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ABSTRACT

Carbon based nanoelectromechanical oscillators outperform their predecessors in

many ways. In particular, their extraordinarily high quality factors make them very

promising for sensor applications. To operate the nano oscillators, different kinds

of actuation mechanisms are utilised, for instance direct or parametric resonance.

Nonresonant actuation of the mechanical vibrations can be achieved if the oscilla-

tor is integrated in a resonant LC-circuit or an optomechanical cavity resonator. In

these nonresonant actuation mechanisms, the external field couples to the resonance

properties of the LC-circuit and optomechanical cavity. The resonance frequencies

are typically orders of magnitude higher than the frequencies of the mechanical vi-

brations.

In this thesis, nonresonant actuation of mechanical vibrations by high-frequency

electrical fields are investigated analytically in three different nanoelectromechanical

oscillators. Firstly, I analyse a graphene oscillator which is integrated in an RC-

circuit which lacks the resonance of an LC-circuit. Secondly, an isolated graphene

oscillator where the electrodynamics is determined by the internal properties of the

graphene sheet is considered. Finally, I analyse a movable single-electron quantum

dot in tunnel contact with an electron reservoir.

The simple capacitance, hydrodynamic and tunneling models used to describe

the systems demonstrate the possibility to nonresonantly actuate mechanical vibra-

tions by high-frequency electrical fields. The mechanism is due to the time-delayed

electromechanical feedback when the system is driven above the characteristic fre-

quency of the electronic subsystem. Further, nonlinear dissipation is investigated as

one possible saturation mechanism of the unstable mechanical motion. The actua-

tion of mechanical vibrations of the isolated graphene sheet is particularly interest-

ing. In this system a geometric resonance of the induced charge oscillations and the

vibrational modes seems to allow nonresonant selective actuation of several modes,

despite the fact that the driving field is homogeneous.

KEYWORDS: nanoelectromechanical oscillators, nonresonant, mechanical vibra-

tions, graphene, selective mode actuation
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Chapter 1

Introduction

Basic research, curiosity and convenient coincidence has led to a huge number of

scientific breakthroughs such as the discovery of X-rays and penicillin. All these

examples emphasise the importance of not being too determined on solving a spe-

cific problem and disregard events that do not seem to lead to the stated goal. On the

other hand, theoretical physics is solely speculations without confirming it by ex-

periments. Therefore, theoretical physicists have mainly two tasks. One of them is

to investigate theories and propose new experimental studies of the theoretical find-

ings. The other task is to produce mathematically convenient descriptions which can

explain existing experimental results. Both theoretical and experimental scientists

have to work together in order to overlap the knowledge gap and overcome technical

difficulties.

Another important scientific event was the isolation and experimental character-

isation of graphene; a sheet of carbon, only one atom thick [1]. It was an interesting

breakthrough for two reasons. Earlier theoretical predictions indicated that the two-

dimensional material should be unstable due to thermodynamical fluctuations and

therefore should not exist. The other reason is that graphene exhibits some extraor-

dinary properties with a vast potential for applications. The excellent prospect of

graphene led to the GRAPHENE Flagship Project which aims to bring the new ma-

terial from the research labs to applications in every day life of the inhabitants of our

globe. The following years will likely bring a lot of new fascinating research results

related to graphene and we have an interesting future ahead. However, the focus on

graphene may not narrow our curiosity and exclude other materials. The richness of

today’s technology and societal life comes from combining and hybridising different

materials and sciences. Our present and future success lies in our ability to use the

benefits from diversity and to keep looking for the unexpected.

1.1 Properties of graphene and carbon nanotubes

Graphene is a 2D-material constituted by a single layer of carbon atoms in a honey-

comb lattice with extraordinary properties [2, 3]. Graphene has a very high tensile

strength and stiffness due to the strong sp2-hybridised covalent σ-bonds between
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1 Introduction

Figure 1.1: A graphene nanoelectromechanical oscillators connected to electrodes. It can

be actuated mechanically by applying an ac-gate voltage.

the atoms [4]. However, since graphene is only one atom thick it is very flexible.

The electrical properties of graphene can to a good approximation be deduced from

the p-orbitals perpendicular to the graphene membrane. Tight-binding calculations

for the dispersion of the p-electrons predict linear Dirac cones at each corner of the

Brillouin zone.

The properties of graphene can be drastically modified by wrapping it around

and forming tubes. These tubes are called carbon nanotubes (CNT) and are typically

longer than a micrometer but only a few nm in diameter. CNTs are often referred

to as one-dimensional objects because of the strong quantisation of the electronic

wave functions around the circumference of the tube. A CNT can be either metallic

or semiconducting with a bandgap of ∼ 1 eV, depending on the chiral angle and the

diameter of the tube. Similar to graphene, CNTs have high tensile strength, stiff-

ness and low mass which make them suitable for nanoelectromechanical oscillator

systems.

1.2 Nanoelectromechanical oscillators

Nanoelectromechanical systems are devices which combine mechanical and elec-

tronic properties of its constituent parts at the nanoscale. One common set up is to

suspend graphene sheets or CNTs over a trench where they can vibrate freely. The

clamped parts are connected to electrodes in order to integrate the oscillator into

an electrical circuit. The carbon oscillator can then be actuated and tuned by gate

electrodes, fig. 1.1.

Applications of nanoelectromechanical oscillators take advantage of the extraor-

dinary material properties as well as the high electromechanical coupling in the sys-

tems [5]. The greatest use of carbon based nanoelectromechanical systems will

likely be in sensor applications [6]. As a simplified example, if a molecule ad-

sorbs on the movable part of the membrane its vibrational frequency will be slightly

shifted. This shift can be read out via the electrodes and thereby be used detect
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1.3 Underlying research questions

and measure the mass of the adsorbed particle [7, 8]. Further, the adsorption can

affect the electrical properties of the oscillators which gives more information about

the particle. The information can be combined to determine what kind of particle

was adsorbed. The resulting system is an artificial nose device which could be used

to track hazardous gases. Similar systems could also be used to sense charges [9],

forces [10] and positions [11] at the nanoscale and be used in electrical filters [12]

and transducers [13].

To operate the oscillators, periodic forces of electric or optical origin are utilised

to actuate mechanical vibrations. In many cases, the applied force is in resonance

with the vibrational mode frequency, [5, 14–16]. However, this thesis focuses on a

nonresonant effect. The actuation of a nanomechanical systems is considered to be

nonresonant if the actuation mechanism is independent of the relation between the

applied driving frequency and the vibrational frequency.

An example of this is the shuttle instability [17,18] which is the nanoelectrome-

chanical analogue of the Franklin’s lightning bell. When a movable conducting

particle is situated between two voltage biased electrodes the stationary point of the

particle becomes unstable and starts to shuttle charge between the electrodes. Me-

chanical oscillations of the particle is thereby actuated at its vibrational frequency

although the much slower frequency of the bias voltage is far off-resonance.

In optomechanical devices, nonresonant actuation can be achieved by utilising

the time-delayed radiation pressure [19, 20]. The detuning of the driving frequency

with respect to the optical cavity affects the effective damping of the mechanical

oscillator. This phenomenon was demonstrated for graphene resonators where the

graphene sheet was both cooled and mechanically actuated by a laser [21].

A similar nonresonant phenomenon in nanostructures is achieved if the role of

the optical cavity is replaced with an electrical LC-circuit [22,23]. The resonator can

then be driven by applying a frequency close to the relatively high LC-frequency.

The mechanical vibrational frequency will not be resolved at the sides of the LC-

resonance if the damping rate of the LC-circuit exceeds the vibrational frequency

[23]. The mechanical oscillator can in this case be nonresonantly actuated. In the

opposite limit the electromechanical coupling could be used for resolved sideband

cooling of the mechanical resonator but would then be a resonant phenomenon [24].

1.3 Underlying research questions

The research presented in the papers at the end of this thesis was initiated by the

fundamental question; is it possible to actuate mechanical oscillations in nanoelec-

tromechanical structures nonresonantly at high driving frequencies without utilising

resonant properties of e.g., an optical cavity or resonant external circuit? Paper I

presents such an actuation mechanism for a graphene oscillator integrated as an ele-

ment of an electrical RC-circuit.

The results triggered the question; is it possible to obtain a similar actuation

mechanism utilising the internal electronic properties in an isolated graphene sheet?

According to paper II, the answer to this question is yes.

3



1 Introduction

The results of paper I also raised the question; how is the actuation mechanism

affected if the quantum nature of electrons are pronounced, which often is the case

in nanostructures? In paper III, this question is addressed by investigation of a na-

noelectromechanical system represented by a movable single-level quantum dot.

1.4 Thesis Aim and Outline

The aim of this thesis is to provide the background which motivates the work and to

prepare readers who are new to the field of nanoelectromechanical oscillators to read

the articles. The thesis also serves as a deeper discussion of the physics involved and

the limitations and approximations made.

The following three chapters of the thesis describe the analytical models used in

the the three papers, respectively. After these chapters, the results of the papers are

briefly discussed and compared. Finally, I give an outlook on possible extensions

and future work.
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Chapter 2

Electromechanical interaction in

integrated graphene oscillators

In this and the following chapter I will discuss the models used to describe the elec-

tromechanical interaction in the graphene based oscillators considered in papers I

and II. I will discuss both the mechanical and the electrical subsystems and the in-

teraction between them which leads to the electromechanical feedback coupling.

Under the right conditions, the electromechanical interaction leads to an instability

and exponential growth of the mechanical amplitude. This electromechanical insta-

bility is the main result of paper I. In a physical system the amplitude growth has

to be saturated. One possible candidate for the saturation is nonlinear mechanical

dissipation which will be briefly discussed in the final section of this chapter.

2.1 Integrated graphene oscillator system

The model system consists of a doped graphene sheet suspended over a cavity, fig.

2.1. The sheet is free to perform vertical oscillations and is clamped to an insulating

substrate. An oxide layer creates a resistive link between the graphene sheet and

bulk electrodes, through which electrons can tunnel. Further, a gate electrode is

placed below the structure which can adjust the electrical potential on the movable

part of the graphene sheet. The graphene membrane can therefore be viewed as an

integrated element with the gate and bulk electrodes.

The system exhibits an electromechanical feedback which generates the nonres-

onant actuation phenomenon. When the gate electrode adjusts the electrical potential

on the sheet away from the potential of the bulk leads, a current will flow through

the oxide layer and charge the sheet. When the graphene sheet is charged the elec-

trical field from the gate will exert an unbalanced force on the movable part of the

sheet and it will deflect. The deflection changes in its turn the electrical potential,

and thereby the charge flow to the sheet. By this means there is a feedback on the

mechanical motion. Since the charge response is not instantaneous because of the

resistive link, the feedback is time-delayed.

5



2 Electromechanical interaction in integrated graphene oscillators

Figure 2.1: Schematic of the suspended graphene membrane oscillator. It is separated from

the grounded metallic electrodes by an oxide layer and can perform vertical oscillations in

the trench. The back-gate in the trench induces an electrostatical field on the graphene sheet.

The equivalent circuit is drawn above the sketch.

The analysis of this time-delayed feedback is limited to high-frequency external

driving at the time-scale of the electronic dynamics. The time-scale of the electrody-

namics is assumed to be much shorter than the time-scale of mechanical vibrations.

2.2 Electrodynamics - capacitance model

The electrical subsystem of the graphene membrane will be modelled by the equiv-

alent circuit approach. In this approach the dynamics of the electronic subsystem is

mapped to an electrical circuit which captures the qualitative features of the original

system. This is done by replacing the physical elements of the system with their

electrical counter parts such as resistances and capacitances. For instance, the oxide

layers is modelled as classical resistances.

The electrical properties of the graphene sheet will be disregarded, except that

its a good conductor. This is because the total resistance is assumed to be dominated

by the oxide layers. When an electron tunnels onto the graphene membrane it will

redistribute to cancel potential differences within the sheet. The time it takes for the

charge to redistribute is assumed to be much shorter than the time between tunnelling

events.

The ability of the graphene membrane to store the incoming charge is described

by its capacitance. There is a capacitive coupling between the membrane and the

bulk electrodes CE as well as the gate electrode CG. In the simplest model the capac-

itances only depend on the geometry of the involved parts and the dielectric function

6



2.2 Electrodynamics - capacitance model

of the medium between them. However, the bandstructure of the materials may af-

fect the actual capacitance. When the graphene membrane is biased by the gate volt-

age the emptying or filling of higher energy states affects the total free energy per

electron and therefore gives contributions to the capacitance, called quantum capaci-

tance. The gate capacitance which depends on spatial deflections can be modelled as

the geometrical Cg and quantum Cq capacitances coupled in series C−1
G =C−1

g +C−1
q ,

where the smallest of them dominates the total capacitance. The quantum capaci-

tance is important in structures where the graphene sheet is separated by thin oxide

layers and for very low charge concentrations in the graphene, i.e. close to the Dirac

point [25]. In our considerations the graphene membrane is assumed to be doped

and suspended at a relatively large distance from the gate electrode and the quantum

capacitance will not be taken into account.

A simple model for the geometrical capacitance can then be obtained from

Gauss’s law by modelling the graphene sheet and the gate electrode as a parallel-

plate capacitor Cg = εA/d where ε is the permittivity of the medium, A is the area of

the suspended graphene part and d is the distance between the suspended sheet and

the back-gate. This model assumes the gate electrode and the suspended graphene to

be parallel plates and does not take into account the curvature of the graphene sheet

when it is deflected.

The equivalent circuit is schematically pictured in fig. 2.1. The capacitors and

resistances to the two bulk electrodes have been modelled as a single capacitance CE

and resistance R which does not affect the qualitative analysis. The total capacitance

of the graphene membrane is then C =CE +CG.

When the equivalent circuit is formulated the electrodynamics is obtained by

standard circuit analysis. Whenever a tunnelling event occurs the total charge q on

the membrane immediately divides into one part qE situated at the electrode capaci-

tor and one part qG situated at the gate capacitor

q = qE +qG. (2.1)

Let us denote the potential on the graphene membrane ϕ and the time-dependent

gate voltage ṼG(t) =VG cos(Ωt) which gives the relation

qG =−(ṼG(t)−ϕ)CG. (2.2)

Similarly, the charge on the electrode capacitor relates to the potential difference

between the grounded electrodes and the membrane. When ϕ is altered a current

will flow through the resistance and we have the equation

qE =CEϕ =−RCEq̇. (2.3)

We substitute eq. (2.3) and eq. (2.2) in eq. (2.1) to obtain the dynamical equation

for the total charge

q̇ =− 1

RC

(

q+CGṼG(t)
)

. (2.4)

7



2 Electromechanical interaction in integrated graphene oscillators

2.3 Mechanical motion of suspended graphene

The mechanical motion of the suspended graphene oscillators will be modelled by

continuum elasticity theory. The aim of this section is to reduce the mechanical

degree of freedom to the fundamental flexural mode and describe it as a harmonic

oscillator under the influence of an external force. I also briefly comment upon

nonlinear dynamics in carbon based nanoelectromechanical systems.

Starting from a more general point, the graphene membrane in the suspended

part can deflect in two dimensions within the plane of the graphene sheet and one

dimension out-of-plane. Due to nonlinear interaction the in-plane and out of plane

motion is coupled. This situation was recently analysed including both nonlinear

stretching and bending energies in the Föppl-von Kármán equations [26]. The details

of the analysis lies outside the scope of this thesis but I will briefly discuss the main

assumptions.

To reduce the complexity of the dynamics, two approximations will be made.

The first approximation is that the in-plane motion follows the out-of-plane mo-

tion adiabatically. This is because the lowest frequencies of the in-plane vibrational

modes are typically on a much faster time-scale than the out-of-plane flexural mode

frequencies. A slight damping of the in-plane motion will then quickly drive the in-

plane displacement into equilibrium with the out-of-plane deflection. The dynamics

is then determined by the out-of-plane motion. Further, nonlinear effects can be

neglected for sufficiently small deviations from the flat equilibrium position.

The mechanical motion of the vertical deflection w(x, t) is in these approxima-

tions described by the differential equation

ρg
∂2w(x, t)

∂t2
+κ

∂4w(x, t)

∂x4
−T0

∂2w(x, t)

∂x2
= F(x, t) (2.5)

with 2D-mass density of graphene ρg ≈ 0.75 mg/m2 [27], bending rigidity κ, built-in

tension T0 and external pressure F(x, t). A static external force can tune the vibra-

tional frequency of the membrane by enhancing the tensile stress.

One useful way to describe the motion in linear systems, as the one described by

eq. (2.5), is by its independent vibrational modes. These are found by the following

procedure. The homogeneous problem F(x, t) = 0 can be solved by separation of

variables w(x, t) = a(t)Φ(x) where the time dependent problem is solved by the

harmonic function a(t)= aexp(iωnt). The resulting equation for the spatial function

is an eigenvalue problem on the form

κ

ρg

∂4Φ(x)

∂x4
− T0

ρg

∂2Φ(x)

∂x2
= ω2

nΦ(x) (2.6)

with eigenfrequencies ωn. The boundary conditions corresponding to the clamping

reduces the ωn to a discrete set for which solutions to eq. (2.6) exist. It is benefitial

to avoid narrow beam oscillators since they exhibit spurious edge modes which en-

hances the dissipation [28]. These solutions are the orthogonal spatial mode shapes

8



2.3 Mechanical motion of suspended graphene

Φn of the vibrational modes. A general vertical deflection can be written as a super-

position of all these independent harmonic modes

w(x, t) =
∞

∑
n=0

ζn(t)Φn(x), (2.7)

with amplitudes ζn(t) which oscillate with frequencies ωn.

Eq. (2.6) can be simplified by the membrane approximation in which the bending

regidity is neglected. The membrane approximation is valid in most experimental

situations. This is because graphene oscillators are often under the influence of a

built-in tensile stress T0 corresponding to a 1% tensile strain of the graphene sheet

[28]. Under this condition, the ratio between the bending and stretching energies are

small due to low bending rigidity of graphene κ ≈ 1.5 eV [27].

Finally, the mechanical vibrations of the oscillator are assumed to be fully char-

acterised by the fundamental flexural mode Φ0(x) and its amplitude ζ0(t). Although

other modes might be excited as well, they will only couple weakly to the driving

field due to the mismatch between the spatial profiles of the higher vibrational modes

and the instantaneously redistributed charge on the membrane. The mechanical mo-

tion can therefore be modelled as a single mode driven harmonic oscillator.

2.3.1 Harmonic oscillator

The harmonic oscillator is probably one of the most well known mathematical sys-

tems used to model physical features in nature. The reason for this is both that it

can be solved exactly and that it has wide applicability. The dynamics in the vicin-

ity of an equilibrium point of a one dimensional system is well approximated by a

harmonic oscillator. The only exceptions are strictly nonlinear situations where the

quadratic term in the expansion of the potential about the equilibrium point vanishes

identically.

2.3.2 Anharmonic oscillator

If the oscillator is actuated to larger amplitudes away from the equilibrium point,

nonlinear dynamics cannot be neglected and the motion will be anharmonic. One of

the most common models for nonlinear systems is the Duffing oscillator

ẍ+
ωm

Q
ẋ+ω2

mx+δ
x

l
+η

(x

l

)2

x =
F

m
, (2.8)

where the nonlinearity becomes important at deflections of the order of l. The non-

linear Föppl-von Kármán equations have no independent stationary solutions on the

form as in eq. (2.7). Instead the dynamics can be described by coupled Duffing os-

cillators exhibiting mode coupling [26]. For a deeper discussion of nonlinear effects

in oscillating systems the reader is encouraged to look into reference [29].

The origin of the nonlinear terms can be intrinsic such as the geometrical non-

linearity in suspended graphene oscillators. However, nonlinear terms of this kind

9



2 Electromechanical interaction in integrated graphene oscillators

will not be included in the models used in any of the papers since they do not qual-

itatively affect the phenomenon of interest. Another source of nonlinear dynamics

arise from nonlinear external forces. This is a type of nonlinearity which will show

up in the electromechanical coupling presented below. However, only the response

to the linearised equations will be analysed.

2.4 Coupled electromechanical motion

If the mechanical and electrical subsystems do not interact their dynamics can be

treated independently. The interesting physics, and one great advantage of nano-

electromechanical systems, comes from the interaction between the two degrees of

freedom.

The charge dynamics described by eq. (2.4) is coupled to the mechanical sub-

system since the gate capacitance changes with the vertical deflection x of the mem-

brane. A more precise formulation of the charge dynamics is therefore

q̇ =− 1

RC(x)

(

q+CG(x)ṼG(t)
)

. (2.9)

which is a nonlinear equation in x. Let us assume the deflections to be small x/d ≪ 1

and expand the parallel-plate gate capacitance CG(x) = ε0A/(d − x) ≈ CG(0)(1+
x/d +(x/d)2). For convenience the equations are scaled to dimensionless time τ =
t/(RC(0)), charge Q = q/(VGCG(0)), driving frequency Ω̃ = RC(0)Ω, deflection

X = x/d and damping γ̃ = RC(0)γ. The linearised version of eq. (2.9) about X = 0

becomes

Qτ ≈−Q− cos(Ω̃τ)+
(

ηQ− (1−η)cos(Ω̃τ)
)

X , (2.10)

with capacitance ratio of the gate capacitance η =CG(0)/C(0) and derivative nota-

tion Qτ = ∂Q/∂τ. This equation describes the influence of the mechanical deflection

on the charge dynamics.

On the other hand, the mechanical motion of the membrane will be affected by

the charge on the movable part. When the freely vibrating part of the graphene is

charged the electrical field from the gate exerts a force on the charges. The force can

be obtained by differentiating the stored energy with respect to x while keeping the

electrical potentials constant [30]

Xττ +
ω̃m

Q
Xτ + ω̃2

mX =
1

2m

∂CG(x)

∂x

(

ϕ−ṼG(t)
)2
. (2.11)

Since ϕ = (CG(x)ṼG(t)+ q)/C(x) depends on q the mechanical motion is coupled

to the charge dynamics.

2.5 Instability of mechanical motion

The electromechanical coupling presented in eqs. (2.10) and (2.11) exhibits rich

dynamics also when linearised with respect to X . In this section, I will present three

10



2.5 Instability of mechanical motion

different instability mechanisms exhibited by this coupling which can be utilised to

actuate mechanical oscillations. Two of the mechanisms are direct resonance and

parametric instability which are very well known resonant phenomena. The third is

the nonresonant phenomenon which is the main focus of this thesis. To analyse these

mechanisms let us assume the applied field to be small ε=CG(0)V
2
G/md2ωmνRC(0)≪

1, with νRC(0) = 1/(RC(0)).

2.5.1 Resonant instability mechanisms

To see the resonant phenomena the analysis can be simplified by the following ap-

proximation: In most applications and experimental situations, the mechanical vi-

bration is typically on a much slower time-scale than the electrodynamics, in this

case ωm ≪ νRC(0). If a driving field with frequency Ω ∼ ωm is applied, the fast

electronic dynamics will relax quickly to its stationary state where q̇ = 0. At every

point in time q ≈−CG(x)ṼG(t) and the potential on the sheet ϕ = 0. This means that

the feedback on the mechanical motion via the electrodynamics is neglected. Taking

ϕ = 0 in eq. (2.11) and linearising with respect to X reduces the mechanical motion

to

Ẍ + γẊ +ω2
mX =

CG(0)V
2
G

4md2
(1+2X)(1+ cos(2Ωt)), (2.12)

which is a forced damped oscillator. Due to the linearity of eq. (2.12) the force terms

can be considered independently. The interesting forces are those varying in time

since they can pump energy into the system. The force term proportional to cos(2Ωt)
gives direct resonance [31] while X cos(2Ωt) leads to parametric resonance [31].

These actuation mechanisms are briefly described in Appendix A and B.

2.5.2 Nonresonant instability mechanism

The third instability is a nonresonant phenomenon meaning that the condition for the

instability is independent of the relation between the driving frequency Ω and the

mechanical frequency ωm. The nonresonant instability is an effect which relies on

a time-delayed feedback mechanism, in contrast to the resonant phenomena studied

above. The instability is obtained when the driving frequency is comparable to the

characteristic time-scale of the electrodynamics and can be seen as a consequence of

the time-delay in the electronic subsystem. To analyse the nonresonant instability the

adiabatic approximation of the electrodynamics has to be relaxed since it assumes

instantaneous response.

An integral expression for the charge can be obtained from eq. (2.10) by dividing

the charge into two parts Q = Q0+Q1. The zeroth-order part Q0 solves the problem

when X ≡ 0. It takes the value Q0 =−cos(Ω̃τ−ϑ)√
1+Ω̃2

, where tan(ϑ) = Ω̃. The correction

11



2 Electromechanical interaction in integrated graphene oscillators

Q1 takes into account the linear term in X and becomes

Q1 =−
∫ 0

−∞
dτ′eτ′

[

η
cos

(

Ω̃(τ′+ τ)−ϑ
)

√

1+ Ω̃2
+(1−η)cos

(

Ω̃(τ′+ τ)
)

]

X(τ′+ τ).

(2.13)

Both charge components oscillate at the time-scale of the applied electrical field.

Inserting this expression for Q in eq. (2.11) and linearising with respect to X gives

the qualitative structure

Xττ +
ω̃m

Q
Xτ + ω̃2

mX = K1 +K2X +K3 cos(2Ω̃τ)+K4X cos(2Ω̃τ)

+K5 cos(Ω̃τ)Q2, (2.14)

where all coefficients Ki are proportional to the small parameter ε. The static term

K1 adjusts the equilibrium position of the oscillator from 0 to Xeq = K1/ω̃2
m. The

second term renormalises the frequency of the mechanical oscillator ω̃2
m → ω̃2

m−K2.

The direct and parametric terms K3 and K4 are far off-resonance ωm/Ω ≪ 1 and

will therefore be disregarded. The term K5 is the interesting one giving rise to the

nonresonant instability mechanism.

The term K5 comes from the applied field acting on the time-delayed charge

response Q1. The rapidly oscillating external field mixes with rapid oscillations of

Q1. The result is slowly oscillating terms at the time-scale of X which carries the

electromechanical feedback. The rapidly oscillating terms can be disregarded since

they are far off-resonance [31]. For the sake of clarity, we will disregard the trivial

static and renormalising terms since they will not change the qualitative result.

In that case, the resulting equation takes the form

Xττ + γ̃Xτ + ω̃2
mX = K

∫ 0

−∞
dτ′ eτ′ cos(Ω̃τ′)X(τ+ τ′), (2.15)

K = η
1+(1−η)2Ω̃2

1+ Ω̃2

CG(0)
(

RC(0)VG

)2

2md2
(2.16)

where X is a function varying slowly in comparison with cos(Ω̃τ) and Ω̃ ∼ 1. To

analyse the stability of X we adopt the Ansatz X = exp(λτ), with complex frequency

λ which has to satisfy the dispersion equation

λ2 + γ̃λ+ ω̃2
m = K

1+λ

(1+λ)2 + Ω̃2
. (2.17)

This is a fourth order equation which describes the coupling between the mechanical

and electronic subsystems. According to the assumptions made this far, the restric-

tions 1 ∼ Ω̃ ≫ ω̃m ≫ γ̃ ∼ K apply. To zeroth order in the small parameter K the

complex frequency λ0 =±iω̃m. Since |λ0| ≪ 1 we expand the right hand side of eq.

12



2.6 Saturation mechanism

(2.17) to linear order in λ and the resulting second order equation in λ gives

λ =−1

2
γ̃eff ± iω̃ (2.18)

ω̃ =

√

ω̃2
m − K

1+ Ω̃2
, γ̃eff = γ̃+K

1− Ω̃2

(

1+ Ω̃2
)2
. (2.19)

Eq. (2.18) describes damped oscillations with frequency ω̃ and effective damp-

ing γ̃eff. The interesting feature here is that the effective damping might become

negative when Ω̃ > 1. This happens if the coupling strength K is strong enough to

overcome the intrinsic mechanical damping K (Ω̃2−1)/(1+ Ω̃2)2 > γ̃. Thus, under

these conditions the amplitude of mechanical oscillation is not damped but grows

exponentially and the mechanical oscillation is unstable. Since the condition for the

instability is independent of the mechanical frequency, the presented electromechan-

ical coupling gives rise to a nonresonant mechanical instability.

2.6 Saturation mechanism

When a physical oscillator system becomes unstable, the amplitude will saturate due

to nonlinear effects. At the saturation point of the amplitude, the rate at which energy

is pumped into the system equals the rate of dissipation. When the saturation point

is reached the system stabilises in a stationary state. There are two principal ways

in which the saturation point can be reached. Either the efficiency of the pumping

mechanism decreases with increasing amplitude or the damping processes increases

with amplitude, fig. 2.2.

2.6.1 Nonlinear potential

Instabilities due to resonant pumping as in parametric resonance, the amplitude will

saturate due to e.g. a Duffing nonlinearity described in eq. (2.8). The reason for

the saturation is that the increased amplitude of oscillation results in an effective

mechanical frequency ω ≈ ω2
m +η〈(x/l)2〉, with time average 〈...〉, which deviates

further and further from ωm. Hence, the resonance condition will be violated with

increasing amplitude and the efficiency of the pumping mechanism will decrease,

corresponding to the solid lines in fig. 2.2.

2.6.2 Nonlinear dissipation

In case of a nonresonant pumping mechanism the shift of the mechanical frequency

does not affect the pumping efficiency. Therefore, the saturation mechanism has to

be of another kind. One possible mechanism of saturation for nonresonant pumping

is nonlinear dissipation. One simple way to model nonlinear dissipation is to replace

γx →
(

γL + γNL

(x

l

)2
)

x (2.20)

13



2 Electromechanical interaction in integrated graphene oscillators

0 1 2 3
0

1

2

3

4

5

Amplitude of oscillations A

R
at
e
of

en
er
gy

ch
an

ge
Ė
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Figure 2.2: Schematic description of saturation mechanisms of systems in the unstable re-

gion. The amplitude of oscillations can either saturate due to a decreasing efficiency of the

pumping mechanism (solid lines) or an enhanced damping mechanism (dashed lines).

in the equation of the mechanical dynamics. At small amplitudes x ≪ l the linear

damping dominates but when the amplitude increases the nonlinear dissipation in-

creases the efficiency of the damping mechanism. This situation is schematically

pictured by the dashed lines in fig. 2.2. The stationary amplitude can be approxi-

mately calculated by perturbation theory [31].

Nonlinear dissipation as in eq. (2.20) has been used to theoretically model ex-

perimental results for graphene and CNT oscillators [32]. The physical origin of

nonlinear dissipation is still unclear and might depend on the specific device. Some

of the candidates for nonlinear dissipation include nonlinear clamping losses, sliding

between the carbon oscillator and the substrate, nonlinear phonon-phonon interac-

tion and interaction between in-plane and out-of-plane vibrations [33].
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Chapter 3

Electromechanical interaction in

isolated graphene oscillators

In the second article the model system was slightly adjusted, fig. 3.1. The system

simply consists of a large doped graphene sheet suspended over a relatively narrow

trench and there are no bulk electrodes. The gate electrodes still introduce the same

kind of feedback mechanism to the mechanical vibration but are at a larger distance

from the graphene membrane. The capacitive coupling between the membrane and

the gates is therefore disregarded. The external electrical field is assumed to be

polarized perpendicularly to the graphene sheet and to be spatially homogeneous.

The dynamics is assumed to be homogeneous in the y-direction.

One important difference in comparison with the integrated resonators is that the

electronic transport now is purely determined by internal properties of the graphene

sheet and not by an external circuit. The transport properties of the graphene mem-

brane may in some cases be affected by the substrate to which it is clamped. How-

ever, the graphene sheet is assumed to be isolated in the sense that the conductivity

of the sheet is unaffected by the substrate of the suspension.

3.1 Electrodynamics - conductivity of graphene

The electrodynamics of the graphene sheet is described by a simple semiclassical

hydrodynamic model. Firstly, the continuity equation

∂

∂t
ρ(x, t) =− ∂

∂x
j(x, t) (3.1)

assures conservation of charge density ρ(x, t), and j(x, t) is the current density. Fur-

ther, an electrical field E||(x, t) along the membrane induces a charge flow which is

assumed [34] to be related by

∂

∂t
j(x, t)+ν j(x, t) =

1

L
E||(x, t),

1

L
=

e2vF

√
n

~2π
, (3.2)

where ν is the relaxation frequency, n is the surface density of electrons and vF is the

Fermi velocity of graphene.
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3 Electromechanical interaction in isolated graphene oscillators

Figure 3.1: Cross-section of an infinite graphene sheet suspended over a trench with width

l. The membrane can deflect vertically in the trench.

There is one external and one internal contribution to the electrical field along

the sheet E||(x, t) = Eext(t,x)+Eint(t,x). The external component is induced by the

external gate field E(t) when the membrane is deflected Eext(t,x) = E(t)∂u(x, t)/∂x.

The internal component is due to spatial variations in the charge density which gen-

erate a non-local interaction of the charge according to

Eint(t,x) =
1

2πε0
P

∫ ∞

−∞

ρ(x1, t)

x− x1
dx1 (3.3)

with vacuum permittivity ε0 and P
∫

denotes the principal value of the integral. The

internal field gives rise to a restoring force which can be viewed as a self-capacitance

of the membrane.

Combining eqs. (3.1) and (3.2) gives an equation for how the charge density

responds to an external field

∂2

∂t2
ρ(x, t)+ν

∂

∂t
ρ(x, t)+

1

2πε0L

∂

∂x
P

∫ ∞

−∞

ρ(x1, t)

x− x1
dx1 =−E(t)

L

∂2

∂x2
u(x, t). (3.4)

The charge waves generated by the homogeneous external electrical field is de-

scribed by eq. (3.4). The charge waves can be thought of as to be generated by

two point sources at the trench edges since the second derivative of the vibrational

profile has sharp maxima at the clamping points, see right hand side of eq. (3.4).

The induced charge waves interfere constructively in the suspended region, at cer-

tain frequencies of the external field, establishing geometrical resonance with the

vibrational modes above the trench.
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3.2 Electromechanical feedback on mechanical oscillation

3.2 Electromechanical feedback on mechanical oscil-

lation

The mechanical motion of the membrane is again described by eq. (2.5) with pres-

sure F = E(t)ρ(x, t). For the isolated oscillator, several vibrational modes will be

considered. This is because the induced space variations of the charge distribution

are on the length scale l. The equations for the different mechanical modes are ob-

tained by projecting eq. (2.5) on the different modes Φn(x), here indicated by 〈...〉,

ζ̈n(t)+ γζn(t)+ω2
nζ(t) =

E(t)

ρg
〈Φn(ξ),ρ(ξ, t)〉. (3.5)

The frequencies can conviniently be expressed by ωn = ω2
MK2

n . The frequency is

given by ωM = π
√

T0/ρm/l and the wave numbers Kn are obtained from

(

− 1

π2

∂2

∂ξ2
+b

∂4

∂ξ4

)

Φn(ξ) = K2
n Φn(ξ). (3.6)

The feedback in eqs. (3.5) and (3.4) are analysed in a similar manner as the

feedback in chapter 2 by writing an integral expression for the charge density and

substitute it into eq. (3.5). For details of the procedure the reader is referred to paper

III. The analysis leads to the perturbed complex frequencies

ωn = ωM

[

Kn +
ε2

Kn
Λn(Ω̃)+

i

2

(

γ

ωM
+

ε2ω̃M

Kn
ηn(Ω̃)

)]

Λn

(

Ω̃
)

=
∫ ∞

−∞
Λ(Ω̃,q)wn(q)dq,

ηn

(

Ω̃
)

=
∫ ∞

−∞
η(Ω̃,q)wn(q)dq. (3.7)

where ν̃ = ν/ωp, ω̃M = ωM/ωp and Ω̃ = Ω/ωp are dimensionless frequencies and

coupling constant ε = E0

√

ε0/2πlρg/ωM. The functions Λ(Ω̃,q) and η(Ω̃,q) are

given by

Λ(Ω̃,q) = 1
2

Ω̃2−|q|
(|q|−Ω̃2)

2
+ν̃2Ω̃2

(3.8)

η(Ω̃,q) =−ν̃
(|q|+Ω̃2)2−ν̃Ω̃2(4Ω̃2+ν̃2)
(

(|q|−Ω̃2)
2
+ν̃2Ω̃2

)2 (3.9)

and wn(q) = (πq)2|〈eiπqx/l,Φn(x)〉|2. An interpretation of the influence of the elec-

tromechanical coupling on the frequencies will be discussed in chapter 5.
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Chapter 4

Electromechanical interaction in

movable quantum dot systems

Two classical models describing the nonresonant instability mechanism in graphene

based electromechanical oscillators were introduced in chapters 2 and 3. This chap-

ter introduces a quantum mechanical model of a movable single-electron quantum

dot. In such systems the quantum nature of electrons are well pronounced and the

charge on the oscillator can no longer be described as a classical quantity.

4.1 Quantum dynamics

One of the most famous equations in physics is the Schrödinger equation which de-

scribes how the state of a quantum system evolves over time. The time evolution

is determined by the Hamiltonian Ĥ of the system which is a hermitian quantum

operator corresponding to the total energy of the system. If the initial quantum state

is known the succeeding state at a later time can be predicted. However, when a

physical quantity is measured, the result can in general not be predicted with cer-

tainty. This can only be done if the measured quantum state happens to be in an

eigenstate of the observable which corresponds to the physical quantity. In the other

more common situation only the expectation value of the outcome can be predicted.

If the system is initialised in exactly the same way and the experiment is carried

out several times the mean value of the measured results will approach the predicted

expectation value. However, every individual measurement can only yield an eigen-

value of the observable.

In many cases the initial quantum state is not known because of the complexity

of the system. A more general and useful formalism in this situation is to use the

density operator ρ̂. The density operator is a quantum mechanical operator which

describes the state of the system. The advantage is that the density operator can not

only describe the evolution of a pure state, as in the Schrödinger formalism, it can

also describe mixed states. The time evolution of the density operator is given by
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4 Electromechanical interaction in movable quantum dot systems

the quantum Liouville equation

i~
∂

∂t
ρ̂ =

[

Ĥ, ρ̂
]

(4.1)

which can be derived from the Schrödinger equation. The expectation value of a

physical quantity corresponding to the operator Â is evaluated by taking the trace

over the observable weighted by the density operator

〈Â〉= Tr(Âρ̂). (4.2)

Another advantage with the density operator formalism is that we, in a neat way,

can take into account special types of interactions with the environment which con-

tains a huge amount of degrees of freedom. The idea is to reduce the dynamics of

the total density operator to the relevant degrees of freedom. The interaction with

the environment can then be taken into account via superoperators. One example is

the Lindblad superoperator which describes linear dissipative coupling to an envi-

ronmental bath.

In many situations it is useful to view the total quantum system as consisting

of several subsystems, in our case the mechanical and electrical subsystems. The

environment which is a third subsystem is taken into account by the superoperator

approach. If the subsystems are separated with no interaction the density operator

can be written as a product state of the subsystems ρ̂tot = ρ̂1 ⊗ ρ̂2. However, if there

is an interaction between the subsystems the density operator is in general not in a

product state but in an entangled state of the two subsystems. Entanglement is a pure

quantum mechanical phenomenon with no classical analogue. However, entangled

states dephases and decays due to the coupling between the quantum system and

the environment. This is the main reason for why many quantum phenomena are

’washed out’ at the macroscopic scale.

4.2 Hamiltonian of the system

The system under consideration is a movable single-electron quantum dot (QD), fig.

4.1. It is assumed to be in tunnel contact with grounded bulk electrodes with contin-

uous density of electronic states. The dot is suspended and may perform oscillations

in the vertical direction between the gate electrodes. An ac-electrical field is applied

between the gate electrodes which adjusts the electrical potential on the QD if the

QD is deflected from the flat position. The potential difference between the QD and

the bulk electrodes will alter the charge occupation on the QD. At the same time

the electrical field will exert a vertical force on the charged QD influencing the me-

chanical motion. Hence, there is an electromechanical feedback in the system, very

similar to the feedback studied in chapters 2 and 3.

4.2.1 Mechanical Hamiltonian

For the mechanical dynamics the same procedure as in chapter 2 could formally be

performed for a quantum mechanical system to find the eigenmodes of vibrations.
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4.2 Hamiltonian of the system

Figure 4.1: The QD on a suspended CNT is free to move vertically. An ac-voltage ap-

plied to the dark grey gate electrodes introduces an electromechanical coupling between the

mechanical vibration and the electronic subsystem. The black bars indicate electronic states.

However, for simplicity the mechanical dynamics will be described as a quantum

mechanical harmonic oscillator.

The dynamics of the harmonic oscillator is characterised by the Hamiltonian

Ĥm = ~ωmĉ†ĉ, (4.3)

with bosonic raising and lowering operators ĉ† and ĉ, respectively. These opera-

tors increase and decrease the number of vibrational quanta with energy ~ωm. The

raising and lowering operators relate to the position and momentum operators as

x̂ = a0

(

ĉ† + ĉ
)

, p̂ = ima0ωm

(

ĉ† − ĉ
)

(4.4)

where a0 =
√

~/(2mωm) and m is the effective mass of the oscillator. The quantity

a0 =
√

〈x̂2〉 is the amplitude of zero-point fluctuations in the ground state of the

oscillator.

4.2.2 Electronic tunnelling Hamiltonian

The electronic subsystem consists of the single-level quantum dot, the bulk elec-

trodes and the tunnel coupling between them. The ac-electrical field is assumed to

consist of a large amount of photon quanta and to be unaffected by absorption and

emission from the system. Therefore, the ac-field will only show up as a classical

coupling field in the electromechanical interaction.

A quantum dot is a physical object which exhibits quantum mechanical proper-

ties. It is usually made of a semiconducting material at the length scale of typically

10 nm. Due to the spatial confinement the energy levels of the system are separated,
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4 Electromechanical interaction in movable quantum dot systems

Figure 4.2: The semiconducting CNT can be tuned into a QD by locally applying a dc-

voltage on the gate electrodes. The conduction band can by this means be lowered below

the Fermi level of the bulk electrodes which creates a single electron confinement.

manifesting the quantum nature of the object. It is very improbable that the QD is

populated by two electrons simultaneously, because of the huge Coulomb energy

the confinement would lead to. There are many different realisations of single-level

quantum dots. The picture to have in mind here is a suspended carbon nanotube

(CNT) clamped to a conducting substrate [5], fig. 4.2. Due to the effects discussed

above the CNT is assumed to only be occupied by a maximum of one electron at a

time. The energy of the state is denoted ε0 and the state corresponds to the creation

and annihilation operators d̂† and d̂, respectively.

The conducting substrate serves as a reservoir for electrons which can tunnel to

and from the QD. Surface effects will be neglected and the reservoir will be treated as

a bulk electrode with density of states ν. The dynamical processes which take place

in the system is assumed to occur only in the close vicinity of the Fermi energy EF ∼
ε0 of the bulk electrodes, due to well separated energy scales. The density of states

ν = ν(EF) is therefore approximated to be constant. The creation and annihilation

operators which correspond to the bulk state |ε〉 with energy ε are denoted l̂
†
ε and l̂ε,

respectively.

The bulk states are coupled to the dot state via quantum-tunnelling transitions.

Tunnelling processes can be described by terms such as T d̂† l̂ε and its hermitian

conjugate, where T is a measure of the coupling strength. It represents the energy

’gained’ when the electron delocalises between the coupled states. The tunnelling

strength T is a characteristic of the spatial overlap between the involved wave func-

tions in the uncoupled systems. However, for simplicity also T is assumed to be

constant. The operator d̂†l̂ε will annihilate an electron in the state |lε〉 and create an
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4.2 Hamiltonian of the system

electron in the state |d〉. In total the number of electrons is conserved. If the state |ε〉
is empty or if |d〉 is already populated the term is annihilated as a definition of the

fermionic operators.

The Hamiltonian of the electronic subsystem which describes the bulk elec-

trodes, the single quantum dot and the tunnel coupling takes the form

Ĥel =

∫
dε̃νε̃l̂†

ε l̂ε + ε0d̂†d̂ +νT

∫
dε̃
(

l̂
†
ε̃ d̂ + l̂ε̃d̂†

)

. (4.5)

The combination d̂†d̂ can be viewed as probing if the fermionic state |d〉 is popu-

lated, by annihilating it and creating it again adding the energy ε0 to the total energy.

If the state |d〉 is empty the term annihilates and gives zero contribution to the total

energy.

Due to the tunnelling term the states |ε〉 and |d〉 will no longer be eigenstates

of the electronic subsystem but will hybridise into a new set of eigenstates of the

coupled system. The diagonalised form of the Hamiltonian (4.5) is

Ĥel =
∫

dενεψ̂†
εψ̂ε, (4.6)

with creation (annihilation) operators of the hybridised Fermi sea ψ†
ε (ψε) corre-

sponding to the level with energy ε. The density of states in the hybridised system is

taken to equal ν since the single-level state only gives a minor correction. The rate

Γ = πT 2ν/~ is the tunnelling frequency between the dot and electrodes. It describes

the characteristic time an electron survives on the QD before it relaxes to the bulk

electrodes.

4.2.3 Electromechanical interaction Hamiltonian

In most situations, as in our model, the interesting physics is governed by the in-

teraction between the subsystems. With zero external electrical field the mechanical

and electrical Hamiltonians fulfil [Ĥm, Ĥel] = 0 meaning that the subsystems are non-

interacting and can be analysed separately. But when the electrical field is turned on,

the spatial position of the QD will determine the energy of the dot state relative to the

bulk electrodes. If the dot state is deflected from the flat position it will correspond

to a shift in the energy of the state according to

ε0d̂†d̂ → (ε0+ eE(t)x̂)d̂†d̂ (4.7)

where E(t) = E cos(Ωt) is the electrical field between the gate electrodes. The un-

perturbed term ε0d̂ † d̂ is taken into account by eq. (4.6). The perturbation introduces

an electromechanical coupling in the Hamiltonian

Ĥint = eE0a0 cos(Ωt)(ĉ†+ ĉ)d̂†d̂. (4.8)

The dot operators can be expressed in the diagonalised basis according to

d̂† =
∫

dεb(ε)ψ̂†
ε, b(ε) = ν

T

ε− ε0+ i~Γ
. (4.9)

The dynamics of the electromechanical system is governed by its total Hamilto-

nian Ĥ = Ĥm+ Ĥel + Ĥint together with the dissipative coupling to the environment.
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4 Electromechanical interaction in movable quantum dot systems

4.2.4 Dissipation mechanisms

As mentioned in the beginning of this section, it is in many cases possible to describe

the interaction with the environment by superoperators. Dissipative couplings to the

environment will be considered both for the bosonic mechanical subsystem as well

as for the fermionic electronic subsystem.

Dissipation in mechanical subsystem

One of the most common dissipation operators in bosonic systems is the Lindblad

superoperator

LL(ρ̂) = γL

(

(n̄+1)

(

ĉρ̂ĉ† − 1

2
{ĉ†ĉ, ρ̂}

)

+ n̄

(

ĉ†ρ̂ĉ− 1

2
{ĉĉ†, ρ̂}

))

(4.10)

with coupling strength γL, average number of bosons in the thermal bath n̄ given by

the Bose-Einstein distribution and anti-commutator {Â, B̂} = ÂB̂+ B̂Â. The Lind-

blad superoperator can be derived from Liouvillian dynamics of the total system

fulfilling the Liouville eq. (4.1) [35]. The Lindblad superoperator describes dissipa-

tive single-quanta processes where one vibron is added or annihilated. If no external

forces bring the subsystem out of equilibrium it will thermalise due to these pro-

cesses and adjust to the temperature of the environmental bath. Such single-vibron

interaction gives rise to linear dissipation of the mechanical motion with respect to

the amplitude of actuation.

Multi-vibron processes can be described by the superoperator [36]

LNL(ρ̂)= γNL

(

(n̄+1)

(

ĉĉρ̂ĉ†ĉ† − 1

2
{ĉ†ĉ†ĉĉ, ρ̂}

)

+ n̄

(

ĉ†ĉ†ρ̂ĉĉ− 1

2
{ĉĉĉ†ĉ†, ρ̂}

))

(4.11)

with coupling strength γNL. It describes processes where two vibrons are either

created or annihilated at the same time. Multi-vibron processes give rise to nonlinear

dissipation of the mechanical motion with respect to the amplitude of actuation.

Further, off-diagonal elements in the density operator are assumed to dephase on a

very short time scale.

Dissipation in electronic subsystem

For the electronic subsystem no explicit form of the dissipation will be considered.

Instead, the electronic subsystem is assumed to only be slightly perturbed from its

equilibrium. Internal processes is assumed to quickly force the electronic subsystem

back to equilibrium at some temperature T whenever its distribution is perturbed.

This approximation allows for the separation of the density operator into a product

state ρ̂(t) = ρ̂m(t)⊗ ρ̂eq of the mechanical density operator ρ̂m and the equilibrium

electronic density operator ρ̂eq, [Ĥel, ρ̂eq]. This is known as the Born approximation.
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4.3 Dynamics of the pumping mechanism

4.3 Dynamics of the pumping mechanism

The electromechanical interaction in the system may lead to a pumping mechanism

of mechanical vibrations. To see this, let us investigate the quantum dynamics of the

coupled system governed by the dissipative Liouville equation

i~
∂

∂t
ρ̂ =

[

Ĥm+ Ĥel + Ĥint, ρ̂
]

+ i~(LL(ρ̂)+LNL(ρ̂)). (4.12)

The analysis of this equation will be limited to high-frequency driving of the electri-

cal field Ω ∼ Γ ≫ ωm. The dissipative terms drives the mechanical density operator

towards its equilibrium distribution at the temperature of the mechanical environ-

mental bath Tm. On the other hand, the external driving which couples the mechan-

ical and electrical dynamics induces processes which drives the system away from

the equilibrium. The possible transition processes from the interaction term

Ĥint =
eEa0

2

(

eiΩt + e−iΩt
)

(ĉ†+ ĉ)

∫
dε

∫
dε′ν2 T 2

(ε− ε0 + i~Γ)(ε′− ε0 − i~Γ)
ψ̂†

εψ̂ε′.

(4.13)

are schematically pictured in fig. 4.3.

To analyse the transitions that are induced by the electromechanical coupling, let

us at first assume the hybridised Fermi sea to be at zero temperature T = 0. If so, all

electronic states below the hybridised Fermi surface EF is populated and all states

above the surface are empty. In this case only processes with stimulated absorption

from the driving field are possible since each transition has to conserve energy and

Γ ≫ ωm. During the stimulated absorption process one electron in the hybridised

Fermi sea is annihilated by ψ̂ε′ and recreated above the Fermi sea surface in an

empty state by ψ̂ε. Simultaneously, one vibrational quantum is either annihilated

by ĉ or created by ĉ†. If the temperature of the hybridised Fermi sea is increased

T > 0, the occupation probability near the Fermi sea level is smeared. This opens

transition channels for stimulated emission of electromagnetic quanta back to the

driving field. These processes are reversed with respect to the electronic subsystem

but still involve both creation or annihilation of vibrational quanta.

Since the interaction changes the number of vibrational quanta N , it might give

rise to an instability of the mechanical subsystem depending on the rates of the

different processes. In Appendix C these rates are derived

Γ±ωm

±Ω =
(eEa0)

2

2π~2Γ

∫
dεdε′ν2nf(ε)

(

1−nf(ε
′)
) (~Γ)3δ(ε′− ε±~Ω±~ωm)

|εα − ε0 + i~Γ|2 |ε′− ε0 + i~Γ|2
,

(4.14)

where nf is the fermi dirac distribution. The pluses refer to creation of vibrational

quantum, in the driving field and mechanical vibration, respectively. Analogously, a

minus sign refers to the decrease of one quantum of the relevant oscillation.

The rate equation for the stationary part of the density operator also derived in

Appendix C, takes the form

Γ−
(

ĉρ̂stĉ
† − ĉ†ĉρ̂st

)

+Γ+
(

ĉ†ρ̂stĉ− ĉĉ†ρ̂st

)

+ L̂L(ρ̂st)+ L̂NL(ρ̂st) = 0, (4.15)
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4 Electromechanical interaction in movable quantum dot systems

Figure 4.3: Dark (light) grey areas represents initial (final) states of the electrons which

are affected by the interaction processes at zero temperature. During the stimulated absorp-

tion of the electromagnetic field the vibration of the QD is either (a) decreased with one

vibrational quantum or (b) increased with one vibrational quantum. The Fermi-Dirac occu-

pation probability nf(ε) is smeared with increasing temperature (c). The smearing opens up

channels for stimulated emission back to the electromagnetic field.
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4.3 Dynamics of the pumping mechanism

with rates Γ− = Γ−ωm

+Ω +Γ−ωm

−Ω and Γ+ = Γ+ωm

+Ω +Γ+ωm

−Ω . To analyse the rate equation

and seek for an instability, let us assume that the multi-vibron dissipation mecha-

nism can be neglected close to the ground state of the mechanical oscillator. The

average number of mechanical quanta N diverges if the pumping processes over-

come the damping processes Γ+ > γL +Γ−. According to the results presented in

the following chapter, such a mechanical instability is present.
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Chapter 5

Summary of results and discussion

In this chapter I summarise the main results from the papers and compare some of

the features. The nature of the nonresonant excitation mechanism is the same in

all three papers and the main difference is the models of the electronic subsystem

used in the separate cases. Due to the robustness of the mechanism it is expected

to be present in a large range of nanoelectromechanical devices and not only in the

specific cases mentioned as model systems in the papers.

5.1 Nonresonant pumping region

The studied electromechanical instability is nonresonant in the sense that the criteria

for the driving frequency is independent of the mechanical frequency. Below follows

a discussion of how the pumping region depends on the driving frequency.

5.1.1 Pumping of the integrated graphene oscillator

The nonresonant instability of the integrated graphene oscillator is due to the feed-

back coupling of the electromechanical motion. The time delay of the charge re-

sponse to the driving field generates a feedback which renormalises the frequency

of the mechanical vibration. The focus of this thesis is the fact that the interaction

also affects the effective mechanical damping

γ = ωm

(

1

Q
+ εζ

)

(5.1)

ε =
CG(0)V

2
G

2md2νRC(0)ωm
, ζ = η

1+(1−η)2Ω̃2

1+ Ω̃2

1− Ω̃2

(

1+ Ω̃2
)2
. (5.2)

The damping shift εζ is the product of the coupling strength ε and the normalised

damping shift ζ which depends on geometry and driving frequency. The factor ζ
decreases with the capacitance ratio η = CG(0)/C(0) manifesting the fact that a

substantial part of the charge on the membrane has to be situated above the gate

electrode to have a pronounced interaction. The frequency dependence of the nor-

malised damping shift ζ is shown in fig. 5.1. The sign of ζ changes when the driving
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Figure 5.1: The damping shift becomes negative when the driving frequency exceeds the

inverse retardation time νRC(0) = 1/RC(0). The markers indicate damping shift obtained

from direct simulations of eq. (2.4) and eq. (2.11) with x/d ∼ ωm/νRC(0) = 10−2.

frequency exceeds the RC-frequency of the integrated circuit Ω > νRC(0). In this

region the effect of the driving field is pumping of the mechanical motion. The most

efficient pumping is achieved at driving frequency Ω ≈ 3νRC(0)/2.

5.1.2 Pumping of the movable quantum dot

The electromechanical instability of the movable quantum dot is an interplay be-

tween the induced rates of increment Γ+ = Γ+ωm

−Ω + Γ+ωm

+Ω and decrement Γ+ =

Γ−ωm

−Ω +Γ−ωm

+Ω of vibrational quanta. They can be calculated analytically in the case

of temperature T = 0 of the hybridised Fermi sea,

Γ±ωm

−Ω =
(eEa0)

2

π~2Γ
χ

(

Ω∓ωm

Γ

)

(5.3)

χ(x) =
xarctan (x)+ ln

(

1+ x2
)

x(4+ x2)
. (5.4)

At finite temperature, the rates can be calculated numerically, fig. 5.2. Very similar

to the classical case there is a hump representing the pumping region slightly above

Ω = Γ. In the pumping region, the net effect of the induced processes is pumping of

mechanical quanta, Γ+−Γ− > 0.
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Figure 5.2: Pumping rate of mechanical quanta induced by the external field with Γ0 =
(eEa0)

2/(~2Γ). (a) At driving frequencies Ω slightly larger than the tunnelling frequency

Γ, mechanical quanta are pumped into the vibration. (b) At temperatures kBT > ~Γ, the

smearing of the Fermi surface decreases the efficiency of the pumping mechanism. The

pumping efficiency is symmetric with respect to ∆ = µ− ε0 and decreases when the single-

level-state energy deviates from the chemical potential µ of the bulk electrodes. The plots

are valid for ~Γ/µ = 10−3 and ωm/Γ = 10−2.
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5 Summary of results and discussion

5.2 Instability of the mechanical motion

In most instability mechanisms, the driving field has to exceed a critical value Vc

above which the induced pumping overcomes the intrinsic damping in the sys-

tem. This is also true for the nonresonant instability mechanism in the classical

and quantum mechanical systems studied here. However, there is one important

difference between the classical models and the quantum mechanical model. The

induced quantum transitions simultaneously increase and decrease the vibration in a

diffusive-like manner, whereas in the classical models the vibrational mode is either

pumped or damped with no diffusive-like processes.

5.2.1 Instability of the integrated graphene oscillator

In the classical model in chapter 2, the influence from the driving field results in

pure additional damping or pure pumping of the mechanical oscillator without any

stochastic or diffusive force. At voltages VG < Vc, the amplitude of oscillations is

zero since the effective damping is positive. Above the critical voltage, the effec-

tive damping is negative and the amplitude increases abruptly until it is saturated by

the nonlinear damping. In a less naive model one could include a stochastic force

related to the intrinsic mechanical damping via the fluctuation dissipation theorem.

The amplitude of oscillations would then not be zero but fluctuate around zero due

to the stochastic force. If the mechanical damping is reduced by the electromechan-

ical coupling, the relative importance of the fluctuation force would increase. This

would lead to a larger mean square displacement of the oscillator even before the

instability is reached. Further, the induced current will not be deterministic as as-

sumed in paper I, but will exhibit shot noise which occurs due to the discrete nature

of electrons. Such noise might be another source for diffusive dynamics of the oscil-

lator. However, no diffusive dynamics were considered in the classical descriptions

in neither paper I nor II.

An estimation of the critical gate voltage at which the instability is reached can

be calculated by assuming η= 0.5 which gives ζ=−0.03, gate capacitance CG(0)≈
ε0A/d, mass of the oscillator m = ρgA, where A is the area of the oscillator and ρg

the 2D-mass density of graphene. Further, let us consider the values d = 100 nm,

ωm = 108 Hz, Q = 104, νRC(0) = 109 Hz. These assumptions estimate the critical

voltage to be Vc =
√

2ωmνRC(0)ρgd3(|ζ|Qε0)−1 ≈ 10 mV.

5.2.2 Instability of the movable quantum dot

A mechanical instability of the quantum dot would manifest itself as a rapid increase

of the average number of vibrational quanta N in the oscillation. In Appendix D, an

expression for N is derived. In the quantum mechanical description both pumping

and damping processes are induced simultaneously. The processes compete in the

same diffusive way as the Lindblad dissipation. The behaviour of N is qualitatively

different in the damping region Γ+ < Γ−+ γL and pumping region Γ+ > Γ−+ γL.
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Figure 5.3: The average number of vibrational quanta N in the damping region, here plotted

for Ω = Γ/2. At low E , N increases with field strength. This is due to the raise of effective

temperature of the mechanical oscillator. The increase is saturated when the dynamics is

dominated by the induced electromechanical damping processes. Hence, at the saturation

plateau N is independent of both the linear and nonlinear intrinsic damping. Here ωm/Γ =
10−2 was used.

In the stable region at low electrical field E < E0, with E0 = ~Γ
√

γLωm/ea0,

multi-vibron dissipation can typically be neglected due to low average occupation

of mechanical quanta N . The single-vibron processes will diffusively actuate the

mechanical oscillator. The actuation can be interpreted as due to an effective tem-

perature which is determined by the relation between the rates of increment Γ+ =
γLn̄+Γ+ωm

+Ω +Γ+ωm

−Ω and decrement Γ− = γL(n̄+ 1)+Γ−ωm

+Ω +Γ−ωm

−Ω of vibrational

quanta. If the driving field is strong enough the dynamics is dominated by the in-

duced processes which then determines the effective temperature of the mechanical

oscillator. At such strong field, the effective temperature, and thereby N , saturates

at a value which is independent of the intrinsic damping mechanisms, fig. 5.3.

In the pumping region, the effective temperature is increased in a similar manner

as in the stable region for E < E0, figs. 5.3 and 5.4. In the case of large nonlinear

damping γNL/γL > ωm/Γ, the population N is saturated by the nonlinear processes

before the instability criteria is reached, 5.4. Hence, no drastic enhancement of
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Figure 5.4: A mechanical instability may be achieved in the pumping regime, here Ω = 2Γ.

The instability manifests itself as a huge increase in N . For large nonlinear damping (dotted)

N is always limited by the nonlinear dissipation. Small nonlinear damping (solid) allows

the effective temperature of the mechanical oscillator to increase for E < E0. At E ∼ 4E0,

the mechanics becomes unstable leading to a huge increase of the number of mechanical

quanta N . Below the instability point N is of the order Γ/ωm and after the transition into

the pumping region N ∼ γL/γNL. The width of the transition decreases with decreasing

ωm/Γ, here plotted for ωm/Γ = 10−2.

N occurs. In the case of small nonlinear damping, the nonlinear effects can be

neglected until the instability point is reached and N increases drastically to a level

where it is saturated by the multi-vibron processes. Another important feature in the

pumping region is that N is not saturated at large field strengths E ≪ E0 as it is in

the damping region.

A final remark regards heating of the electromechanical systems caused by the

absorption of energy. Since we are in the regime ωm ≪ Ω most of the absorbed

energy from the driving field will not be stored in the mechanical vibrations but in

the electronic subsystem. It is assumed that this energy is effectively led away and

does not affect the dynamics. It is likely that the electromechanical system to some

degree will be heated. However, this might be a larger issue if one was interested in

cooling and not mechanical activation of the mechanical oscillator.
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5.3 Selective mode actuation in isolated oscillators

The shift of the mechanical damping for mode n of the isolated oscillator is qual-

itatively described by the normalised damping coefficient ηn(Ω)/n2, fig. 5.5. The

damping coefficient of the nth mechanical mode ηn(Ω/ωp) becomes negative at a

critical value Ωc
n(ν̃) ∼ ωp and reaches its minima ηmin

n (ν̃) at the minima frequency

Ωmin
n (ν̃). If the plasma oscillation is overdamped ν̃ = 3, fig. 5.5(a), the characteristic

width of the minima is much greater than the distance between the minima frequen-

cies Ωmin
n . In the underdamped case ν̃ = 1/3, fig. 5.5(c), the distances between the

minima frequencies become greater than the width of the minima.

If the effective pumping generated by the high-frequency external field for a

given mode overcomes the intrinsic mechanical damping, the mode gets nonreso-

nantly actuated. The actuation is due to a geometric resonance of the wave vectors

of the mechanical and plasma oscillation. This allows for the actuation of both sym-

metric and anti-symmetric mechanical modes.

The selective nonresonant excitation of the mechanical modes is achievable for

ν̃ ≪ 1. However, there are limitations of the hydrodynamic model which limits

the ν̃ and n that can be considered. The hydrodynamic equations are not valid for

ballistic propagation of the electrons. Introducing the effective electron mean free

path lsc = vF/ν gives the relation ν̃ = ν/ωp = 0.27l/lsc

√
kFl ≃ 0.1l/lsc, with Fermi

wave vector kF. The hydrodynamic approach fails when lsc exceeds characteristic

space variations in the system lsc > l/n. Further, the semiclassical approach fails

when kFl < 1.
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Figure 5.5: The damping coefficient ηn(Ω)/n2 for damping ratio ν/ωp equal 3, 1 and 1/3 in

(a), (b) and (c), respectively. The damping coefficient takes negative values slightly above

Ω > ωp. Selective actuation of mechanical modes can be achieved if ν < ωp due to the

geometric resonance of plasma and mechanical oscillations. Here, even n indicate anti-

symmetric modes and n = 1 denotes the fundamental mode.
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Chapter 6

Conclusions and outlook

To conclude, the investigated electromechanical coupling in nano oscillators give

rise to a mechanical instability of the nanoelectromechanical systems generated by

a nonresonant high-frequency external electrical field. The mechanism relies on

the delayed feedback between the mechanical and electronic subsystems. The phe-

nomenon appears when the system is driven with a frequency comparable to the

characteristic frequency of the charge dynamics. To reach the instability point two

criteria have to be met.

Firstly, the driving frequency has to lie within the pumping region so that the net

effect of the induced processes pump mechanical vibrations. Secondly, the driving

field strength has to be large enough so that the induced pumping overcomes the

intrinsic mechanical damping. The saturation mechanism of the unstable mechanics

is proposed to be of nonlinear dissipative origin. The investigated effect is robust

and not limited to specific properties of the carbon based oscillators.

The investigation of isolated suspended graphene sheets indicate that both sym-

metric and anti-symmetric vibrational modes can selectively be activated by a homo-

geneous gate-field. This is due to a geometrical resonance of the mechanical wave

vector and the induced plasma wave vector.

It would be very interesting to see experimental investigations of the nonresonant

instability presented in this thesis. Especially interesting would be to see if selective

actuation of vibrational modes, with a homogeneous external field, can be achieved

experimentally.

Extensions of the theoretical research could be to investigate

• stochastic processes in the classical description.

• anharmonic terms in the quantum mechanical model.

• nonlinear effects from the electrostatic interaction with the gate electrode.

• models going beyond the hydrodynamic description to describe semi-ballistic

electrons.
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Appendix A

Direct resonance

The direct resonance [31] is the result of a forced oscillator commonly used to actu-

ate nanoelectromechanical oscillators [5]. It is qualitatively captured by the simple

equation

Ẍ + γẊ +ω2
mX = K cos(ωt), (A.1)

with frequency ω = 2Ω and driving strength K =CG(0)V
2
G/4md2 to correspond to

eq. (2.12). Let us disregard the transient processes of the initial conditions. An

approximate solution to this equation can be found on the form

X(t) = a(ω)cos(ωt −φ), (A.2)

a(Ω) =
K

∆
, φ = arccos

(

ω2
m −ω2

∆

)

, ∆ =
√

(ω2
m −ω2)2 + γ2ω2 (A.3)

i.e., a phase shifted response with the same frequency as the driving field. If the

oscillator starts at a relatively small amplitude, this driving force will lead to a linear

time growth of the amplitude a(Ω). The stationary amplitude exhibits a Lorentzian

curve with characteristic width γ and maximum at the resonance condition ω ≈ ωm

for a resonator with high quality factor Q ≫ 1. As the frequency mismatch between

the driving field and the resonator Ω−ωm increases the amplitude of the actuated

oscillation diminishes.
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Appendix B

Parametric instability

The other resonance phenomenon is the parametric instability [31] which is present

in some nanoelectromechanical systems [16]. It is qualitatively described by the

equation

Ẍ + γẊ +ω2
mX = K X cos(ωt), (B.1)

known as the Mathieu’s equation in the case of γ = 0. This type of driving can be

viewed as a modulation of the oscillator frequency ω2 = ω2
m −K cos(ωt). Let us

assume the modulation to be small K /ω2
m ≪ 1 and seek a solution with the Ansatz

X(t) = a(t)cos(ωt/2)+b(t)sin(ωt/2), (B.2)

where a(t) and b(t) varies slowly in time in comparison with the trigonometrical fac-

tors. This solution will only be perturbatively correct since X will also include terms

with all frequencies nΩ/2 where n runs over all positive integers. The stationary

state X = 0 becomes unstable under the following conditions

−

√

(

K

2ωm

)2

− γ2 < ω−2ωm <

√

(

K

2ωm

)2

− γ2. (B.3)

The instability is only possible if the driving field is strong enough so that the in-

duced pumping overcomes the intrinsic mechanical damping K /ωm > 2γ. Fur-

ther, the detuning from the resonance condition ω = 2ωm has to lie within the

frequency window eq. (B.3) in which the mechanical motion is unstable. In the

unstable region the amplitude of oscillations will grow exponentially with the rate

ν =
√

(K /2ωm)2 − (ω−2ωm)2 − γ. Parametric instabilities are also achieved at

driving frequencies meeting the resonance conditions ω = 2ωm/n. However, the

corresponding threshold for the driving strength K is increased and proportional to

γ1/n.
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Appendix C

Tracing over electronic subsystem

In this appendix, a derivation of the rate equation which governs the dynamics of

the stationary average vibrational quanta is presented. Let us assume the electronic

subsystem to be in thermal equilibrium with the non-interacting Hamiltonian at tem-

perature T ,

ρ̂eq = Z−1 exp

(

−
∫

dενεψ̂†
εψ̂ε/kBT

)

(C.1)

where

Z = tr

[

exp

(

−
∫

dενεψ̂†
εψ̂ε/kBT

)]

(C.2)

is the partition function. For a more convenient notation we introduce Ĥint = Ĥi(e
iΩt +

e−iΩt) where Ĥi = eEa0(ĉ
† + ĉ)d̂†d̂. We start from the quantum Liouville equation

which describes the time evolution of the total density operator ρ̂,

i~
∂

∂t
ρ̂ =

[

Ĥ0 +
(

eiΩt + e−iΩt
)

Ĥi, ρ̂
]

. (C.3)

Let us assume the electronic subsystem to always be in its equilibrium distribu-

tion due to fast relaxation processes not governed by eq. (C.3). The density operator

can then be separated into the form ρ̂(t)= ρ̂m(t)⊗ ρ̂eq, where ρ̂m(t) is the density op-

erator of the mechanical subsystem and the electronic subsystem fulfiles
[

Ĥ0, ρ̂eq

]

=
0. We expand the mechanical density operator ρ̂m(t) = ∑∞

n=−∞ ρ̂n exp(inΩt) where

ρ̂n = ∑∞
k=0 ρ̂

(k)
n and ρ̂

(k)
n ∝ ε|n|+2k with the small parameter ε = eEa0/(2~Ω) ≪ 1.

This gives an infinite set of coupled equations, one for each frequency nΩ.

To continue the analysis we have to perform some sort of approximation. We

choose to truncate the coupled dynamics at order ε2 which results in the closed set

of equations

0 =
[

Ĥi, ρ̂
(0)
+1 ⊗ ρ̂eq

]

+
[

Ĥi, ρ̂
(0)
−1⊗ ρ̂eq

]

(C.4)

∓~Ωρ̂
(0)
±1 ⊗ ρ̂eq =

[

Ĥ0, ρ̂
(0)
±1 ⊗ ρ̂eq

]

+
[

Ĥi, ρ̂
(0)
0 ⊗ ρ̂eq

]

(C.5)

where we have assumed the stationary term ρ̂
(0)
0 and ρ̂

(1)
0 to be diagonal in the |n〉

basis due to dephasing processes not governed by (C.3). Using the residue theorem
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we can express the operators

ρ̂
(0)
±1 ⊗ ρ̂eq =− 1

2πi

∫
dε Ĝ+(ε∓~Ω)

[

Ĥi, ρ̂
(0)
0 ⊗ ρ̂eq

]

Ĝ−(ε), Ĝ±(x) =
1

Ĥ0 − x± iδ
,

(C.6)

where δ → 0 and Ĝ+(x)
(

Ĝ−(x)
)

has a pole in the upper (lower) complex plane and

fulfilles the identity

δ(Ĥ0 − x) = 2πi
(

Ĝ−(x)− Ĝ+(x)
)

. (C.7)

We substitute this expression for ρ̂
(0)
± ⊗ ρ̂eq into eq. (C.4) and obtain an equation

for the stationary density operator ρ̂
(0)
0 ⊗ ρ̂eq. Eq. (C.4) contains eight terms due

to the two nested commutator terms. Two of these terms, one from each nested

commutator are

χ =− 1

2πi

∫
dε

(

ĤiĜ−(ε+~Ω)Ĥiρ̂
(0)
0 ⊗ ρ̂eqĜ+(ε)+

ρ̂
(0)
0 ⊗ ρ̂eqĜ−(ε−~Ω)ĤiĜ+(ε)Ĥi

)

. (C.8)

We shift the argument of the last term ε−~Ω → ε. One of the Ĝ-operators in

each term can be substituted by a Dirac delta-function according to eq. (C.7). This

is since the integral along the real axis, with poles only in the upper or the lower

complex plane, is zero. We then have

χ =

∫
dε

(

ĤiĜ−(ε+~Ω)Ĥiρ̂
(0)
0 ⊗ ρ̂eqδ(ε− Ĥ0)−

ρ̂
(0)
0 ⊗ ρ̂eqδ(ε− Ĥ0)ĤiĜ+(ε+~Ω)Ĥi

)

. (C.9)

Since our aim is to trace over the electronic states we may cycle ρ̂
(0)
0 and the delta

functions. Combining the remaining Ĝ-operators to delta functions and using the

integral representation

δ(ω) =
1

2π

∫ ∞

−∞
dte−iωx (C.10)

we may write

χ = i

∫ ∞

−∞
dt eitΩeitĤ0/~Ĥie

−itĤ0/~Ĥiρ̂
(0)
0 ⊗ ρ̂eq (C.11)

Calculating the interaction picture of the first interaction Hamiltonian and substitut-

ing all operators give

χ =

(

eEa0

2

)2∫ ∞

−∞
dt

∫ ∞

−∞
dε1dε2dε3dε4 b(ε1)b

∗(ε2)b(ε3)b
∗(ε4)×

eiΩt
(

ĉ†eiωmt + ĉe−iωmt
)(

ĉ† + ĉ
)

ei(ε1−ε2)t/~ψ̂†
ε1

ψ̂ε2
ψ̂†

ε3
ψ̂ε4

ρ̂
(0)
0 ⊗ ρ̂eq (C.12)
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The trace can be calculated by using the commutation relations for the fermionic

operators and successively moving one operator around one whole cycle. The result

is

tr
(

ψ̂†
ε1

ψ̂ε2
ψ̂†

ε3
ψ̂ε4

ρ̂eq

)

= δ
(

ν(ε1− ε2)
)

δ
(

ν(ε3− ε4)
)

nf(ε1)nf(ε2)+

δ(ν
(

ε1 − ε4)
)

δ
(

ν(ε2 − ε3)
)

nf(ε1)
(

1−nf(ε3)
)

. (C.13)

Two of the integrals over εi in eq. (C.12) takes out the delta functions in eq. (C.13)

and the integral over t gives a delta function for energy conservation. The contribu-

tion from the other six terms in eq. (C.4) can be calculated in an analogous manner.

Since ρ̂
(0)
0 is diagonal in the ladder basis we can omit off-diagonal terms and arrive

at the rate equation of the stationary density operator

Γ−
(

ĉρ̂stĉ
† − ĉ†ĉρ̂st

)

+Γ+
(

ĉ†ρ̂stĉ− ĉĉ†ρ̂st

)

= 0 (C.14)

with Γ± = Γ±ωm

+Ω +Γ±ωm

−Ω and

Γ±ωm

±Ω =
(eEa0)

2

2π~2Γ

∫
dε1dε2nf(ε1)

(

1−nf(ε2)
) (~Γ)3δ(ε2 − ε1 ±~Ω±~ωm)

|ε1 − ε0 + i~Γ|2 |ε2 − ε0 + i~Γ|2
.

(C.15)

By comparing this with the linear Lindblad superoperator in eq (4.10), it is evident

that they have the same structure under the diagonal condition of ρ̂. We add the

dissipative superoperator terms at zero temperature to eq. (C.14). By projecting eq.

(C.14) on the diagonal state 〈n|...|n〉 we get the difference equation

γNL(n+1)(n+2)Pn+2+(Γ−+ γL)(n+1)Pn+1+Γ+nPn−1

−
(

γNLn(n−1)+(Γ−+ γL)n+Γ+(n+1)
)

Pn = 0. (C.16)

for the stationary occupation probabilities Pn = 〈n|ρ̂(0)
0 |n〉.
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Appendix D

Rate equation of mechanical quanta

The aim of this appendix is to find an expression for the stationary average number

of vibrational quanta N governed by the rate equation derived in Appendix C,

γNL(n+1)(n+2)Pn+2+(Γ−+ γL)(n+1)Pn+1 +Γ+nPn−1

−
(

γNLn(n−1)+(Γ−+ γL)n+Γ+(n+1)
)

Pn = 0. (D.1)

Let us introduce P (z) = ∑∞
n=0 znPn where z is a complex number inside the unit

circle. The probabilities Pn have to sum up to 1 which gives P (1) = 1 and P (−1)
has to be absolute convergent. The trick is to multiply eq. (D.1) by zn and sum over

∑∞
n=0. The first term in eq. (D.1) can then be manipulated

∞

∑
n=0

zn(n+1)(n+2)Pn+2 =
∂2

∂z2

∞

∑
n=0

zn+2Pn+2 =
∂2

∂z2
(P (z)−P0− zP1) =

∂2

∂z2
P (z).

(D.2)

Similarly term three in eq. (D.1) can then be manipulated by using P−1 = 0, no

probability to occupy ’negative’ numbers of vibrational quanta,

∞

∑
n=0

znnPn−1 =
∞

∑
m=0

zm+1(m+1)Pm = z
∂

∂z

∞

∑
m=0

zm+1Pm = z
∂

∂z

(

zP (z)
)

=

z

(

1+ z
∂

∂z

)

P (z). (D.3)

The other terms can be manipulated in an analogous manner. Summing all terms

in eq. (C.16) and excluding the common factor of 1− z result in the homogeneous

second order differential equation

(1+ z)
∂2

∂z2
P (z)+

Γ−+ γL

γNL

∂

∂z
P (z)− Γ+

γNL

(

1+ z
∂

∂z

)

P (z) = 0. (D.4)

Generally, a second order differential equation with non-constant terms cannot be

solved. However, rewriting the second order and last term of eq. (D.4) gives

∂

∂z

(

(1+ z)
∂

∂z
P (z)

)

− ∂

∂z
P (z)+

Γ−+ γL

γNL

∂

∂z
P (z)− Γ+

γNL

∂

∂z

(

zP (z)
)

= 0. (D.5)
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This equation can be integrated trivially in z yielding a non-homogeneous first order

differential equation

∂

∂z
P (z)−h(z)P (z) = g(z), h(z) =

(

1− Γ−+γL

γNL
+ Γ+

γNL
z
)

1+ z
, g(z) =

C1

1+ z
(D.6)

where Ci, i = 1,2... are constants of integration. The homogeneous solution Ph(z) =
exp( f (z)) where f ′(z) = h(z). The particular solution can be written as Pp(z) =∫ z
−1 dz′ exp( f (z)− f (z′))g(z′). With f (z) = (1− (Γ++Γ− + γL)/γNL) ln(1+ z)+
(1+ z)Γ+/γNL +C2 the full solution takes the form

P (z) =C3(1+ z)

(

1−Γ++Γ−+γL
γNL

)

+C4

∫ z

−1
dz′

(

1+ z′

1+ z

)

(

Γ++Γ−+γL
γNL

−1

)

e
Γ+

γNL
(z−z′)

1+ z′
.

(D.7)

To satisfy the absolute convergence criteria at z =−1 of P (z) the constant C3 has to

be zero. We integrate by parts to obtain a more transparent solution

P (z) =C






1+

Γ+

γNL

∫ z

−1
dz′

(

1+ z′

1+ z

)

(

Γ++Γ−+γL
γNL

−1

)

e
Γ+

γNL
(z−z′)






(D.8)

where the constant is given by the condition P (1) = 1,

C =






1+

Γ+

γNL

∫ z

−1
dz′

(

1+ z′

1+ z

)

(

Γ++Γ−+γL
γNL

−1

)

e
Γ+

γNL
(z−z′)







−1

. (D.9)

The stationary average number of vibrational quanta N is then given by the relation

N = ∂zP (z).
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