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Abstract

Rescue missions for missing people requires a lot of resources, are difficult to
organize and can pose a danger to rescue teams. Time is often a critical param-
eter and therefore it is important that the search can be performed efficiently.
An alternative to today’s traditional search by foot can be the use of unmanned
aerial vehicles, UAVs. This report describes search algorithms developed in or-
der to optimize the search with several UAVs as well as a simulation platform
to test the algorithms.

A model has been developed where the search area is divided into smaller
sub-areas, which are prioritized according to how likely it is to find someone
in that area. This is estimated from the terrain and external factors such
as the position where the person was last seen and if any other traces have
been found. The search path, which gives the order in which all the sub-areas
are scanned, has to be optimized to minimize the expected search time. The
developed optimization algorithm is able to find solutions that are within 11%
of the optimal solution.



Sammanfattning

Sokarbeten efter forsvunna personer kriver mycket resurser, dr svara att
organisera och kan &ven innebéra fara for sékarbetarna. Tiden ar ofta kritiskt
vid den hér typen av uppdrag och det dr déarfor viktigt att sékningen kan
ske pa ett sa effektivt sdtt som mojligt. Ett alternativ till dagens traditionella
sOkning till fots kan vara att anvinda obemannade luftfarkoster, UAV:er, for
att effektivisera sokningen. Denna rapport beskriver dels stkalgoritmer som
utvecklats i syfte att optimera sokning med flera farkoster tillsammans, samt
dven en simuleringsplattform fér utvirdering av algoritmerna.

Modellen som utvecklades bygger pa att sokomradet delas upp i mindre
omraden, vilka prioriteras efter hur troligt det &r att finna nagon inom det
omradet. Detta uppskattas genom att dels viiga in hur terrdngen ser ut samt
att ta hénsyn till andra yttre omstédndigheter s som vart personen senast sags
eller om nagot annat spar hittats. Sokvéigen, som anger i vilken ordning alla
mindre omraden ska avsokas, maste optimeras pa en sadant sitt att den forvin-
tade soktiden blir sa liten som mojligt. Den utvecklade optimeringsalgoritmen
lyckades hitta losningar som dr inom 11% fran den optimala 16sningen.
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List of symbols

A

total search area

number of sub areas of the total area

sub area index

sub area 1

probability for sub area i

number of hexacopters

hexacopter index

the set of possible paths through A

the path k through A

the j:th visited sub area by hexacopter h following sy
number of areas given to hexacopter h
time when A; is visited

expected search time

expected search time when following sy,
shortest possible search time

optimum search path

a set of non-shared out sub areas
expected search time if only sub area A; is given
sum of probabilities for sub areas in Ag
time to search sub areas in Ag

set of hexacopters not given any sub areas

time to search one sub area

lower approximation of E*[T]
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1 Introduction

Every year there are around 7000 missing people reported in Sweden and 360 of them
are in the police district of Gothenburg. Behind this last number is on average:

e 5 crimes

5 cases when someone went lost

25 senile which absconds

25 cases with ethnic reasons

25 suicides

25 suicide attempts

250 cases of mental problems where the person absconds their relatives
e other reasons

The number of reports is significant higher in the summer period, which can be
explained by the main vacations in the summer, people are more outdoors and more
people are in movement.[1]

Search missions for missing people is a demanding job and requires a lot of people
and good administration. These missions can sometimes pose a risk for the rescue
team which puts the group leader in a dilemma, whether it is worth to execute the
rescue mission or not.

1.1 Background

During earlier master’s thesis projects at Combine an autonomous hexacopter has
been developed.[3][4] This air-vehicle is able to work outdoors using GPS navigation.
One possible use of these vehicles could be to scan a large area with the purpose of
finding a missing person, where time is usually critical. The hexacopters would be
able to scan an area from the air much faster than a rescue team by foot. Even though
they can fly fast, it does not necessarily mean that they will find the lost person faster
since lost people usually behave in a certain way in these situations.

Some advantages of using hexacopters are:
e They can move quickly over large areas

e Decrease the demand of rescue workers



e (Can initiate the mission earlier
e Safety, to prevent having rescuers in dangerous conditions

e Do not affect the search area, i.e. leave false traces or destroy evidences.

1.2 Aim

The aim of this project is to develop an algorithm for several hexacopters to scan an
area as efficiently as possible. The algorithm should be able to deal with any number of
hexacopters and one task to solve is how to optimize their cooperation. The algorithm
should also take into account the circumstances of the terrain and properties of the
missing person. It has to be investigated which of these circumstances that can be
useful during a mission and how they affect the algorithm. A system like this can be of
great value for society, and emergency services have asked for this kind of technology.

A second aim is to develop a simulation environment to test the algorithm and
virtually visualize the system. It will here be possible to create a mission with various
initial conditions and then investigate how the system handles the problem in real
time.

1.3 Scope & limitations

The hexacopters will be able to communicate with each other and deliver information
such as current position and velocity. A first limitation is that the missing person is
assumed to not be moving and wants to be found. There will not be any investigation
how a human can be detected, nor any other physical properties of the hexacopter or
its communication. The output of this project will give a strategy of how to search an
area and thus not necessarily needs to be used by hexacopters. It can be used by any
type of UAV’s (unmanned aerial vehicles). Since a hexacopter has been developed
earlier at Combine, the vehicle will be denote so throughout the report.

This project contains only virtual testing of the algorithm in the simulation plat-
form and no testing on real hexacopters.

1.4 Problem Formulation

The problem is how to scan an area and to find a missing person as fast as possible,
with several hexacopters, depending on the circumstances of the terrain and properties
of the missing person.



1.5 Method

Initially an information study was done to investigate which parameters of the terrain
and the person, that are of importance, this by talking to experienced people in the
field. It was also discussed how an automated system is preferred to work for good
cooperation with already existing strategies in these kind of missions. It is important
that the system does not disturb the mission and is straight forward to use, so it will
not need more assistance than it contributes.

The search algorithms was first developed in Matlab, but Matlab has limitations
regarding graphical interfaces and multi threading. Therefore, the algorithms were
translated into Python, which has a package called QT that can be used to build up
a graphical interface, and has build in functions for multi threading.

The simulation environment was also implemented in Python and designed in such
a way that the search algorithm works exactly the same regardless of if it is used by
real hexacopters or executed in the simulation environment.



1.6 Investigation with the police

A meeting was arranged with a police officer at the Swedish National Police Board
(Riskpolisstyrelsen) in Stockholm to discuss how an automated search should be per-
formed, both in the aspect to find the person fast but also for good cooperation with
the rescue team.

At search missions the police follows an international method called MSO, Man-
aging Search Operations. This method is based on a large amount of collected data
from previous cases, which makes it possible to find behavior patterns for different
categories of people. It is primarily children or elderly that go astray, while adults
can deliberately stay away due to for example depression. Time is usually a very
critical parameter due to the cold climate in Sweden and people that go astray are
rarely dressed appropriately to stay out for a long time.

The first search should be of all the known paths in the area. This so since people
tends to stay on paths. If they get lost in the woods and find a path they usually start
to walk along it. Paths can be searched relatively fast since they are one-dimensional
and often open which gives a good sight from the air. In a first step, a hexacopter
should fly along the paths and in the next step it can also search through an area
around the paths.

The next place to cover should be water edges. Although the probability of finding
a person there is low, one wants to make sure that no one has fallen into the water.
If so, it is necessary to discover this early since the person can be in an emergency
situation.

When those area scenarios are covered, the hexacopters should continue with other
open land areas. These areas can be covered fast from air since there is good sight
and the hexacopters can fly fast without obstacles. Open water will be low prioritized
since it is assumed that no one swims out in a lake if they are lost.

Usually, a lot of information about the terrain and the person is gathered before
initiating the search mission. This can be very varying information, which needs to
be interpreted together, and does not follow any simple pattern. It is therefore almost
impossible to let the algorithm interpret this information. It is best to let the mission
leader decide how to prioritize the search area from this information and it should
then be possible to add these priorities to the map. Therefore, areas should manually
be able to be prioritized higher or lower.

Some possible reasons why areas can be lower prioritized:

e A very unaccessible area where the person would normally not be expected to
enter

o A fenced area

e The area on the other side of a river



e [f a brief search has already been done in the area

Reasons for higher priority:

Last known position of the person

If any trace has been found

Areas of special interest for the person, for example, mushroom areas if the
person were in the woods for this reason

Higher hills where the person might have gone up to get a better sight
e Power line paths

The most important item here is the last known position of the person. The search
should begin from there and spread out. The police uses something called a search
circle which is a circle within which one can assume to find the person. The center of
the circle is the persons last position and the radius is the distance the person could
have walked. The time when the person was at the last known position determines
the radius.

Various parameters determine how fast the person moves, such as her age, her
condition, if the terrain is easily accessible, if it is dark or daytime, and the weather
conditions. If it is hard weather and dark, one assumes that the person has taken
cover and have not walked as far as in clear weather.

The search circle could in theory have been generated as a higher prioritized area
automatically by giving all these parameters. But since it can depend on so many
things it is better that the search leader manually defines this area just as any other
prioritized area.

It often happens that the prioritized areas change during the search, some new
tip may come in or a new trace is found. One should therefore be able to reorganize
the hexacopters to prioritize new areas.[2]



2 Program outline

The program structure is shown in Figure 1. There are three in-parameters to the

In-parameters

L CL LR ST . Algorithm
L SO
1 Map : : 1
: Priorities :—:—b Probability map ——» Tracks :
1 4 !
1 Hexacopters : P et
1 1 e
L I T ISR ) ’
’,

:l Way points

1

'

1

1

1

\ Hexacopters Simulation

Position

User interface

Figure 1: Structure of the program,

algorithm:
e Map: Contains size of the search area and its terrain
e Priorities: Manually added by the user

e Hexacopters: Number of hexacopters, start positions, line of sight and veloc-
ity.

The map together with the added priorities generate the probability map, the first
step in the algorithm, described in Section 3.1. This is used in the next step to
generate the tracks for the hexacopters to follow. The track is a sequence of way
points for every hexacopter to travel through.

During a real mission, these tracks will be sent to the hexacopters, but in this case
they are sent to a simulation environment instead. The hexacopters, or the simulated
ones, return their positions with a certain time interval and also information whether
anything interesting has been found.

This is in the end visualized in a user interface where one can see how the hexa-
copters search through the map. The in-parameters are set in the beginning in the
same user interface. Here the user is also able to change the priorities during the
mission, these changes are then sent back to the algorithm to generate new tracks for
the hexacopters.



3 Modeling

In this section it is discussed how the terrain of the area is modeled and further how
the hexacopter tracks are generated.

3.1 Probability map

The first part of the algorithm is to create a probability map, i.e. a scalar field over the
search area where the value in every point denotes the probability to find the person
in that point. The two parts building up this scalar field is the map, with information
about the terrain, and the manually added priorities. How the map is created and
how the priorities are added will be described in Section 5.2, which describes the
simulation environment.

In the map there are four types of terrain that are considered:

e Path

e Open land
e Forest

o Water

The priority can manually be set to two higher levels, +1 and +2, and two lower
levels, -1 and -2, with the default set to 0. Table 1 and Figure 2 gives the value in
every point in the scalar field depending on both the terrain and priority. The actual
values are not important, but the ratio between them is. This so, since the total
probability over the search area will be scaled to sum up to 1.

Table 1: Probability depending on terrain type and manually added priority.

-2 -1 0 +1 +2

Path 0.01 50 2500 125000 150000
Open land | 0.01 1 20 2500 150000
Forest 001 1 50 2500 150000
Water 0.01 0.1 ) 250 150000

The ratio between different terrains when no priority is added, column ”"0” in Table
1, was determined by testing various values. The trade-off here was how far away from
for example a path the hexacopter can be and still travel to the path to search there
first. The columns to the left and right, -1 and +1, divide and multiply all values
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——"Water
—+— Forest
1o Open land
—4— Path

Frobability
=

-- - 0 + ++
Manually added priority

Figure 2: Probability values in every point on the map depending on terrain type and
manually added priority.

with 50. The reason why the values are multiplied with a constant and not added to
a constant is that the ratio between terrain types is now preserved even if the priority

is changed:
Path_l . Patho . PathH

Forest ;  Forest,  Forest 11

So if a large area is set to priority +1 or -1 the search within that area will be
the same as if no priority was added at all. The value of division and multiplication,
50, is chosen so a lower prioritized path is equal to open land with no priority, and
higher prioritized open land is equal to a path with no priority,

Path ; = Open land Pathy = Open land ;.

For priority -2 all values are set to 0.01, which is 10 times lower than the lowest
value in priority -1. When this priority is set, those parts will always be taken last
regardless of terrain type. If the same ratio between the terrain types was used here
some values would be too small and numerical errors could start to occur.

The same reasoning is used for priority +2 where all those values are larger than
the largest value in priority +1. So regardless of terrain type, this area will always



be searched first. If the same ratio was kept here some numbers would be very large,
which is not directly a problem, but since the whole map is scaled to sum up the
probability of 1, large numbers scale down the other values by a large magnitude and
one may then get numerical errors.

3.2 Divide the search area

The total search area, A, is divided into n4 sub-areas A; € A,i=1,2,..., ns. These
sub-areas are square, with the same side length and placed as in Figure 3 with A;
starting in the lower left corner and counting up to the right. The reason to divide

A

Ak+1 Ak+2

|
A1 Ag A3 Ak

Figure 3: How the search area is divided into n 4 sub-areas.

the map into sub-areas is to get a more manageable computational problem, it would
not be doable to look at every individual square meter. Every sub-area is searched
through in a type of meander pattern, also referred to as the lawnmower pattern,
shown in Figure 4.

The size of these sub-areas has impact on the efficiency of the search. For larger
squares every lane between the 180° turns is longer and the total number of turns in
the search area A will be fewer. One wants to minimize the number of turns since
the hexacopter has to slow down for every turn.[5][6] Larger squares also result in
a smaller n4 which reduces the optimization problem. But at the same time, with
larger squares the resolution of the map gets worse since this area division gives a
coarser grid. The optimum square size should depend on the hexacopter’s field of
view, which determines the lane width, the number of hexacopters and size of the
total search area. No optimization regarding this was done during the project, the



side length of a square is set to 100 length units and the field of view for one hexacopter
is set to 10 length units. This results in 10 lanes per sub-area.

As shown in Figure 4 the pattern can be oriented either horizontally or vertically.
The hexacopter always enters the square in the corner closest to its current position
and tries to exit close to the next square. Depending on how the enter and exit
corners are related, that determines whether the hexacopter will search horizontally
or vertically.

In Section 3.1, it was explained how the terrain and manually added priorities are
combined to give every point on the map a certain probability value. The highest
value in area A; is used as its probability p; to find the person in A;. E.g., if a path
goes through A;, the sub-area always gets the path’s value as p;, no matter what the
other terrain looks like in that sub-area.

Figure 4: How the lawnmower pattern is performed within every sub-area.

3.3 Optimization problem formulation

The total search area, A, is divided into n4 sub-areas A; € A, i =1, 2,..., n4, where
the probability of finding the missing person in area A; is p;. The probabilities are
scaled in such a way that

i=1
thus it is assumed that the person is within the search area, at least from a mathe-
matical point of view.

The search area will be searched by ny hexacopters following individual tracks.
In the previous section was described how an individual sub-area is searched so it
needs to be determined in which order to take the sub-areas.

10



Let 5 represent the set of all possible tracks for ny hexacopters through the area.
Each track, s, € 5, is defined as ny sequences where each sequence determine in what
order the hexacopter will visit the sub-areas. Every sub-area will be visited exactly
once by one of the hexacopters,

Sk, N s, = 0 for i # j. (2)

This originates from the limitation that the person is assumed not to be moving.
Traveling directly from any sub-area A; to any other sub-area A; is permitted. If
there is only one hexacopter, ny = 1, every track s is a permutation of the set
{A1,A,,...,A,,, }. Otherwise s; consists of ny sets, each of a length j, where h is the
hexacopter index, h =1, 2, ..., ng. The only constraint on 7, is that the hexacopters
together have to visit all the n4 sub-areas,

ny
Zjh =na . (3)
h=1

A graphical example of a track s; with ny = 100 and nyg = 4 is shown in Figure 5
and has the mathematical representation,

[Ar A A Ay ... A

6 — [ Az Ay Ass Ays ... Age (4)
g [ A Az A A ... Aso ]
[ A2 A3 A4 A5 .. A70 ]

The j:th visited sub-area by hexacopter h along the track sy is defined as si(h,j).

The time, elapsed from the start of the mission, when sub-area A; is visited is
denoted t4,. When following the track s;, the first hexacopter h = 1 will visit its
first area at t5,(11) and 0 < t,,11) < ts,1,2) < - < ts(1,5,)- Since it takes some time
to search through one sub-area, t4, is defined as the time when half the sub-area is
searched.

The expected time E[T] it takes to find the person, when following sy, is

na ng  Jh
E[T]sk - ZPAJAZ- - Z Zpsk(h,j)tsk(h,j) y (5)
i=1 h=1 j=1

where the latter expression sums terms in the order of visited sub-areas per hexa-
copter, instead of the order they where enumerated when dividing the search area.
The optimal track, s* € 3, is defined such that it minimizes E[T’]. This minimum
value is denoted
E*[T] = min E[T], . (6)

sLED
Due to the complexity of this problem it is practically impossible to find s*, but
the aim is to find an s, which gives an E[T,, close to E*[T'] within a reasonable time.

11



Figure 5: A graphical representation of one arbitrary track s, given in Equation 4.
Each line represent the track of one hexacopter and each dot is a sub-area. The line
is not the actual track the hexacopter will follow, it only shows in which order to visit
the sub-areas. In this case j; = 31, j5 = 18, j3 = 24 and j, = 27 which is the number
of points on each line.

12



4 Search Algorithm

The main part that affects how the system performs is how the tracks are optimized.
One wants to find a track that gives an expected search time close to E*[T] within a
reasonable calculation time as described in Section 3.

4.1 Traveling salesman problem

This optimization problem is closely related to a famous problem called the traveling
salesman problem, or TSP. Here one asks for an optimal tour through a specified set
of cities and all cities shall be visited exactly once. The optimal tour is the tour that
minimizes the total distance traveled. In our case, it is instead of interest to minimize
the expected searching time, rather than the total distance. The ordinary TSP has
only one salesman but this system must be able to handle several hexacopters. Apart
from this, the problems are similar and the cities represent the sub-areas in our case.

The TSP is a so called NP-hard, Non-deterministic Polynomial-time hard prob-
lem, which briefly means that it is not possible to find the exact solution within
a polynomial time.[7] This problem is also non-convex and nonlinear. This means
there exists many local minimum where deterministic functions easily get stuck. A
relatively simple way to circumvent this is to use genetic algorithms, which are very
efficient for this kind of problems. Genetic algorithms were developed in the field of
artificial intelligence and mimics the process of natural selection. One usually wants
to know how far the optimal solution is from the achieved solution. Even though s* is
unknown it is in some problems possible to find £*[T| and compare it to the current
result to see if it is close enough. A limitation of the genetic algorithm is that it
cannot determine E*[T]. What is possible though is to execute the algorithm several
times. If it ends up roughly with the same E[T], it should be close to E*[T] and be
a good enough solution.[8]

The genetic algorithm needs a start solution which can be generated with several
techniques. With a good start solution the genetic algorithm finds a good solution
faster, but it may also take more time to find a better start solution, so there is a
trade-off here. One good technique for a start solution is the nearest neighbor method.
Here a starting point is chosen and from there one always moves to the closest not
visited point, its nearest neighbor, until all points are visited. In the beginning one
moves short distances but towards the end when there are few points left they are
usually far separated as can be seen in Figure 6. It has been shown that for many
randomly distributed cities, the nearest neighbor algorithm on average yields a tour
25% longer that the optimum tour.[9]

13



Figure 6: An example of how the NN algorithm calculates the track if the large dot
is the starting point. Note how the early moves are shorter and the latter are longer.

4.2 Start solution - nearest neighbor algorithm

To get a start solution, a variant of the nearest neighbor algorithm is used, where the
next point minimizes the expected search time instead of distance. Two types of this
algorithm is used, which are denoted NN1 and NN2.

4.2.1 NN1

Pseudo code for this method is shown in Algorithm 1.

Algorithm 1 NN1: Create an initial track for every hexacopter

while Ap is not empty do
for all hexacopters do
for n =1,2,3 do
for all A; € A do
calculate E 4 [T]
end for
add area, that minimizes EAZ. [T], to s for current hexacopter
delete A; from Ap
end for
end for
end while

14



Initially Ag is the set of all sub-areas. As the sub-areas are given out to the
hexacopters they are also deleted from this set, so Ag contains the remaining sub-
areas. The outermost while loop runs until Ag is empty. Then all the sub-areas are
distributed among the hexacopters and the track s is complete. The next for loop
iterates over every hexacopter. For each one of them three areas are given out as n
iterates over 1,2 and 3. E 4,[T] is then calculated for all remaining areas, A; € Ag.
The sub-area that minimizes £ 4,7 is added to the track s; for the current hexacopter
and is at the same time deleted from Ag.

E 4 [T) is the expected time to find the person if the search track starts with A;.

Ea[T] = pata, + petr (7)

where p4, is the probability for A; and ¢4, is the time is takes for the hexacopter to
travel the distance to A; and search it through. The distance is from the hexacopter’s
recent, area, or from its initial position if this was its first area. p, is the probability
the person is not in A;,

br = 1 _pAi' (8)

t, is the time it takes to search through the rest of the areas if one assumes no travel
time between the sub-areas. The term p,t,. gives an average value over the total search
area excluding A;. This expected value can be extended to include more than one
sub-area by adding more terms into Equation (7). Sub-areas searched before A; could
be added but this not necessary. This would just add the same constant to Ey,[T]
for every A; and not affect which sub-area that gives the minimum.

After testing with various map sizes and numbers of hexacopters, the best results
where generally achieved when the sub-areas were given out three at a time. This
number can be decreased if there are few sub-areas. If this number is too small, for
example one, the hexacopters would get every other sub-area. Thus it would be a
lot of traveling time between the sub-areas since they would be less connected. If
the number is too large, the first hexacopter would receive many sub-areas with the
highest priority and then work on its own exploring this large area. It would be better
if this area is divided among several hexacopters.

At the end this algorithm usually not adds up even with the sub-areas. The last
ones are instead tested on all hexacopters to determine which of them the sub-areas
should be assigned to. This extra part is not included in the described algorithm 1.

4.2.2 NN2

NN1 does not take into account which hexacopter that is closest to the best sub-
areas, the best ones are given to the first hexacopter. Usually the hexacopters are
started up on the same position so it does not matter which of them is given the

15



first assignment. It will be described later how the mission can be interrupted and
restarted with new priorities. Then the hexacopters will continue from their current
various positions. In this case a slightly different algorithm needs to be used, which
is described in Algorithm 2.

Algorithm 2 NN2: Create an initial track for every hexacopter with different start
positions

while Ag is not empty do
if Hy is empty then
Hp «<— 1:ny
end if
for all hexacopters € Hi do
for all A; € Ar do
calculate F 4 [T]
end for
h <« min (F)
end for
H <« indexOfMin (h)
forn =1,2,3 do
for all A; € A do
calculate E 4 [T]
end for
add area, that minimizes E[T], to s;, for hexacopter H
delete A; from Ag
end for
delete H from Hp
end while

In this algorithm a vector Hg keeps track of the hexacopters that have not been
given orders. The best start sub-area is calculated for every hexacopter in Hpr and
saved in a vector h. After all hexacopters in Hr have been considered, the smallest
value in h determines which hexacopter provides the best E [T]. This one gets three
sub-areas and is at the same time deleted from Hgi. When all hexacopters have been
given three sub-areas, and Hp is empty, Hp is filled again with all the hexacopters.
Thus it works the same as Algorithm 1, except that the best suited hexacopter is
always given orders instead of the next hexacopter in numerical order.
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4.3 Optimization - genetic algorithm

To further optimize the start solution, which is the output from the nearest neighbor
algorithm 1 or 2, a genetic algorithm is used. How the algorithm is performed is
described in Algorithm 3.

Algorithm 3 Genetic algorithm for track optimization

track[l : 80] <« startSolution
globalMin < inf
loop
for all tracks in track do
calculate E[T]
end for
if min(E[T]) < globalMin then
globalMin <« min(E[T])
bestTrack < track with least E[T]
end if
track <« permute(track)
for p=8:8:80 do
bestO f8Track < track[p — 7 : p] with least E|[T]
tmpTrack(l : 8] < bestO f8Track

for k=1:8do
perform genetic mutation k on tmpT'rackl[k]
end for
newTracklp — 7 : p] < tmpTrack
end for
track < newTrack
end loop

In this optimization it is not enough to just calculate E’Ai [T] since the genetic
mutations may effect the whole track so E[T] is used and calculated according to
Equation (5). Every iteration in the loop represents one generation with a population
of 80 individuals, where each individual represents a track.

First in the loop, E[T] is calculated for all tracks. If one of them has a smaller
E[T] than globalMin, the saved best value, this track will be saved as the new best
track. Then all individuals are mixed, permutation of track and the first eight are
chosen, this is now eight randomly picked from the whole population. The best one
of these eight, the one with least E[T], is denoted as bestO f8Track and is kept.
The other seven tracks are thrown away. bestO f8Track mutates into eight new
individuals which are the first individuals in the next generation. Then the next eight
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individuals are picked from track, only the best one is kept and mutated into eight
new individuals. FEight individuals are picked from tracks until all have been used.
Now a new complete generation is created slightly different from the previous one.
Why eight individuals are picked every time and why the population size is 80 is
discussed in Section 7.2.

The more generations that is generated the higher is the chance to receive a good
solution and thus lower E[T]. A typical example of how a solution can evolve is
illustrated in Figure 7 where the solution improves in the beginning and eventually
levels out. When the solution has not improved any more within a certain amount of
generations the algorithm can be stopped and one can assume that the solution will
not improve more even if it continues to execute.

Cost for best solution

Generations

Figure 7: Illustration of how the solution evolves with a genetic algorithm. The cost,
which is desired to be minimized, decreases faster in the beginning and eventually
levels out.

The following eight genetic mutations are performed:
1. Do nothing, keeps bestO f8Track

2. Swap two sub-areas

3. Swap two pairs of sub-areas

4. Invert a vector of sub-areas

5. Slide sub-area up

6. Slide sub-area down
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7. Slide the last sub-area down

8. Swap two vectors of sub-areas between two hexacopters

where mutation 4-7 only occur within the sub-area sequence for one hexacopter, 8
is always between two hexacopters and 2 and 3 can be between any sub-areas. Since
mutation 1 does not change the individual, it always keeps the best track. Mutation
7, slide the last sub-area down, may be considered as already covered by mutation
4, slide sub-area down. The reason why to use an extra mutation for the last sub-
area is that the last sub-areas are usually worse optimized from the nearest neighbor
algorithm.

Some of these mutations are graphically explained in Figure 8. At the top is
mutation 2, where two sub-areas are swapped, and mutation 3, where two pairs are
swapped. In the illustration the swap is between two hexacopters, but it could also
be within the sub-area sequence of the same hexacopter. The two mutations at the
bottom is number 4, invert a vector, and number 6, slide area down. These always
occur within the sub-area sequence of one hexacopter.

Mutation 4 in the list, invert a vector, unties knots in the track which is illustrated
also in Figure 9.[10]

Al 2 | Ais Ais Az
o | Ay
Ay Az As Ai7
1‘111 3 AlR Am Alb
./'1) \ 4"1l9 AQU 1“1]_
A Agg Ag As
Az Az Az A
—_—
Ag Asy Ag Az
Ag Al Aay
Agg Agy Az Azs
4 Apnll G| Az Ap Ao
A Asg Ay Aag
Az Asz Ay Aoy
_.44.1.1_ _AE&_ _/‘1 14 | _AQS_

Figure 8: This figure illustrates four of the genetic mutations applied on the sub-area
sequences for two hexacopters.
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Figure 9: Illustration of how mutation 4, invert a vector, unties knots. In this case
the four sub-areas in the middle are inverted. This results in a shorter track since it
does not cross itself anymore.

4.4 Paths first

Since people tend to stay on the paths, and not walk beside them, it would be a waste
of time to initially search paths as a meander pattern. Therefore some hexacopters will
search along the paths first by following them. For every two paths on the map, one
hexacopter is involved in this search. These tracks for the hexacopters are generated
first since the end coordinates of this search are the start coordinates in the nearest
neighbor algorithm. Paths are given out to the hexacopters with the same principle
as the nearest neighbor algorithm, closest first.

This path search is not considered when calculating F[T] since first, the model for
E[T] is only defined to include sub-areas and second, E[T] is only used to optimize
the sub-area order. However if some hexacopters are doing path search, the first sub-
areas will be given to other hexacopters. Hexacopters doing path search are therefore
given less sub-areas and an example of this is shown in Figure 10.
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Figure 10: Hexacopter 1 and 2 are first searching paths and is therefore given less
sub-areas. The best sub-areas are distributed to hexacopter 3 and 4 in order for those
sub-areas to be searched as early as possible.

4.5 Generate hexacopter tracks

When the whole sequence of sub-areas are set, the enter- and exit corners for each
sub-area can be determined. A hexacopter should enter a sub-area in the corner
closest to its current position and try to exit from corner closest to the next sub-area.
The relation between enter and exit corner for a sub-area determines whether the
search orientation is horizontal or vertical within that sub-area.

The output of the algorithm is tracks consisting of way points, GPS-coordinates,
for the hexacopters to follow. Each hexacopter is given an individual set of way points
which are followed in a certain order. A sub-area consists of 20 way points, i.e. the
corners in the meander pattern in Figure 4. It is 20 since the sub-area square length
is set to 100 length units and the width of the field of view for one hexacopter is set to
10 length units which results in 10 lanes per sub-area. Way points for a path search
is points along the path.
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5 Simulation environment

To be able to test the algorithm a simulation environment had to be developed; it
would not be practically possible to do live testing. However for this project it is not
necessary to test on real hexacopters, this so since the algorithm does not take any
input from the hexacopters and works the same regardless if tested in simulation or
in a real environment.

The simulation environment consists of mainly two parts; one that simulates the
hexacopters and how they fly depending on the output of the algorithm, and one part
that is a graphical interface where the mission parameters are set and where the map
is created with terrain and prioritized areas. After the mission is started, one is able
to follow the search on the map in real time.

5.1 Simulating the hexacopters

The algorithm gives an output of tracks with way points for the hexacopters to follow.
Usually these way points are sent to the real hexacopters and they continuously send
back their positions. This is now instead simulated and runs in its own thread apart
from the rest of the program to achieve a realistic simulation.

This thread receives all the way points after the algorithm is finished. The average
speed of an hexacopter is known so the positions along the tracks can continuously
be estimated during the whole search and sent back to the program.

5.2 Graphical user interface

Initially a picture of the search area is loaded into the graphical user interface. One
has to specify the number of hexacopters that will be used and indicate their start
positions. These positions are used when optimizing the track and they are the
starting points of the simulated hexacopters. The real hexacopters will of course not
consider where these points are placed, they start where they are, but their first order
depends on these points.

The program cannot recognize the terrain itself from the map, thus the user has
to point out all terrain objects such as paths, water, open areas and woods. The
prioritized areas are also defined here, as described in Section 3.1. All these objects,
except from the paths, are represented by closed polygons where the corners are
coordinates on the map. The paths are line objects and instead represented by open
polygons. Every point on the map is evaluated whether it is inside any of these
polygons or along a path line. A point can be both inside a polygon describing the
terrain and a polygon for the priority. As described in Section 3.1, these two parts
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of information are used to create the probability map. I screen shot of the graphical
user interface can be seen in Figure 11.

) \
] Hexacopter search I R 1 ==

boaskog
Load Map Edit Map Create new map
X-size (m) 1500 +| Y-size (m) 1500
Map object done | |Path hd Cancel Save map
Delete object

[ nitial position [~| Map objects  [] Prio objects

# Hexacopters 6 = Start Search Stop Search

Figure 11: A screen shot of the graphical user interface. With the buttons to the left
one is able to define the terrain and prioritized areas on the map to the right.

5.3 Change conditions during mission

It is possible to stop the search during a mission to change the terrain or priorities.
The reason why one would need to do this was discussed in Section 1.6, e.g. a trace,
like a glove, has been found and one want to concentrate the search to that region.
When the mission is stopped the hexacopters will complete their current order and
then wait until the user have restarted the mission.

The hexacopters receive way points in sets of 20 which corresponds to one sub-
area. When one such set of way points has been searched, the hexacopter reports
back that the sub-area is clear. The indices of all finished sub-areas are saved and
when new tracks are calculated those sub-areas are not included in the algorithm.
One can view this as they are deleted from Ag in Algorithms 1 and 2 already when
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the calculation starts. The output is shorter tracks without the already searched
sub-areas.

In this case is it important to use the second algorithm for the nearest neighbor
method, Algorithm 2, since the hexacopters are located on different positions over
the map when the search is restarted.
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6 Results

In some optimization problems, where the optimum solution is unknown, the optimal
value can be estimated and compared to the achieved value in order determine how
good the solution is. But in these kind of problems it is not possible to estimate the
optimum value E*[T'], though some other values can be used to evaluate the solutions.
One interesting case is if all areas were searched in an order so no traveling distances
are needed and the priorities are not considered. This could be considered as taking
an average over the whole search area, as done when calculating E4 [T] in Equation
(7), but with A; empty. This value is denoted Ey[T] and is calculated

By =~ ©

2 TLH7

where N is the total number of sub-areas, t. is the time needed to search through
one sub-area and ngy is the number of hexacopters used in the search mission. Nt. is
the time required to search all the sub-areas and the expected search time is given by
dividing by 2, this so since the person is on average found when half the search area is
scanned. Division by the number of hexacopters assumes all hexacopters search over
equally large areas. This is equivalent to only consider the last term in Equation (7)
with all sub-areas included in this term.

During the distribution of sub-areas with the nearest neighbor algorithm, F [T] is
calculated and should decrease as more sub-areas are given out. If A;, A and Aj are
given out, the search time is

EAI,AQ,AS [T) = pata, +pa,ta, +pasta, + prts . (10)

The optimum value £*[T'] is a lower bound but unknown and cannot be calculated.
It can be approximated with a lower value denoted E* [T]. In this approximation it is
assumed the sub-areas are searched in the order of decreasing p; and with no traveling
time. With ny hexacopters, the ny sub-areas with highest priority are searched at
t./2, the next ny sub-areas at 3t./2 and so on. Equation (5) is then used to calculate
E* [T]. This lower bound is not possible to reach since the sub-areas are usually
not placed in such a way that they can be searched in the right order without any
traveling.

For the results presented in this section the algorithm is executed on two test maps,
A and B, shown in Figure 12. In Figure 13 and 14 are the results from test map A,
with ny = 3 and ny = 6, presented respectively and in Figure 15 and 16 are the
results from test map B. The figures shows how E[T], calculated from Equation (10),
decreases with the nearest neighbor algorithm as more sub-areas are divided among
the hexacopters. The final value for the nearest neighbor algorithm is the initial value
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for the genetic algorithm which optimizes E[T] further for 1000 generations and is
also presented in the same figures.

The values of Eo[T] and E*[T] for each of these four cases are presented in Table
2 and included in Figures 13, 14, 15 and 16. In Table 3 is E* [T] compared to the
achieved values for E[T].

Figure 12: Two created test maps A and B used to evaluate the algorithm. The
dark parts are high prioritized areas and the red parts are low prioritized areas.
Paths are represented by black lines and the blue parts are water. Both maps are
1500 x 1500 length units.

6.1 Cooperation

It is also important to investigate how the search time scales with the number of
hexacopters. The algorithm is executed on both test maps with 1000 generations for
ng =1,2,3, ..., 12. The test was performed 10 times for every ny and the average
results are presented in Table 4 and in Figure 17 for test map A and in Figure 18 for
B together with theoretical values. The theoretical values are estimated by starting
with the optimized value for ny = 1, and then dividing by the number of hexacopters,
EpylT] = Buys[T] /.

ny
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Table 2: The values for Eo[T] and E*[T] on test map A and B with ny = 3 and
nyg = 6. These values are included, as red dashed lines, in Figures 13, 14, 15 and 16.

Tesatmap A Tesatmap B
Ey[T] E*[T] | Eo[T) E*[T]
3| 3750 574 | 3750 @ 885
=6 | 1875 278 | 1875 438

ng
H

Table 3: Values for E* [T] from Table 2 compared to achieved values presented in
Figures 13, 14, 15 and 16.

Map/ny | E*[T] | E[T] | Deviation
A/3 | 574 | 626 9%
A/6 | 278 | 303 9%
B/3 | 85 | 955 8%
B/6 | 438 | 486 11%

Table 4: Search time E[T| depending on the number of hexacopters ny for test map
A in the table to the left and for test map B in the table to the right. These values
are plotted and compared with estimated theoretical values in Figures 17 and 18.

ng_ E[T] (s) ng_ B[T] (s)
1 1820 I 2865
2 954 2 1394
3 647 3 99
4 505 4 775
5 431 5 657
6 379 6 579
7 354 7 535
8 335 8 497
9 321 9 479
10 311 10 466
11 308 11 453
12 305 12 444
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Figure 13: Results for 3 hexacopters on test map A. The left figure shows how E (T]
decreases with the nearest neighbor algorithm as the sub-areas are divided among
the hexacopters. The top red dashed line is £ [T] and the bottom red dashed line is
E* [T], also presented in Table 2. The final value in the left figure is the initial value
in the right figure which shows how the genetic algorithm optimizes further for 1000
generations of track mutations.
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Figure 14: Results for 6 hexacopters on test map A with the nearest neighbor algo-
rithm to the left and the genetic algorithm to the right.
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Figure 15: Results for 3 hexacopters on test map B with the nearest neighbor algo-
rithm to the left and the genetic algorithm to the right.
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Figure 16: Results for 6 hexacopters on test map B with the nearest neighbor algo-
rithm to the left and the genetic algorithm to the right.
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Figure 17: Search time E[T] on test map A depending on the number of hexacopters
ny as blue dots compared to theoretical values, the red line.
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Figure 18: Search time E[T] on test map B depending on the number of hexacopters
ny as blue dots compared to theoretical values, the red line.
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7 Discussion

What is desired is a low expectation value of the search time, but one question is if
E[T] indeed reflects the expected search time. Mathematically it is correct from the
model that was set up with probabilities for every sub-area. But the probabilities
are just rough estimations and may be far away from the truth. In some cases the
probabilities represent how prioritized that sub-area is rather than the probability to
actually find someone there, as in the case for water edges - the probability is very low
that a person is found here but one wants to secure these areas. Since the probabilities
also represent where it is desired to search, more of a weighted expectation value of
the search time is achieved.

Since the estimations are so rough, the best solution to the model might not be the
best way to search through the map. Therefore it is unnecessary to find the optimum
solution since the inputs to the problem have so large uncertainty. A slightly worse
solution can be just as good in practice, and it is therefore not worth to put in a lot
of effort to find a perfect solution.

7.1 Nearest neighbor algorithm

As discussed earlier, it has been shown that the nearest neighbor algorithm on average
yields a tour 25% longer that the optimum tour and that the loss is usually towards
the end of the track. This loss might not be so critical for two reasons; To begin with,
the most probable sub-areas are searched first so it is more likely that the person is
found at an early stage during the mission. Even though the later part of the track is
worse optimized, there is a big chance that the person is already fonud and then this
part of the solution is not considered. Moreover, the hexacopters just need to know
their next sub-area, not the full track. Therefore the genetic algorithm can optimze
during the search and has more time to optimize the end of the track to compensate
for the nearest neighbor algorithm.

An interesting phenomena occurs in the left part of Figure 14 where E [T] first
drops and then then increases again after around 25 shared out sub-areas. The reason
why this can happened is because Equation (10), used to calculate E[T], assumes no
traveling time between the sub-areas that have not yet been assigned. Since the
hexacopters need to visit all sub-areas one cannot stop the algorithm here, all sub-
areas have to be divided among the hexacopters and when traveling time is added for
those sub-areas E[T] may increase.

It is necessary to use both NN1 and NN2. NNI was tested to be about 50%
faster but NN2 gives much better results when the hexacopters are not started on
the same position, which is the case when restarting the search. Even though the
genetic algorithm could execute for a longer time if only NN1 was used, it would not
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compensate the results from NN2.

The nearest neighbor algorithms was speeded up even more by considering only
the sub-areas with the highest priorities, i.e, to not include all sub-areas into Ar in
Algorithm 1 but the z sub-areas with highest probability. If x is half of the total
number of sub-areas the speed of the nearest neighbor algorithm is improved by 25%.
By only considering probabilities and not the position when choosing these z sub-
areas, it might lead to an hexacopter only sorrounded by low priority sub-areas and
none of them included in Agr. The hexacopter is then given sub-areas further away
even though closer sub-areas whould be better to search. This special case was found
very rare so the possible improvment of calculation speed is definitley more important.

7.2 Genetic algorithm

Eight different mutations of the tracks are used since these were the useful number
of mutations for this problem. More variants could be used but it would waste cal-
culation capacity. The size of the population is optimized to achieve as good results
as possible within the shortest time. If the population is too large, every generation
needs too much calculation capacity and the solution cannot be optimized for many
generations. Since the probability of a positive mutation is much smaller than a neg-
ative mutation, many individuals is needed to improve the chance of having some
positive mutations in every generation.

In Figures 13, 14, 15 and 16, one can see how the genetic algorithm does not
improve the solution that much after the nearest neighbor algorithm. For example in
Figure 13, the nearest neighbor algorithm optimizes from 3700 to 633 and the genetic
algorithm continues from there, 633, and optimizes down to only 627. This is due to
that the solution is already very good. When there is large a difference in priority
values, the sub-areas are more likely to be chosen in an order depending on the priority
rather than position to achieve shorter search time. It is easier to order sub-areas
in decreasing priority than to achieve the shortest possible track. This is since the
priorities are constant during the search while the distances to every sub-area are
changing when the hexacopters are moving. Since the priorities have more impact on
the search time and this is easier to optimize, the nearest neighbor algorithm delivers
a very good solution.

The genetic algorithm optimization is then used to better order the sub-areas
within the same priority range to achieve a shorter traveling distance. But the trav-
eling distances between the sub-areas are short compared to the distance to search
inside a sub-area. These sub-areas are searched by 10 lanes which means that a hexa-
copter can travel past more than 10 sub-areas in the same time as searching through
one. The time spent on traveling compared to active searching is very small, so op-
timizing the distance have small impact on the search time. Therefore it will look as
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the genetic algorithm does not optimize as much as the nearest neighbor algorithm. If
all priority values instead were within a smaller range, then a short traveling distance
would have more impact on the search time and the genetic algorithm could optimize
more for this than the nearest neighbor algorithm would.

One can see in Table 3 how the search time for the found solution is within 11%
from the approximation of the optimium solution for all test cases. This has to be
considered as very good, especially when the approximation E*[T] is lower than the
actuall optimum value E*[T].

7.3 Cooperation

For perfect cooperation, E[T] should be inversely proportional to ng, i.e. if the
number of hexacopters are doubled the area should ideally be searched twice as fast.
In Figures 17 and 18, one can see that the results deviates more from the ideal value
when more hexacopters are used. This is expected since it is more complex to organize
several hexacopters and they have to travel longer to move past sub-areas assigned to
other hexacopters. The theoretical curve in the figures is estimated from the search
time for one hexacopter, which then has a high impact on the curve.

7.4 Not considered parameters

One parameter not known during this project is the vision of sight for the hexacopters.
That parameter determines the width of the lanes in the sub-area search which then
determines the number of lanes in every sub-area. As discussed earlier, the size of a
sub-area is important for the achieved results but no optimization of this has been
done during the project. For doing this the lane width, number of hexacopters and
total size of the search area have to be considered. In this project the side length
of a sub-area was set to 100 length units and the width of the field of view for one
hexacopter was set to 10 length units which results in 10 lanes per sub-area.

One very important aspect that is not taken into account in this project is the bat-
tery charging. Small electrical hexacopters might have a flight time below 15 minutes,
which would not cover many sub-areas. When considering charging, more traveling
is needed since the hexacopters have to go back and forth to the charging station.
With this addition, the optimization problem complexity would be increased and the
start solution would be further away from the optimum solution. But as discussed
above, the genetic algorithm is good to enhance the track in the sense of traveling
distance. When more traveling is included, the genetic algorithm could probably be
able to optimize more than it can do for the moment.
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8 Conclusions

The nearest neighbor algorithm appears to produce very good solutions, causing the
genetic algorithm to be a bit redundant. The algorithm also showed good performance
for cooperation with several hexacopters. What is missing here though is the battery
charging which probably would change the results and the genetic algorithm could be
of much more importance.

9 Future work

For future work on this project, a maximum flight time can be introduced in order
to force the hexacopters to fly back and charge. This will probably also include some
rework on the algorithm to still achieve good results.

A simplification is that every place is only searched once, if nothing is found it is
assumed that nothing will be there later either. An idea could be that the probability
of a sub-area is zero right after it has been searched. Then, as time goes on, the
probability increases, proportionally fast to its initial value. Eventually this sub-area
will have high enough probability to be searched again.

A maximum distance between the hexacopters could be introduced in order to
sustain communication between them. This condition will have large impact on the
model and it may be hard to even find a solution at all.

As mentioned in the beginning, there are people that are absent by free will and
do not want to be found. To find these people the search strategy has to be adjusted
by changing the priorities on the map.
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