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Conditions for a Monotonic Channel Capacity

Erik Agrell, Senior Member, IEEE

Abstract—Motivated by results in optical communications,
where the performance can degrade dramatically if the transit
power is sufficiently increased, the channel capacity is chac-
terized for various kinds of memoryless vector channels. ltis
proved that for all static point-to-point channels, the chanel
capacity under an equal-power constraint is a nondecreasm
function of power. As a consequence, maximizing the mutual
information over all input distributions with a certain pow er
is for such channels equivalent to maximizing it over the lager
set of input distributions with upperbounded power. The chanel
coding theorem is formally proved for an equal-power constaint.
For interference channels such as optical wavelength-dision
multiplexing systems, the primary channel capacity is alwgs
nondecreasing with power if all interferers transmit with i dentical
distributions as the primary user. Also, if all input distri butions in
an interference channel are optimized jointly, then the ackevable
sum-rate capacity is again nondecreasing. The results geradize
to the channel capacity as a function of a wide class of costsot
only power.

Index Terms—Achievable rate, capacity—cost function, channel
capacity, mutual information, nonlinear distortion, opti cal com-
munications, Shannon limit.

I. INTRODUCTION

N THE MOST cited paper in the history of information the-
ory [1], Shannon in 1948 proved that with adequate codin

reliable communication is possible over a noisy channel,

long as the rate does not exceed a certain threshold, chked
channel capacityHe provided a mathematical expression fof

the channel capacity of any point-to-point channel, baseitso
statistical properties. The expression is given as theesopm
over all possible input distributions of a quantity latetlea

the mutual information[2], [3]. The channel capacity is
often studied as a function of a cost, such as the transiat

power. More specifically, the capacity—cost function is rakedfi

as the supremum of the mutual information over all inp
distributions whose cost is eithegualto a given constant or
upperboundedyy a constant—the convention differs betwee

disciplines. We will return to the distinction between theot
definitions at the end of this section.

For the additive white Gaussian nois@@WGN) channel,
the channel capacity is known exactly [1, Sec. 24], [4, Ch.
In recent years, the problem of calculating or estimating

channel capacity of more complicated channels has receiveglD
lot of attention (see surveys in [5]-[8]). Due to the abseoice

exact analytical solutions and the computational intfaititg
of optimizing over all possible input distributions, mosveés-

tigations of the channel capacity of non-AWGN channels re@f

on bounding techniques and asymptotic analysis.
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Research (SSF) under grant RE07-0026 and the Swedish Besgauncil
(VR) under grants 2007-6223 and 2013-5271. E. Agrell is lia Dept. of
Signals and Systems, Chalmers Univ. of Technology, SE-81@6teborg,
Sweden (e-mail: agrell@chalmers.se).

The main motivation for this paper comes from the type
of nonlinear distortion encountered in fiber-optical conminu
cations. In contrast to linear channels, an optical fiber has
the peculiar property that the performance of conventional
communication systems degrades if the signal amplitude is
increased beyond a certain level [9]-[14]. This phenomenon
is well-known from experiments and simulations, and can als
be explained theoretically. The lightwave propagationimp-
tical fiber is governed by a nonlinear differential equatithre
nonlinear Schddinger equatioror, if polarization effects are
considered, thd&lanakov equationThese equations include a
nonlinear distortion term, whose amplitude is proportidoa
the cubed signal amplitude. At high enough signal ampligude
this nonlinear distortion dominates the other terms in the
differential equation, effectively drowning the signal.

Similarly, one might expect that the nonlinear distortion
would force the mutual information and channel capacity low
to zero at sufficiently high power, and in the past two decades
many results have been published in optical communications
to support this conjecture [6]-[8], [15]-[32]. Already i®93,
Splettet al. modeled the interference from four-wave mixing
in a wavelength-division multiplexing (WDM) system as an
WGN component, under some conditions on the noise and
‘gspersion, in what might have been the first study ever of
e channel capacity of a nonlinear optical link [33]. The
ariance of this AWGN depends nonlinearly on the transmit
power, which is assumed equal on all wavelengths. Similar
nonlinear channel models have been rediscovered, modified,
and further analyzed in [10]-[12], [16], [20], [31], [3413%].

Due to the signal-dependent noise, their channel capscitie
not monotonic: As the transmit power (or signal-to-aois

raﬁo) increases, the channel capacity increases towgpdala

nd then decreases again as the power is further increased.

ther channel models with signal-dependent AWGN were
Rresented in [30], [32] and have similar nonmonotonic cleann
capacities. An essential assumption, explicit or implicitthe
derivation of these AWGN-based models is that the tranenhitt
signal consists of independent, identically distributgahisols.

ﬂhis assumption is valid in uncoded transmission systems,
t

ut not in the presence of error-correction coding, since
ding introduces correlation between symbols. Using aghod
erived under certain conditions on the transmitted sigmal
particularly risky in channel capacity calculations, snthe
channel capacity is by definition the maximum achievable rat
inganytransmission scheme—including those for which the
onstrained model is not valid.

A continuous-time channel model for cross-phase modula-
tion (XPM) was presented by Mitra and Stark [15]. Although
no discrete-time XPM model was obtained, they showed
that the channel capacity of the XPM channel model is
lowerbounded by the capacity of a signal-dependent AWGN
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channel, and that this lower bound is nonmonotonic. Thean be transmitted with arbitrarily small error probalilit
further conjectured that the true channel capacity woulcehathe codewords are sufficiently long and the rate is suffigfent
a similar nonmonotonic behavior as its lower bound. Margmall. Such a rate is called aachievable rate,and the
variants of the Mitra—Stark lower bound have been presentaabremum of all achievable rates, over all possible codds an
in recent years, often along with the conjecture that the trblock lengths, is defined as tlmperational channel capacity
channel capacity is also nonmonotonic [18], [20], [23],][28 or simply capacity[1, Sec. 1, 14].
[37]. This conjecture was disproved in the zero-dispersese  Shannon’s channel coding theorem [1, Sec. 13, 23], [4,
by Turitsyn et al. [38], who showed that the lower boundSec. 7.7, 9.1] states that the operational channel capicity
based on the AWGN channel [17] is very far from the truequal to thanformation channel capacityvhich is defined as
channel capacity, and that the channel capacity in fact grothe supremum of the mutual informatiénX ; Y') between the
logarithmically with power under certain conditions. channel input and output, where the supremum is taken over
Another type of lower bound on channel capacity is ol&ll input distributionsfx. The capacity-achieving distribution
tained by fixing the input distribution and calculating thénay be continuous or discrete [41], [42].
mutual information [7], [22], [27], [29], [39], [40] or by In this work, the channel capacity is characterized as a
optimizing the mutual information over a subset of all pogunction of some kind of cost. Closely following the definitis
sible input distributions [7], [25], [26], [29], [30]. Allhese in [43], [44, Sec. 3.3], we define theost functionb(x) as a
lower bounds consistently show a nonmonotonic behavisieterministic, real, nonnegative function of an input spnb
decreasing towards zero after a peak at a finite power, and= X'. The cost of a codeword = (x4, ..., zx) is defined
the conjecture that the channel capacity would have a simigs b(c) = (b(z1) + - + b(zn))/N. Let M(N,p, 3) be the
nonmonotonic behavior as its lower bounds is often repeatsize of the largest codeboak such that (i)b(c) < 3 for all
We believe that the results cited above, while mathemati-€ C and (ii) each codeword can be decoded with an error
cally correct, do not fully exploit the potential of capaeit probability not larger tharp. The capacity—cost functiors
achieving coding over nonlinear optical channels. We prowefined as [4, Sec. 7.5, 9] [44, Sec. 3.3]
in this work mathe_ma_tically that for_ a Widg class of chann_el A _ log, M(N,p7 3)
models, the capacity is a monotonic function (nondecreasin C(B) = lim lim N (1)
but not necessarily strictly increasing) of the transmitvpo ) ! <
This property holds for angtatic channel model, defined asThe channel coding theorem with an upperbounded cost now

one whose channel law does not change depending on whicptes that [45, Sec. 7.3], [44, Sec. 3.3]

input distribution it is combined with. The results are exted C(B)= sup I(X;Y), 2
to a wide class of cost functions and to three specific mdtius fx€Q(B)
scenarios.

The_ presented r_esul_ts hoI_d regardless_ o_f_whether t ?b(X)] < B. It is well known that the channel capacity, as
papacﬂy—c_ost_functu_)n is defined by_ maximizing OVer &fafined above, is nondecreasing with[24], [44, Sec. 3.3].
input distributions with exactly the given cost or with alrhis follows from (2) and the fact théfil(ﬁ) S Q(B') for all
upperbounded cost. The proofs are developed assuming the g -

former definition, and they are all trivial for the latter. An In this paper, we focus on another type of cost constraint
interesting consequence of the nondecreasing Charmed'mpa\nstead of upperbounding the cost of the codewords as in the

is that the two definitions of the capacity—cost function arﬁrevious paragraph, the codewords are all required to have
fully equivalent. the same exact cost. This scenario has been touched upon in

the past [46], [47], but not received as rigorous infornatio
Il. CHANNEL CAPACITY AND COST theoretic treatment as the bounded-cost constraint. Hlytma

let M (N,p, ) be the size of the largest codeboBksuch

Let X andY be real,n-dimensional vectors, represen'unglhalt () b(c) = 3 for all ¢  C and (ii) each codeword can be

the mpu? aqd output, resp., .Of a dlsc_:rete—tlme. memoryleagcoded with an error probability not larger tharin analogy
communication channel. Their respective domains, or alpha.

bets, are denoted byt C R™ and Y C R™. The joint with (1), the capacity—cost function is defined as

distribution fx,y (z,y) forx € X andy € Y can be C(8) 2 Tim lim log, M(vaaﬂ)' 3)

factorized asfx vy (z,y) = fx(x)fy|x (y|x), where fx is p—0 N—o0 N

the input distribution(which is in practice determined by theit is also possible to define the information capacity with an

modulation format) and'y | x is the channel law.We denote equality constraint, analogous to the right-hand side hf48

the mutual informationbetweenX and Y with I(X;Y), s _

while I(X;Y|Z) denotes aonditional mutual information. Gis) = fxbeu!%)(ﬂ)I(X7Y)7 @

Theentropyandconditional entropyare denoted by/ (X ) and ) o

H(X|Z), resp., and thelifferential entropyand conditional Where (5) is the set of all distributiong’x over X' such

differential entropyare denoted by:(X) andh(X|Z), resp. tatE[b(X)] = 5. This quantity has been analyzed and char-
Using error-correction coding, codewords &finput sym- acterized extensively in optical communications (e.g5][1

bols ar_e .Selef:teq from a COdepOGKQ AN, The rate of 1with a slight abuse of notation, we also include distribagidhat have no

transmission, in bits per symbol,lisg, |C|/N. The codewords probability density function [4, Sec. 8.5].

Ehereﬁ(ﬂ) is the set of all distributiongx over X’ such that
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[20], [25], [21, eqg. (11.5)]) and also considered in wirgles Definition 1: A static point-to-point channel is a memory-

communications [48], which partly motivates this work. Théess relationshipfy|x (y|z) between vectorsX € X and

interest in Cj(8) comes from an implicit assumption thatY” € ), which is a function ofy andx but does not change

a channel coding theorem would exist also with an equalith fx.

cost constraint, i.e., that'(8) = Ci(/5). This relation, while  Such a relationship can represent a continuous-time band-

intuitively reasonable, was to our knowledge never forgnallimited channel by sampling the transmitted and received

proven, which may cast some doubts on the operatiovghveforms at the Nyquist rate [1, Sec. 23], and it can repitese

interpretation of any results based @/(5). In the next channels with an arbitrarily long (finite) memory by choagin

section, it will be shown thati(3) is nondecreasing with the dimensionn much larger than the channel memory [45,

B and, as a consequence thereof, that indeééd) = Ci(3). Sec. 4.6], [51]. The dimensions may also, in addition to
An implicit assumption for (4) is thak(X ;YY) is calculated time, represent frequency (wavelength), space, polasizat

from the same channel lafy- | x for all fx € Q(3) and all lightwave modes, or all of these. Hence, the theory applies

B > 0. In other words, the channel remains the same regardléssa wide variety of channels in different applications.

of which codebook is used. This is a standard assumption inThe capacity is commonly studied as a function of the

information theory [45, Sec. 4.2], and it is not considereglansmit power, which is obtained by settibgr) = ||=||?

to restrict generality. Channel laws with this property arfor all z € X = R". The results in this paper hold not only

formally defined asstatic in the next section. for transmit power but also more generally for any unbounded
Readers with an information theory background have probest function, according to the following definition.

ably only encountered static channel models and may not se®efinition 2: An unbounded cost functiob{x) over a do-

the need to define a name for channels with this property. dfiain X' is a real, nonnegative function such that for any given

the optical communications literature, however, channedim p, > 0, there exists a vectat € X' for which b(z) = by.

els fy|x that change witlfx have been proposed frequently. The main result for point-to-point channels is the follogin

Consider for example the well-known Gaussian noise mod@ékorem, which implies that the channel capacity will aithe

for fiber-optical links without dispersion compensatio®1 increase indefinitely or converge to a finite value as the cost

[12], [31]-[36]. This nonstatic model is in its simplest fior increases, depending on the channel. However, it cannet hav

given by the channel law a peak for any channel or any cost. Despite its simple nature,
1 _ly—al® it has to our knowledge not been stated before.
fyix(ylz) = ICAGA (5)  Theorem 1 (Monotonic Channel Capacity)et

(o2 + P3¢

m(og +1P?) ) vix(y|x) be a static point-to-point channel defined
\

where X andY" are the complex channel input and output,, . = ¥ and y € Y. Let b(z) be an unbounded cost

2 i — . . . .
resp., ag and7 are two constant link parameters, aRd= " f,ction on.t. ThenC;(3) is a nondecreasing function o
E[|X]?]. This is an AWGN channel, whose noise variance  pr,of We will show that for any given pair of cosfs >

depends orP and hence onfx.? Its information capacity, . >0, Ci(8) > C/(A). Let, for any0 < ¢ < 1
obtained by Shannon’s standard formula [1, Sec. 24], [Q = =z ) <1,
Sec. 9.1], is commonly given as [31], [33], [36] gra gy B—p -

P €
C(P) = log, <1 + W) : 6) we define a time-sharing random symh&lc X given an

This function, which clearly decreases to zero at high powgymhary binary random variable) such that

P, exemplifies the nonmonotonic behavior of the capacity A X, @=o,
of certain optical (nonstatic) channel models. We advisg th X = X" Q=1
such channel models, while unarguably accurate in uncoded ’ ’
systems [11], [36], should be used with caution in informiai wherePr{Q = 1} = ¢ and the distributions oX'c X and
theoretic analysis. First, it is not clear whether (4) hag arX”c X satisfy E[p(X')] = 3 and E[b(X")] = 8", resp.
operational meaning in terms of maximum achievable ratgsich distributions exist, by assumption, for any cgttss” >
for nonstatic channels such as (5). Shannon’s channel godin Thus

theorem, in its standard memoryless form, assumes that the

(8)

channel law operates on each symBbindependently, which Eb(X)] = (1 - )E[B(X)] + E[b(X")]

is not the case iffy|x changes withfx. And second, such =(1-e)p +ep”

models are questionable from a physical viewpoint, as they = 5. 9)
imply an infinite channel memory [50], [49]. Only static

channel models will be considered further in this paper. Because) —+ X — Y is a Markov chain, the mutual

information can be bounded as
[1l. POINT-TO-POINT CHANNELS
In this section, we are concerned with a discrete-time,
memoryless vector channel between a single transmitter and =(1-gI(X;Y|Q=0)+el(X;Y|Q=1)
a single receiver, formally defined as follows. >(1-¢)I(X;Y|Q=0)

(1-eI(X";Y), (10)

I(X3Y) > I(X;Y[Q)

2A static model for a similar channel as (5) was given in [49, Eq. (13)].
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where the first inequality follows from [4, eq. (2.122)] and This means not only that a channel coding theorem holds
Y’ is defined as the channel output when the inpuXi§ for an equal-cost constraint but also that the two channel
This inequality holds for any < ¢ < 1 and any distributions capacities (1) and (3) are equivalent. The cost-limitechole&
fx € Q(B) and fx~ € Q(B"). Choosingfx- as a capacity- capacity C(3) is achieved by an input distributiofix for
achieving distribution inQ(g’), the right-hand side of (10) which the cost equals the maximum allowed valte A
becomegq1 — €)Ci(8’). Thus, practical interpretation is that when designing a capacity
achieving code for a nonlinear channel, it suffices to canrsid

Gi(P) = I(X;Y) only codes for which all codewords have the same ¢ost

> (1-Gi(8). (11)
If now Ci(8) < Ci(8'), then (11) would yield a contradiction IV. | NTERFERENCECHANNELS
in the ranged < ¢ < 1 — Ci(8)/Ci(8'). Hence,Ci(8) >
Ci(8). 0 We consider a discrete-time, memoryless interference-chan

Intuitively, an input distribution with a nondecreasing munel with k£ users, each with the purpose of transmitting a mes-
tual information for a given channel can be constructed I8age from a transmitter to a receiver [44, Ch. 6], for example
combining two parts, a high-probability part at a moderag@n optical WDM system. The input and output are denoted by
cost, which does not vary much as the overall average cg$t andY;, resp., fori = 1,..., k. Theith receiver attempts to
is changed, and a low-probability part, a “satellite,” whic recoverX; based ony’;, without knowledge ofY’; for j # i.
absorbs the whole increase in average cost by moving awlje statistics of the received vectors is given by the caomhi
from the other part [13], [14]. As — 0, the input distribution distribution fy, v, |x, ... x,, Which does not change with
fx becomes more and more likéx,, while the average the cost. Independent data is transmitted by each userhand t
cost E[b(z)] remains ats because the lower cogt’ < 3 joint a priori input distributionfx, . x, is therefore equal to
is balanced by another cost’ > 3. the product of the marginal distributiorfs;, - - - fx, . All input

The nondecreasing nature of the information capacity c8#stributionsfx, are known to all users. From the viewpoint of
be exploited to establish a channel coding theorem wittseri, all interfering input symbolsX;; for j # i are assumed
equality cost constraint as follows. Even if Shannon aneiotifo be independent between channel uses. This assumption,
information theorists may have been aware of the theorem, Wéich is conventional in optical communications, is valfd i

have not seen it in print. the codebook of usef is not known to usei or if user j
Theorem 2 (Coding TheoremJFor any static point-to-point transmits uncoded data.
channelfy x, Three scenarios, dyehavioral model$52], are considered
in the following subsections. The aim in the first two sceosri
C(B)= sup I(X;Y). (12) s to determine the maximum achievable rate of the primary
Fx€Q(p) user, referred to as user 1, while treating the signals fiwen t
Proof: The theorem will be proved in two steps. Firstpther usersXs, ..., X} as (nonlinear) noise. The received vec-
it is shown that the operational channel capacities (1) atisY5, ..., Y} are unknown at receiver 1 and the channel can

(3) are the same and second, that the information capadity represented by the conditional distributigg | x, . x, -
sup I(X;Y) is the same regardless of whether the optimiz&he third and last scenario represents joint optimizatibn o

tion is overQ(ﬁ) or (). The theorem then follows from the fx,, ..., fx,, considering the full interference channel model
regular channel coding theorem (2). fyi....v.|X.,...x,- The point-to-point case extends straight-
For the first step, we use the relation forwardly to the first and third case (Sec. IV-A and IV-C),

- whereas the second case requires a somewhat more elaborate
M(N,p,B) < M(N,p,B) < M(N +1,p, B), (13) treatment (Sec. IV-B). There also exist behavioral modess,

where the first inequality is trivial from the definitions oftreated in this paper, for which the capacity is not monatoni

M and M, whereas the second was proved by Shannon [A{gz]' . . . .
pp. 649-651], [47, eq. (195)], who added an 1)th symbol The following lemma about conditional mutual information
to every codeword in a codeboak with codeword length will be useful in Sec. 1V-B. )

N and codeword cost at mogt, to obtain a codebook Lemma 3:For any X andY’, and any discrete,

with codeword lengthV + 1 and cost exactlys. Taking the

logarithm of all three parts of (13), dividing by, and letting I(X;Y) - 1(X;Y|Z)| < H(Z). (15)

N — oo proves via (1) and (3) that'(8) < C(8) < C(B), _ _ _ _

in other wordsC(3) = C/(3). Proof: By the chain rule for mutual information,

For the second step, the information capacity (2) is written . B . .

as I(X:;Y,Z)=1(X;Y)+ I(X;Z|Y), (16)
~ I(X;Y,Z)=1(X;Z2)+1(X;Y|Z). a7)
C(B) = sup Gi(8"), (14)

p'<B Eliminating I(X; Y, Z) and rearranging terms,

which by Theorem 1 is equal t07(3). Combining the two
steps,C(3) = C(8) = Ci(3) and (12) follows. 0 X Y)-I(X;Y(2)| = (X;Z2) - I(X; Z]Y)]. (18)
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Since Z is discrete by assumption, the right-hand side can be

. Q1 — X; —>»{ Channel —— Y}
upperbounded using

A
0<I(X;Z)< H(Z), (19) Q2—>X24T
0<I(X;Z|Y) < H(Z|Y) < H(Z), (20) : :

which completes the proof. O

Qk —P-Xk

. L . Fig. 1.  An interference channel with time-sharing inputsalgzed in
A. Fixed Interference Distributions Sec. IV-B. The primary channeX; — Y7 is affected by interference from

Suppose that the input distributiogi‘g2, ..., fx, are fixed the other inputsXo, . .., X}, which are all independent.
and do not change even ifx, would change. From the
viewpoint of the primary user, the interference caused by
the other users can be included in the channel model. Since Proof: Let fx/ € (') be a distributiod for which the
the conditional distributionfy,|x, in this case depends onsupremum in (22) is attained, i.e;;(58') = I(X1;Y7), at
the distributionsfx,,...,x,, but not on fx,, Theorem 1 some cos3’ > 0. We will show thatC, (5) > C1(8’) for any
applies and the capacity—cost function for the primary usgr> j’.
is nondecreasing. This scenario was calbedhavioral model  For any givens > 8’ and0 < ¢ < 1, let
(a) in [52].
1Nl B - ﬂ/
B2+ —— (23)

B. Equal Distributions o ]

and let fx~ be any distribution ove®t with E[b(X")] =

In this section and the next, we consider scenarios where ygve' We now define a time-sharing random vecrgiven an
distributions of all users are governed byetwork controller, auxiliary binary random variablé such that

by assigning modulation formats and power levels to all siser

While the next section discusses the case of joint optincizat A X Q=0

. . . . . X £ ’ ’ (24)
over all user distributions, we assume in this section thlat a X" Q=1
users apply the same input distributifg, or linearly rescaled ’ ’
versions thereof. Hence, the joint distribution of the sser  wherePr{Q = 1} = ¢. This vector satisfies

k
n EBb(X)] = (1 - e)E[b(X’ Eb(X"
X%, (-’131, B .7xk) — Ho‘i fX(OéifCi)7 (21) [ ( )] ( 6) /[ ( 2/] +e€ [ ( )]
i=1 =1 -ep +eb
for some given constants,, . .., ay. =p. (25)
An important special case is; = --- = a; = 1, which . A - o .

makes all marginal distributiongx, , fx,, . .., fx, identical. As illustrated in Fig. 1, the joint distributioffx, ... x, is

generated by an analogokfold time-sharing method, using
T . . the auxiliary variables), ..., Q. These variables have the
studied in, e.g., [7], [26]. The power scaling vig, ..., same distribution a§) and are independent. They control the

provides additional degrees of frgedom. .. input symbolsXj, ..., X}, such thatX; = X/ if Q; =0 and
The network controller may wish to select the distribution"~ "5/ ¢ Q: = 1, where

fx such that the achievable rate of any single channel, say’
channel 1, is maximized. Hence, we define ttemstrained fx: (@) = o fxr (i) (26)

information capacityof the primary channel as
pacibot the primary Fxp(@) = o fxo (i) (27)

for ¢ = 1,...,k. Obviously, the time-sharing symbolX;
where the supremum is taken over all distributions of theintly follow the desired distribution (21).
form (21), with fx € Q(f). Clearly, the mutual information The mutual information of the primary channel can be
I(X;;Y7) is an achievable rate for this channel, for afyy, bounded as
and henceC;(8) is an achievable rate. In the context of

This special case, callebdehavioral model (c)n [52], was

Cl(ﬂ) ésupI(Xl;Yl), (22)

optical communications;; was studied in [7], [26], [32]. By I(X1:;Y1) 2 1(X1; Y1|Q) (28)
analogy with the point-to-point channel, it might be temgti > I1(X1;Y1|Q1,Q2, ..., Q)
to interpretC; as themaximumachievable rate under certain — H(Qs,...,Qx) (29)

conditions; however, we believe that no such claims can

be made without a precisely stated coding theorem for tghere (28) holds becausg, — X; — Y, is a Markov chain

interference channel, which is presently lacking. and (29) follows by settingZ = [Q2,...,Qk] in Lemma 3.
Theorem 4:The constrained information capacity;(3) The first term of the right-hand side of (29) can be bounded

is a nondecreasing function gf > 0, for any interference

channelfyl | X1, X0, Xn 30r, more precisely, a sequence of distributions.



6 IEEE TRANSACTIONS ONCOMMUNICATIONS, TO APPEAR (PREPRINT JANUARY 3, 2015)

as Theorem 5:Let B = (B1,...,Bk) and B3 = (B,..., ;)
be two cost vectors such thgt > g > 0 fori = 1,...,k.
(X35 Y1|Q1, Qa, -, Q) Then their capacity regions satistj(3) 2 ¢'(3').
= Z Pr{Qi=q,....,Qr = qi} Proof: Let, for any0 < e < 1,
(q15--5qx) €{0,1}F "o o ﬁ—IBI
A( XY@ =q1,- -, Qk = qk) prept— (33)
>Pr{Q = =Qr =0} Let R" and R” be achievable rate vectors at cogtsand3”,
(X Y|Qr = =Qr=0) resp. By time sharing [4, Sec. 15.3.3], [44, Sec. 4.4], the ra
= (1-o*1(X];Y7) (1-e)R +eR">(1-¢)R (34)
=(1-¢*Cu(8"). (30) is achievable at cost
The second term of the right-hand side of (29) is (1-e)F +e8" =p. (35)
k The capacity regiofg’(3) thus includes all rate vectors of the
H(Qs,.. ., Q) =Y H(Q) form (1 — ¢)R’, where R is achievable at cosB’ ande is
=2 an arbitrarily small positive number. Since the capacitjior
= (k —1)Hz(e), (31) by definition is theclosureof all achievable rate vectors [44,

Sec. 4.1, 6.1]¢'(8) also includedim, ,o(1—¢)R' = R’. In
conclusion,R' € ¢(B) for all R € ¢(8'), which implies

A

where Ha(u) £ —ulogy u — (1 — u)logy(1 — u). Combining
(22), (29), (30), and (31) yields

€(B) 2¢(8). 0
Ci(B) = sup I(Xy;Y7) The capgcity region i_s a—dimensional object, and it v_aries
fx€Q(B) as a function of the:-dimensional vectop3. The following
> sup [(1 —e)’“Cl(B’) — (k- 1)H2(e)] two_ corollaries exemplify how linear cpmbir_latio_ns of the
0<e<1 achievable rates change when the cost is varied linearly.
= lim [(1 — €)*C1(8) — (k — 1)Ha(e)] Corollary 6: If the cost is varied along a line as
e—0
=Ci(f), (32) B =By +uaA, (36)

which completes the proof. where all components g8, and A are nonnegative, then all
Intuitively, the proof relies on constructing a “satelliteaCh'evable ratesd?y, ..., R, are nondecreasing functions of

distribution” [13] for X, where the “satellite,” denoted by # > 0, and the achievable sum raf& + --- + Ry is also a

in (24), carries a much higher cost tha@' and occurs with nondecreasing function of 2 0.
lower probability. Corollary 7: If all transmitters obey the same cost con-

straint 5, = --- = (B, = [, then all achievable rates
Ry, ..., R, are nondecreasing functions gf
C. Joint Optimization

In the third and last scenario, we assume that the system V. NUMERICAL EXAMPLE

includes a mechanism to optimize the transmission scheme#n this section, examples are given for mutual information

of all users jointly, for example via a central network conand channel capacity as functions of the transmit power, for

troller. As in the previous two scenarios, the transmittrd @ simple nonlinear channel. The studied channel is chosen

receivers are stillbperatedseparately, in the sense that thénainly for its simplicity, because evaluating the chanreel c

transmitters and receivers do not exchange informatiomtab®acity is numerically possible only for very low-dimensan

their respective signafs. memoryless channels, which unfortunately excludes more re
Let R, be an achievable rate for the transmitter—receivalistic channel models.

pairi = 1,...,k and letR = (Ry,...,R;) be a vector of

rates that can bsimultaneoushachieved over the interferenceA. A Nonlinear Channel

channel, with arbitrarily small error probability. Thepacity  we consider a very simple channel with nonlinear distortion

region ¢(B), where 3 £ (B1,..., ), is defined as the and additive noise, represented as
closure of the set of all achievable rate vect®svhen every
codeword used by user= 1,...,k has the exact cost; Y =a(X)+7Z, (37)

[44, Sec. 4.1, 6.1]. While no analytical expression is knowfhere X andY are the input and output of the channel, resp.,
for the capacity region of general interference channels [4y — y — R, a(-) is a given deterministic function, and
theorem. For a given channel input, the channel law is given by the
conditional probability density function (pdf)

4If data instead is jointly encoded over all transmitted algiX, . .., X,
and jointly decoded based on all received sigidls .. . ., Y3, then the chan- 1 Y — a(x)
nel is equivalent to a high-dimensional point-to-point mhel and Theorem 1 vixlz) = —fo | ——— ), (38)
applies. 0z 0z
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a(z)

10+ 3.0 T T ) “‘:."“‘
27
5 2.5 ¢ ]
<4
‘ ‘ ‘ ‘ z @ B
-40 -20 20 40 =
5 ~ 2.0f
7 >~
g
-10F = SPAM _
0 ~ 1.5-
Fig. 2. A simple example of nonlinear distortion, given b@)Y4or amax =
10. The channel is essentially linear for smatl and binary for larggzx|. 10l o XA\
0.5 Exponential
where fo(x) £ (1/y/27) exp(—2x2/2) is the zero-mean, unit- ]
variance Gaussian pdf. Singg|x (y|z) is Gaussian for any %87 G T 00 ot o
x, the conditional entropy is [1, Sec. 20], [4, Sec. 8.1] P

1 Fig. 3. Mutual information for the nonlinear channel in (3W}h amax = 10
MY |X) = Zloo., 21ec?. 39 a_nd oz =1 with various continuous (solid) aﬁd dlscr(‘e_tg (dashed) tinpu
( | ) 2 82 £MCOZ ( ) distributions. The discrete distributions have unifornolbilities and equal
spacing. The AWGN channel capacity is included for refege(dntted).

For a given input distributiorf x, the output distributioryy is

obtained by marginalizing the joint distributiofx vy (x,y) =

Ix(z) fy)x (y|z), and the mutual information is calculated aslefined as, respectively,
I(X;Y)=h(Y) - h(Y]|X).

In this example, we seleet(z) in (37) as a smooth clippin Ix, () ! f ( - ) (41)
is ex , W z)i ippi (7)) = —= — |,
function P Pene : \/516‘ \/ﬁ\/_ /3P
— V3P <ax<+V3P
fxa () = { 2V3F =TEYT @)
0, elsewhere
a(Z) = amax tanh , (40)
Amax 2 —x\/2/P
Fro(2) = \/;e , x>0, (43)
0, z <0.

where a,,x > 0 sets an upper bound on the output. The

hyperbolic tangent is commonly used to model nonlinear at asymptotically low poweP, the channel is effectively an
amplifiers [53], [54] and similar characteristics, albei@s®d, AWGN channel. In this case, the mutual information is gov-
can model a light-emitting diode in intensity-modulatedicgl  erned by the mean value of the input distribution, accordting
systems [55]. If the instantaneous channel inpiithas a [56]. All zero-mean input distributions achieve approxteigp
sufficiently high magnitude compared with,., the channel the same mutual information, which approaches the AWGN
is essentially binary. FOX close to zero, on the other handchannel capacity. The asymptotic mutual information fee th
the channel approaches a linear AWGN channel. exponential distribution, whose mean {gP/2, is half that
The channel parameters atg,.x = 10 and oz = 1 achieved by zero-mean distributions.
throughout this section. The functiom(z) in (40), which The mutual information curves for all three input pdfs
represents the nonlinear part of the channel (37), is showsach a peak around = 100, when a large portion of the
in Fig. 2. Since the channel lay| x (y|x) given by (38) and input samples still fall in the linear regime of the channel.
(40) depends om, y, andamax but nothing else, the channelwhen the transmit poweP is further increased, the mutual
is static according to Definition 1 and Theorem 1 applies. information decreases towards a value slightly less thait
asymptotically for the zero-mean input pdfs afidfor the
exponential input. The asymptotes are explained by the fact
that at high enough power, almost all input samples fall & th
B. Mutual Information nonlinear regime, where the channel behaves as a 1-bit noisy
guantizer. The same argument shows thatafioy continuous
The mutual information (X;Y) is evaluated by numerical distribution, the asymptotical mutual information is léksn
integration, as a function of the average transmit polet 1 bit.
E[X?]. No optimization over input distributions is carried out. Similar results for various discrete input distribution® a
The input distributionfx («) is constructed from a given unit- also included in Fig. 3. The studied one-dimensional cénste
power distributiong(z), rescaled to the desired powBras lations are on—off keying (OOK), binary phase-shift keying
fx(z) = ag(azx), wherea = 1/+/P. The results are presented BPSK), andm-ary pulse amplitude modulationn-PAM).
in Fig. 3 for three continuous input pdféx(x): zero-mean The constellation points are equally spaced and the input
Gaussian, zero-mean uniform, and single-sided expomentsamplesX are chosen uniformly from these constellations.
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The mutual information fom-PAM constellations withn > 4 3.0 e
exhibits the same kind of peak as the continuous distribstio !
in Fig. 3; indeed, a uniform distribution over equally spdce 2.5;
m-PAM approaches the continuous uniform distribution &g
M — 0O. 2 2.0f
Similarly to the continuous case, the mutual information f&

zero-mean discrete input distributions approach the AWGN 15
channel capacity a® — 0. Half this channel capacity is
achieved by the OOK input, which has the same mean value™
\/P/2 as the exponential input above. The asymptotics when 0.5l
P — oo depends on whether the input distribution includes
a nonzero probability mass & = 0. If not, the channel o= . . . 0v i
again acts like a 1-bit quantizer and the asymptotic mutual °-! ! 10 100
information is slightly less than 1. For distributions wigh P
probability mass atX = 0, here exemplified bys-PAM, Fig. 4. Channel capacity for the same channel (thick sotidinpared with

the channel asymptotically approaches a ternary-outpisl/nothe mutual information of the Gaussian distribution in Fg(thin solid) and
channel whose possible outputs are not dnily= a,,., +Z the AWGN channel capacity (dotted). Even though most mutfatmation
. . s il 1+~ CUNVES decrease, the channel capacity does not, thus singp®heorem 1.
bu_t also Y . 0+ 2 Hen_ce’ for any |nput. dlsmbu.tlon The three markers refer to distributions in Fig. 5.
(discrete, continuous, or mixed), the mutual informatien i
upperbounded bjpg, 3 = 1.58.
In conclusion, this particular channel has the property tha L i ) L
the mutual information for any input distribution approash the opt|m|z§1tloq IS done b)altgrnatlng _opt|m|zat|c_)n[59,
a limit as P — oo, and this limit is upperbounded bySec. 9.1], f|r_st findingw for a givenc using the Anr_noto—
log, 3. It might seem tempting to conclude that the c:hann@la‘z_“t algonthrr]n ang then finding for a g|v|enw lé_s'ng a N
capacity, which is the supremum of all mutual informatio"@dient search, and so on. Here, we apply gradient searc
curves, would behave similarly. However, as we shall see igchniques for both steps. The objective is to maximize the

the next section, this conclusion is not correct, because ﬁ.lagranglan function

Channel capacity

Gaussian

| | N
1000 10* 10°

limit of a supremum is in general not equal to the supremum N s
of a limit. Specifically, the asymptotical channel capadity L{c,w, A\, A9) £ h(Y) + M | D wi—1
limp_, oo C(P) = limp_, sup, I(X;Y’), which is not equal i=1
to sup, limp_,00 1(X;Y) < log, 3. :
Sup,(] 1mp— ( ) Og2 + )\2 <Z wic,% _ P>7 (46)
i=1

C. Channel Capacity where the Lagrange multipliers; and A\, are determined to

The. standard method to calculgte the phannel capacihiintain the constraints’, w; = 1 and}", w;c2 = P during
of a discrete memoryless channel is by temoto-Blahut the optimization process. The gradientslofwith respect to
algorithm [57], [58], [4, Sec. 10.8], [59, Ch. 9]. It has beer. and are calculated, and a steepest descent algorithm (or
extended to continuous-input, continuous-output chanirel ore accurately, “steepest ascent”) is applied to maxinize
[60] and furthermore to cost-constrained inputs in [61]€Thy each iteration, a step is taken in the direction of eittfehe
idea in [61] is to represent distributions by lists of samspleqyo gradient$ The step size is determined using thelden
so-calledparticles. A particle-based input distribution has thegaction method62, Sec. 10.4]. Several initial valuds, w)
form were tried. The number of particlesvas heuristically chosen
s by doubling its value until the obtained channel capacity
fx(z) = Zwﬁ(x —ci), (44)  changed by less than.0l. This convergence criterion was
=t satisfied ats = 16 in all cases.
whered(-) is the Dirac delta functiory is the number of parti-  The topography of. as a function of: andw turned out to
cles,c = (ci,...,c,) are the particles, an = (w1, ...,ws) include vast flat fields, where a small step has little infleenc
are the probabilities, or weights, associated with eactigh&r on L. This made the optimization numerically challenging. No
If sis large enough, any distribution can be represented in thgboptimal local maxima were found for the studied channel
form (44) with arbitrarily small error. With this represetibn, and constraints, although for nonlinear channels in génera
5w y — a(c:) the mutual information as a function of the input distriluti
fr(y) = Z —fa (71>, (45) may have multiple maxim@.

— 0y oz
=1
. . . . 5Moving in the direction of the joint gradient turned out tolbes efficient,
which yieldsh(Y'), and thereby/ (X;Y"), by numerical inte- pecause for small and large, the numerical values of andw are not of

gration. the same order of magnitude.
Since h(Y|X) is constant, the Capacity is obtained by 5An exception occurs when the cons_tellatlon pointare flx_ed and _the_
- . . ..., only constraint isy_ w; = 1. In this special case, the mutual information is
maX|m|Z|ngh(Y.) SUbJeCt to ?OnStramtS on the total prObab”'t)é concave function ofv for any channel [4, Sec. 2.7, 7.3] and there is thus
and power. This problem is in general nonconvex. In [614, unique maximum.
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* *
Q Q
1 ¢ x P=10
o P=100
% P=1000
| | | T | T i | | | €T
-60 -40 -20 0 Amax 20 40 60

Fig. 5. Discrete approximations of the capacity-achievimgut distributions forP = 10, 100, and 1000.

This channel capacity, numerically obtained by the abowgiite different for other types of nonlinear channels, aegah
method, is shown in Fig. 4 for the studied channel (thicBbservation can be made from Fig. 5: Even at high average
solid curve). As promised by Theorem 1, the curve diffeygower, the input should consist of samples with moderate
from most mutual information curves by not having a peak abwer, for which the channel is good, most of the time. The
any P. The channel capacity follows the mutual informatioiligh average power is achieved by a single particle having a
of the Gaussian distribution closely until arourd= 100. very large power; thus, the capacity-achieving distrimutis
However, while the Gaussian case attains its maximum mut@akatellite distribution [13]. This single particle, or alite,
information(X;Y’) = 2.44 bits/symbol atP = 130 and then corresponds toX” and X" in the proofs of Theorems 1 and
begins to decrease, the channel capacity continues toasered, resp., which ag — 0 have high cost (power) and low
towards its asymptotbmp_, ., C'(P) = 2.54 bits/symbol. The probability.
fact that the capacity curve rises somewhat over the peak
and not only flattens out is encouraging for future work on VI. SUMMARY AND CONCLUSIONS
capacity-achieving coding for more realistic nonlineaaiwhel. |t was proved that the channel capacity is a nondecreasing

This asymptotical channel capacity can be explained &amction of a cost (such as transmit power) in the following
follows. Define the random variablé £ a(X). Sincea(-) isa cases:
continuous, strictly increasing function, there is a on@te « Point-to-point memoryless vector channgis x that do

mapping betweernX € (—oo,00) and A € (—amax, Gmax)- not change with the input distributiofix .
ThusI(X;Y)=I(A;Y), whereY = A+ Z. This represents .+ Interference channels where all users, except the one of
a standard discrete-time AWGN channel whose induts interest, transmit data from fixed input distributions.

subject to a peak power constraint. The capacity of a peak- Interference channels where all users transmit data from

power-constrained AWGN channel was bounded already in the same (optimized) distribution.

[1, Sec. 25] and computed numerically in [41], where it was « Interference channels where the distributions of all users

also shown that the capacity-achieving distribution i€idite. are optimized jointly.

The asymptote in Fig. 4, which 554 bits/symbol or, equiva- The mutual information may be decreasing with cost in all

lently, 1.76 nats/symbol, agrees perfectly with the amplitudghese cases, but not the channel capacity in Shannon’s.sense

constrained capacity in [41, Fig. 2] faf,ax/0z = 10. In contrast, there are numerous examples in the literature
Some almost capacity-achieving input distributions amghere the channel capacity, or numerical approximations

shown in Fig. 5, numerically optimized as described aboviereof, has a peak at a certain cost, after which it decsease

For P = 10, the optimized discrete input distribution istowards zero [6]-[8], [15]-[33]. These examples all pertzi

essentially a nonuniformly sampled Gaussian pdf, and thee of the following cases:

obtained channel capacity, 1.61, has the same value as thg Point-to-point channels that change depending on the

mutual information of a continuous Gaussian pdf, shown in  transmitter settings, typically as a function of the traitsm

Fig. 3. ForP = 100 and 1000, the distribution is more power [50].

uniform in the range where the channel behaves more or, Interference channels where the transmission scheme of

less linearly, which for this channel is approximately at one user (the one of interest) is optimized while the

—Omax/2 < T < amax/2, With some high-power outliers in other users satisfy the same power constraint by pure

the nonlinear rangéx| > amax. In all cases, increasing the amplification [52].

number of particles from what is shown in Fig. 5 does not A practical interpretation is that when designing codes for

increase the mutual information significantly, from whick W nonlinear channels under the constraint of a maximum aeerag

infer that these discrete input distributions perform ficatly power, it suffices to consider codes in which all codewords

as well as the best discrete or continuous input distrihlstiosatisfy the power constraint with equality. This is in castr

for this channel. to previous works in optical communications, which often
Although the capacity-achieving distributions would loolassumed the existence of an optimal (finite) power. Further
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research is needed to show whether the new approach is jpgt L. G. L. Wegener, M. L. Povinelli, A. G. Green, P. P. Mitrd. B.

a way to achieve the same rates as before at a higher power,
or if it may lead to significantly increased achievable rates
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