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Abstract
The last decade has seen a rapid development of experimental techniques that allow data

collection from individual cells. These techniques have enabled the discovery and charac-

terization of variability within a population of genetically identical cells. Nonlinear mixed ef-

fects (NLME) modeling is an established framework for studying variability between

individuals in a population, frequently used in pharmacokinetics and pharmacodynamics,

but its potential for studies of cell-to-cell variability in molecular cell biology is yet to be ex-

ploited. Here we take advantage of this novel application of NLMEmodeling to study cell-to-

cell variability in the dynamic behavior of the yeast transcription repressor Mig1. In particu-

lar, we investigate a recently discovered phenomenon where Mig1 during a short and tran-

sient period exits the nucleus when cells experience a shift from high to intermediate levels

of extracellular glucose. A phenomenological model based on ordinary differential equa-

tions describing the transient dynamics of nuclear Mig1 is introduced, and according to the

NLMEmethodology the parameters of this model are in turn modeled by a multivariate prob-

ability distribution. Using time-lapse microscopy data from nearly 200 cells, we estimate this

parameter distribution according to the approach of maximizing the population likelihood.

Based on the estimated distribution, parameter values for individual cells are furthermore

characterized and the resulting Mig1 dynamics are compared to the single cell times-series

data. The proposed NLME framework is also compared to the intuitive but limited standard

two-stage (STS) approach. We demonstrate that the latter may overestimate variabilities by

up to almost five fold. Finally, Monte Carlo simulations of the inferred population model are

used to predict the distribution of key characteristics of the Mig1 transient response. We find

that with decreasing levels of post-shift glucose, the transient response of Mig1 tend to be

faster, more extended, and displays an increased cell-to-cell variability.
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Introduction
Cell biology data has traditionally been acquired by analyzing samples containing a large num-
ber of cells. However, data that has been produced by averaging the properties of individual
cells may result in misleading interpretations of actual behaviors and underlying mechanisms
[1–3]. Today, experimental methods are available that make it possible to measure certain
quantities at the level of individual cells. These methods include techniques such as flow cy-
tometry, fluorescence microscopy, and single cell transcriptomics, proteomics, and metabolo-
mics. The development of experimental methods operating on single cells have enabled the
study and characterization of cell-to-cell variability, adding a new dimension to the under-
standing of cell biology. For instance, flow cytometry has been used to study the population
variability of the GAL regulatory network in yeast [4] and T cell activation [5]. This method
produces snapshot data of the population at one or several time points. Each cell is only used
for one single measurement, but the method can on the other hand be used to analyze a very
large number of cells. For the generation of time-resolved data of the same particular cells, fluo-
rescence microscopy of cells expressing proteins tagged with fluorescent proteins, e.g., GFP,
has emerged as a powerful technique. Compared to the high-throughput capabilities of flow cy-
tometry, time-laps imaging using fluorescence microscopy is typically carried out on a low- or
medium-throughput scale. However, this data is substantially richer in information than snap-
shot data due to the temporal tracking of the same individual cells. Time-resolved data from
single cells generated by the combination of microscopy and fluorescent proteins have been
used in a large number of studies, including for instance investigations of nuclear accumulation
of transcription factor activator ERK2 [1], golgi maturation in yeast [6], and stress-induced nu-
clear translocation of yeast kinase Hog1 [7] and transcription factors Crz1 [8] and Msn2 [9].
Although various cell-to-cell variability aspects of such data are increasingly being quantified
and classified, the development of appropriate mathematical models and modeling approaches
is still in its infancy. The need for suitable modeling approaches to describe the variability in
dynamic behavior of cell populations has previously been pointed out by the authors of the
present work [10], and by others [11], and research activities within this field are expected
to increase.

Cell-to-cell variability between genetically identical cells, cultured under the same condi-
tions, originates from the inherently stochastic nature of biochemical reactions. The sources of
contribution to variability in gene expression can be separated into the effect of intrinsic noise
on the actual reactions themselves, and extrinsic noise in the concentration of components par-
ticipating in gene expression [12–14]. The latter concentrations are in turn ultimately also de-
termined under the influence of intrinsic noise. Similarly, cell-to-cell variability may
additionally originate from the intrinsic and extrinsic fluctuations in other parts of the cellular
machinery, such as signalling pathways, and may further be impacted by small local differences
in the external environment of individual cells. To mathematically model aspects of variability
that are dominated by intrinsic noise, thus displaying noisy dynamics, stochastic approaches
are required [2, 15, 16]. These typically involve the chemical master equation, or more com-
monly, approximations thereof. However, in many cases noise will establish itself as different
expression-levels of various proteins, such as metabolic and signalling enzymes [5, 11, 14] and
it is in fact often argued that such extrinsic noise is the dominant source of variability [12, 14,
17–19]. Cell-to-cell variability caused by different levels of protein expression can be described
by deterministic models, where the values of parameters describing protein concentrations, en-
zymatic rate constants, etc., are distributed across the population. This approach was taken in a
computational study on the behavior of protein kinase cascades [20]. Here, the authors ex-
plored the variability in signalling activity through simulations where enzyme concentrations
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were randomly sampled from log-normal distributions. In another study on the heterogeneous
kinetics of ATK signalling [21], an ordinary differential equation model was fitted to average
population data. The behavior of individual cells was then simulated by log-normal sampling
of parameters representing enzyme concentrations. Still other examples can be found in
modeling of the cell-to-cell variability of apoptosis signalling [18, 22, 23]. Importantly, in nei-
ther of these studies were the parameter distributions estimated using single-cell data.

Estimation of parameter distributions for models of heterogenous cell populations has pre-
viously addressed the special case of single cell snapshot data. This has been done using Bayes-
ian approaches, for models with either deterministic [24] or stochastic [19] dynamics, and
using maximum likelihood approaches for deterministic models [25]. Recently, Bayesian esti-
mation methods for models with stochastic dynamics have also been customized for the case of
time series measurements of the same single cells [26, 27]. In this work we extend on the ap-
proaches of deterministic single-cell dynamic modeling by incorporating parameter variability
by means of so called nonlinear mixed effects (NLME) modeling, and estimating parameters
from time series data using a maximum likelihood approach. NLME is a well-established and
wide-spread approach to describe inter-individual variability between subjects of a population.
It has a long history with numerous successful applications within various scientific fields [28],
in particular including dynamical models in population pharmacokinetics and pharmacody-
namics, but is sofar largely unexploited for addressing cell-to-cell variability in cell biology-ori-
ented fields. An essential feature of the NLME framework is that all individuals of a population
share the same model structure and that differences between subjects are due to different values
of model parameters. Thus, the approach is suitable if it is reasonable to assume that the same
mechanisms are controlling the behavior of different cells but quantitative details represented
by parameter values may differ from one cell to another. This is implemented in the model by
letting a subset of the parameters be described by a multivariate probability distribution, whose
statistical properties are in turn parameterized by a set of additional parameters. Furthermore,
as NLME facilitates the identification of parameters by considering the information from all in-
dividuals simultaneously, it is an especially appropriate modeling strategy when considering
the often sparsely in time sampled data from single cells. We here apply NLME modeling in
the novel context of single-cell data, using it to quantify the dynamic behavior of the yeast tran-
scription factor Mig1.

Glucose and fructose are the most preferred carbon sources in Saccharomyces cerevisiae and
the presence of any of these sugars activates the transcriptional repressor Mig1. This mecha-
nism is referred to as glucose repression and involves genes required for the uptake and utiliza-
tion of alternative carbon sources, gluconeogenic genes and the genes required for respiration
[29]. A central role in glucose repression is played by the yeast AMP-activated protein kinase,
Snf1 [30]. Snf1 is activated in response to glucose depletion by phosphorylation of the Thr210
residue within its activation loop [31]. This activation is promoted by any of the upstream acti-
vating kinases Sak1, Elm1 and Tos3 [32–34]. Snf1 phosphorylation is mainly antagonized by
the activity of the Reg1-Glc7 protein phosphatase 1 (PP1) [35]. Active Snf1 phosphorylates the
transcriptional repressor Mig1 promoting its dissociation from the co-repressor complex Ssn6
(Cyc8)-Tup1 and its nuclear export [36, 37]. Addition of glucose results in a rapid dephosphor-
ylation of Snf1 and Mig1 and subsequently in nuclear accumulation of Mig1 [38, 39].

We recently published single-cell time-series data of Mig1 localization [39]. One of the in-
teresting findings in that study was the behavior of Mig1 when glucose-grown cells experienced
a shift in extracellular glucose from a high level (4%) to an intermediate level (1.5, 1.0, and
0.5%). In contrast to shifts to low concentrations of extracellular glucose, in response to which
Mig1 persistently re-localized to the cytosol, shifts to intermediate levels of extracellular glu-
cose caused Mig1 to first rapidly exit from the nucleus but then gradually return to its original
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nucleocytoplasmic distribution. Thus, it appears that the Snf1-Mig1 system can respond to a
change in glucose concentration but depending on the absolute concentration level the system
may perform some kind of adaptation. Such a transient response was an unexpected finding
and the mechanism behind the apparent adaptation is unknown. In fact, considering a recent
study involving 24 different mechanistic mathematical model variants [40], all based on up-to-
date understanding of the Snf1-Mig1 system on the molecular level, none of the investigated
models would be able to account for the transiently cytosolic Mig1. This can be realized by rec-
ognizing that in response to a change in extracellular glucose concentration, the accumulation
of activations and inhibitions of every possible path for going from extracellular glucose to
Mig1 will drive the Mig1 localization equilibrium in the same direction. Hence, none of the
pathway combinations which were implemented in the different model variants are sufficient
to explain the non-monotonic nature of the re-entry response. Furthermore, our single-cell
time-series data clearly indicated that the extent and timing of the transient re-localization dif-
fered between individual cells. Although previous mathematical modeling efforts of the
Snf1-Mig1 system have had access to data at the single cell level [40, 41], cell-to-cell variability
has not yet been addressed.

In the present work, we set out to describe and quantify the previously reported nuclear exit
and re-entry observations, focusing especially on the population variability aspect. Due to the
lack of a mechanistically based hypothesis, a simple phenomenological model is developed.
Using the NLME approach we are able to show that this model successfully captures the main
characteristics of the transient behavior as it varies between individual cells. Importantly, we
provide a model-based quantification of the cell-to-cell variability. This variability is reported
in terms of estimated distributions of the model parameters. We show that there is a strong
correlation between the two parameters determining the time-scales of nuclear exit and re-
entry, respectively. This is an interesting finding as it offers a clue to the actual mechanism be-
hind the exit and re-entry behavior. The NLME approach is furthermore compared to the sim-
pler two-stage-approach [42]. While the latter appears to provide reasonable estimates of the
median parameter values, it severely overestimates the population variability of the parameters
and thus clearly demonstrates why NLME should be preferred. Finally, once parameter esti-
mates have been obtained, the parameter variability of the population can be translated into
variability of any model-derived property through Monte Carlo simulations. This type of anal-
ysis is used to investigate three key characteristics of Mig1 behavior, namely the median and
variability of 1) the response time of Mig1 to a glucose shift, 2) the maximal response of nuclear
exit, and 3) the duration of Mig1 cytosolic re-localization. A comparison with a simple non-
model-based analysis suggests that these characteristics may not be immediately accessible
from data alone. Hence, from a data quantification point of view the model, although only of
phenomenological character, is crucial for extracting quantitative information about the pro-
cess generating the data.

Results

Data description
This study relies on single cell data that we recently published [39]. In brief, these data were ac-
quired from a Mig1-GFP expressing yeast strain using an experimental setup that is combining
microfluidics, optical tweezers, fluorescence microscopy, and image processing. We study the
scenario where glucose-grown cells are experiencing an instantaneous shift in extracellular glu-
cose, going from 4% glucose to an intermediate level. In total, data from nearly 200 yeast cells,
divided over four different data sets, are being used. The experiments are listed in Table 1.
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The data from experiments 1 to 4 is shown in Fig 1. The main feature of Mig1 behavior dur-
ing these glucose exposure patterns is an initial rapid exit from the nucleus, followed by a
slower re-entry, where Mig1 levels are readapting towards the baseline level prior to the glucose
shift. Both the degree of Mig1 exiting the nucleus and the duration of the complete transient
phase seem to increase with decreasing levels of extracellular glucose. All cells seem to share
these characteristics but the baseline level of nuclear Mig1 and the timing and degree of exit
and re-entry are varying between individual cells.

Setting up a model
Signalling pathways are notoriously challenging to model because of the limited and uncertain
knowledge of their components and the interactions between them [43–45]. Since state-of-the-
art mechanistic modeling of the Snf1-Mig1 system does not support the transient Mig1 behav-
ior described here [40], we instead aim for a phenomenological model that is as simple as possi-
ble, yet flexible enough to describe the Mig1 data. The simplicity of such a model is particularly
important in our cases since there is only one measured species from which to calibrate the
model, and since we are looking to infer not only parameters values but
parameter distributions.

A minimal model of perfect adaptation was considered for modeling the dynamics at the
single cell level. This model structure captures the main characteristics of the observed Mig1
behavior, while still providing some degree of interpretability with respect to the components
and interactions of the model. The model is illustrated in Fig 2. It consists of two state variables,
one representing the time-dependent concentration of Mig1(t) in the nucleus and one repre-
senting the time-dependent lumped effect, here denoted X(t), of one or several unknown com-
ponents involved in the adaptation. Since we do not know the scaling factor between the
observed fluorescent light intensity and the underlying actual concentration of Mig1 molecules,
we chose to formulate the model in terms of the observed light intensities. The rate of accumu-
lation of both state variables respond linearly to the level of extracellular glucose, Glu(t), which
is treated as an experimentally controlled input to the system. Considering that the amounts of
the involved components of the Snf1-Mig1 system are of the order 4 to 40 thousand molecules
per cell [40], a deterministic model is assumed to be sufficient [46]. The mass balance equations
for the state variables are defined by

dMig1ðtÞ
dt

¼ r1 � r2

dXðtÞ
dt

¼ r3 � r4;

Table 1. Experiments.

Exp Nr Number of cells From To

1 56 4% 1.5%

2 46 4% 1.5%

3 46 4% 1%

4 46 4% 0.5%

List of experiments showing the experiment number, the number of cells used, and the levels of

extracellular glucose.

doi:10.1371/journal.pone.0124050.t001
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where the rates are defined as

r1 ¼ k1 � GluðtÞ
r2 ¼ k2 � XðtÞ �Mig1ðtÞ
r3 ¼ k3 � GluðtÞ
r4 ¼ k4 � XðtÞ:

The initial conditions are

Mig1ð�30Þ ¼ Ms

Xð�30Þ ¼ Xs;

where we have chosen the initial time to -30 s with the convention that the input to the system
is changed at time 0. The input to the system, the extracellular level of glucose, is

GluðtÞ ¼ 4� ð4� gÞ � HðtÞ;

Fig 1. Visualization of all single cell data. Time-series data of fluorescent light intensity for nuclear Mig1 in single cells, shown for the four different
experiments. At time zero, the extracellular glucose concentration is changed according to Table 1.

doi:10.1371/journal.pone.0124050.g001
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whereH(t) is the Heaviside step function and g is equal to either 1.5, 1, or 0.5 depending on the ex-
periment. An observation of nuclear Mig1 at time t, yt, is modeled by introducing an additive error

yt ¼ Mig1ðtÞ þ et

where et*N(0, s), with s denoting the variance of the measurement error. In a previous study of
GFP-Mig1 [41] a moderate bleaching effect was identified from averaged single cell data. However,
these experiments involved a substantially larger number of measurements (80 per cell and experi-
ment compared to our 15) and the samples were likely bleached to a higher degree. We did not in-
clude the effect of fluorophore bleaching in our model, as the majority of cells displayed intensity
levels which eventually returned close to the starting levels. In fact, a comparison of the intensities
before the glucose shift and at 20 minutes showed that there was an average recovery level of 96%,
a number that was determined despite the fact that all cells might not fully have completed their
re-entry during the course of the experiment.

It is straightforward to show that the steady-state value of the response variable in the
model is independent of the input signal [47]. In the context of Mig1-observations, this means
that the model is limited to the experiments where the re-entry phenomena with perfect adap-
tation is manifested. To be able to describe Mig1 localization in response to a general perturba-
tion in the glucose level, it is clear that some other kind of model would be necessary.

An important question in modeling arises when a model structure has been proposed but
parameter values needs to be estimated from experimental observations; is there enough infor-
mation in the data to uniquely determine the parameter values? If we in addition to Mig1(t)
had been able to measure X(t), all parameters would have been structurally identifiable [48,
49]. However, when X(t) is not measured it turns out that the model is not identifiable, irre-

spective of the amount and quality of the data being used. If we let ~XðtÞ ¼ aXðtÞ, ~k2 ¼ k2=a,

and ~k3 ¼ a � k3, and multiply the differential equation for X(t) with α, the model equations can

Fig 2. Illustration of the mathematical model. Extracellular glucose is controlling the rate of production of
nuclear Mig1 and a hypothetical component X. The level of X in turn modulates the degradation of nuclear
Mig1.

doi:10.1371/journal.pone.0124050.g002
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be written

dMig1ðtÞ
dt

¼ k1 � GluðtÞ � ~k2 � ~XðtÞ �Mig1ðtÞ

d~XðtÞ
dt

¼ ~k3 � GluðtÞ � k4 � ~XðtÞ:

This transformation leaves the measured state variable Mig1(t) unchanged, and in this sense
results in an equivalent model. Thus, there is a redundancy in the dependence between X(t), k2,
and k3 which prevents us from uniquely identifying these parts of the model. The crucial point,
however, is that by choosing α to contain either the factor k2 or 1/k3, one of the parameters will
cancel out and the transformed model will contain one parameter less. For instance, choosing
α = k4/(k3�Glu(−30)), the parameter k3 will no longer appear in the equations and does not

have to be estimated. This particular α also yields a very simple initial condition for ~XðtÞ. In
this way we reduce the complexity of the original model but fully preserve its ability to describe

the observed state variable Mig1(t). The fact that ~XðtÞ, ~k2, and ~k3 are different from the corre-
sponding state variable and parameters of the original model is of no concern to us since they
anyway represent aspects of a hypothesized process that is not defined on the molecular level,
and hence there is no loss of interpretability. The model could have been reduced with respect
to the parameter k2 instead, but since k2 will determine the turnover-timescale of Mig1(t) re-
duction with respect to k3 is more convenient.

For simplicity in notation, we will now drop the tildes and let the original names of variables
and parameters refer to the reduced model. The equations defining the model in Fig 2 are

dMig1ðtÞ
dt

¼ k1 � GluðtÞ � k2 � XðtÞ �Mig1ðtÞ
dXðtÞ
dt

¼ k4
GluðtÞ

Gluð�30Þ � k4 � XðtÞ:

Further model simplification can be achieved by acknowledging that the modeled system
should be in steady-state at the beginning of each experiment. By assuming a steady-state at t =
−30, we see that

0 ¼ k1 � Gluð�30Þ � k2 � Xs �Ms

0 ¼ k4 � k4 � Xs;

and thus that the values of the model parameters are constrained by the initial values. From the
second equality, we require that Xs = 1. We furthermore let the parameter k1 be a function of
the other parameters and of the input according to

k1 ¼
k2Ms

Gluð�30Þ :

This particular choice of reparameterization is motivated by the fact that the parameter k2 can
be interpreted in terms of the turnover-timescale for Mig1(t) and Ms as the basal level of Mig1,
making the resulting model most convenient.

We now turn to the population aspect of the mathematical model and how to account for
the variability of the measured Mig1 dynamics in individual cells. In contrast to the non-ran-
dom parameter values typically encountered in computational biology, variability between sub-
jects is introduced by letting parameter values be described by probability distributions.
Specifically, we chose to let the parameters of the dynamical model described above to be
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defined as the product of a so called fixed effect parameter, which involves no randomness, and
a so called random effect parameter according to

Ms ¼ Mse
Z1

k2 ¼ k2e
Z2

k4 ¼ k4e
Z3 :

Here, the vector of random effect parameters, η = (η1, η2, η3), is normally distributed with zero
mean and covariance matrixΩ. This means that the parameters Ms, k2, and k4 are log-normally

distributed. Their median values are determined by the parametersMs, k2, and k4, and their de-
gree of variability is determined byΩ. The particular choice of a log-normal distribution is mo-
tivated by the universal appearance of this distribution in nature, ultimately originating from
the fundamental laws of chemistry and physics [50, 51]. For instance, the concentrations of
several mammalian signalling proteins have been shown to be log-normally distributed [5].
Since the proposed model is not a molecular-level mechanistic model, population variability of
its parameters are meant to capture the aggregated effects of the underlying variability in all
components relevant to Mig1 localization, ranging from proteins directly involved in Mig1
nucleocytoplasmic transport to proteins involved in sensing and signalling, etc.

Estimating parameters
The experimental data described previously was used to estimate the parameters of the dynam-
ical population model. This was done by maximizing the so called FOCE approximation of the
population likelihood, using a gradient-based optimization scheme [52]. Three types of param-
eters were included in the parameter estimation:

• The fixed effect parameters of the model,Ms, k2, and k4.

• The variance of the measurement noise, s.

• The parameters used to define the random effect covariance matrix, ω11, ω12, ω13, ω22, ω23,
and ω33. Details of the parameterization of the random effect covariance matrixΩ are ex-
plained in the Methods section.

There are in a total 10 parameters to be estimated, collected in the vector

θ ¼ ðMs; k2; k4; s;o11;o12;o13;o22;o23;o33Þ:

Each of the four experiments were considered separately, resulting in one set of estimates
per experiment. The estimated values of the parameters for the different data sets are shown in
Table 2. For each estimated parameter, its relative standard error (RSE) is shown within paren-

thesis. The estimate of the initial median level of nuclear Mig1,Ms, is similar throughout the
set of experiments. Experiments 1, 2 and 3 are similar with respect to the estimates of the pa-

rameters k2 and k4, while experiments 4 shows a slightly larger k2 and a k4 that is roughly dou-
ble in size. The estimates of the measurement error variance differ for the different
experiments. Moreover, it is clear that the parameters of the dynamical model are determined

with high certainty, especiallyMs which has a RSE of at most 2% in all of the four experiments.
The values of the parameters used for constructing the covariance matrix for the random effect
parameters are on the other hand somewhat more uncertain but the RSEs are in general still ac-
ceptable. One exception to this is RSE for ω13 in experiment 1. However, considering that RSE
is a relative measure and that the estimate of this parameter value is close to zero, the absolute
uncertainty is still low (standard error is 0.00128).
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Table 3 shows the covariance matrix for the random effect parameters, and the correspond-
ing correlation matrix. For each matrix entry its RSE is shown within parenthesis. The correla-
tion in population variability between η1 and η2 (associated with Ms and k2, respectively) is not
very strong, and not showing a clear tendency across the experiments, but is on the other hand
not very precisely estimated either. For experiments 2 to 4 there is a moderate negative correla-
tion between η1 and η3 (associated with Ms and k4, respectively), and here correlation estimates
are less uncertain. In these three experiments we also see that there is a substantial correlation

Table 2. Parameter estimates.

Parameter Exp 1 Exp 2 Exp 3 Exp 4

Ms
3.27 × 103 (1) 3.36 × 103 (1) 3.64 × 103 (2) 3.14 × 103 (1)

k2
0.00579 (4) 0.00473 (6) 0.00592 (9) 0.00815 (7)

k4
0.00846 (4) 0.00971 (9) 0.00999 (9) 0.0229 (8)

s 8.73 × 103 (6) 38.1 × 103 (6) 20.8 × 103 (6) 24.1 × 103 (6)

ω11 0.0653 (11) 0.0712 (20) 0.0624 (12) 0.0228 (34)

ω12 0.0391 (28) 0.0447 (53) 0.0568 (22) 0.0691 (13)

ω13 47.5 × 10−6 (25598) −0.0377 (49) −0.0649 (24) −0.0322 (46)

ω22 0.231 (12) 0.144 (44) 0.313 (13) 0.252 (15)

ω23 0.0398 (108) 0.193 (35) 0.526 (16) 0.281 (25)

ω33 0.255 (12) 0.439 (17) 0.567 (12) 0.432 (16)

Estimated parameter values and their corresponding relative standard error (expressed in percentage in the parenthesis), considering each of the four

experiments separately.

doi:10.1371/journal.pone.0124050.t002

Table 3. Covariance and correlations matrices.

Exp Nr Ω Corr

1 0:0058 ð20Þ 0:009 ð35Þ 12:� 10�6 ð25684Þ
0:055 ð26Þ 0:01 ð112Þ

0:065 ð25Þ

0
BB@

1
CCA

1 0:51 ð24Þ 620:� 10�6 ð24736Þ
1 0:17 ð102Þ

1

0
BB@

1
CCA

2 0:0085 ð27Þ �840:� 10�6 ð735Þ �0:017 ð58Þ
0:058 ð54Þ 0:085 ð46Þ

0:19 ð35Þ

0
BB@

1
CCA

1 �0:038 ð652Þ �0:41 ð41Þ
1 0:8 ð22Þ

1

0
BB@

1
CCA

3 0:011 ð22Þ �0:016 ð66Þ �0:037 ð31Þ
0:37 ð25Þ 0:3 ð27Þ

0:32 ð25Þ

0
BB@

1
CCA

1 �0:25 ð60Þ �0:61 ð17Þ
1 0:86 ð6Þ

1

0
BB@

1
CCA

4 0:0063 ð25Þ 0:0083 ð75Þ �0:014 ð55Þ
0:14 ð31Þ 0:12 ð37Þ

0:19 ð32Þ

0
BB@

1
CCA

1 0:28 ð69Þ �0:41 ð39Þ
1 0:74 ð14Þ

1

0
BB@

1
CCA

Covariance and correlations matrices and their corresponding relative standard error (expressed in

percentage in the parenthesis), considering each of the four experiments separately. The random effect

parameters described by the first to the third row of these matrices, are associated with the fixed effect

parameters Ms, k2, and k4, respectively.

doi:10.1371/journal.pone.0124050.t003
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between η2 and η3 (associated with k2 and k4, respectively), with the precision in the estimates
being quite good. Experiment 1 on the other hand only suggest a weak correlation between η2
and η3, but may nevertheless be compatible with the other experiments since the estimated cor-
relation is highly uncertain.

We additionally determined the maximum a posteriori estimates of the random effect pa-
rameters for each individual cell. These are the most likely values of η for an individual given
the already estimated probability distribution for these parameters, and are also known as the
empirical Bayes estimates (EBEs) [53]. To be able to trust further analysis involving the EBEs
we determined the so called η-shrinkage, defined as the relative decrease in standard deviation
of the EBEs compared to the standard deviation defined by the population estimateΩ. These
values are shown in S1 Table. It is recommended that shrinkage should not be greater than 20
to 30% to avoid misleading conclusions in EBE-based diagnostics [53]. Although two of the
percentages in experiments 2 are approaching such levels, the set of values as a whole should be
considered feasible.

The EBEs were used to further investigate the correlation between k2 and k4. Fig 3 shows

how the EBE values of the random effect parameters associated with k2 and k4, namely η1 and
η2, are distributed in each of the four experiments. For each experiment, a normal distribution
fitted to the EBE values is illustrated by two black ellipses, indicating the regions of one and

Fig 3. The distribution of maximum a posteriori η. For experiments 1 to 4 (A to D), the EBEs of η2 and η3 are shown as red points. The regions of one and
two standard deviations of a normal distribution fitted to the EBEs, and the NLME population estimate of the distribution of η2 and η3, are shown as black and
filled gray ellipses, respectively.

doi:10.1371/journal.pone.0124050.g003
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two standard deviations. The distribution of η2 and η3 defined by the population estimateΩ is
similarly illustrated by filled grey ellipses. This analysis confirmed the results displayed in
Table 3. Again, there is only a slight correlation of the EBEs in experiments 1 (0.16), as shown
in Fig 3A, but a pronounced correlation for the other three experiments (0.86, 0.87, 0.70), as
shown in Fig 3B, 3C and 3D. The somewhat worse shrinkages of experiment 2 are also seen in
Fig 3B as a difference between the filled and non-filled ellipses, respectively (although yielding
very similar variances, please note that the black ellipses are based on fitting the EBEs to a nor-
mal distribution while the η-shrinkage is just based on the variance of the EBEs). In experiment
3, Fig 3C, five cells (with numbers #1, #2, #14, #26, and #29) stand out a bit from the others. Be-
cause of their comparatively more negative values of the random effect parameters, these cells
have smaller effective values of k2 and k4 and should therefore display slower dynamics in re-
sponse to the glucose shift. These cells may constitute a subgroup, but because of the relatively
small sample size, and because of potential uncertainty in the EBEs of those cells, it is difficult
to say with certainty. To make sure that these cells were viable and intact we went back to the
raw images and inspected them manually. All cells looked normal although cell #29 appeared
to be smaller and with a less developed nucleus.

Comparing the inferred model to data
The behavior of the model using the estimated parameter values was examined. We simulated
the Mig1 dynamics of a typical cell by setting the random effect parameters to zero. For each of
the four experiments, this simulation is shown together with the data from all cells in the first
row of Fig 4. Additionally, we used the derived EBEs to simulate the model for specific cells
and compared the results to the experimental observations. This was done for four representa-
tive cells per experiment and the results are shown in rows two to five in Fig 4. Plots of all indi-
vidual cell data and model simulations for the four different experiments are shown in S1, S2,
S3, and S4 Figs, respectively. Despite its simplicity the proposed model captures the different
single cell Mig1 dynamics well, including cells with a “median response” (Exp 2 #21), high
(Exp 2 #30) and low (Exp 3 #31) initial levels of Mig1, respectively, with fast (Exp 4 #9), and
slow (Exp 4 #41) dynamics of the transient behavior, respectively, as well as cells with fewer
data points (Exp 1, #30). We also note the unusually slow dynamics of cell #2 in experiment 3.
This is one of the cells which we showed previously (Fig 3C) to have values of the EBEs that de-
viated from the others cells, and whose slower dynamics was already predicted at that point.

Accounting for background fluorescence
The model was built under the assumption that the observed fluorescent light intensities are
proportional to the actual concentration of Mig1. This assumption does not account for the
presence of background fluorescence. To test whether the simplification of disregarding any
background fluorescence is critical for the outcome of the analysis, we repeated the parameter
estimation using the modified observational model

yt ¼ bþMig1ðtÞ þ et;

where b is a parameter to be estimated from data. The details of the parameter estimation are
described in S1 Text, the results of the parameter estimation is shown in S2 Table and the cor-
responding random effect covariance and correlation matrices are shown in S3 Table, and
plots of all individual cell data and model simulations for the four different experiments are
shown in S5, S6, S7, and S8 Figs. In summary, changing the observation model to account for
background fluorescence gave a marginally better fit to data but the parameter estimation
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suffered from issues with practical identifiability [54] and this model variant was therefore not
considered further.

Using all data sets simultaneously
Having estimated parameters successfully for each experiment separately, we decided to use all
four data sets simultaneously for estimating the model parameters. The details of this analysis
are described in S2 Text, the results of the parameter estimation is shown in S4 Table and the

Fig 4. Model simulations and data. The first row show plots of all single cell data together with a simulation of a cell using the median parameters for each
experiment, respectively. Rows two to five shows data and corresponding model simulations (derived using the EBEs) for a subset of all cells, exemplifying
the fit on the individual level. The simulated median cell is shown in dashed for comparison. Columns one to four correspond to experiments 1 to 4.

doi:10.1371/journal.pone.0124050.g004
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corresponding random effect covariance and correlation matrices are shown in S5 Table, and
plots of all individual cell data and model simulations for the four different experiments are
shown in S9, S10, S11, and S12 Figs. We then reinvestigated the distribution of the EBEs of the

random parameters associated with k2 and k4, shown in Fig 5. As in Fig 3, a normal distribution
fitted to the EBE values is illustrated by two black ellipses indicating the levels of one and two
standard deviations, and the distribution of η2 and η3 defined by the population estimateΩ is
similarly illustrated by filled grey ellipses. To separate the EBEs belonging to individual cells
from the same experiment, we color-coded the dots for experiments 1 to 4 in blue, pink, yellow,
and green, respectively. While the EBEs for experiments 1 to 3 display apparently similar distri-
butions, though the five cells from experiment 3 still stand out, it is clear the cells from experi-
ment 4 have consistently higher values of their random effect parameters, especially η3. Thus,
even if the simulated Mig1 dynamics compare well with the single cell experimental observa-

tions, a model using the same parameter distributions k2 ¼ k2e
Z2 and k4 ¼ k4e

Z3 for all experi-
ments is in some sense still misleading, and the results from the separate analysis should be
considered more trustworthy.

Comparing population parameter estimates to the statistics of single
subject estimation
If every cell contains sufficient information to precisely estimate the parameters of the dynam-
ical model, the parameters describing the population variability could simply be derived by fit-
ting a parameterized distribution to the collection of all individual estimates. This
straightforward approach to population modeling is known as the standard two-stage (STS)

Fig 5. The distribution of EBEs of η for all cells in all experiments. The EBEs from individual cells are color-coded according to the experiments in which
their data was produced using blue, pink, yellow, and green, for experiments 1 to 4, respectively.

doi:10.1371/journal.pone.0124050.g005
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approach [42]. However, even moderate issues with identifiability for the parameter estimation
of single cells may lead to biased estimates of population median parameters and overestima-
tion of parameter variability. Being a much easier method to implement, and requiring sub-
stantially shorter times for computing the estimates, we decided to test whether the STS
approach would be a feasible alternative to NLME. For each of the four experiments, the values
of all random effect parameters were set to zero and the values of Ms, k2, k4, and s were estimat-
ed for every cell. The resulting sets of parameter values were subsequently fitted to log-normal
distributions. To avoid that extreme parameter estimates from uninformative single cell data
sets had an unreasonably large impact on the estimated distributions, we repeated the analysis
by removing single cell estimates that had at least one parameter value that differed more than
15 times from the median value of the set of individual estimates. This meant the exclusion of 2
cells from experiment 1, 3 cells from experiment 2, and 3 cells from experiment 4. No outliers
were removed from experiment 3. The results of the comparison between STS and NLME is
shown in Table 4, expressing the STS parameter estimates as percentages of the corresponding
NLME estimates. The STS approach performed acceptably for estimating the median values of
all experiments except for experiment 2 when all cells were used. When the outlier estimates
had been removed it performs satisfactory for estimating median values in all experiments.
The estimates for the measurement variance, s, were in all cases substantially lower. However,
this parameter was not assigned to be distributed in the NLME approach, making the compari-
son more difficult. Importantly, with a few exceptions regarding the variance of Ms, there is a
clear overestimation in the variance of the model parameters, and this bias is in some cases
considerable. It is obvious that a naive application of the STS approach, i.e., without screening
for deviating values first, will give highly questionable estimates of the variability. Additionally
we observed that even with a more careful use of the STS approach, variances may still be se-
verely overestimated. For instance, the variance of k2 in experiment 2 is nearly five times larger
when comparing the STS estimate to that of the NLME approach.

To illustrate why the STS approach gives different results than NLME three specific cells
were examined more closely (Fig 6). Many cells contain an amount of information that is suffi-
cient for the STS approach to produce similar estimates as the NLME at the single cell level. Fig
6A shows one such example where the simulations using the two different estimates practically
look identical. In this example the NLME simulation used the value-triplet (3565, 0.00667,
0.00754) for the parameters (Ms, k2, k4), and the STS simulation used the highly similar values
(3578, 0.00668, 0.00738). When all cells are included in the analysis, a few rare time-series

Table 4. Comparison of STS to NLME.

Parameter Exp 1
All cells

Exp 1
3 cells removed

Exp 2
All cells

Exp 2
2 cells removed

Exp 3
All cells

Exp 4
All cells

Exp 4
2 cells removed

Ms
101 100 100 101 100 102 103

k2
105 101 149 104 100 99 96

k4
94 98 140 99 100 97 88

s 30 67 31 58 70 27 64

Var[Ms] 101 97 123 107 109 412 394

Var[k2] 217 132 8797 490 129 510 177

Var[k4] 182 153 3329 206 142 839 217

The parameters estimates from the STS approach, either including all cells or removing cells with outlier estimates, expressed as percentages of the

corresponding values derived from the NLME approach.

doi:10.1371/journal.pone.0124050.t004
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containing only one or two data points will be used. Fitting all model parameters to such data
will produce completely arbitrary estimates due to lack of identifiability. This kind of scenario
is shown in Fig 6B. Because the NLME approach is “borrowing” information (in form of the
empirical prior) from the other cells when computing the estimate for a single cell, this simula-
tion still resembles the median cell, while the STS simulation on the other hand produces a
much more extreme behavior. We can also see that the simulated median cell of the population
differs when the median parameters has been determined from all individual estimates. In this
example the NLME simulation used the values (3007, 0.00442, 0.0104), while the STS used the
very different values (2732, 0.0201, 0.00509). The inclusion of cells like these in the analysis is
the reason why the STS approach where no estimates were discarded performed so badly. Fig
6B also shows that the dynamics of a typical cell derived from the STS approach without dis-
carding outliers may differ to the typical cell of the NLME approach. As shown in Table 4 the
STS approach can be improved by removing obvious outliers from the set of individual cell pa-
rameters. Although it is straightforward to remove parameter estimates from obviously nonin-
formative data sets, e.g., time-series containing only a single data point, such preprocessing will
to some extent be arbitrary. Consider for instance the single cell data in Fig 6C where the
NLME and STS simulations used the values (3360, 0.00619, 0.0171), and (3185, 0.0151,
0.0557), respectively. There are 13 data points for this cell, yet it lacks the good identifiability
properties from the example in Fig 6A. In such cases the STS approach tend to produce exag-
gerated, but not extreme, estimates, which contributes to bias and variability overestimation on
the population level.

Predicting the variability of the response activation time, amplitude, and
duration
Having established an NLME model, it is possible to repeatedly simulate this model in order to
determine the population-distribution of any property being described by the model. This was
done to compute the population statistics of three quantitative measures of the transient Mig1
dynamics:

Fig 6. Comparing simulated Mig1 dynamics for individual cells using parameter from the STS and NLME approaches. Simulations with parameter
values from the STS analysis are shown in blue, and in black for NLME. Simulations of typical cells are shown in dashed. A. An information-rich data set
which by itself allows precise estimation of model parameters. The typical STS cell was simulated using the median parameters considering removal of
outliers. B. The extreme case of an uninformative data set (only one data point). Here the STS approach may produce arbitrary parameter estimates which
leads to questionable simulations as well as corrupting the population statistics of individual estimates. In this example the typical STS cell was simulated
using the median parameterswithout considering removal of outliers, producing a different results compared to the typical NLME cell. C. A cell where the
information content is too low for estimating all parameters with high precision. Model fits like this contribute to overestimation of parameter variability on the
population level. The typical STS cell was simulated using the median parameters considering removal of outliers.

doi:10.1371/journal.pone.0124050.g006
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• Response time. The time it takes to reach the lowest concentration of nuclear Mig1 after a
shift in extracellular glucose.

• Amplitude. The amplitude of the response measured in % below the baseline.

• Duration. The total time during which nuclear Mig1 remains below the level of half-
maximum response.

These measures are illustrated in Fig 7A. According to the estimated population variability of
the parameters Ms, k2, and k4, we randomly created 100 000 in silico cells per experiment and
simulated their Mig1 dynamics. The distributions and the typical values (medians) of the re-
sponse time, amplitude, and duration are shown in Fig 7B, 7C and 7D, respectively. The typical
values are also shown in Table 5. We observe that the simulated median response time is simi-
lar for concentrations of 1.5% and 1% glucose, respectively, but decreases markedly at 0.5%.
Additionally, there is an increased variability of the response time for the intermediate concen-
tration. The simulated amplitude of the Mig1 response exhibited quite small differences be-
tween the three conditions, both with respect to the median and the variability. A clear increase
in median duration of the simulated response was observed as glucose concentrations de-
creases. The variability of the duration also increased with decreasing glucose levels. A similar
behavior of the response duration was observed also when this quantity was defined by other
levels than 50% of the maximum response (not showed).

As a comparison to the model-based predictions of Mig1 dynamics, a simple non-model-
based analysis was performed directly on the data and on dense data sets generated by smooth-
ing and resampling the experimental data. The results from the simple analysis are shown to-
gether with the model-based predictions in Table 5. The simple analysis gave similar results for
the amplitude, but did not identify an increased duration with decreasing extracellular glucose
concentrations, and did furthermore suggest an opposite dependence of the typical response
time on extracellular glucose concentrations when compared to the model-based predictions.
Also, compared to the smooth distributions from the model-based analysis, the corresponding
population histograms from the simple analysis were much less informative due to the limited
number of cells and/or a binning based on the rather few discrete time points of the data, as
shown for the simple analysis of the experimental data in S13 Fig.

Discussion
State-of-the-art experimental techniques such as fluorescence microscopy allow time-resolved
data to be collected from individual living cells. This development has provided researchers
with tools enabling them to investigate various aspects of cell-to-cell variability in cell popula-
tions. The progress of single cell experimental methods requires a parallel advancement in the
development of mathematical models for describing cell population heterogeneity. We propose
that so called nonlinear mixed effects (NLME) models, a class of models that for example is
used for modeling variability between individuals in pharmacological studies, also may be
adopted for modeling cell-to-cell variability in molecular biology. The usefulness of this frame-
work was demonstrated by applying a model of this type to study the localization dynamics of
the yeast transcription factor Mig1. This protein is a key component in the regulation of carbon
metabolism, responsible for repressing a larger number of genes in the presence of glucose.
Using an NLME model we were able to quantify and simulate the cell-to-cell variability of
yeast cells with respect to their behavior of Mig1. Comparing the proposed modeling method-
ology to a second more intuitive approach, we showed that the former is crucial in order to not
overestimate the variability. An additional comparison of the NLME model to a simple non-
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Fig 7. Distribution of the model-derived quantities response time, amplitude, and duration. A.
Illustration of response time, (negative) response amplitude in % of baseline, and duration of half-maximal
response. Distribution of activation (B), amplitude (C), and duration, for experiment 1 and 2 (blue), experiment
3 (pink), and experiment 4 (yellow). The typical cells (median response) are indicated by vertical dashed
lines. Distributions of the model-derived quantities were determined from 100 000 Monte Carlo simulations
per experiment.

doi:10.1371/journal.pone.0124050.g007
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model-based analysis indicated that modeling may be required for reliable interpretation of
population data.

Population model of Mig1 dynamics
We recently reported on a novel and unexpected aspect of Mig1 dynamics, namely the tran-
sient exit and subsequent nuclear re-entry of this protein in response to a shift from high to in-
termediate concentrations of extracellular glucose [39]. Similar transient responses followed by
perfect adaption have been observed for other signalling proteins such as nuclear ERK2 in re-
sponse to EGF levels [1], and the yeast kinase Hog1 in response to hyperosmotic shock [55].
Since the current understanding of the Snf1-Mig1 system does not provide a mechanistic basis
for the apparent adaptation behavior, a simple phenomenological model of perfect adaptation
was introduced to describe the observed Mig1 dynamics. The proposed model is a well known
dynamical modeling motif and has previously been presented as one of the basic signal-re-
sponse elements of regulatory networks [47]. Due to its simpler structure, the qualitative be-
havior of the model is limited to adaptation, with the parameter values controlling the the
quantitative details of this behavior, and it can therefore not be used as a general-purpose
model of Mig1 localization in response to extracellular glucose. To account for the observed
cell-to-cell variability of Mig1 dynamics so called random effect parameters were introduced to
the model. In contrast to most dynamical models used in computational biology, a subset of
the model parameter values are now stochastic variables characterized by a distribution rather
than scalar values. Although the model was not based on known molecular mechanisms for
Mig1 regulation, it was successful in describing the experimental observations of Mig1 dynam-
ics. It is however clear that even though such a phenomenological model can fit the data it may
not provide the same fundamental insights of a mechanistically based model. Though, given
the circumstances of limited knowledge of the mechanistic details of the Snf1-Mig1 system, we
believe that the proposed model has an appropriate level of complexity, especially considering
the population variability aspect, and that it may be a stepping stone towards future
mechanistic models.

Table 5. Typical values of response time, amplitude, and duration.

Quantity Method Exp 1 and 2 (1.5%) Exp 3 (1%) Exp 4 (0.5%)

Response time [s] Model 204 211 137

Response time [s] Simple analysis, experimental data 240 270 420

Response time [s] Simple analysis, smoothed data 229 265 413

Amplitude [%] Model 21 26 23

Amplitude [%] Simple analysis, experimental data 23 29 23

Amplitude [%] Simple analysis, smoothed data 23 28 22

Duration [s] Model 639 758 844

Duration [s] Simple analysis, experimental data 780 630 780

Duration [s] Simple analysis, smoothed data 768 597 757

Typical values of time to full response, the amplitude of the response, and the duration of the response, obtained from the NLME model and from a simple

non-model-based analysis using either the original or smoothed experimental data. The typical values of derived using the model were determined from

100 000 Monte Carlo simulations per experiment.

doi:10.1371/journal.pone.0124050.t005
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Parameter estimates
The model performs well with similar median values of the time constants k2 and k4 both for
1.5% and 1% glucose, although with some variations in their variability. However, in experi-
ment 4 the estimated time constant of the adaptation process, k4, was larger and a slightly larg-
er value of k2 was obtained as well. The fact that other parameter values are required for this
particular experiment can be seen as an indication that this level, 0.5% glucose, is close to a
threshold in the behavior of the Snf1-Mig1 system. Indeed, this was also observed in experi-
ments, where the transient behavior disappears for extracellular glucose levels below 0.5% [39].
It also suggests that to model all four experiments simultaneously, the linear response to glu-
cose, as defined by the adaptation model, may not be sufficient.

Although the estimates of k2 and k4 appeared to be determined with good precision in the
separate analysis, we decided to fix these parameters, including their distribution within the
population, and estimate them from all experiments simultaneously. The resulting estimates
were close to the average of the separate estimates. However, from the distribution of the EBEs
(the maximum a posteriori estimates of the random parameters η) it was obvious that the
EBEs from the fourth experiment formed a separate cluster. This most likely violates the as-
sumption that the random effect parameters from the different experiments are identically dis-
tributed and confirms what was already suspected based on the different and quite well-

determined values of k2, and k4 in the separate analysis of experiment 4. Thus, the simultaneous
analysis of all four experiments again suggests that the characteristics of Mig1 regulation is
changing at a glucose level around 0.5%.

To account for background fluorescence we set up an alternative model of the measurement
process. This did only result in a marginal improvement in the ability to explain the data, and
since parameter estimation for this model appeared to experience problems with practical
identifiability, it was not considered further. We want to stress that this does not mean that
there is no background fluorescence, only that with the alternative model and the available
data it appears unfeasible to estimate it. Finally, even though the results from this altered
model should be interpreted cautiously due to the issues with parameter identifiability, we note
that the model behavior was highly similar to the original model and that the correlation in
population variability between k2 and k4 remained.

Interpreting the model
Mig1 is continuously being transported in both directions across the nucleocytoplasmic inter-
face and that its localization is dependent on the balance between these fluxes [39]. A change in
Mig1 localization is thus due to a change in the balance between the rates of nuclear import
and export. In light of this, the model can be interpreted as two counteracting mechanisms on
Mig1 cellular localization: One quickly responding mechanism that promotes transport of
Mig1 into the nucleus in response to an extracellular glucose signal (r1), and another delayed
mechanism that counteracts the first one by promoting nuclear exit in response to glucose (the
modulation of r2 by X). However, our present understanding of the signalling network control-
ling Mig1 activity does not include any mechanism that operates by favoring phosphorylation
and cytosolic localization in response to the presence of glucose. Moreover, we observed a
strong correlation in the cell-to-cell variability of k2 and k4, the parameters which determine
the time scales of the two counteracting mechanisms. This means that if a mechanism of the
second kind existed, it must be highly coordinated with the first one. As this might require a
very precise orchestration in the expression of the hypothetically involved signalling compo-
nents, we consider the explanation of counteracting mechanisms for the transient behavior
even less likely. Taken together, it appears more plausible that the transient pattern is already
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present in the dynamics of an upstream pathway component that is controlling Mig1 localiza-
tion according to the first type of mechanism. At least three candidate components may be
considered for transmitting such a transient signal to Mig1:

• Snf1. This is a strong candidate since we know that on the averaged population level, Snf1
displays a temporal phosphorylation pattern that is similar to that of Mig1 localization [39].
However, the dynamics of Snf1 phosphorylation on the single cell level has not
been investigated.

• Glc7-Reg1. Although mathematical modeling results and the lack of direct experimental evi-
dence disfavor a direct regulation of Mig1 by Glc7-Reg1 [40], this scenario can not be ruled
out. This phosphatase may alternatively transmit a transient signal indirectly via its effect on
Snf1 phosphorylation.

• It has been observed that constitutively phosphorylated Snf1, as the result of overexpressing
its upstream kinase Sak1, did not affect either Mig1 phosphorylation or its localization in the
presence of glucose [40]. Based on this it was suggested that Snf1 activation is a necessary but
not sufficient condition for mediating glucose de-repression, and that there must be a second
glucose-regulated step directing Snf1 to Mig1. Such a mechanism may constitute the up-
stream source of the transient signal.

A combination of these scenarios would also be possible. Furthermore, the transient pattern
need not emerge at the level of one of these components but could be present even further up-
stream, perhaps even in glycolysis itself which in a not fully understood manner generates the
signal(s) for Snf1-Mig1 regulation. Further investigating the origin of the transient behavior,
and the mechanisms behind its cell-to-cell variability, would be an interesting proposition for
future single-cell studies.

A moderate negative correlation in the population variability of Ms and k4 was also found.
This suggests a negative correlation between the levels of Mig1 and the timescale of the hypoth-
esized adaptation process. This may very well be reasonable considering that molecular pro-
cesses of the Snf1-Mig1 system which directly involve the Mig1 protein, such as
phosphorylation and inter-compartment transport, may be subject to saturation effects. Thus,
in cells where Mig1 levels are higher than average, the adaptation tends to be slower since a
higher number of molecules has to be regulated by a capacity-limited system.

Predicting the variability in response time, amplitude, and duration
Estimates of how parameters vary across the population can not only be analyzed as such, but
they can also be used to derive the population variability of any system behavior described by
the model. This can be achieved by Monte Carlo simulations using the inferred population
model. Such model-based quantification is a powerful tool since it allows us to compute the
cell-to-cell variability in aspects of Mig1 regulation which are not easily measurable directly
from the time-series data. We used this approach to predict the population variability in three
key determinants of the transient Mig1 response. From the results of this analysis (Fig 7) the
following was concluded:

• The response time decreases as the level of the secondary glucose concentration decreases.
Compared to the 1.5% level, the intermediate level (1%) additionally displays an increased
cell-to-cell variability in the response time.
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• The amplitude of the response, as determined relative to the baseline Mig1 level of each cell,
appears to be largely independent of the glucose level, both with respect to its median value
and with respect to its variability.

• The duration of the transient response is increased as the glucose level is decreased. Com-
pared to the 1.5% level, there is also a clear increase in cell-to-cell variability of the duration.

To summarize, as the level of glucose after the shift is decreased, the transient Mig1 response
tended to be faster and more extended, as well as showing an increased cell-to-cell variability in
both of these two characteristics. Interestingly, we also note that all distributions of the investi-
gated response characteristics appear to be log-normally shaped.

The model-based simulations of variability in response time, amplitude, and duration were
also compared to a simple analysis based directly on the experimental data and on the corre-
sponding smoothed and resampled data. Contrary to the model-based results, the simple data
analysis did not identify an increasing duration of the response with decreasing extracellular
glucose concentration, and did furthermore imply an increasing, rather than decreasing, re-
sponse time with decreasing extracellular glucose concentration. Although such differences
will depend on both the particular model used and on how the simple analysis is executed, the
comparison suggests that a model-based approach may be more reliable for studying cell-to-
cell variability in sparse or noisy data.

NLME should be preferred to STS
We compared the results from NLME modeling to the more naive STS approach, which con-
sists of performing parameter estimation on single cell data separately and subsequently fitting
parameterized distributions to the resulting set of point estimates. Since the estimation of pa-
rameters for individual subjects do not rely on information from the rest of the population, the
STS approach may tend to over-fit the data, potentially leading to biased estimates but even
more commonly to overestimation of parameter variability [42]. Although the two methods
provided comparable estimates of the median parameter values, the STS approach severely
overestimated parameter variability. The results were particularly bad when estimates from
some of the most sparse data sets were included. On the other hand, the NLME modeling ap-
proach was fully capable of handling these sparse data sets. In fact, even individuals with just a
single observation were feasible and added information to the estimation. For the present study
this meant that we did not have to discard any data, allowing us to use the available measure-
ments optimally. Our data included up to 15 data points per individual cell. It is however realis-
tic to assume that some single cell studies may involve substantially sparser sampling of certain
quantities, creating an even stronger motivation in favor of the NLME approach compared to
STS.

It must be recognized that sparseness in data, determined from counting the number of ob-
servations as such, may be a poor indicator for determining if the STS approach will be appro-
priate. Our comparison of the individual fit of the STS approach to the EBE-based estimate
resulting from the NLME population estimation in Fig 6C illustrates this point. If this data set
had been very rich in information the NLME-derived population prior would have had a
minor impact on the EBE parameter estimate, and the resulting dynamics, and the two ap-
proaches would have produced similar results for this cell. Since this was not the case, it is clear
that data sets which are not obviously sparse in the sense of containing very few observations
(this data sets contained 13 data points) are not automatically suitable for the STS approach.
The important question is rather whether the balance between information content in the data
and the complexity of the model allows parameters to be estimated with high precision,
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considering the individual data sets in isolation. Thus, the advantage of NLME over STS is ulti-
mately determined not only by the data sets at hand but also by the particular model being
used. Another way of looking at the NLME approach compared to the STS approach would
therefore be that the complexity of the model can be allowed to increase, beyond the point of
practical identifiability in single subjects, as long as there is enough data on the
population level.

Parameter estimates of individual single cell data have previously been performed in a
model of the NF-κB signalling pathway [56]. Here, 6 parameters were estimated for 20 differ-
ent cells using 15 data points per cell, and the authors noted that some of the parameters were
estimated with a quite high uncertainty. Had parameter distributions been fitted to these single
cell estimates, the risk of overestimating parameter variability would probably had been high.
In another mathematical modeling study of cell-to-cell variability [23], parameter estimation at
the single cell level was performed by complementing the single cell time lapse data with other
types data, with the purpose of increasing parameter identifiability.

The need for population modeling frameworks
The idea of applying hierarchical modeling, such as NLME, to longitudinal population data ac-
quired at the level of single cells has previously been acknowledged and outlined by the authors
of this work [10]. Since then, initial efforts towards single cell modeling using the NLME ap-
proach have in fact been considered in a few cases [57, 58], but the full potential of the ap-
proach has yet to be realized. The present study is to our knowledge the first one to combine,
and in detail cover, aspects of NLME modeling such as uncertainty of estimates, investigation
of EBEs and comparison of simulations to single cell data, and using an estimated model for
prediction. Also, this is the first study in which NLME has been applied not only with a focus
on its technical aspects but also with an ambition to advance the understanding of cell biology.

In parallel with the developments within NLME modeling, single cell time series data have
recently also been approached using hierarchical Bayesian methods [26, 27]. In addition to ex-
trinsic variability these efforts also considered intrinsic noise. Although a deterministic ap-
proach seems to describe the single cell Mig1 data studied here quite well, an extension of the
NLME approach to also cover uncertainty in the dynamics would be interesting. One way of
achieving this would be to replace the ordinary differential equation by so called stochastic dif-
ferential equations (SDEs). The combination of NLME and SDE has previously been consid-
ered in pharmcokinetics and pharmcodynamics [59–61]. Not only would this allow intrinsic
noise to be addressed within the NLME framework, but the SDEs could also be used to account
for miss-specification of the deterministic parts of a model. Applying dynamical modeling with
SDEs towards this end has previously proven useful for guiding the process of model develop-
ment [62]. This strategy may be especially rewarding for modeling of signalling transduction
pathways, as these systems typically suffer from limitations and uncertainty in the information
needed for setting up models.

The need for modeling frameworks that are able to address single cell data is perhaps most
clearly demonstrated by a growing number of studies in which such data was collected but
then averaged during the computational analysis [41, 63]. We predict that hierarchical model-
ing frameworks such as NLME modeling will become even more important as single cell exper-
imental methods continue to develop, and as the biological questions will involve the single cell
perspective to a larger extent. In the future, dynamical modeling of non-genetic cell-to-cell var-
iability may not only be relevant for basic research but also become an important ingredient in
various applied fields of life science such as quantitative pharmacology [11] and industrial bio-
technology [64]. As previously pointed out [58], an intriguing future prospect of single cell
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NLME modeling is the inclusion of so called covariates in the model. Covariates are known in-
dividual-specific variables which are used to account for predictable sources of the variability.
In pharmacokinetic modeling, which frequently uses the NLME approach, covariates may for
instance include weight, age, and sex. In the context of single cell modeling, the addition of co-
variates to the model could be used to incorporate cell-specific information such as size, shape,
or age, in addition to the time-series data. Another important challenge for system identifica-
tion from population data is the development of methods that can handle the combination of
measurements at the single cell level with the traditional type of data produced from averaging
over many cells.

Methods
The yeast strains, experimental setup, and imaging and image analysis, have been described
previously [39].

Parameter estimation for NLMEmodels
NLME models are often used in situations where sparse time-series data is collected from a
population of individuals subject to inter-individual variability. These models contain both so
called fixed effect parameters, being non-random, and so called random effect parameters,
which are determined by some statistical model. Given a set of population data and a NLME
model, the fixed effect parameters can be estimated according to the maximum likelihood ap-
proach. The likelihood subject to maximization is the so called population likelihood. This is a
special kind of likelihood that has been marginalized with respect to all random effect parame-
ters, and that is taking the observations from all individuals of the population into account. We
now state the general form of a NLME model, the population likelihood, and its approximation
by the so called FOCE method.

Consider a population of N subjects and let the ith individual be described by the dynamical
system

dxiðtÞ
dt

¼ fðxiðtÞ;uiðtÞ;Zi; θ; ηi; tÞ
xiðt0Þ ¼ x0iðuiðt0Þ;Zi; θ; ηiÞ;

where ui(t) is a time dependent input function, Zi a set of covariates, θ a set of fixed effects pa-
rameters, and ηi a set of random effect parameters which are multivariate normally distributed
with zero mean and covarianceΩ. The covariance matrixΩ is in general unknown and will
therefore typically contain parameters subject to estimation. These parameters will for conve-
nience of notation be included in the fixed effect parameter vector θ. A discrete-time observa-
tion model for the jth observation of the ith individual at time tij is defined by

yij ¼ hðxij;uij; tij;Zi; θ; ηiÞ þ eij;

where

eij � Nð0;Rijðxij;uij; tij;Zi; θ; ηiÞÞ;

and where the index notation ij is used as a short form for denoting the ith individual at the jth
observation. Furthermore, we let the expected value of the discrete-time observation model be
denoted by

ŷij ¼ E½yij�:
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Given a set of experimental observations, dij, for the individuals i = 1,. . ., N at time points
j = 1,. . ., ni, we define the residuals

ϵij ¼ dij � ŷ ij;

and write the population likelihood

LðθÞ ¼
YN
i¼1

Z
p1ðdijθ; ηiÞp2ðηijθÞ dηi; ð1Þ

where

p1ðdijθ; ηiÞ ¼
Yni
j¼1

exp � 1

2
ϵT
ijR

�1
ij ϵij

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ð2pRijÞ

q
and

p2ðηijθÞ ¼
exp � 1

2
ηT
i O

�1ηi

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ð2pOÞp :

The marginalization with respect to ηi in Eq 1 does not have a closed form solution. By writing
Eq 1 on the form

LðθÞ ¼
YN
i¼1

Z
exp ðliÞ dηi;

where the individual joint log-likelihoods are

li ¼ � 1

2

Xni
j¼1

ϵT
ijR

�1
ij ϵij þ log det ð2pRijÞ

� �

� 1

2
ηT
i O

�1ηi �
1

2
log det ð2pOÞ;

a closed form solution can be obtained by approximating the function li with a second order
Taylor expansion with respect to ηi. This is the well-known Laplacian approximation. Further-
more, we let the point around which the Taylor expansion is done to be conditioned on the ηi
maximizing li, here denoted by η�

i , and we approximate the Hessian used for the expansion
with first order terms only. Thus, the approximate population likelihood La becomes

LðθÞ � LaðθÞ ¼
YN
i¼1

exp ðliðη�
i ÞÞ det

�Dliðη�
i Þ

2p

� ��1
2

 !
:

where

Dliðη�
i Þ � �

Xni
j¼1

rϵT
ijR

�1
ij rϵij � O�1;

and

rϵij ¼
@ϵij

@ηi

				
ηi¼η�

i

:
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This variant of the Laplacian approximation of the population likelihood is known as the first
order conditional estimation (FOCE) method [65].

The maximum likelihood estimate of θ is obtained by maximizing the approximate popula-
tion likelihood La(θ). The parameters being estimated are all parameter included in θ, namely
the fixed effect parameters of the dynamical model, including the fixed effect parameters of the
observational model, and any parameters appearing in the random effect covariance matrixΩ.
The optimization problem resulting from the desire to maximize La with respect to θ was
solved using the BFGS method [66]. Note that every evaluation of La requires the determina-
tion of η�

i for all individuals due to the conditional nature of the FOCE approximation. Thus,
the optimization of La with respect to θ involves a nested optimization of li with respect to ηi
for every individual, making the parameter estimation a challenging problem. An exhaustive
account of how the gradient-based optimization was performed for the FOCE approximation
of the population likelihood can be found in [52].

Since the approximate population likelihood involves a marginalization over the random ef-
fect parameters ηi, these are not explicitly estimated. However, once the estimate of θ has been
obtained, the maximum a posteriori estimates of the random effect parameters for each indi-
vidual cell (referred to as empirical Bayes estimates in the results section) can be determined.
These are in fact equivalent to η�

i , meaning that they are already provided as an indirect effect
of the final evaluation of La.

Parameterization of the random effect covariance matrix
The elements of the random effect covariance matrixΩ cannot be chosen independently from
one another. To ensure thatΩ will be positive semi-definite and symmetric, and thus a covari-
ance matrix, it is decomposed intoΩ = U UT, where U is an upper triangular matrix which can
be parameterized according to

U ¼

o11 o12 o13

o22 o23

o33

0
BBB@

1
CCCA:

Such decomposition is only unique ifΩ is strictly positive definite and if the diagonal elements
of U are positive. The sought-after covariance matrix can for practical purposes always be con-
sidered positive-definite, and since we are not interested in U as such we do not care about the
signs of its diagonal entries. With the parameterization above,Ω becomes

O ¼

o2
11 þ o2

12 þ o2
13 o12o22 þ o13o23 o13o33

o12o22 þ o13o23 o2
22 þ o2

23 o23o33

o13o33 o23o33 o2
33

0
BBB@

1
CCCA:

Uncertainty of parameter estimates
The uncertainty of parameter estimates are reported as relative standard errors. The relative
standard error is computed by taking the absolute value of the ratio between the standard error
of the parameter estimate to the estimated value, expressed in percentage. Parameter standard
errors are obtained by taking the square root of the diagonal elements of the inverse of the neg-
ative Hessian, calculated at the points of the estimated parameter values. Since the uncertainties
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in the entries ofΩ (and the corresponding correlation matrix) depend on various combination
of parameter uncertainties, they were determined by computing the RSE from a large number
of sampled covariance and correlation matrices.

We note that measures of confidence based on the exact likelihood, such as likelihood pro-
filing, typically are superior to the results from asymptotic theory. Although preferable, such
methods are too time-consuming for the large NLME problems considered here.

Starting values for the optimization algorithm
To reduce the time of computing the parameter estimates and to increase the chances of reach-
ing a meaningful, and hopefully global, optimum, it is important to provide the optimization
algorithm with starting values of the parameters that are as good as possible. By visually in-
specting the data we were able to obtain educated guesses of some of the parameters. The same
values were used to initiate the parameter estimation for all four data sets. The starting value of
Ms was set to 3300. Noting that the parameter k4 determines the relaxation time-scale of X and
that the observed re-entry took place at roughly 200 s, we set k4 = 1/200 = 0.005. If X is consid-
ered constant, the initial relaxation time-scale of Mig1 is given by k2. If we by a very crude visu-
al assessment determine this time-scale to 50 s, we consequently set k2 = 1/50 = 0.02. The
measurement noise appear to be on the scale of a hundred to a few hundreds and its variance,
s, was set to 40 000. Choosing staring values for the parameters of the random effect covariance
matrix is more difficult. We have chosen ω11 = ω22 = ω33 = 0.1 and ω12 = ω13 = ω23 = 0. This
roughly corresponds to parameter standard deviations of ± 10% with no covariance between
random effect parameters. When all experimental data was used simultaneously for estimation,
the experiment-specific parameters inherited the starting values defined above.

Avoiding a constrained problem
The parameters Ms, k2, k4, and s are only meaningful for nonnegative values. To avoid a con-
strained optimization problem, any strictly positive parameter, θ, is transformed according to

y ¼ e~y , with the new starting value ~ys ¼ logys. When the parameter estimates have been deter-
mined, the values of the transformed parameters must then be transformed back. However,
when the parameter uncertainties are determined through the calculation of the Hessian, no
parameter transformations are performed. In this case it is not needed since we only evaluate
the likelihood function and its gradient for values of the parameters that are known to be posi-
tive. As a result, the Hessian and the coefficients of variations derived from it are valid for the
original, untransformed parameterization of the model.

Simple analysis of Mig1 dynamics
A simple analysis was designed to extract the typical values (medians) of the response time,
amplitude, and duration of Mig1 dynamics directly from data, without the use of a dynamical
model. The amplitude for each cell was defined by maximal difference between the baseline
and the subsequent data points, and the response time was defined as the time for the maximiz-
ing data point. The duration was defined as the difference in time between the first two data
points to in each direction cross the level determined from 50% of the amplitude. The simple
analysis was also applied to smoothed and densely resampled data. Smoothed data was generat-
ed for each cell by fitting a cubic B-spline to its experimental data, and from this smooth func-
tion sampling 1000 data points equidistantly in time.
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