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Ions accelerated by electric fields (so-called runaway ions) in plasmas may explain observations in

solar flares and fusion experiments; however, limitations of previous analytic work have prevented

definite conclusions. In this work, we describe a numerical solver of the 2D non-relativistic linear-

ized Fokker-Planck equation for ions. It solves the initial value problem in velocity space with a

spectral-Eulerian discretization scheme, allowing arbitrary plasma composition and time-varying

electric fields and background plasma parameters. The numerical ion distribution function is then

used to consider the conditions for runaway ion acceleration in solar flares and tokamak plasmas.

Typical time scales and electric fields required for ion acceleration are determined for various

plasma compositions, ion species, and temperatures, and the potential for excitation of toroidal

Alfv�en eigenmodes during tokamak disruptions is considered. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4921661]

I. INTRODUCTION

The phenomenon of particle runaway in a plasma is well

known, occurring in both space and laboratory plasmas.1,2 It

arises because the friction force experienced by a charged

particle decreases with particle energy, so that the presence

of a sufficiently strong induced electric field can allow the

particle to be accelerated—or run away—to high energy.

Electron runaway3 has been extensively studied in the

context of magnetic confinement fusion in tokamaks, where it

can lead to the formation of localized high-energy beams

which must be carefully controlled.4 The standard analytic

method used to determine the initial evolution of the electron

distribution function in a fully ionized plasma was introduced

by Kruskal and Bernstein5 and later generalized by Connor

and Hastie.6 It takes the form of an asymptotic expansion of

the electron kinetic equation in the electric field strength.

Once a fast electron population—known as the primary distri-

bution—is established, it can rapidly produce further fast

electrons through large-angle, or knock-on, collisions.7 This

avalanche process leads to the so-called secondary runaway-

electron generation, which is often dominant.

Ion runaway has long been of interest in the astrophysi-

cal community, where it is thought to contribute to the

observed abundance of high energy ions in solar flares.1 It

has also been used to study the behavior of lightning chan-

nels8 and was observed in laboratory plasmas, e.g., in the

Mega Ampere Spherical Tokamak (MAST)9 and in the

Madison Symmetric Torus.10 The detailed mechanism of ion

runaway differs from that of electron runaway. Friction with

the electrons, which are also drifting in the electric field, acts

to cancel a portion of the accelerating field. In the ion rest

frame, the electrons have net motion anti-parallel to the elec-

tric field, and a test ion will experience two main forces

beyond friction against the background of charged particles:

acceleration in the electric field and friction due to the elec-

tron drift. These forces scale differently with ion charge, and

the dominant force is either electron friction—with the

consequence that the ions are dragged along with the elec-

trons—or acceleration by the electric field. In a pure plasma,

the cancellation of electric field acceleration and electron

friction is complete, but the presence of impurities, neutrals,

or effects such as particle trapping in a non-uniform confin-

ing magnetic field allow a finite effective field to remain.11,12

Furth and Rutherford12 generalized earlier treatments by

adopting a similar expansion procedure to that used to study

electron runaway. They determined the steady state ion distri-

bution function in conditions typical of operational fusion

plasmas. Helander et al.9 then considered the initial value

problem resulting from the onset of an accelerating electric

field, produced, for example, by a plasma instability. An ana-

lytic solution for the initial time evolution of the accelerated

ion distribution function was developed, but it was noted that

its application was limited due to the low electric fields

required for it to be valid. Both of these ion runaway studies

considered only the presence of a trace impurity population,

consistent with typical operating conditions in fusion plasmas.

Plasmas with significant impurity content are also

common, however. Astrophysical plasmas often consist of a

mixture of dominant species, as well as containing trace ele-

ments.1,13 Disruptions,2 which are a common cause of elec-

tron runaway in tokamaks, are also typically associated with

an increase in impurity content, either due to deliberate gas

injection for mitigation purposes or due to plasma-wall inter-

action. Therefore, in Ref. 14, the initial value formulation of

the problem posed in Ref. 9 was extended to account for ar-

bitrary plasma composition. The potential for ions acceler-

ated during a disruption to excite low frequency plasma

instabilities was considered analytically. The results were

inconclusive since the asymptotic expansion used to develop

the analytic solution was not strictly valid for disruption-type

parameters. The limitations of the analytic solutions avail-

able in previous work motivate the development of a numeri-

cal tool to allow detailed study of the time evolution of an

ion runaway distribution.
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Here, we describe the formulation and implementation of

an efficient finite-difference–spectral-method tool, CODION

(COllisional Distribution of IONs), that solves the two-

dimensional momentum space ion kinetic equation in a ho-

mogeneous plasma. CODION solves the ion Fokker-Planck

equation as an initial value problem and allows for time-

variation of the electric field and bulk distribution parameters

(temperature, density, charge, and mass) of each plasma spe-

cies independently. Due to its speed, it is highly suitable for

coupling within more expensive calculations, e.g., studies of

instabilities driven by the fast ions or comprehensive model-

ing of ion acceleration with self-consistent coupling to solvers

of Maxwell’s equations. Using CODION, we obtain illustra-

tive two-dimensional ion velocity space distributions, which

demonstrate the typical behaviour of runaway ions in a vari-

ety of physical scenarios. We show that during typical toka-

mak disruptions, ions are unlikely to be accelerated to

velocities high enough for resonant interaction with toroidal

Alfv�en eigenmodes (TAEs). Therefore, the experimentally

observed TAE activity cannot be explained by the ion run-

away mechanism alone.

The rest of the paper is organized as follows. In Sec. II,

we describe the ion Fokker-Planck equation, and in Sec. III

we outline its numerical implementation in CODION. In Sec.

IV, we explore the numerical solution, including the effect of

various approximations to the collision operator. In Sec. V,

the model is applied to a variety of physical scenarios, illus-

trating typical acceleration time scales in laboratory and

space plasmas. Finally, we close with concluding remarks in

Sec. VI.

II. RUNAWAY ION DISTRIBUTION

We consider the problem of ion acceleration by induced

electric fields with a component parallel to the background

magnetic field in a plasma. We restrict ourselves to straight

field line geometry and assume a homogeneous background

plasma. The time evolution of the ion distribution is then

given by the Fokker-Planck equation, and particle accelera-

tion will be opposed by various friction forces. The effect of

friction with neutral particles can be significant in various

physical situations, for example, giving rise to charge

exchange losses, which was studied in the context of light-

ning discharges in Ref. 8. Here, we will focus on fully ion-

ized quasi-neutral plasmas, in which case the friction is the

result of inter-species Coulomb collisions only.

We are interested in the initial value problem where an

electric field appears in what was previously an equilibrium

state. Therefore, we assume that the initial particle distribu-

tion functions are stationary Maxwellians fM—possibly at

different temperatures—and consider their distortion from

this state by the electric field. We linearize the collision op-

erator about this background Maxwellian, and neglect the

non-linear contribution to the evolution. This restricts the

study to situations where only a small fraction of the ion

population is accelerated, or to the initial stages of ion run-

away. Once a high energy population forms, the runaway

ions have the potential to excite instabilities,14 which

will have a strong impact on the further evolution of the

distribution. Note that the non-linear terms of the kinetic

equation are sometimes required to account for the transfer

of energy from the electric field into heating the distribution.

These aspects of the longer term evolution of the distribution

are beyond the scope of the work presented here.

The linearized collision operator for self-collisions is

given by Cl
iiffig ¼ Ciiffi; fMig þ CiiffMi; fig as described in

Ref. 9, where the first term, the test-particle operator,

describes collisions of the perturbed distribution with the

bulk, while the second term, the field-particle operator,

describes the response of the bulk to the perturbation. We

will follow the approach described in Ref. 15 and approxi-

mate the field-particle operator with restoring terms such

that the collision operator satisfies momentum and energy

conservation, non-negative entropy production, and vanishes

for a perturbed Maxwellian—properties which are known to

be satisfied by the exact operator.

Collisions with the other ion species could be treated

similarly, however this would require the simultaneous evo-

lution of the distribution functions of multiple species.

Therefore, we consider only the evolution of the ion species

with the highest runaway rate, so that the other ion species

remain approximately stationary and only the test-particle pi-

ece of the unlike ion collision operator needs to be retained.

While it is difficult to verify a priori that this condition is

satisfied, it can be determined by numerical simulation of

each ion species individually, assuming the others to remain

stationary. Due to the sensitivity of the acceleration rate to

ion charge and mass (as demonstrated in Sec. V), the condi-

tion can typically be well satisfied as the acceleration rate of

different species is often separated by several orders of

magnitude.

The velocity-dependent friction on a test particle result-

ing from collisions with a Maxwellian background species

has a peak near the thermal velocity of the background due

to the form of the Coulomb interaction between charged par-

ticles. In the case of electrons, the friction force will be a

monotonically decreasing function for velocities above the

electron thermal velocity, allowing an electron to run away

to large energy (where relativistic6 and synchrotron effects16

become dominant). We focus on situations where the ion, i,
and electron, e, thermal velocities satisfy vTe � vTi, meaning

that their temperatures are sufficiently similar that

Te=Ti �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
me=mi

p
. Then, if an ion is accelerated away from

the bulk, friction against the electron population will

increase with velocity. This has the consequence that the ion

acceleration will be naturally balanced by the electron fric-

tion for some v < vTe, if the electric field is below a thresh-

old value similar to the Dreicer field17 for electrons.

Since an electron reacts to the electric field on a time-

scale me=mi times shorter than the ions, we assume the

electron population to be in a quasi-steady state on all time-

scales of interest for ion acceleration. Parallel force balance

for the electron distribution then requires that the total

electron-ion friction cancels the acceleration by the electric

field, neeEk ¼
P

jRejk ¼
P

j

Ð
dv mevkCej, where the sum is

taken over all ion species j in the plasma. Due to the small

mass ratio, the electron-ion interaction is dominated by

pitch-angle scattering, so that Cej ¼ CeinjZ
2
j =niZ

2
i , and we
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can solve for the friction between electrons and the ion spe-

cies of interest, Reik ¼ ðniZ
2
i =ZeffÞeEk, where the effective

charge is Zeff ¼
P

jnjZ
2
j =ne.

The electron distribution can be written as fe ¼ fMe þ fe1,

with fMe a Maxwellian distribution drifting with the bulk ion

velocity Vi, and a correction fe1 varying over velocities of

order vTe, accounting for the electron drift behavior in the

electric field. Then, the linearized ion-electron collision oper-

ator, neglecting terms quadratic in fe1, can be simplified,1,18

noting that momentum conservation in binary collisions

requires that Rie ¼ �Rei,

Cie fi; fef g ¼ Rei

mini
� @fi

@v
þ Cie fi; fMe v� Við Þ

� �
: (1)

The first term, which describes the friction arising from

the drifting electron distribution and was calculated above,

readily combines with that describing acceleration by

an electric field, giving rise to the effective electric field

E� ¼ Ek � Reik=niZie ¼ ð1� Zi=ZeffÞEk. Thus, as noted in

the Introduction, in a pure plasma where Zi ¼ Zeff , net ion

acceleration will not occur. Light ions with Zi < Zeff can be

accelerated in the direction of the electric field. Heavy

impurities with Zi > Zeff will be accelerated in the opposite

direction, which is in the direction of electron runaway (the

latter case was studied by Gurevich11). The second term in

Eq. (1) describes the slowing down of the fast ions on the

electrons, as well as the slow energy exchange between the

bulk species. Note that the ion flow velocity correction is

time dependent and formally small in the runaway density.

This term will become more significant in the ion-electron

momentum exchange as the runaway distribution builds up.

Finally then, the kinetic equation we consider for the

evolution of the ion distribution function in the presence of

an accelerating electric field and arbitrary plasma composi-

tion is the following:

@fi

@t
þ Zie

mi
E� n

@

@v
þ 1� n2

v
@

@n

 !
fi ¼

X
s

Cis fif g; (2)

where n ¼ vk=v, and the effect of collisions with the back-

ground Maxwellian populations is described by the sum over

all particle species s in the plasma

X
s

Cis fif g ¼
1

sie

X
s

nsZ
2
s

ne

/ xsð Þ � G xsð Þ
2x3

i

@

@n
1� n2
� � @fi

@n

� �(

þ 1

x2
i

@

@xi
2

Ti

Ts
x2

i G xsð Þfi þ xiG xsð Þ
@fi

@xi

� �	

þ 1

sii
2�s vð Þxinuk þ �E vð Þx2

i Q
h i

fMi;

(3)

where s�1
is ¼nse

4Z2
i Z2

s lnK=4p�2
0m2

i v
3
Ti; xs¼v=vTs¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
msv2=2Ts

p
and the usual error function /ðxÞ¼ð2=

ffiffiffi
p
p
Þ
Ð x

0
dye�y2

and

Chandrasekhar function GðxÞ¼½/ðxÞ�x/0ðxÞ�=2x2 appear.

The dimensionless moments uk and Q of the distribution

function appearing in the momentum and energy restoring

terms of the self-collision operator are

uk fif g ¼
3

2
vTi

ð
d3v�s vð Þvkfið

d3v�s vð Þv2fMi

; Q fif g ¼ v2
Ti

ð
d3v�E vð Þv2fið

d3v�E vð Þv4fMi

;

(4)

with the scattering frequencies given by

�s vð Þ ¼ 4
G xið Þ

xi
; �E vð Þ ¼ 2 4

G xið Þ
xi
�

/ xið Þ
x3

i

 !
: (5)

The runaway behavior of interest can be demonstrated

by considering the simpler dynamics of an ion test parti-

cle8,19 in the presence of the electric field. The ion equation

of motion takes the form midvk=dt ¼ ZieE� þ Ftest
i , where

the collisional friction on a test particle is given by

Ftest
i vð Þ ¼ �Z2

i eED

X
s

nsZ
2
s

ne

Te

Ts
1þ ms

mi


 �
G xsð Þ; (6)

and ED ¼ nee3lnK=4p�2
0Te is the Dreicer field. Thus, ion accel-

eration can occur when E=ED > Ftest
i =ZieEDj1� Zi=Zeff j. The

required electric field values are illustrated in Fig. 1, for low

and high effective charge. The figures illustrate the non-

monotonic ion friction force, with one maximum near the ther-

mal velocities of the ion species, and another near the electron

thermal velocity. Therefore, as first described by Furth and

Rutherford,12 for a sufficiently strong electric field we may

expect ions to be accelerated from their initial velocity to a

higher velocity at which friction on the electrons dominates,

giving rise to a suprathermal population in the plasma. We will

compare the characteristics of the test-particle behavior, gov-

erned by the friction force illustrated in Fig. 1, to the numerical

solution of Eq. (2) in Sec. III.

Figure 1 also illustrates that the electric fields needed to

accelerate ions are highly sensitive to ion charge and plasma

composition, due to their effect on the effective electric field

E� ¼ ð1� Zi=ZeffÞE. Note that the electric fields needed to

accelerate ions beyond the electron thermal velocity are sig-

nificantly larger than the minimum electric field necessary

for acceleration. Such strong fields will not be considered

here, since the validity of the linearization typically breaks

down before the ions reach a significant fraction of the elec-

tron thermal velocity.

III. CODION

In this section, we outline the implementation of Eq. (2)

in the numerical tool CODION, which solves the ion

Fokker-Planck equation numerically as an initial value prob-

lem to give the evolution of the ion distribution function in

the presence of an accelerating electric field. It uses a

continuum-spectral discretization scheme based on that used

in CODE.20 Illustrative solutions for a tokamak-like plasma

are presented, and a comparison of the obtained distribution

function is made with the behavior predicted by test-particle

equations, demonstrating the importance of collisional diffu-

sion for the runaway of ions. In addition, we investigate the
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effect of different choices for the self-collision field-particle

operator.

The pitch-angle dependence of the distribution function

is represented by a truncated Legendre polynomial expan-

sion, while velocity is discretized on a uniform grid

v ¼ vn ¼ nDv, n ¼ 0; 1; :::; N � 1:

fiðvn; n; tÞ ¼
Xlmax

l¼0

flðvn; tÞPlðnÞ; (7)

where the Legendre polynomials Pl obey the orthogonality

relation
Ð 1

�1
dn PlðnÞPl0 ðnÞ ¼ dl;l02=ð2lþ 1Þ, and

fl vn; tð Þ ¼
2lþ 1

2

ð1

�1

dn Pl nð Þfi vn; n; tð Þ: (8)

The integral operation ðLþ 1=2Þ
Ð 1

�1
dn PLðnÞ::: is applied to

the kinetic equation in Eq. (2) for each L, producing a linear

set of equations for the quantities fLðv; tÞ, using the boundary

condition flmax
ðv; tÞ ¼ 0 for all v. Well-known recurrence

relations for the Legendre polynomials are used to obtain

analytic expressions for all the terms appearing in the equa-

tion. For example, the Legendre polynomials are eigenfunc-

tions of the linearized collision operator, while the electric

field-term will produce a coupling between fL and fL61

modes. This procedure exactly captures number conservation

for any choice of lmax > 1. The velocity derivatives appear-

ing in the kinetic equation are represented with five-point

stencils

@fl

@v

����
vn

¼ 1

12Dv

XN�1

m¼0

�dn;m�2 þ 8dn;m�1ð

� 8dn;mþ1 þ dn;mþ2Þfl vmð Þ; (9)

@2fl

@v2

����
vn

¼ 1

12Dv2

XN�1

m¼0

�dn;m�2 þ 16dn;m�1 � 30dn;mð

þ 16dn;mþ1 � dn;mþ2Þfl vmð Þ; (10)

formally introducing an error of order OðDv4Þ. The integral

moments of the ion distribution appearing in the self-

collision model operator are discretized with a quadrature of

the form
Ð

dv AðvÞ ¼
P

mwmAðvmÞ, where the quadrature

weights wm are chosen according to Simpson’s rule, also

with error of order OðDv4Þ.
For the distribution function to be single-valued and

smooth at the origin, we enforce the boundary condition

flð0Þ ¼ 0 for all l> 0 and df0=dvjv¼0 ¼ 0. Since we restrict

ourselves to cases where electron friction will dominate the

electric field at sufficiently high velocities, the maximum

resolved velocity can always be chosen so that only insignifi-

cant numbers of particles are near the edge of the grid, mini-

mizing the effect of the choice of boundary condition. We

use the Dirichlet boundary condition flðvNÞ ¼ 0 for all l at

the maximum velocity. A detailed investigation of the con-

vergence properties of solutions with respect to discretiza-

tion parameters is described in Ref. 21.

The discretization procedure outlined above casts the ki-

netic equation, Eq. (2), into the form

@F

@t
þMF ¼ 0; (11)

where M is a sparse matrix and F is a vector representing the

discretized distribution function. Time integration is per-

formed with the first order implicit scheme

Fðtnþ1Þ ¼ ½I þ DtMðtnþ1Þ��1FðtnÞ; (12)

where any time-dependence of the operator M is due to time-

variation of electric fields and background plasma parameters.

An arbitrary plasma composition is determined by a set of input

vectors containing particle masses ms, corresponding charge

states Zs, charge densities qs ¼ nsZs and temperatures Ts.

Figure 2(a) shows a typical example of the evolution of

the ion distribution for a case where the electric field is

above the minimum required for runaway acceleration. The

plasma parameters used are characteristic for tokamaks with

FIG. 1. Electric field needed to accelerate fully ionized test particles of various ion species in an impure deuterium plasma, as a function of velocity. (a)

nC=nD ¼ 0:4%, nHe=nD ¼ 5%; Zeff ¼ 1:2 and (b) nC=nD ¼ 4%; nHe=nD ¼ 5%; Zeff ¼ 2, and all particle species are taken to be at the same temperature. Since

Zeff ¼ ZHe in (b), no electric field for which the model is valid will accelerate helium ions. The quantities shown are independent of the density and temperature

of the plasma.
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a hot bulk deuterium plasma at 1 keV and fully ionized

native carbon impurities. Note that the loop voltage is typi-

cally �1 V in normal tokamak operation, corresponding to

E�0:2 V/m.2,9 A contour plot of the distribution in velocity

space when steady state is reached is shown in Fig. 2(b). For

the parameters used here, approximately 5% of the ion popu-

lation has been accelerated and the linearization used to

derive Eq. (2) is well satisfied.

The steady state distribution is typically established in

10–20 s at this temperature and density, and the time-scale

varies with plasma parameters as the collision time defined

in connection with Eq. (3), sie / T
3=2
i =ne. For stronger elec-

tric fields, the initial evolution of the distribution can be fol-

lowed, but the linearization breaks down before the steady

state can be reached. Numerical simulations indicate that the

entire ion distribution will eventually run away when

E � 0:2ED for the Zeff ¼ 2 case considered here (this will

vary with species and composition as indicated in Fig. 1),

and the linearization breaks down within �30 ms with such

an electric field.

As discussed in the Introduction, approximate analytic

solutions of the ion kinetic equation can be found in the liter-

ature. However, their potential for use in benchmarking is

severely limited. The initial-value problem was considered

in Refs. 9 and 14, but as noted in the derivations the

solutions were restricted to very short timescales—in the

case presented in Fig. 2, this corresponds to 20 ms, by which

time only a negligible fast-ion population has formed.

Furthermore, the derivations neglect the limiting fast-ion

friction against electrons, which is essential for the long time

evolution of the runaway ion distribution. The steady-state

solution considered analytically in Ref. 12 provides the mag-

nitude of the distribution in the runaway region, as a function

of electric field; however, it is given in closed form only in

the case of a strong field. A direct comparison is therefore

not possible in the case of Fig. 2, where the long-time evolu-

tion of the distribution due to realistic electric fields, near the

critical value needed to produce runaway, was considered. A

further discussion of the comparison to the analytic solutions

may be found in Ref. 21, but it is not pursued further here.

IV. RESULTS

Expansions of the collision operators appearing in Eq.

(2) have previously been used to consider ion runaway ana-

lytically. Here, we compare the effect of various approxima-

tions to the collision operator on the numerical solution of

the distribution function. The plasma parameters of Fig. 2

are used as a basis in the comparisons, but the behavior illus-

trated is characteristic of a wide range of parameters. We

first consider the effect of neglecting the conservative field-

particle terms in the self-collision operator. Figure 3 shows

the n¼ 1 cut of the distribution of the bulk deuterium popu-

lation for two cases, with effective charge Zeff ¼ 1:5 and

Zeff ¼ 2, respectively. It can be seen that, using only the test-

particle operator, the dominant behavior of the fast-ion popu-

lation as given by the fully conserving case is reproduced.

This is expected, since the conserving field-particle terms are

proportional to fMi / expð�x2
i Þ, and therefore act mainly on

the thermal bulk of the distribution. The main difference is

that the conservative operators typically lead to a runaway

rate which is at least twice as large, due to the parallel mo-

mentum they inject back into the low-energy part of the

distribution.

Figure 3(a) shows a case with Zeff ¼ 1:5. With a lower

amount of impurities to which momentum and energy can be

transferred, the fully conserving linearized collision operator

for self-collisions will exhibit unphysical behavior before a

significant runaway population has time to form, which is

clearly illustrated by the distortion near v¼ 0. The reason is

that when the conserving terms are kept in the kinetic equa-

tion, the distribution is heated by the electric field, causing

the linearized equation to break down after some time. This

is also observed in the solution obtained using only the

energy conserving term, albeit less pronounced. The distribu-

tion functions obtained with the momentum conserving self-

collision operator tend to stay regular for longer. Figure 3(b)

FIG. 2. Deuterium distribution function in a hot plasma characterized by T ¼ 1 keV for all particle species, ne ¼ 3� 1019 m–3 and effective charge Zeff ¼ 2

due to fully ionized carbon impurities with nC=nD ¼ 4%. The electric field E ¼ 1:64 V/m corresponds to E=ED ¼ 0:13. (a) Time evolution of the n¼ 1 cut of

the distribution and (b) contour plot of the steady state distribution, established after 20 s.
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shows a similar case but with higher impurity content, Zeff

¼ 2, for which all operators yield well-behaving results. An

additional consequence of the low effective charge was dem-

onstrated in Fig. 1(a), where impurity ions were shown to be

more easily accelerated by an electric field than the bulk spe-

cies, implying that for low Zeff the assumption of stationary

impurity ions may be violated.

In conclusion, the high-energy part of the ion distribu-

tion obtained using only the test-particle operator is in quali-

tative agreement with the result obtained with conservative

operators, but the runaway rate is expected to be lower in the

test-particle case. A quantitative investigation of runaway

rates for impurity species is presented in Sec. V.

It is instructive to compare the behavior of the numerical

solution to the characteristic behavior indicated by the test

particle friction given in Eq. (6). Noting that the runaway ion

velocity satisfies vTi 	 v	 vTe, we can expand the contribu-

tions to Eq. (6) using the known low and high-velocity limits

of the Chandrasekhar function. The test particle friction in

this limit reduces to

Ftest
i 
 �mivTi

sie

Zeff þ �n

xi
þ 4

3
ffiffiffi
p
p Ti

Te


 �3=2 ffiffiffiffiffiffi
me

mi

r
xi

" #
; (13)

where �n ¼
P

jnjZ
2
j mi=nemj allows for arbitrary impurity con-

tent. Consider first the minimum value of the magnitude of

the collisional friction force; this will determine the mini-

mum electric field which can accelerate a fast test ion.

Minimizing Eq. (13) yields

vmin ¼ vTe
3
ffiffiffi
p
p

2

me

mi
Zeff þ �nð Þ

� �1=3

; (14)

Ftest
i vminð Þ ¼ �2

mivTi

sie

Ti

Te

3

2p
me

mi
Zeff þ �nð Þ

� �1=3

: (15)

From this it follows that the minimum, “critical,” value Eci

of the electric field above which a test ion can be accelerated

is given by

Eci

ED
¼ Zi Zeff þ �nð Þ1=3

j1� Zi=Zeff j
3

2p
me

mi


 �1=3

: (16)

By taking ZieE� þ Ftest
i ¼ 0, we can find the range of test ion

velocities, vc1 < v < vc2, for which acceleration in a given

electric field occurs, as discussed in Refs. 1 and 12. Using

the expression for the friction given in Eq. (13) results in a

third order equation, however simpler approximate formulae

can be obtained by noting that vc1 will fall near to the region

dominated by ion friction, and vc2 in the region dominated

by electron friction. Retaining only the corresponding terms

in Eq. (13) yields, for arbitrary impurity content,

vc1 ¼ vTi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZiTe

2Ti

E

ED


 ��1 Zeff þ �n

j1� Zi=Zeff j

s
; (17)

vc2 ¼ vTe
3
ffiffiffi
p
p

2

E

ED

j1� Zi=Zeff j
Zi

: (18)

These equations generalize the corresponding expressions in

Ref. 1 to arbitrary plasma composition. Note that these for-

mulae are only valid when E is sufficiently large compared

to Eci, since at E ¼ Eci ion and electron friction contribute

equally. We may expect that in steady-state, the position of

the high-velocity maximum of the distribution function,

denoted vm, is close to vc2, which scales linearly with E in

the approximate form given by Eq. (18). This is confirmed

numerically and illustrated in Fig. 4, where we show the var-

iation with electric field of vm, obtained from steady-state

CODION solutions of Eq. (2). Also shown are the boundary

velocities of the acceleration region, resulting from numeri-

cal solution of the force balance using the full test particle

friction, Eq. (6), as well as their approximate forms Eqs. (17)

and (18). The values converge when the system is strongly

driven by a large E. The linear dependence of vm is clearly

visible at large E, where it approaches the value given by the

test particle approximation. The analytic approximation for

Eci, Eq. (16), is only accurate to �20%, however, indicating

FIG. 3. Comparison of the n¼ 1 cut of deuterium distributions calculated using CODION, retaining all (solid) or individual (dashed, dashed-dotted, and dot-

ted) conservative terms in the ion self-collision operator. Here, T¼ 1 keV for all species, and nDþ ¼ 3� 1019 m�3. The only impurity is fully ionized carbon,

of density such that the specified effective charge is obtained, and electric fields and times are chosen to produce a significant runaway population. (a) Zeff

¼ 1:5; E ¼ 2:5 V/m at t ¼ 0:9 s, and (b) Zeff ¼ 2; E ¼ 2 V/m at t ¼ 0:8 s.
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that collisional diffusion contributes significantly to the evo-

lution at lower electric fields. Since the linearization breaks

down more rapidly at larger electric fields, it is mainly at

fields near the threshold for runaway generation that the

model can consistently be applied to study the long-term

evolution of the ion runaway tail, making a full kinetic simu-

lation essential for capturing the important physics. For the

more massive impurities, the features of the test-particle

model become increasingly accurate since the runaway ion

population is further separated in velocity space from the

thermal bulk.

It is important to point out that neither the diffusion

terms nor the field-particle self-collisions have been

accounted for in the derivations of the above estimates,

which are meant to give simple expressions that show how

the essential quantities scale with the plasma parameters, and

to provide a useful physical picture for illustrating the ion

runaway phenomenon. A complete description will be pro-

vided only by numerical solution of the kinetic equation.

V. APPLICATIONS

In this section, CODION is applied to calculate runaway

ion distributions for typical solar flare and fusion plasmas.

The time it takes for a fast ion population to form due to the

runaway mechanism is determined, and it is investigated

whether the difference in acceleration rate between different

ion species can explain the enhanced abundance of heavy

ions in the solar wind. We also consider the possibility of

Alfv�enic instabilities being driven by runaway ions during

tokamak disruptions.

Throughout this section, time-scales are chosen so that

significant fast ion populations have time to form, which typ-

ically takes between a few hundred to a few thousand ion-

electron collision times. We define the runaway density,

nr ¼ ð1=niÞ
Ð
v>v�c1

d3v fi, as the fraction of ions with velocity

larger than the low-velocity numerical solution of

ZieE� þ Ftest
i ¼ 0, denoted v�c1, which if E < Eci is taken as

the velocity vmin minimizing the friction Ftest
i .

A. Ion acceleration in solar flares

Solar flares are thought to be initiated by reconnection

in the corona,22 but the origin of the observed fast ion popu-

lations in flares is still not completely understood.23 Both

stochastic acceleration by waves and the direct acceleration

of the particles by the electric field have been considered,

and it appears likely that a combination of the two can be at

work.1,24,25

The effective accelerating field experienced by a given

species varies with its charge and the effective charge of the

plasma, as discussed in Sec. II. This can give rise to prefer-

ential acceleration of heavier elements under certain circum-

stances, and this effect was considered in Ref. 1, where

estimates of the runaway rate were given based on the ap-

proximate formula of Ref. 11. With CODION we can deter-

mine the time evolution of the ion distribution function

numerically, and evaluate the dependence of the runaway

population on various ion parameters.

The composition of the solar plasma, particularly the

metallic elements, has been studied extensively in recent

years, however much uncertainty remains. We will choose

parameters consistent with the choices made by Holman.1

We use the plasma temperature T ¼ 700 eV for all particle

species, and hydrogen density nH ¼ 3� 1017 m�3. Elements

with atomic number Z � 6 can readily be assumed to be

fully ionized at this temperature. The plasma composition is

based on the ion abundance recommended by Schmelz

et al.13 We use a helium population of density nHe=nH ¼ 6%,

and represent all heavier impurities by a carbon population

of density nC=nH ¼ 0:1%, corresponding to an effective

charge Zeff ¼ 1:13. Electric field strengths in solar flares are

not well constrained by experimental observation, and we

will investigate the rate of acceleration at a range of values.

The Dreicer field is ED ¼ 224 mV/m for this set of plasma

parameters.

The critical electric fields Eci for the ion species in such

a plasma are Ec;H ¼ 154 mV/m for hydrogen, Ec;He ¼ 40

mV/m for helium, and Ec;C ¼ 20 mV/m for carbon. Note

that the acceleration rate depends strongly not only on E=Eci

but also on vc1=vTi.

Figure 5 shows the v? ¼ 0 cut of the distribution func-

tions of hydrogen (1H), helium (4He), and carbon (12C) after

30 s of acceleration from initial Maxwellians, with the

plasma parameters specified above and an electric field E
¼ 50 mV/m. At this electric field, the critical velocities are

given by v�c1=vTe ¼ v�c2=vTe ¼ 0:15 for hydrogen (coinciding

since E < EcH), v�c1=vTe ¼ 0:08 and v�c2=vTe ¼ 0:21 for he-

lium, and v�c1=vTe ¼ 0:04 and v�c2=vTe ¼ 0:48 for carbon. The

electric field is significantly below the hydrogen critical

field, and no hydrogen runaway population forms. Runaway

ion populations of both helium and carbon do form however,

with runaway densities nr;He ¼ 0:037% and nr;C ¼ 18%,

respectively.

FIG. 4. Electric field dependence of the location vm of the maximum in the

runaway tail, obtained using CODION, for a fully ionized impure deuterium

plasma with nC=nD ¼ 4%; Zeff ¼ 2:5 and equal temperature for all particle

species. The boundary velocities v�c1 and v�c2 of the acceleration region

obtained numerically from Eq. (6) (using the velocity which minimizes the

friction when E < EcD), and their approximate values vc1 and vc2 given by

Eqs. (17) and (18), are also shown. The quantities shown are independent of

electron density and temperature. For electric fields E�0:8EcD, no maxi-

mum forms in the runaway ion distribution.
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Positive values of vk represent the direction of the elec-

tric field. Therefore, Fig. 5 also illustrates how heavier ions

(charge Z > Zeff) are accelerated in the direction opposite to

the electric field, dragged by electron friction. The corre-

sponding 2D carbon distribution function is shown in Fig. 6,

displaying a strong directional anisotropy (compare to Fig.

2(b)). This can be understood by the observation that the

accumulation velocity vc2 is located at a higher value of xi

¼ v=vTi for heavier ions. Since pitch angle scattering of the

energetic heavy ions scales with velocity like Zeff=x3
i , the

mechanism will be less effective than for light bulk ion spe-

cies in increasing the perpendicular energy of the distribution.

We will now investigate how the runaway population

varies with electric field strength for different ion species. To

determine the runaway density of heavier ions, we have

introduced trace amounts of each ion species with charge

between 2 (helium) and 18 (argon), assumed to be fully ion-

ized. In practice, ions of charge Zi > 8 will typically not be

fully ionized at the temperature considered due to their high

ionization energy, meaning that the results shown here will

overestimate the acceleration rate of the heavier ions. The

ion masses have been set to that of the most common iso-

tope, i.e., 7Li, 9Be, 20Ne, etc. Both 3He and 4He are shown,

with 3He showing significantly enhanced runaway compared

to 4He, for all values of E.

Figure 7(a) shows how the runaway density nr depends

on electric field after 1 s of acceleration for various ion spe-

cies present in the solar flare plasma. The figure illustrates

how the average runaway rate is sensitive to ion parameters;

at low electric fields, the heavier ions tend to be accelerated

more slowly than light ions, while at higher fields they are

the most readily accelerated. Note that above the critical

electric field, Eci 
 40 mV/m for helium, the runaway popu-

lation increases significantly faster than for E < Eci. The av-

erage runaway rate of 3He is seen to be orders of magnitude

higher than that of 4He for all electric fields considered.

Finally, we illustrate the dependence of the average

acceleration rate on ion charge and mass. Figure 7(b) shows

the runaway density nr after 1 s of acceleration as a function

of ion charge Zi for various electric fields. Ions of charge

between Zi¼ 4 (9Be) and Zi¼ 8 (16O) are seen to be prefer-

entially accelerated over lighter or heavier elements for low

electric fields. For Zi > 8, the trend depends on electric field.

For low electric fields, the runaway population decreases

FIG. 6. Distribution function fC of carbon, accelerated from an initial Maxwellian with zero flow velocity for 30 s by an electric field E ¼ 50 mV/m. The pa-

rameters represent a fully ionized solar flare-type plasma, with nH ¼ 3� 1017 m�3, nHe=nH ¼ 6%, and nC=nH ¼ 0:1%, and temperature T ¼ 700 eV for all

species.

FIG. 5. Distribution functions of hydrogen, helium, and carbon after 30 s of

acceleration in a solar flare-like plasma, with E ¼ 50 mV/m. All distribution

functions are normalized to their respective densities. The temperature is T
¼ 700 eV for all species, nH ¼ 3� 1017 m�3, nHe=nH ¼ 6%, and all other

impurities are represented by a carbon population with nC=nH ¼ 0:1%, yield-

ing Zeff ¼ 1:13. The runaway densities are nr;H 
 0; nr;He ¼ 3:7� 10�4; and

nr;C ¼ 0:18.

FIG. 7. Solar flare-like plasma with all particle species at the same temperature T ¼ 700 eV. The composition is mainly hydrogen, nH ¼ 3� 1017 m�3, and

helium-4, nHe=nH ¼ 6%, with carbon of density nC=nH ¼ 0:1% representing all other impurities, each appearing in trace amounts. Ions are accelerated for 1 s

from initial Maxwellians. Due to the low effective charge Zeff ¼ 1:13, the hydrogen background remains stationary (E� is small). Since heavier elements are

assumed to be present only in trace amounts, self-collisions are negligible and they can be followed to large runaway fraction. (a) Runaway density nr as a

function of electric field strength E for various ion species. (b) Runaway density as a function of ion charge Zi. For each atomic number, the most common iso-

tope is used, except for helium (Zi¼ 2) where both 3He and 4He are shown, with the 3He runaway density indicated by dots.
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with charge, while for larger electric fields (in this case

above approximately 50 mV/m), heavier ion species may be

accelerated more readily than the lighter species. Further

studies are required to determine the full effects of variation

in background composition, temperature, density, and charge

states on the relative rates of acceleration between different

ion species. The results presented here demonstrate the util-

ity of CODION for the problem.

As previously noted, acceleration by quasi-static electric

fields is not the only mechanism for ion acceleration in a

flare plasma. Interaction with Alfv�en waves can accelerate

ions which have velocities above the Alfv�en velocity. As this

is usually well above the thermal ion velocity, an initial

acceleration by electric fields may be required before the

process becomes significant.1,26 CODION provides the

means for more accurate modeling of the effects of such

interactions.

B. Tokamak disruptions

During tokamak disruptions the plasma temperature

drops from the typical operating regime of around several

keV to a few eV in a couple of milliseconds. A large electric

field is initially induced parallel to the magnetic field to

maintain the plasma current of several MA, potentially lead-

ing to the formation of a beam of energetic electrons through

the runaway mechanism. The potential for damage by such a

focused high-energy beam on contact with the vessel wall is

large, and runaway generation must as far as possible be sup-

pressed. To study the physics and mitigation of runaway

electrons, disruptions can be induced by the injection of

large quantities of noble gas, often in amounts comparable to

the initial plasma inventory or larger.2

The large induced electric field will usually decay rap-

idly on a timescale of a few ms in response to the formation

of a narrow runaway electron (RE) beam. With runaway

electrons reaching energies of order tens of MeV, they can

carry a significant fraction of the pre-disruption plasma

current and can drive high frequency electromagnetic

instabilities through resonant interactions.27–30 Recently,

low-frequency magnetic fluctuations in the range of f 

60� 260 kHz have been observed in the TEXTOR tokamak

during induced-disruption studies with argon massive gas

injection (MGI). These fluctuations take the form of either a

strong signal at a distinct frequency31 or accompanied by

broadband activity.32 The fluctuations appear to limit the RE

beam formation in these cases, as the magnetic perturbations

may scatter the runaway electrons and provide passive miti-

gation. Aside from the potential consequences for mitigation,

observed instabilities offer a non-intrusive diagnostic for

both bulk plasma and fast-particle properties, through the

extensively applied technique of MHD spectroscopy.33

Fast ions resulting, for example, from certain heating

schemes are well known to resonantly drive low frequency

Alfv�enic instabilities in typical operational scenarios.34,35

Runaway ions may thus also provide a potential drive for the

fluctuations observed. Interestingly, TAEs36 can have fre-

quencies and mode numbers in the same range as the post-

disruption magnetic activity. Therefore, the excitation of

TAEs by runaway ions was recently considered in Ref. 14

using an analytical approximation for the runaway distribu-

tion function. As the validity of the approximate distribution

was limited, definite conclusions could not be drawn. With

CODION we can extend the study using the numerically cal-

culated ion distribution. The cold post-disruption plasma is

highly collisional, motivating the use of a homogeneous

background plasma and the neglect of magnetic trapping

when evaluating the effective electric field.

The TAE perturbation is typically dominated by two

neighboring toroidally coupled harmonics at large aspect ra-

tio, with poloidal mode numbers m and mþ 1. The mode is

localized about the minor radius r¼ r0 at which the magnetic

safety factor is q0 ¼ ð2mþ 1Þ=2n, where R0 is the radius of

the magnetic axis and n is the toroidal mode number. The

TAE frequency is x ¼ vA=ð2q0R0Þ, where vA ¼ B=
ffiffiffiffiffiffiffiffiffiffi
l0qm
p

is

the Alfv�en speed and qm the mass density. The two compo-

nent harmonics allow resonant interaction with particles

whose parallel velocity vk satisfies jvkj ’ vA=3 or jvkj ’ vA.

It was argued in Ref. 14 that as the runaway ions accelerate,

the inverted region of their energy distribution, @f=@E > 0

where E ¼ miv2=2 is the particle energy, can reach the lower

Alfv�en resonance, vk ¼ vA=3 and may drive the TAE. If the

radial runaway ion profile peaks on axis, the spatial gradient

@f=@r will give an additional positive contribution to the

growth rate. Taking parameters characteristic of argon MGI-

induced disruptions, nD ¼ 3� 1019 m�3, nAr ¼ 0:1nD,

ZAr ¼ 2, and anticipating a native background carbon impu-

rity with nC ¼ 0:08nD and ZC ¼ 2, so that Zeff ¼ 1:26, a

background ion temperature of Ti ¼ 10 eV, toroidal mag-

netic field B ¼ 2 T and major radius R0 ¼ 1:75 m means that

the resonance condition vk ¼ vA=3 requires deuterium ions

with velocities v ’ 35vTD.

The electric field required to accelerate bulk ions to the

resonant velocity at these low temperatures is substantial,

varying in response to changes in Zeff but is typically

� 0:3ED � 100 V/m. Such field strengths are unlikely to

occur during a disruption, and they would be short-lived if

they did.37 Therefore, we conclude that whilst ion runaway

may be of interest in hot fusion plasmas, runaway ions are

unlikely to provide the drive for the observed fluctuations

during disruptions.

To quantify the electric field needed for significant ion

runaway, we show in Fig. 8 how the deuterium distribution

evaluated after 2 ms of acceleration from an initial

Maxwellian—a typical time scale for the induced electric

field—varies with (a constant) electric field. The parameters

are nD ¼ 3� 1019 m�3, T¼ 10 eV, and the same plasma

composition as before with Zeff ¼ 1:26. It is seen that for

electric fields below �200 V/m, no runaway tail tends to

form, and even with E¼ 260 V/m the fast ions are far from

the resonant velocity near 35vTD. The behavior is sensitive to

which temperature is chosen for the plasma: increased tem-

perature decreases the electric fields needed to accelerate

ions, but makes the acceleration timescale longer.

Note that a higher amount of assimilated argon, or a

weaker magnetic field, would lead to a lower Alfv�en velocity

and TAE frequency, and therefore the runaway ions would

reach the resonance condition more easily. The higher
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electron density leads to an increased collision frequency,

however, so that the runaway ion distribution requires a lon-

ger time to form. The level of argon absorption during miti-

gation varies between machines2 and the absorption appears

to decrease for bigger machines. Therefore, although we

may expect a higher electric field in large tokamaks such as

ITER, the higher bulk plasma density and likely lower

absorption suggests no ion runaway will occur. Note that as

the ITER magnetic field is so high, even if the assimilated ar-

gon was equal to the initial deuterium inventory, the ions

would need to reach �40vTi (at 10 eV) to reach the typical

vA=3 resonance, assuming B ¼ 5 T, R0 ¼ 6 m, and nD

¼ 1� 1020 m�3.

Finally, we note that the model presented in this paper

assumes the initial ion distribution to be a stationary

Maxwellian. Fast ion populations present due to heating

schemes in use before the disruption may not be completely

expelled, and it is not certain that the initial distribution is

accurately described by a Maxwellian. The dynamics of ion

acceleration starting from these non-Maxwellian distribu-

tions may yield a fast-ion population more readily.

Furthermore, since plasma conditions change on a time scale

of a few collision times during the sudden cooling associated

with instabilities or disruptions, so-called “hot-tail” runaway

generation may occur. This has been shown to be an impor-

tant effect for runaway of electrons, where a seed of runaway

electrons is provided by fast electrons present before cool-

ing.38 These fast electrons are cooled at a slower rate than

the low-energy electrons, and may find themselves in the

runaway region when the plasma has reached its final tem-

perature. However, using CODION to investigate the effect

of hot-tail ions, it has been concluded that the effect is small

for realistic fields. The reason is that, if the electric field is

not high enough for the ions to overcome the friction and

become runaways in the first place, all hot-tail ions will nec-

essarily also be slowed down. A low-velocity inverted ion

population may however form as a result of the cooling pro-

cess even for such low electric fields, with its peak near the

velocity which minimizes the collisional friction at the final

temperature (typically around 6–8 thermal velocities). This

is still significantly lower than that needed for resonant inter-

action with Alfv�en waves.

One refinement to the model would be the inclusion of

“knock-ons,” i.e., large-angle collisions, which have been

neglected in the Fokker-Planck equation. It is well known

that single collisions can change the momenta of the interact-

ing particles significantly, and a runaway ion interacting

with a bulk ion could cause both to end up in the runaway

region. In a situation where the electric field is low enough

that runaway ions are produced at a low rate through the

standard acceleration mechanism, knock-on collisions could

possibly contribute significantly to the runaway generation

rate. This has been demonstrated to be the case for electron

runaway, where this effect drastically affects the rate at

which runaways are produced. A simplified runaway ion

knock-on operator could potentially be constructed from the

Boltzmann collision integral under the assumption that fast

ions accumulate near vc2 and collide mainly with the bulk

distribution, since the fast ion distribution is assumed to be a

small perturbation in our linearized model. However, there

are differences between ion runaway and electron runaway

that suggest that knock-on runaway generation is a less sig-

nificant effect for ions than for electrons. Since our linear-

ized model restricts the study to cases where E � Eci (which

is also the regime where knock-on generation would be

expected to be significant), the accumulation velocity near

vc2 will not be significantly larger than the runaway velocity

vc1. Therefore, collision events where both particles end up

in the runaway region will be less frequent. This is in con-

trast to electron runaway, where the electrons have

unbounded energy (neglecting radiation effects).

There are applications for knock-on operators other than

avalanche generation. It has been suggested that fast ion pop-

ulations due to other sources—for example, hot alpha par-

ticles created in fusion reactions or ions heated by external

sources such as neutral beam injection (NBI) or radio fre-

quency (RF)-heating—could accelerate bulk impurity ions,

which could in turn be used for diagnostics.39,40 The sug-

gested collision operator could be implemented in CODION,

and the time-evolution of bulk impurities solved for in the

vicinity of an assumed or numerically obtained background

of fast ions, however this is outside the scope of the present

paper.

VI. CONCLUSIONS

Electron runaway resulting from the occurrence of a

strong electric field in a plasma has been the subject of

extensive study, and numerical tools exist to simulate the

electron dynamics. The analytic description of the associated

ion acceleration was developed at the same time, but its

application has been much more limited and is restricted by

the various approximations to the collision operator which

were required.

FIG. 8. Deuterium distribution function resulting from various electric fields af-

ter t ¼ 2 ms of acceleration from an initial Maxwellian in a TEXTOR MGI post-

disruption-like plasma, with nD ¼ 3� 1019 m�3, nC ¼ 0:08nD; nAr ¼ 0:1nD,

and T ¼ 10 eV for all species, with ZC ¼ ZAr ¼ 2. The critical field for deute-

rium is EcD ¼ 295 V/m, and the Dreicer field is ED ¼ 962 V/m. For this sce-

nario, v�c1 ¼ 7:0vTD.
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We have developed an efficient open-source numerical

tool, CODION,41 which solves the ion Fokker-Planck equa-

tion as an initial value problem in a fully ionized plasma. A

uniform background magnetic field is assumed, along with

initially stationary Maxwellian distributions, however arbi-

trary impurity densities and temperatures may be specified.

A model operator for ion self-collisions based on that used

in the gyrokinetic code GS2 (Ref. 42) has been employed,

satisfying momentum and energy conservation, non-negative

entropy production, and self-adjointness. A simplified ana-

lytical model based on the large mass ratio is used for ion-

electron collisions, allowing a description of ion-electron

friction caused by the perturbation of the electron distribu-

tion due to the electric field. However, we wish to note that

our model will break down for strong electric fields, as the

electrons—which are assumed to be in force balance with

the electric field and ion friction—will be rapidly accelerated

by electric fields approaching the Dreicer field. A full

description of such scenarios would require the simultaneous

evolution of the ion and electron distributions, for example,

by coupling the CODION and CODE20 codes.

The effect of various approximations to the collision op-

erator commonly used in the literature has been studied

numerically. It has been demonstrated that the addition of

momentum and energy conservation in self-collisions mainly

acts to increase the rate at which the fast ion population

builds up, while the qualitative behavior is largely unaf-

fected. For strong electric fields, the test particle description

is seen to reproduce well the characteristic velocity achieved

by the runaway population, and the predicted critical electric

field for ion acceleration is accurate to �20%. Using the test

particle approximation, we derived concise analytic expres-

sions for the critical electric field for ion runaway, Eq. (16),

and the typical runaway energy, Eqs. (17) and (18), and

tested these expressions against direct numerical simulation

with CODION.

The output of CODION is the evolution of the 2D veloc-

ity space ion distribution. The utility of this has been demon-

strated for calculating acceleration rates of ions in solar flare

plasmas. The average rate at which ions are accelerated has

been evaluated for a range of ion masses and charges for a

solar flare scenario based on that considered by Holman,1

and an exponential dependence of the buildup of a runaway

population with charge for Z> 8 has been illustrated for this

scenario.

Low-frequency instabilities, in the range characteristic

of TAE modes, have been observed in post-disruption toka-

mak plasmas, where the disruption was induced by massive

gas injection. Using CODION, we have considered the

potential for ions accelerated in the disruption-induced elec-

tric field to drive such modes resonantly. The post-disruption

discharge parameters are not well constrained experimen-

tally and simulations of a range of values indicate that ion

acceleration is possible. The typical maximum ion velocity

achieved is too low for resonant interaction to occur, how-

ever, and the rate of runaway generation is too slow for a sig-

nificant runaway density to be reached in the short-lived

electric fields of a typical disruption.
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