension is to consider 3D
models. The main challenge associated with such 3D models is probably the construction
of a suitable traction mesh and the implementation effort associated with propagating
XFEM cracks in 3D.

16



References
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