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Broadcasting a Common Message with
Variable-Length Stop-Feedback Codes

Kasper Fløe Trillingsgaard∗, Wei Yang†, Giuseppe Durisi†, and Petar Popovski∗
∗ Aalborg University, 9220 Aalborg, Denmark

† Chalmers University of Technology, 41296 Gothenburg, Sweden

Abstract—We investigate the maximum coding rate achievable
over a two-user broadcast channel for the scenario where a com-
mon message is transmitted using variable-length stop-feedback
codes. Specifically, upon decoding the common message, each de-
coder sends a stop signal to the encoder, which transmits contin-
uously until it receives both stop signals. For the point-to-point
case, Polyanskiy, Poor, and Verdú (2011) recently demonstrated
that variable-length coding combined with stop feedback signifi-
cantly increases the speed at which the maximum coding rate con-
verges to capacity. This speed-up manifests itself in the absence of
a square-root penalty in the asymptotic expansion of the maximum
coding rate for large blocklengths, a result a.k.a. zero dispersion.
In this paper, we show that this speed-up does not necessarily oc-
cur for the broadcast channel with common message. Specifically,
there exist scenarios for which variable-length stop-feedback codes
yield a positive dispersion.

I. INTRODUCTION

We consider the setup where an encoder wishes to convey a
common message over a broadcast channel with noiseless feed-
back to two decoders. Similarly to the single-decoder (SD) case,
noiseless feedback combined with fixed-blocklength codes does
not improve capacity, which is given by [1, p. 126]

C = sup
P

min{I(P,W1), I(P,W2)} . (1)

Here, W1 and W2 denote the channels to decoder 1 and 2,
respectively, and the supremum is over all input distributions P .
For the case when there is no feedback, the speed at which C is
approached as the blocklength n increases is of the order 1/

√
n

[2] (same as in the SD case). The constant factor associated to
the 1/

√
n term is commonly referred to as channel dispersion.

For the SD case, noiseless feedback combined with variable-
length codes improve significantly the speed of convergence to
capacity. Specifically, it was shown in [3] that

1

l
log M̃∗f (l, ε) =

C̃

1− ε
−O

(
log l

l

)
(2)

where l stands for the average blocklength (average transmis-
sion time), M̃∗f (l, ε) is the maximum number of codewords in
the SD case, and C̃ denotes the corresponding capacity. One sees
from (2) that no square-root penalty occurs (zero dispersion),
which implies a fast convergence to the asymptotic limit. This
fast convergence is demonstrated numerically in [3] by means of
nonasymptotic bounds. Variable-length stop-feedback (VLSF)
codes, i.e., coding schemes where the feedback is used only to
stop transmissions, are sufficient to achieve (2).

The purpose of this paper is to investigate whether a similar
result holds for the broadcast channel with common message.

Contribution: We consider the subclass of discrete memory-
less broadcast channels for which I(P,W1) and I(P,W2) are
maximized by the same input distribution P ∗, which we assume
to be unique. In this case, C = min{I(P ∗,W1), I(P ∗,W2)}.
Focusing on the case when VLSF codes are used, we obtain
nonasymptotic achievability and converse bounds on the maxi-
mum number of codewordsM∗sf(l, ε) with average blocklength l
that can be transmitted with reliability 1− ε. Here, the subscript
“sf” stands for stop feedback. By analyzing these bounds in
the large-l regime, we prove that when the two subchannels
are independent and have the same capacity and the same dis-
persion, and when ε ≤ 0.1968, the asymptotic expansion of
M∗sf(l, ε) contains a square-root penalty (see (18) and (22) for
a precise statement of this result). Hence, the fast convergence
to the asymptotic limit experienced in the SD case cannot be
expected.

The intuition behind this result is as follows: in the SD case,
the stochastic variations of the information density that result
in the square-root penalty can be virtually eliminated by using
variable-length coding with stop-feedback. Indeed, decoding is
stopped after the information density exceeds a certain thresh-
old, which yields only negligible stochastic variations. In the
broadcast setup, however, the stochastic variations in the dif-
ference between the stopping times at the two decoders make
the square-root penalty reappear. Note that our result does not
necessarily imply that feedback is useless. It only shows that
VLSF codes cannot be used to speed-up convergence to the
same level as in the SD case.

Proof techniques: The achievability bound is an extension
of [3, Th 3]; the converse bound is based on an optimal stop-
ping problem, where the probability that the stopping time ex-
ceeds a given threshold is minimized under a constraint on the
“stopped” information density process. The asymptotic analysis
of the converse bound relies on Hoeffding’s inequality and on
the Berry-Esseen central limit theorem, whereas the asymptotic
analysis of the achievability bound relies on asymptotic results
for random walks [4] and on a Berry-Esseen-type theorem that
holds for random summations [5].

Notation: Upper case, lower case, and calligraphic letters
denote random variables (RV), deterministic quantities, and
sets, respectively. The probability density function of a stan-
dard Gaussian RV is denoted by φ(x). Furthermore, Φ(x) ,
1 − Q(x) is its cumulative distribution, where Q(x) is the Q-
function. We let x+ and x− denote max(0, x) and min{0, x},
respectively. Throughout the paper, the index k belongs always



to the set {1, 2}, although this is sometimes omitted. Further-
more, k̄ , 3 − k. We adopt the convention that

∑j−1
i=j ai = 0

for all {ai} and all integers j. We use “c” to denote a finite
nonnegative constant. Its value may change at each occurrence.
Finally,N denotes the set of positive integers andZ+ = N∪{0}.

II. SYSTEM MODEL

A common-message discrete memoryless broadcast channel
with two decoders is defined by the finite input alphabet X and
the finite output alphabetsYk, along with the stochastic matrices
Wk, where Wk(yk|x) denotes the probability that yk ∈ Yk is
observed at decoder k given x ∈ X . We assume that the outputs
at each time i are conditionally independent given the input, i.e.,

PY1,i,Y2,i|Xi
(y1,i, y2,i|xi) ,W1(y1,i|xi)W2(y2,i|xi). (3)

Define the set of probability distributions on X by P(X ). Let
P ×Wk : (x, yk) → P (x)W (yk|x) denote the joint distribu-
tion of input and output at decoder k, and let PWk : yk →∑
x∈X P (x)Wk(yk|x) denote the marginal distribution on Yk.

For every P ∈ P(X ), the information density is defined as

ıP,Wk
(xn; ynk ) ,

n∑
i=1

log
Wk(yk,i|xi)
PWk(yk,i)

. (4)

We let I(P,Wk) , EP×Wk
[ıP,Wk

(X;Yk)] be the mu-
tual information, V (P,Wk) , VarP×Wk

[ıP,Wk
(X;Yk)] be

the (unconditional) information variance, and T (P,Wk) ,
EP×Wk

[
|ıP,Wk

(X;Yk)− I(P,Wk)|3
]

be the third absolute
moment of the information density. We restrict ourselves to
the case, where there exists a unique probability distribution
P ∗ ∈ P(X ) that maximizes simultaneously both I(P,W1) and
I(P,W2). In this case, the capacity is given by

C , min{C1, C2} (5)

where Ck , I(P ∗,Wk). The corresponding (unique) capacity-
achieving output distributions are denoted by P ∗Yk

. Finally, we
also define the dispersions Vk , V (P ∗,Wk).

We are now ready to formally define a VLSF code for the
broadcast channel with common message.

Definition 1: An (l,M, ε)-VLSF code for the broadcast
channel with common message consists of:

1) A RV U ∈ U , with |U| ≤ 3, which is known by the encoder
and by both decoders.

2) A sequence of encoders fn : U ×M → X , each one map-
ping the message J ∈ M = {1, . . . ,M}, drawn uniformly
at random, to the channel input according toXn = fn(U, J).

3) Two nonnegative integer-valued RVs τ1 and τ2 that are
stopping times with respect to the filtrations F(U, Y n1 ) and
F(U, Y n2 ), respectively, and which satisfy

E[max{τ1, τ2}] ≤ l. (6)

4) A sequence of decoders gk,n : U × Yni →M satisfying

Pr[J 6= gk,τk(U, Y τkk )] ≤ ε, k ∈ {1, 2}. (7)

Remark 1: The RV U serves as common randomness, and
enables the use of randomized codes [6]. To establish the car-
dinality bound on U , we proceed as in [3, Th. 19] to show that
|U| ≤ 4 is sufficient. This bound can be further improved to
|U| ≤ 3 by using the Fenchel-Eggleston theorem [7, p. 35].

Remark 2: VLSF codes require a feedback link from the
decoders to the encoder. This feedback consists of a 1-bit stop
signal per decoder, which is sent by decoder k at time τk. The
encoder continuously transmits until both decoders have fed
back a stop signal. Hence, the blocklength is max{τ1, τ2}.

Our aim is to characterize the largest number of codewords
M∗sf(l, ε), whose average length is l, that can be transmitted with
reliability 1− ε using a VLSF code.

III. MAIN RESULTS

A. Achievability bound

We first present an achievability bound. Its proof (omitted)
follows closely the proof of [3, Th. 3].

Theorem 1: FixP ∈ P(X ). Let γ1, γ2 ≥ 0 and 0 ≤ q ≤ 1 be
arbitrary scalars. Let the stopping times τk and τ̄k, k ∈ {1, 2},
be defined as

τk , inf{n ≥ 0 : ıP,Wk
(Xn;Y nk ) ≥ γk} (8)

τ̄k , inf
{
n ≥ 0 : ıP,Wk

(X̄n;Y nk ) ≥ γk
}

(9)

where (Xn, X̄n, Y n1 , Y
n
2 ) are jointly distributed according to

PXn,X̄n,Y n
1 ,Y

n
2

(xn, x̄n, yn1 , y
n
2 )

= PY n
1 ,Y

n
2 |Xn(yn1 , y

n
2 |xn)

n∏
i=1

P (xi)P (x̄i). (10)

For every M , there exists an (l,M, ε)-VLSF code such that

l ≤ (1− q)E[max{τ1, τ2}] (11)

and

ε ≤ q + (1− q)(M − 1)Pr[τk ≥ τ̄k] . (12)

Remark 3: Following the same steps as in [3, Eq. (111)–
(118)], ε in (12) can be further upper-bounded as

ε ≤ q + (1− q)(M − 1) exp {−γk} . (13)

This bound is easier to evaluate and to analyze asymptotically.

B. Converse bound

Let Pxn ∈ P(X ) be the type [8, Def. 2.1] of the sequence
xn ∈ Xn. We are now ready to state our converse bound.

Theorem 2: For every M , t ∈ Z+ and δ > 0, let

λt , logM − log logM − δ − (|X | − 1) log(t+ 1) (14)

and let

Lt ,
2∏
k=1

max
xt∈X t

{
Pr
[
ıPxt ,Wk

(xt;Y tk ) > λt
]}

+ εM

(
1 + min

k
max
xt∈X t

Pr
[
ıPxt ,Wk

(xt;Y tk ) > λt
])

(15)



where εM = ε + (logM)−1. Then, for every (l,M, ε)-VLSF
code, we have

l ≥
∞∑
t=0

(1− Lt)+
. (16)

Proof: See Section IV.

C. Asymptotic expansion

Analyzing (13) and (16) in the limit l → ∞, we obtain the
following asymptotic characterization of M∗sf(l, ε).

Theorem 3: Let Zk ∼ N (0, 1), V =
√
V1V2, %k =

(Vk/Vk̄)
1/4, and let y = Q̃−1(x) be the solution of

2∏
k=1

Q(−%ky) + x

(
1 + min

k
Q(−%ky)

)
= 1. (17)

For every discrete memoryless broadcast channel withC1 = C2

and every ε ∈ (0, 1), we have

Cl

1− ε
− Ξa

√
l −O

(
l1/4+δ

)
≤ logM∗sf(l, ε)

≤ Cl

1− ε
− Ξc

√
l +O(log l) (18)

where δ > 0 is an arbitrarily small constant,

Ξa ,

√
V1 + V2

2π(1− ε)
(19)

and

Ξc ,

√
V

(1− ε)3

(
E
[
min

{
Q̃−1(ε) ,max

k
%kZk

}]
−ε
(

2Q̃−1(ε)−min
k

E
[
min

{
Q̃−1(ε) , %kZk

}]))
. (20)

Proof: The converse bound in (18) is proved in Section V
and the achievability bound is proved in Section VI.

Remark 4: When C1 6= C2, it can be shown that the square-
root penalty on the LHS of (18) vanishes. In this case, the prob-
lem reduces to the point-to-point transmission to the weakest
decoder, for which the zero-dispersion result in [3] applies.

Remark 5: For the case when PY1,i,Y2,i|Xi
does not sat-

isfy (3), a bound similar to the LHS of (18) can be obtained
by replacing Ξa in (19) with√

V1 + V2 − 2Cov(ıP∗,W1
(X;Y1), ıP∗,W2

(X;Y2))

2π(1− ε)
. (21)

Remark 6: When %1 = %2 = 1 (and, hence, V1 = V2), one
can simplify the RHS of (18) as follows:

logM∗sf(l, ε) ≤
Cl

1− ε
−

√
V l

(1− ε)3

×
(

1√
π

(
1−Q

(√
2Q−1(ε)

))
+ (ε− 2)φ

(
Q−1(ε)

))
−O(log l) . (22)

The second-order term in (22) is strictly negative for all ε ≤
0.1968. This implies that, when C1 = C2, V1 = V2, and
ε ≤ 0.1968, the asymptotic expansion of logM∗sf(l, ε) contains
a square-root penalty.

IV. PROOF OF THEOREM 2
Fix M and ε. To establish Theorem 2, we derive a lower

bound on l that holds for all VLSF codes having M codewords
and probability of error no larger than ε. Since,

l ≥ E[max{τ1, τ2}] =

∞∑
t=0

(1− Pr[max{τ1, τ2} ≤ t]) (23)

we can lower-bound l by upper-bounding Pr[max{τ1, τ2} ≤ t]
for every t ∈ Z+. The following property turns out to be useful.

Property 1: Fix t ∈ Z+ and α ∈ [0, 1], and suppose there
exists an (l,M, ε)-VLSF code with Pr[max{τ1, τ2} ≤ t] ≤ α.
Then there exists an (l′,M, ε)-VLSF code for some l′ ≥ l, for
which Pr[max{τ1, τ2} ≤ t] ≤ α and τ1, τ2 ∈ {t, t+ 1, . . .}.

Fix an arbitrary (l,M, ε)-VLSF code, defined by the tuple
(fn, g1,n, g2,n, τ1, τ2, U). By Property 1, it is sufficient to con-
sider codes for which τ1, τ2 ∈ {t, t + 1, · · · }. Let ε(u)

k , u ∈ U ,
be constants in [0, 1] such that

∑
u∈U PU (u)ε

(u)
k ≤ ε and

Pr[J 6= gk,τk(U, Y τkk )|U = u] ≤ ε(u)
k .

Since {τk = n} ∈ F(U, Y nk ), we can define a se-
quence of binary functions ϕk , {ϕk,t, ϕk,t+1, · · · } such that
ϕk,n(u, ynk ) , 1 {τk = n}. Let P (u)

X be the conditional prob-
ability measure on X∞ induced by the encoder given U = u.
Define for u ∈ U the set Ȳ(u)

k , {yn ∈ Ynk : ϕk,n(u, yn) = 1}.
Note that we must have Y τkk ∈ Ȳ(u). Let the length of a
sequence of channel outputs ȳ ∈ Ȳ(u)

k be denoted by |ȳ|. On
Ȳ(u)
k , define the conditional probability measure P(k,u)

Ȳ |X , given
x ∈ X∞ and u ∈ U , as

P
(k,u)

Ȳ |X (ȳ|x) ,
|ȳ|∏
i=1

W (ȳi|xi) (24)

and the probability measure P
(k,u)

Ȳ ,X
(ȳ,x) ,

P
(k,u)

Ȳ |X (ȳ|x)P
(u)
X (x) on Ȳ(u) × X∞. We also need the

following auxiliary probability measure Q(k,u)

Ȳ
on Ȳ(u)

k

Q
(k,u)

Ȳ
(ȳ) ,∑

Pxt∈Pt(X )

(
1

|Pt(X )|

t∏
i=1

PxtWk(ȳi)

|ȳ|∏
i=t+1

P ∗Yk
(ȳi)

)
(25)

and the probability measure Q(k,u)

Ȳ ,X
(ȳ,x) = Q

(k)

Ȳ
(ȳ)P

(u)
X (x)

on Ȳ(u) × X∞. Here, Pt(X ) ⊆ P(X ) denotes the set of types
formed by length-t sequences.

Using the meta-converse theorem [9, Th. 27], the inequality
[9, Eq. (102)], the fact that Q(k,u)

Ȳk,X
is a convex combination of

distributions [10, Lem. 3], and the upper bound |Pt(X )| ≤ (t+
1)|X |−1 [11, Lem. 1.1], we conclude that (see details in [12,
App. I-B])

P
(k,u)

Ȳ ,X

[
ı̃
(u)
k (X; Ȳk) ≤ λt

]
≤ ε(u)

k,M (26)



where ε(u)
k,M , ε

(u)
k +(logM)−1 and λt is defined in (14). Here,

ı̃
(u)
k (x; ȳ) , ık(xt; yt) +

|ȳ|∑
i=t+1

log
Wk(yi|xi)
P ∗Yk

(yi)
(27)

where ık(xt; yt) , ıPxt ,Wk
(xt, yt). Next, we minimize

Pr[τk ≤ t|U = u] over all stopping times τk satisfying (26):

Pr[τk ≤ t|U = u] = P
(k,u)

Ȳ ,X

[
|Ȳ | = t

]
= P

(k,u)

Ȳ ,X

[
ı̃
(u)
k (X; Ȳk) > λt, |Ȳ | = t

]
+P

(k,u)

Ȳ ,X

[
ı̃
(u)
k (X; Ȳk) ≤ λt, |Ȳ | = t

]
(28)

≤ min
{

1,P
(k,u)

Ȳ ,X

[
ı̃
(u)
k (X; Ȳk) > λt, |Ȳ | = t

]
+ ε

(u)
k,M

}
(29)

≤ max
xt∈X t

Pr
[
ık(xt;Y tk ) > λt

]
+ min

{
ε

(u)
k,M , 1− max

xt∈X t
Pr
[
ık(xt;Y tk ) > λt

]}
. (30)

Here, (29) follows from (26). Since the stopping times τ1 and
τ2 are conditional independent given U = u, (30) implies that

Pr[max{τ1, τ2} ≤ t|U = u] =

2∏
k=1

P
(k,u)

Ȳ ,X

[
|Ȳk| = t

]
(31)

≤
2∏
k=1

max
xt∈X t

{
Pr
[
ık(xt;Y tk ) > λt

]}
+ min

k

{
ε

(u)

k̄,M
+ ε

(u)
k,M max

xt∈X t
Pr
[
ık(xt;Y tk̄ ) > λt

]}
. (32)

Note that (32) holds for all τk that satisfies (26). Averaging (32)
over u ∈ U and using the inequality

∑
u∈U PU (u)ε

(u)
k,M ≤ ε +

(logM)−1 = εM , we obtain (15). The proof is concluded using
(23).

V. ASYMPTOTIC ANALYSIS: CONVERSE BOUND

We analyze Lt in (15) in the limit l→∞. By (16),

l ≥
∞∑
t=0

(1− Lt)+ ≥
bβc∑
t=0

(1− Lt)+ ≥
bβc∑
t=0

(1− Lt) (33)

where β > 0 will be specified shortly. Let λ , logM −
log logM − δ − (|X | − 1) log(β + 1). For all t ≤ β,

max
xt∈X t

Pr
[
ık(xt;Y tk ) > λt

]
≤ max

xt∈X t
Pr
[
ık(xt;Y tk ) > λ

]
. (34)

The key step is to establish an asymptotic upper bound on
maxxt∈X t Pr[ık(xt;Y tk ) > λ] for every t ∈ Z+ as λ→∞.

Let α , λ
C −

√
V λ
C3 log λ and let β be the solution of

(λ− βC)/
√
βV = −Q̃−1(ε) (35)

where C is given in (5), V is defined in Theorem 3,
and Q̃−1(ε) in (17). We divide the asymptotic analysis of
maxxt∈X t Pr[ık(xt;Y tk ) > λ] into three cases: the “large devi-
ations regime” t ∈ [0, α), where we use Hoeffding’s inequality,
the “central regime” t ∈ [α, β), where Berry-Esseen central

limit theorem is applied, and the case t ≥ β, where the trivial
upper bound maxxt∈X t Pr[ık(xt;Y tk ) > λ] ≤ 1 suffices.

In the first case, invoking Hoeffding’s inequality [13, Th. 2]
and using that I(Pxt ,Wk) is upper-bounded by C uniformly,
we obtain (see [12, App. II-A])

bαc∑
t=0

max
xt∈X∞

Pr
[
ık(xt;Y tk ) > λ

]
= o(1), λ→∞ (36)

and

bαc∑
t=0

2∏
k=1

max
xt∈X t

{
Pr
[
ık(xt;Y tk ) > λ

]}
= o(1), λ→∞. (37)

In the central regime, we use the Berry-Esseen central limit
theorem [14, Th. V.3] to show that

Pr
[
ık(xt;Y tk ) > λ

]
≤ Q

(
λ− tI(Pxt ,Wk)√
tV (Pxt ,Wk)

)
+

c√
t
. (38)

We next maximize (38) over xt ∈ X t following the ap-
proach in [10, Prop. 8]. Specifically, we use continuity prop-
erties of I(P,Wk) and V (P,Wk) for probability distributions
P ∈ P(X ) close to P ∗ to show that (see [12, App. II-B])

bβc∑
t=bαc+1

max
xt∈X t

Pr
[
ık(xt;Y tk ) > λ

]
≤
√
V λ

C3

(
Q̃−1(ε)− E

[
min

{
Q̃−1(ε) , %kZk

}])
+O(log λ)

(39)

where %k are defined in Theorem 3 and Zk ∼ N (0, 1). Simi-
larly, we obtain

bβc∑
t=bαc+1

2∏
k=1

max
xt∈X t

Pr
[
ık(xt;Y tk ) > λ

]
≤
√
V λ

C3

(
Q̃−1(ε)− E

[
min

{
Q̃−1(ε) ,max

k
%kZk

}])
+O(log λ). (40)

Using (33), (36), (37), (39), and (40), we obtain

l ≥
bβc∑
t=0

(1− Lt) (41)

≥ λ(1− εM )

C
+

√
V λ

C3

(
E
[
min

{
Q̃−1(ε) ,max

k
%kZk

}]
−εM

(
2Q̃−1(ε)−min

k
E
[
min

{
Q̃−1(ε) , %kZk

}]))
−O(log λ) (42)



as λ→∞. Finally, we have that

λ = logM − log logM − δ − (|X | − 1) log(β + 1) (43)

≤ Cl

1− εM

−

√
V l

(1− εM )3

(
E
[
min

{
Q̃−1(ε) ,max

k
%kZk

}]
− εM

(
2Q̃−1(ε)−min

k
E
[
min

{
Q̃−1(ε) , %kZk

}]))
+O(log l) (44)

as l→∞. The final result in (18) is obtained through algebraic
manipulations.

VI. ASYMPTOTIC ANALYSIS: ACHIEVABILITY BOUND

Set P = P ∗, and fix r ∈ N, q = l′ε−1
l′−1 , and l′ > 0, a

parameter that will be related to the average blocklength. Let
the thresholds be chosen as follows:

γ , γk , C (l′ − g(Cl′)) . (45)

Here,

g(x) ,

√
V1 + V2

2πC2

√
x

C
+ b1x

r+1
4r+2 log x (46)

where b1 will be specified later. If we choose a code with a
number of codewords M̃ that satisfies

log M̃ , C (l′ − g(Cl′))− log l′ (47)

we have (M̃−1) exp {−γ} ≤ 1/l′. Furthermore, by Remark 3,
the average probability of error is upper-bounded by

q + (1− q)(M̃ − 1) exp {−γk}

≤ l′ε− 1

l′ − 1
+
l′(1− ε)
l′ − 1

1

l′
= ε. (48)

Suppose it can be shown that

E[max{τ1, τ2}] ≤ l′ (49)

for sufficiently large l′. Then the average blocklength is

(1− q)E[max{τ1, τ2}] ≤
l′(1− ε)
l′ − 1

l′ , l. (50)

Consequently, by Theorem 1, there exists an (l,M, ε)-VLSF
code with

logM ≥ log M̃ (51)
= C (l′ − g(Cl′))− log l′ (52)

=
Cl

1− ε
−

√
V1 + V2

2π(1− ε)
√
l −O(l

r+1
4r+2 log l) (53)

where the last step follows because

l =
(l′)2(1− ε)
l′ − 1

= l′(1− ε) + o(1). (54)

To establish (49), we proceed as follows. Let Wn =
ıP,W1(Xn;Y1,n) and Zn = ıP,W2(Xn;Y2,n). We can then
upper-bound E[max{τ1, τ2}] using the following lemma, which

is proved using asymptotic results for random walks [4] and a
Berry-Esseen-type theorem that holds for random summations
(see proof in [12, App. III]).

Lemma 1: Let {Wn} and {Zn}, n ≥ 1, be i.i.d. discrete RVs
with (W1, Z1) ∼ PW,Z , positive mean µW , E[W1] and µZ ,
E[Z1], respectively, and finite moments of order r ≥ 3, i.e.,
E[|W1|r] < ∞, and E[|Z1|r] < ∞. Define the random walks
Un ,

∑n
i=1Wi and Vn ,

∑n
i=1 Zi, and the stopping times

τ1 , inf{n ≥ 0 : Un ≥ γ} and τ2 , inf{n ≥ 0 : Vn ≥ γ} for
every γ ∈ R. Then

E[max{τ1, τ2}] ≤
γ

min{µW , µZ}
+

σ√
2π

√
γ

µW
1 {µW = µZ}

+O
(
γ

r+1
4r+2 log γ

)
(55)

as γ →∞, where σ2 , Var
[
W1

µW
− Z1

µZ

]
.

Lemma 1 implies that there exists a constant b1 such that

E[max{τ1(γ), τ2(γ)}] ≤ γ

C
+ g(γ) (56)

for sufficiently large γ. The conditional average blocklength of
the VLSF code can be bounded as follows

E[max{τ1, τ2}] = E[max{τ1(γ), τ2(γ)}] (57)

≤ γ

C
+ g(γ) (58)

= l′ − g(Cl′) + g(Cl′ − Cg(Cl′)) ≤ l′. (59)

Here, (58) holds by (56), and (59) follows by the definition of γ
in (45) and the fact that g(x) is nonnegative and nondecreasing.
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