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Abstract

This paper studies the possibility of upper bounding the position error for range-based positioning algorithms

in wireless sensor networks. In this study, we argue that in certain situations when the measured distances

between sensor nodes have positive errors, e.g., in non-line-of-sight (NLOS) conditions, the target node

is confined to a closed bounded convex set (a feasible set) which can be derived from the measurements.

Then, we formulate two classes of geometric upper bounds with respect to the feasible set. If an estimate

is available, either feasible or infeasible, the position error can be upper bounded as the maximum distance

between the estimate and any point in the feasible set (the first bound). Alternatively, if an estimate given

by a positioning algorithm is always feasible, the maximum length of the feasible set is an upper bound

on position error (the second bound). These bounds are formulated as nonconvex optimization problems.

To progress, we relax the nonconvex problems and obtain convex problems, which can be efficiently solved.

Simulation results show that the proposed bounds are reasonably tight in many situations, especially for

NLOS conditions.

Keywords: Wireless sensor networks, positioning problem, projection onto convex set, convex feasibility

problem, semidefinite relaxation, quadratic programming, position error, worst-case position error,

non-line-of-sight.

1. Introduction

Recent advances in technology have instigated the use of tiny devices as sensors in large distributed

wireless sensor networks (WSNs). A sensor device is capable to sense its environment for monitoring,

controlling, or tracking purposes for both civil and military applications [1]. Due to drawbacks in using GPS

for WSNs, extracting the position information from the network, also called localization, has been extensively5
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studied in the literature [2, 1, 3, 4, 5, 6]. It is commonly assumed that there are a number of fixed reference

sensors, also called anchors, whose positions are a priori known, e.g., by using GPS receivers [7]. To find

the position of other sensor nodes at unknown positions, henceforth called target nodes, it is assumed that

there are some types of measurements, e.g., time-of-arrival, angle-of-arrival, or received signal strength, taken

between sensor nodes [1].10

During the last decades, various positioning algorithms have been proposed in the literature. Different

positioning approaches can be categorized based on various factors [8]. For instance, as long as an accurate

model of measurements and the statistics of the measurement errors are known, classic estimators, e.g., the

maximum likelihood (ML) and the least squares (LS) approaches, can be employed successfully to solve the

positioning problem. When the distribution of the measurement errors is unknown or the computational15

complexity of classic estimators is too high, a number of simple techniques can be applied to the problem.

For example, suboptimal algorithms such as semidefinite programming (SDP) [9] or closed-form linear least

squares (LLS) [10, 11] have been successfully applied to the positioning problem. In one class of suboptimal

algorithms based on a geometric interpretation, the authors of [12, 13] formulated the positioning problem

as a convex feasibility problem (CFP) and applied the well-known orthogonal projection onto convex sets20

(POCS) approach to solve the problem. This method turns out to be robust against non-line-of-sight (NLOS)

conditions [14]. POCS was previously studied for the CFP and has found applications in several research

fields [15, 16].

Positioning algorithms can be evaluated based on different performance metrics such as complexity,

accuracy, and coverage [8]. In the literature one way to assess the positioning algorithms is to evaluate25

the position error, defined as the Euclidian norm of the difference between the position estimate and the

true position. There are a number of techniques to evaluate the performance of an algorithm based on the

position error. For instance, a lower bound on the mean square position error is a common metric [17, 18].

There exist a number of such lower bounds for the positioning algorithms in the literature. For example the

Cramér-Rao lower bound (CRLB), which gives a lower bound on the variance of any unbiased estimator, can30

be computed if the probability density function (PDF) of the measurement error is known and satisfies some

regularity conditions [19]. Generally, different benchmarks in the literature are used to statistically assess a

positioning algorithm, which implies that the error in a single position estimate cannot be characterized in

a deterministic fashion.

Besides a lower bound on the position error, in some applications it may be useful to know the worst-case35

behavior of the position error. Such knowledge may be useful not only for evaluation of different services

provided by WSNs but also for design and resource management [1, 20]. Similarly in evaluation of the
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worst-case position error, we may be interested in assessing a single point estimate. As an example consider

Fig. 1, which shows how a nontrivial (i.e., finite) upper bound on position error can be used by a traffic

safety application to decrease collisions between vehicles. If an estimate of a vehicle and a nontrivial upper40

bound on the position error are available, we can define an area in which the vehicle is certainly located,

e.g., a disc centered at the position estimate and with a radius equal to the upper bound on the position

error. Such an estimate can be obtained in every vehicle, for instance, by measuring the distance between

the vehicle and a number of fixed nodes (at known positions) along the road. The estimate of cars’ positions

and upper bounds on the position errors can be exchanged between vehicles. By this approach, we may be45

able to decrease the number of collisions between vehicles. In general, computing the position error might be

difficult since the true position is unknown, but one may be able to derive an upper bound on the position

error. To the best of our knowledge, there is no specific work in the literature on deriving upper bounds on

the position error. In this study, we aim at tackling this subject in a geometric framework.

In general, the concept of an upper bound on the position error (or any estimation error) seems to be50

questionable. In fact, it is not clear if it is meaningful to study upper bounds, since the position error can, in

general, be arbitrarily large. In this study, however, we argue that in some practical situations, the position

error is finite and can be upper bounded. For instance, if a target node position belongs to a closed bounded

set (a feasible set), an upper bound on the position error can be computed from the feasible set. For example,

for distance-based positioning, if measurement errors are assumed to be positive, a convex set including the55

target node can be defined from measurements. The feasible set, in which the target node is located, is

the intersection of a number of balls (in a 3-dimensional network) or discs (in a 2-dimensional network)

centered at the position of reference nodes [21]. The assumption of positive measurement errors is fulfilled

in some scenarios. For instance, in NLOS conditions, the measured distances are often much larger than

the actual distances. For practical ranging using UWB, it has been observed that the measurement errors60

tend to be positive, even for line-of-sight (LOS) scenarios [22]. It should be noted that the measurement

error, in general, can be negative as well, meaning the intersection no longer contains the location of the

target node and the bounding technique may not work properly. In such scenarios, one can, e.g., modify the

measurements and obtain a new set of distance measurements that are larger than the actual distances. For

example, if a reasonable lower bound on negative measurement errors is available, then we can enlarge the65

measurements with the absolute value of the lower bound and obtain a set of measurements with positive

errors. Now, assuming a closed bounded (compact) convex set derived from distance measurements having

positive errors, a position estimate given by an algorithm can be either feasible or infeasible with respect to

the feasible set. If an estimate is available (feasible or infeasible), it is reasonable to define the maximum
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distance from the estimate to any point in the feasible region as an upper bound on position error. This70

idea yields an upper bound on the position error as the solution of a nonconvex optimization problem.

Alternatively, a number of positioning algorithms, e.g., POCS, give one feasible point as an estimate. For

this type of estimators, we can upper bound the position error as the maximum length1 of the feasible set.

To find the maximum length of the feasible region, we consider an outer-approximation of the feasible set and

find the minimum Euclidean ball or the minimum ℓ∞ ball (minimum bounding box) covering the set. We75

further relax the nonconvex optimization problem and derive a convex optimization problem. Obviously, if a

feasible point is available, the first upper bound, i.e., the maximum distance from the estimate to any point

in the feasible region, gives a tighter upper bound compared to the second bound, i.e., the maximum length

of the feasible region. Note that the technique introduced in this paper can be applied to every estimation

problem when the unknown parameter vector belongs to a compact, finite-volume, convex set.80

In summary, the main contributions of this study are:

• introducing the concept of an instantaneous upper bound for a single point position estimate when the

distance measurements have positive errors, e.g., in NLOS conditions;

• proposing an upper bound on the position error based on a convex relaxation technique when an

estimate of the target position is available (feasible or infeasible);85

• proposing three upper bounds for an estimator always giving a feasible point as an estimate (e.g., the

POCS estimate) based on the idea of the maximum length of the feasible set or a relaxed feasible set

including the target node.

The remainder of the paper is organized as follows. Some preliminary requirements are studied in

Section 2. Section 3 explains the signal model considered in this paper. In Section 4, a geometric positioning90

algorithm is briefly studied, which serves as a basis for obtaining an upper bound. Two types of upper

bounds are derived in Section 5. Simulation results are discussed in Section 6. Finally, Section 7 makes come

concluding remarks.

1By the maximum length of a set, we mean the maximum ℓ2 norm of the difference between two points (not necessarily a

unique pair of points) in the set.
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2. preliminaries

2.1. Notation95

The following notations are used in this study. Lowercase and bold lowercase letters denote scalar values

and vectors, respectively. Matrices are written using bold uppercase letters. By 0n×n we denote the n by n

zero matrix, and we use 0n as the n-vector of n zeros. 1n and In denote the vector of n ones and the n by n

identity matrix, respectively. The operator tr(·) is used to denote the trace of a square matrix. The ℓp norm

is denoted by ‖ · ‖p. Given two matrices A and B, A ≻ (�)B means that A−B is positive (semi)definite.100

S
n, Rn, and R

n
+ denote the set of all n× n symmetric matrices, the set of all n× 1 vectors with real values,

and the set of all n× 1 vectors with nonnegative real values, respectively.

2.2. Quadratically constrained quadratic programming

Let us consider a quadratically constrained quadratic program (QCQP) as

maximize
x∈Rn

xTA0x+ 2bT0 x+ c0

subject to xTAix+ 2bTi x+ ci ≤ 0, i = 1, . . . , N (1)

for Ai ∈ S
n, bi ∈ R

n, and ci ∈ R. For nonconvex QCQP in (1), we can employ a relaxation technique and

obtain a semidefinite programming problem (SDP) as

maximize
x∈Rn, Z∈Sn

tr(A0Z) + 2bT0 x+ c0

subject to tr(AiZ) + 2bTi x+ ci ≤ 0, i = 1, . . . , N






Z x

xT 1






� 0. (2)

For details of the relaxation technique, see, e.g., [23, 24]. To refer to the QCQP formulated in (1) throughout

this paper, we use QP{Ai, bi, ci}Ni=0. Similarly, to refer to the SDP relaxation (2) of the QCQP in (1), we

use SDP{Ai, bi, ci}Ni=0. For the optimal values of the objective function of the QCQP and the corresponding

SDP relaxation in (1) and in (2), we use vqp{Ai, bi, ci}Ni=0 and vsdp{Ai, bi, ci}Ni=0, respectively. By adopting

the relaxation in (2), we expand the feasible set, therefore, the objective function in (2) is maximized over

a larger set than in (1), thus

vqp{Ai, bi, ci}
N
i=0 ≤ vsdp{Ai, bi, ci}

N
i=0. (3)

That is, the optimal value in (2) gives an upper bound on the optimal value in (1). Further steps can be

taken to improve the accuracy of the solution, e.g., based on a rank-1 approximation [23] or linearization105

technique [25].
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2.3. Bounds on estimation errors given a realization of the measurement vector

Consider an unknown parameter vector x ∈ R
n. Regardless if we model x as random or unknown

deterministic, we can define the set of the possible values of x as

X , {possible values of x} ⊆ R
n

Suppose m is the observed realization of the (random) measurement vector M. Given the event M = m,

the set of possible values of x changes to

X (m) , {possible values of x : M = m} ⊆ X .

The estimate of x, denoted by x̂(m,f) ∈ R
n, is a function of the observed data m and some algorithm

tuning parameters, e.g., initialization, step size, termination criterion, etc., which are collected in the vector

f . The f -vector is chosen, possibly randomly, from the set F . In other words, f ∈ F completely determines

how the estimator maps the observed data m to the estimate x̂, and the set F defines a class of estimators.

We can now define the set of possible values of x̂(m,f ) when f can take on any value in F as

X̂ (m) , {x̂(m,f) : f ∈ F} ⊂ R
n.

We can define three upper bounds on the ℓ2 norm of estimation error e , ‖x̂(m,f)− x‖2 as

e ≤ u1(x̂(m,f)) , sup
x∈X (m)

‖x̂(m,f)− x‖2, (4)

e ≤ u2(x) , sup
x̂∈X̂ (m)

‖x̂− x‖2, (5)

e ≤ u3 , sup
x∈X (m), x̂∈X̂ (m)

‖x̂− x‖2. (6)

We note that all bounds depends on m, which, for simplicity, is neglected in the notation. Moreover, it is

easy to see that u1(x̂(m,f)) ≤ u3 and u2(x) ≤ u3. Fig. 2 graphically shows the different upper bounds.

Remark 1. The bound u1(x̂(m,f )) is an upper bound of the norm of the estimation error for a certain110

estimate (f and m are fixed). Hence, if u1(x̂(m,f)) can be computed together with the estimate, this would

greatly increase the value of the estimate, since we can now guarantee that the norm of the estimation error

in x̂(m,f) does not exceed u1(x̂(m,f)).

Remark 2. The bound u3 could potentially be computed together with the estimate and is therefore of value

in a practical situation. However, u3 will only be interesting if it is easier to compute than u1(x̂(m,f)),115

since u1(x̂(m,f)) ≤ u3.
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Remark 3. the bound u2(x) can be interpreted as the error of the worst estimate that is computed from the

observed data m by the class of estimators defined by F . This is useful to judge the worst case performance

of a class of estimators. However, since the bound is a function of x (the unknown parameter), it cannot be

computed together with an estimate, and its practical value is therefore limited.120

We can also formulate lower bounds by replacing sup with inf in Eqs. (4)– (6),

e ≥ ℓ1(x̂(m,f)) , inf
x∈X (m)

‖x̂(m,f)− x‖2, (7)

e ≥ ℓ2(x) , inf
x̂∈X̂ (m)

‖x̂− x‖2, (8)

e ≥ ℓ3 , inf
x∈X (m), x̂∈X̂ (m)

‖x̂− x‖2. (9)

In general, there are no guarantees that any of the bounds in Eqs. (4)–(9) are nontrivial, i.e., that the

upper bounds are finite and the lower bounds are greater than zero. For example, if the set X (m) or X̂ (m)

is unbounded, it is clear that the upper bound (4) or (6) is trivial. However, as we will see in the remainder

of this paper, there are indeed practical situations when the bounds are nontrivial.

3. System Model125

Let us consider an n-dimensional network, n = 2 or 3, with N reference nodes at known positions

ai = [ai,1 · · · ai,n]
T ∈ R

n, i = 1, ..., N . Suppose that a target node is placed at an unknown position

x = [x1 · · · xn]
T ∈ R

n. The range measurement between the target node and reference node i is given by

d̂i = di(x,ai) + ǫi, i = 1, . . . , N, (10)

where di(x,ai) is the actual Euclidian distance between the target node and reference node i, i.e., di(x,ai) =

‖ai − x‖2, and ǫi is the measurement error.

In the literature the measurement error is commonly modeled as a zero mean Gaussian random vari-

able [1, 26? ]. In some scenarios, however, other distributions seem to be more reasonable. For instance,

in NLOS conditions the measured distances are larger than the actual distances with high probability. A130

number of distributions have been considered to model NLOS conditions, e.g., an exponential distribution

or a uniform distribution [27]. The Gaussian distribution with large positive mean has also been considered

to model the NLOS condition [27, 28]. We may also model the NLOS measurements using two different

distributions, namely, a Gaussian distribution for thermal noise and a particular distribution, e.g., exponen-

tial, for NLOS part. In this paper for the purpose of deriving an upper bound, we assume that the distance135

measurements have positive errors, meaning that the measurement errors are nonnegative. The positive
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measurement assumption can be fulfilled, e.g., in NLOS conditions (with high probability). In recent prac-

tical measurements using UWB, it has been observed that the measurement noise tends to be positive [22].

In fact, time-of-arrival-based ranging typically involves setting a threshold such that false alarms (negative

errors due to noise peaks) are negligible. That way negative ranging errors can be considered to occur very140

rarely, if at all. For details of such behavior of measurement errors, please see [22].

The positioning problem, then, is to find the position of the target node based on the positions of N

reference nodes and measurements made in (10).

4. Positioning algorithms

In this section, we consider three well-known positioning algorithms, namely, SDP, LLS, and POCS,145

formulated in the literature. Note that there are a huge number of algorithms and we have selected these

three algorithms for the following reasons:

1-SDP gives a good estimate in many scenarios; 2-LLS has a closed form solution and also gives good

estimates in some scenarios; 3-POCS is a simple algorithm that gives a good coarse estimate. POCS is also

robust to large positive distance errors and is therefore suitable for NLOS scenarios. The idea behind the150

POCS is also employed to formulate upper bounds on the position error for estimates computed by POCS

or other approaches. In this section, we briefly review the POCS and for details of SDP and LLS, we refer

the reader to [9, 10]. Note that in this study, the main goal is to obtain a technique to find an upper bound

on the position error. To evaluate the technique, we will consider a number of techniques. For example for

NLOS, one may use approaches investigated in, e.g., [29, 30, 31, 32, 33] to evaluate the bound. In this study,155

we consider the same algorithms for both LOS and NLOS, perhaps not optimal, to assess the proposed upper

bound using these algorithms. Similar results can be obtained for other bounds.

To formulate the POCS, let us consider a least squares minimization to find an estimate of the target

position as follows:

x̂ = arg min
x∈Rn

N
∑

i=1

(

d̂i − di(x,ai)
)2

. (11)

In the absence of measurement errors, i.e., d̂i = di(x,ai), it is clear that the target node, at unknown

position x, can be found in the intersection of a number of spheres with radii di(x,ai) and centers ai. For

nonnegative measurement errors, we relax spheres to balls and deduce that the target node position definitely

lies inside the intersection of a number of balls. Let us define the (closed bounded) ball Bi centered at ai as

Bi ,
{

x ∈ R
n : ‖x− ai‖2 ≤ d̂i

}

, i = 1, . . . , N. (12)
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It is then reasonable to define an estimate of x as a point in the intersection B (a closed bounded set) of the

balls Bi (a feasible point) as

x̂ ∈ B ,
N
⋂

i=1

Bi. (13)

Therefore, the positioning problem can be rendered to the following convex feasibility problem (CFP):

minimize
x∈Rn

0

subject to ‖x− ai‖ ≤ d̂i, i = 1, . . . , N. (14)

To solve (14), we note that CFP can be reformulated by minimizing the following convex function

f(x) , max{dist(x,B1), . . . , dist(x,BN )}, (15)

with dist(x,Bi) denoting the minimum distance between x and any point in set Bi. We note that f(x) ≥ 0

with equality if and only if x is in all balls B1,B2, . . . ,BN .

Using negative subgradient updating method [34, 15], we can obtain a solution to (15) by

xk+1 = xk − αkg
k, k = 0, 1, . . . , (16)

where xk is the kth iterate, αk is the kth step size, and gk is a subgradient2. A subgradient gk of f at xk

can be computed as

gk =















0, if f(xk) = 0,

xk−PBj
(xk)

‖xk−PBj
(xk)‖2

, if f(xk) 6= 0, j = argmax
i

dist(xk,Bi),

(17)

where PBj
(xk) is the orthogonal projection of xk onto the set Bj. By choosing the step size as αk =

f(xk)/‖gk‖22= ‖xk − PBj
(xk)‖2/‖g

k‖22 = ‖xk − PBj
(xk)‖2 in (16), according to Polyak approach [15], we

derive the following approach, called alternating projections [35] or POCS, for updating

xk+1= xk − αkg
k

= xk − ‖xk − PBj
(xk)‖2

xk − PBj
(xk)

‖xk − PBj
(xk)‖2

,

= xk − (xk − PBj
(xk)) = PBj

(xk). (18)

where index j is the one used in (17).160

2Let D be a nonempty set in R
n. A vector g ∈ R

n is a subgradient of a function f : D → R at x ∈ D if f(y) ≥ f(x)+g
T (y−x)

for all y ∈ D [15].
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As mentioned before, POCS gives an estimate that is feasible (if the intersection B is nonempty). In

each step, POCS projects the current point xk onto the farthest convex set. For example, Fig. 3 shows a

2-dimensional network in which the measured distances in reference nodes have positive errors. The POCS’

estimate in this figure converges to a point in the intersection of three discs after two iterations. For more

details on variations of the POCS algorithm and the application of POCS for the positioning problem, we165

refer the reader to [15] and [36, 12, 14], respectively.

Remark 4. As mentioned earlier, for negative measurement errors the intersection B defined in (13) does

not contain the location of the target node, even for nonempty intersection. For such a scenario, we may

need more information about the noise statistics. One simple approach can be considered as follows. Let

the measurement error in (10) be bounded from below, i.e., −ρi ≤ ǫi ρi,∈ R+. It means that the measured

distances can be bounded as [37]

di(x,ai)− ρi ≤ d̂i. (19)

We now modify measurements as

d̃i = d̂i + ρi ≥ di(x,ai), (20)

where we assume that the values of ρi1 are known in advance. It is observed that the new measurements, i.e.,

d̃i, have positive errors. Let us form a new intersection B′ as

B′ =

N
⋂

i=1

B′
i, (21)

where B′
i , {x : ‖x− ai‖2 ≤ d̃i}.

We can deduce that the non-empty feasible set B′ definitely contains the target node position. It is clear

that the intersection B′
i might be large, resulting in loose upper bounds. Note that if the measurement errors

are not bounded from below, we are able to use a similar technique to end up an intersection that contains the170

target node location with some probability. For example, for the Gaussian noise we can consider a bounded

interval in which noise samples reside with high probability. For instance for zero-mean Gaussian noise, if

we define ρi = 3σ, noise samples belong to the set {α ∈ R : −3σ ≤ α ≤ 3σ} with probability p = 0.9973.

Future investigations are needed to find approaches for efficiently dealing with the measurements when errors

can be both positive and negative.175

5. Geometric upper bounds

In this study, taking the assumption of positive measurement errors into account and considering the

discussion in Section 2.3, we derive two different upper bounds. The first bound is derived based on the
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availability of an estimate. If such an estimate is available (feasible or infeasible), we can bound it by finding

the maximum distance between the estimate and any point in the feasible set. The second bound is derived

without the need for an estimate, as the maximum length of the intersection set. Let us recall the definition

of the position error

e , ‖x̂− x‖2, (22)

where x̂ is an estimate of the target node position given by a positioning algorithm. In a practical scenario

it is not possible to compute the exact position error in (22) since the position of a target node is unknown.

However, according to the discussion in Section 2.3, we can bound the position error, for a specific value of

x̂, as

e ≤ vmax,1 , max
x∈B

‖x̂− x‖2, (23)

where B defines a set (closed bounded) in which the target node x belongs. In fact, definition (23) is a

special case of the upper bound defined in (4) in Section 2.3 when X (m) = B.

Alternatively, if an algorithm always produces one point in the feasible set B as an estimate, we are still

able to define an upper bound on the position error, even without having access to an estimate, by setting

X (m) = X̂ (m) = B in (6),

e ≤ vmax,3 , max
x,y∈B

‖x− y‖2. (24)

5.1. A bound for the case an estimate exists

As mentioned in previous section, we can upper bound the position error due to an estimate x̂ (either

feasible or infeasible), by solving the optimization problem (23). For example, let us consider Fig. 4 where an

estimate x̂ of the target node position inside the intersection of three discs is available. The position error

and an upper bound on the position error are shown in this figure. Instead of directly solving the problem

in (23), we consider a QCQP problem QP{Ai, bi, ci}
N
i=0, where

Ai = In, bi =















−x̂, if i = 0,

−ai, otherwise,

ci =















‖x̂‖2, if i = 0,

‖ai‖
2 − d̂2i , otherwise.

(25)

Obviously, vqp{Ai, bi, ci}Ni=0 = v2max,1. The optimization problem in (23) is nonconvex which makes the

problem complicated. To solve the problem, we employ a relaxation technique, which allows us to compute

an upper bound with reasonable complexity. Following the procedures explained in Section 2.2, we can get

a relaxed SDP problem as SDP{Ai, bi, ci}Ni=0 and the position error can be upper bounded as

e = ‖x̂− x‖2 ≤ vmax,1 ≤
√

vsdp{Ai, bi, ci}Ni=0. (26)
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We call the bound derived in (26) as Upp-MaxDis. In order to investigate the tightness of the second

inequality in (26), i.e., the gap between the relaxed SDP and the original QCQP, let us write the QCQP

problem QP{Ai, bi, ci}Ni=0 parameterized in (25) as

maximize
x∈Rn, τ∈R

tr
(

B
[

xT τ
]T [

xT τ
]

)

subject to tr
(

Bi

[

xT τ
]T [

xT τ
]

)

≤ ti, i = 1, . . . , N + 1, (27)

where

BN+1 =







0n×n 0n

0
T
n 1






, B =







In −x̂

−x̂
T ‖x̂‖2






, Bi =







In −ai

−ai
T ‖ai‖22 + ǫ2






,

ti = d̂2i + ǫ2, i ≤ N, tN+1 = 1, (28)

where ǫ 6= 0 is any nonzero real value. It is seen that Bi ≻ 0 for 1 ≤ i ≤ N . Then,
∑N+1

i=1 Bi ≻ 0, meaning180

the interior of the feasible set is nonempty.

Proposition 5.1. Consider the nonconvex QCQP problem parameterized in (25) with optimal value vqp{Ai, bi, ci}
N
i=0.

Denote the optimal value of the corresponding relaxed problem, i.e, the SDP, as vsdp{Ai, bi, ci}Ni=0. The op-

timal value of QP{Ai, bi, ci}Ni=0 can be bounded from below as

αvsdp{Ai, bi, ci}
N
i=0 ≤ vqp{Ai, bi, ci}

N
i=0, (29)

where

α =
1

2 ln(2(N + 1)µ)
, µ = min{N + 1, n+ 1}. (30)

Proof. Considering rank(Bi) = n + 1 and µ = min{N + 1,max
i

rank(Bi)} = min{N + 1, n + 1}, and then

recalling the results of [38], which determines a lower bound on the optimal value of a QCQP based on its

relaxed SDP, the Proposition is proved.

The bound (23) is then bounded as

√

αvsdp{Ai, bi, ci}Ni=0 ≤ vmax,1 ≤
√

vsdp{Ai, bi, ci}Ni=0. (31)

For details of deriving lower bounds on a nonconvex QCQP, we refer the reader to [24, 39, 38] and references185

therein.

5.2. Bound regarding the feasible set

In this section, we investigate the upper bound defined in (24) and repeated here for convenience

vmax,3 = max {‖x− v‖2 : x,v ∈ B} . (32)
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If a feasible point x̂ ∈ B is available, it is expected that the first upper bound vmax,1 yields a tighter bound

compared to the bound defined in (32) (the maximum length of the intersection). In fact, for a fixed x̂ ∈ B,

max
x,w∈B

‖x−w‖2 ≥ max
x∈B

‖x− x̂‖2. (33)

5.2.1. Bound based on the minimum ball covering the intersection:

The optimization problem in (32) is nonconvex and in general difficult to solve. Instead of solving the

problem formulated in (32), we find a minimum ball covering the intersection B. Let us consider the center

xc and the radius R of such a ball and formulate the minimum ball enclosing the intersection B in decision

variables xc and γ = R2 as

minimize
xc∈Rn, γ∈R+

γ

subject to ‖x− xc‖
2 ≤ γ, x ∈ B. (34)

Let the optimal solution of (34) be v′max,3. Then, vmax,3 = 2
√

v′max,3. A sufficient condition for the constraint

(34) to hold is that there are a number of positive values λ ∈ R
N
+ such that [24]

‖x− xc‖
2 − γ ≤

N
∑

i=1

λi(‖x− ai‖
2 − d̂2i ). (35)

We first introduce a fact for a quadratic function. For a proof of the claim in Lemma 5.2, see, e.g., [40, 24].

Lemma 5.2. A quadratic function f(x) = xTAx + 2bTx + c, with symmetric n by n matrix A is always

nonnegative for all x ∈ R
n if and only if







A b

bT c






� 0. (36)

Applying the result of Lemma 5.2 to (35) and fixing xc in (34), we can get the following optimization

problem to find the minimum ball enclosing the intersection B:

minimize
γ∈R+

γ

subject to







(
∑N

i=1 λi − 1)In xc −
∑N

i=1 λiai

(xc −
∑N

i=1 λiai)
T γ − ‖xc‖22 +

∑N
i=1 λi(‖ai‖22 − d̂2i )






� 0,

xc ∈ R
n, λ ∈ R

N
+ . (37)

From the properties of a positive semidefinite matrix (nonnegative diagonal entries), we conclude that

N
∑

i=1

λi ≥ 1 (38)
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and

γ − ‖xc‖
2
2 +

N
∑

i=1

λi(‖ai‖
2
2 − d̂2i ) ≥ 0. (39)

190

The constraint in (37) using Schur complement [40] can also be expressed as

γ − ‖xc‖
2
2 +

N
∑

i=1

λi(‖ai‖
2
2 − d̂2i )−

‖xc −
∑N

i=1 λiai‖22
∑N

i=1 λi − 1
≥ 0. (40)

Hence, the problem in (37) can be expressed as

minimize
γ∈R+, λ∈RN

+

‖xc‖
2
2 −

N
∑

i=1

λi(‖ai‖
2
2 − d̂2i ) +

‖xc −
∑N

i=1 λiai‖
2
2

∑N

i=1 λi − 1

subject to xc ∈ R
n,

N
∑

i=1

λi ≥ 1. (41)

Taking similar steps as done in [41], it can be shown that for the optimal solution
∑N

i=1 λi = 1 and

xc =
N
∑

i=1

λiai. (42)

Hence, from (39) we can obtain a convex optimization problem to find an upper bound on the squared

radius of the smallest ball enclosing the set B in the Euclidian norm sense as

minimize
λ∈RN

+

‖
N
∑

i=1

λiai‖
2
2 −

N
∑

i=1

λi(‖ai‖
2
2 − d̂2i )

subject to

N
∑

i=1

λi = 1. (43)

Finally, an upper bound on the maximum length of B is given by

vmax,3 ≤ 2R, (44)

where R =

√

‖
∑N

i=1 λiai‖22 −
∑N

i=1 λi(‖ai‖22 − d̂2i ).

It has been proved in [41] that when the number of constraints N (here the number of reference nodes) is

equal to or less than n (the dimensionality), (43) gives the optimal solution to (34). Otherwise, when N > n,

which is the practical case for positioning, the optimal solution in (43) is an upper bound to the optimal

solution in (34). The upper bound obtained by solving (43) then gives the maximum Euclidian length of the195

intersection. We call this bound as Upp-MinBall.

Another approach to compute an upper bound on vmax,3 is to replace B with an enclosing set in (24). We

will in the following consider two such sets. The first enclosing set is the bounding box3 for B, and, given

3By the bounding box of the set A, we mean the smallest cuboid [42] that is enclosing A.
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the bounding box, it is very easy to compute an upper bound on vmax,3, see Fig. 6. The second enclosing set

is found by replacing Bi with their bounding boxes.200

In the next sections, we investigate upper bounds on position error based on bounding box approaches.

5.2.2. Bound based on bounding box covering the intersection

To compute the bounding box for B, we study the following optimization problem:

maximize ‖x− y‖∞

subject to x,y ∈ B. (45)

The optimization problem in (45) again is nonconvex. Using the definition of the ℓ∞ norm, we can write

maximize
x,y

max(|x1 − y1|, . . . , |xn − yn|)

subject to x,y ∈ B. (46)

Using a dummy variable β, we have

max{α1, . . . , αn} ≥ β ⇐⇒ α1 ≥ β or α2 ≥ β . . . or αn ≥ β. (47)

Thus, using a simple technique, we need to solve two optimization problems for every dimension ℓ = 1, . . . , n

as follows:

maximize
β∈R, x∈Rn

β

subject to ‖x− ai‖ ≤ d̂i, i = 1, . . . , N,

xℓ ≥ β, (48a)

minimize
β∈R, x∈Rn

β

subject to ‖x− ai‖ ≤ d̂i, i = 1, . . . , N

xℓ ≤ β. (48b)

The optimization problems in (48a) or (48a) is a second order cone program. Suppose that the optimal

solution to problems (48a) and (48b) along a dimension ℓ are x∗
ℓ1

and x∗
ℓ2

, respectively. Let the maximum

length for the ℓth dimension be vsocp,ℓ = |x∗
ℓ1

− x∗
ℓ2
|. Then, the maximum length of the intersection can be

upper bounded as

vbbox =

√

√

√

√

n
∑

i=1

(vsocp,ℓ)2. (49)
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Thus

vmax,3 ≤ vbbox. (50)

We call the bound obtained in this section as Upp-BBox

5.2.3. Bound based on the maximum length of the intersection of a number of bounding boxes

In the second approach, the ℓ2 balls in (12) are replaced by the corresponding ℓ∞ balls,

Bi
′ , {x ∈ R

n : ‖x− ai‖∞ ≤ d̂i}, i = 1, 2, . . . , N,

and noting that

B ⊆ B′ ,

N
⋂

i=1

Bi
′.

Hence, an upper bound to vmax,3 is found by considering the length of B′, see Fig. 7.205

To compute an upper bound on vmax,3 based on B′, we consider the following optimization problem:

maximize
x,y

‖x− y‖∞

subject to x,y ∈ B′, (51)

For example Fig. 7 shows the concept of relaxing the constraint for a 2-dimensional network. Following the

same procedure to obtain (48), we obtain two optimization problems, called linear programs (LPs), for every

dimension. For instance, the two LPs for the ℓth dimension can be written as (where ai,ℓ is the ℓ-th element

of ai)

maximize
tℓ∈R

tℓ

subject to tℓ − ai,ℓ − d̂i ≤ 0,

tℓ − ai,ℓ + d̂i ≤ 0, i = 1, . . . , N, (52a)

minimize
tℓ∈R

tℓ

subject to tℓ − ai,ℓ − d̂i ≤ 0,

ai,ℓ − tℓ + d̂i ≤ 0, i = 1, . . . , N. (52b)

The optimal solution to the optimization problems (52a) and (52b), i.e., t∗ℓ1 and t∗ℓ2 , are simply computed

as

t∗ℓ1 = min{a1,ℓ + d̂1, . . . , aN,ℓ + d̂N}, t∗ℓ2 = max{a1,ℓ − d̂1, . . . , aN,ℓ − d̂N}. (53)
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Let vlp,ℓ = |t∗ℓ1 − t∗ℓ2 |, ℓ = 1, . . . , n, be the maximum length along the ℓth dimension. The maximum length

of the intersection B is then upper bounded by

vrbbox =

√

√

√

√

n
∑

i=1

(vlp,ℓ)2. (54)

Therefore, an upper bound on position error based on a bounding box approach is given by

vmax,3 ≤ vrbbox. (55)

We call this relaxed bounding box approach as Upp-RBBox.

It is clear that vbbox ≤ vrbbox. The Upp-RBBox is the loosest bound investigated in this study, but it is

easy to compute.

Table 1 summarizes the various types of bounds derived in this study.

6. Simulation results210

In this section we evaluate the validity of different upper bounds through computer simulations for

different scenarios. We consider a 1000 m3 cubic space for simulation. N reference nodes, i.e., a1,a2, . . . ,aN ,

are placed at fixed positions according to Table 2. One target node is randomly placed inside the volume.

We also consider a 2D network and obtain confidence regions (based on an estimate and an upper bound)

for positions of a moving target. We generate the noisy distance as

d̂i = di(x,ai) + εi,

where

εi =















εE,i, LOS conditions

εE,i + biεU,i, NLOS conditions

where εE,i are i.i.d exponential random variables with mean 1, bi ∈ {0, 1} are iid Bernoulli random variables

with parameter pNLOS = Pr{bi = 1}, and εU,i ∼ U(0, r) are iid uniform random variables. For NLOS, we

set r = 10 m and assume 20% of measurements are NLOS. In every scenario, we generate 1000 networks.

The validity of exponential distribution for LOS measurement for UWB practical data has been justified

in recent work [22]. The validity of the uniform distribution for NLOS has been clarified by some authors,215

e.g., [43, 27].

We consider the POCS, LLS (a closed-form linear least squares followed by a correction technique [10, 11]),

and SDP algorithms to estimate the target node positions. POCS always gives an estimate inside the
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intersection B in (13) . To solve the optimization problems formulated in this study (and also SDP for

localization), we use the CVX toolbox [44].220

To evaluate the tightness of the bounds in Table 1, we define the tightness of the bound as tv , (v − e)

for a bound v and the true position error e. We also define the relative tightness as τv , (v − e)/e. To

illustrate how the tightness varies with, e.g., network deployment, measurement noise, estimator parameters,

we study the cumulative distribution function (CDF) of tv and τv, i.e., Pr {tv ≤ x} and Pr {τv ≤ x}, where

the randomness comes from selecting, e.g., the deployment in a random fashion. In the following, we will225

generate e from POCS, CLS, or SDP.

6.1. Line-of-sight

In this section, we evaluate the performance of different bounds for LOS scenarios. To evaluate the four

bounds in Table 1, we employ the POCS algorithm since it always gives a feasible estimate (which is required

for Upp-MinBall, Upp-BBox, and Upp-RBBox). We also assess Upp-MaxDis for other estimators later in230

this section.

Fig. 8 shows the CDF of the relative tightness of the upper bounds versus POCS position error for

different number of reference nodes, N . As expected, Upp-MaxDis shows better performance compared

to the other bounds. For instance, Fig. 8(a) shows that in 80% of the cases, Upp-MaxDis in a network

consisting of eight reference nodes is less than 2 times the actual position error (considering the relative235

tightness). This figure also shows, as expected, that Upp-RBBox is the loosest bound. When the number of

reference nodes increases, Upp-BBox gets closer to Upp-MinBall. Roughly speaking except for Upp-BBox,

we can say that the behavior of other upper bounds (based on the relative tightness τv = (v− e)/e) does not

change considerably with increasing the number of reference nodes. For large number of reference nodes the

bounding box would be close to the minimum ball enclosing the intersection and we solve the bounding box240

approach exact while for the minimum ball approach, we approximately solve it. That is the reason why

Upp-BBox shows better performance than Upp-MaxDis for large number of reference nodes.

In the sequel, we evaluate the tightness of Upp-MaxDis for the LLS and SDP estimators. Fig. 9 shows

the CDF of the relative tightness for different algorithms. From this figure we see that Upp-MaxDis for

the POCS estimate is tighter than the corresponding bounds for SDP and LLS estimates. In fact, for the245

same intersection (same data), we expect the relative tightness to degrade when the position error decreases,

which explains why SDP and LLS have worse relative tightness compared to POCS. Although the bounds on

SDP and LLS estimates are not very tight in the relative sense, they can still provide valuable information.

For instance, Upp-MaxDis computed from LLS estimate in 80% of the cases is less than 3.7 times the actual
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LLS position errors. It is also seen that the increasing the number of reference nodes improves the tightness250

of bounds for LLS and SDP estimates.

To evaluate the bound on average, we study the average tightness defined as t̄v , E tv. In Fig. 10, we plot

the average tightness t̄v versus the number of reference nodes for different algorithms. As seen, t̄v decreases

with increasing number of reference nodes.

In the next simulation, we evaluate a confidence region (based on an estimate of the target position and255

an upper bound on the position error) definitely containing the position of a moving target. We consider a

2D network in which a number of reference nodes are placed a long with lines y = 0 and y = 100 (Fig. 11).

We assume the same distribution of the measurement noise as considered in the previous simulations. We

run the POCS algorithm and obtain an estimate of the moving target position at different locations. The

target moves on a trajectory according to a quadratic curve y = −0.0004x2 + 0.3x + 10 in the xy plane260

(see the red curve in Fig. 11). We then obtain an upper bound using Eqn.(26), i.e., Upp-Maxdis. The discs

formed by the estimate and the corresponding upper bound definitely contains the location of the target

node as shown in Fig. 11. It is observed that in some positions, the corresponding discs are small due to

small intersections containing the location of the target node positions. In some positions the bound may

not be tight, resulting a large confidence disc. In general, we can conclude that the bound in this scenario265

provides useful information about the location of the target node.

6.2. Non-line-of-sight

In this section, we evaluate Upp-Maxdis in NLOS scenarios for different algorithms. In Fig. 12, we plot

the CDF of the relative tightness fo Upp-Maxdis when estimates from POCS, LLS, and SDP are available.

Comparing Fig. 9 and Fig. 12, we see that the relative tightness of Upp-Maxdis for SDP and LLS is better in270

the NLOS case compared to the LOS case, which can be expected since the LLS and SDP errors are larger

for in NLOS conditions compared to the LOS case. It is also seen that the relative tightness of the bound

for LLS and SDP improves as the number of reference nodes increases.

To have a graphical view about the tightness of Upp-Maxdis for different algorithms, we plot 1000 samples

of the position error (for 1000 realizations of the network) and the corresponding Bound 1, when 14 reference275

nodes are considered, in Fig. 13. It is seen that the tightness of the bounds vary with the accuracy of the

estimate. The average tightness t̄v for every approach is also mentioned in the figures. From these figures

we again see that the bound for POCS is tighter that the ones for SDP and LLS.

19



6.3. Gaussian error

As mentioned in Remark 4, when the measurement errors are negative, the intersection does not contain280

the target node location. We may increase the distance estimates to obtain a new intersection containing the

location of the target node. In this simulation, we consider the Gaussian distribution for the measurement

errors. We considered 10 reference nodes and the measurement errors are modeled by ǫi ∼ N (0, σ2) with

σ = 1 [m]. We randomly distribute a target node inside the network area. The results are shown in figure

14. Note that CVX returns +Inf for empty intersection. It is observed that when the distance estimates285

are increased by a small value, the bound may not be valid or the intersection does not contain the target

location. For example in this figure, when distance estimates are enlarged by σ, in 10% of the time the

intersection is empty, so the bound is not known, and in 20% of the time the bound is not valid. In addition,

when a large value, e.g., 4σ, are added to the measurements, the intersection becomes nonempty with hight

probability and also the bound is valid with high probability, but the tightness might be questionable. From290

these observation, we see a tradeoff between the tightness and the validity should be considered to design an

approach for Gaussian distribution based on manipulating the distance estimate.

Based on numerical results and theoretical evidences, we can summarize the effect of geometry and the

accuracy of the estimate on the tightness and relative tightness as follows:

• for a relatively fixed intersection, both tightness and relative tightness degrade with the accuracy of295

the estimation;

• for a relatively fixed estimation error, both tightness and relative tightness degrade with increasing

(the volume of) the intersection;

• in general, the accuracy of the estimation also depends on the shape (volume) of the intersection.

Therefore, the relation between tightness and relative tightness with the volume of the intersection300

and the accuracy of the estimation can be complicated.

7. Conclusions and future studies

In this paper we have formulated a number of upper bounds on the realization of the positioning error,

i.e., the error which is produced by an estimator, or a class of estimators, given a certain realization of the

measurements. The idea is that the target node position is first limited to closed (possibly convex) set and305

then an upper bound on the position error is defined with respect to the set. For instance, in a range-based

positioning approach with positive distance measurement errors, the target node position is confined to the

intersection of a number of balls derived from measurements. We note that non-negative distance errors
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are likely to occur in non-line-of-sight environments and also in some line-of-sight scenarios [22]. We have

then studied two classes of (geometric) upper bounds with respect to the feasible set confining the target310

node position. If an estimate of the target position is available, we have defined an upper bound on the

position error as the maximum distance between the estimate and every point in the intersection area (the

first bound). The resulting bound is formulated as a (difficult) nonconvex problem and we have employed a

relaxation technique to solve the problem.

Assuming a closed bounded feasible set, a positioning algorithm such as POCS can be designed to give a315

point inside the intersection area. Assuming an algorithm always gives a feasible point, we have formulated an

upper bound independent of the estimate as the largest distance between two points in the intersection area,

i.e., maximum length of the intersection area (the second bound). The corresponding bound is formulated

as a nonconvex problem and can be approximately solved. We have also investigated variants of the second

bound by replacing either the intersection area or each ball by a corresponding bounding box.320

Simulation results based on the POCS estimate for different situations show that the proposed upper

bounds (summarized in Table 1) provide reasonably tight bounds. As expected from the theoretical part

and confirmed by the simulation results, Upp-Maxdis is the tightest bound among different upper bounds

formulated in this paper. The numerical results also show that the relative tightness of the different bounds,

except Upp-BBox does not considerably change with node density. It is also concluded from both theoretical325

aspects and simulation results that Upp-MinBall and Upp-BBox are tighter than Upp-RBBox. There might

still be motivated to used Upp-RBBox, e.g., if we care more about the computational complexity than

tightness of the bound. Numerical results for other positioning algorithms based on LLS and SDP also show

reasonable tightness in some scenarios.

Finally, it is clear that it is very valuable if we, in a practical situation, can append an estimated position330

with an upper bound of the position error. This is much stronger than saying something about the statistics

of the position error (e.g., the mean squared error) if the bound has reasonable tightness. The methods

developed in this paper provides tools for bounding the position error, albeit in somewhat limited situations,

i.e., when the feasible set is nonempty and has finite length. There are practical situations where this is a

valid assumption, but also cases when it is not.335

Future work includes formulating bounds for a general case when distance errors can be both positive and

negative and extending the bounding techniques for cooperative positioning problems. Of course, it would

also be of value to improve the tightness of the bounds. For example by involving the prior information

about the location of the target node, if available, we may be able to improve the tightness of the bound.

One interesting and challenging problem is to investigate upper bounds for cooperative positioning scenarios.340
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An upper bound on position error
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Figure 1: An example of the application of an upper bound on the position error for traffic safety. A solid circle defines the

area in which a vehicle definitely lies. In this figure based on an upper bound on the position error, car 2 and 3 might collide.
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Figure 2: Different upper bounds.
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a1
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x

d̂3

d̂2

d̂1
x1 x2

Initial point x0

Target node

Reference node

Figure 3: A 2-dimensional network consisting of three reference nodes and one target node. For nonnegative measurement

errors, the target node at position x is found in the intersection of three discs. The POCS estimate converges to a point x̂

inside the intersection area (in this case on the boundary).
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Figure 4: The position error and an upper bound on the position error for an estimate x̂ of the target for the network considered

in Fig. 3.
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Figure 5: Maximum Euclidian distance of the intersection as an upper bound on the position error for an estimate inside the

intersection area of Fig. 3.
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Figure 6: The maximum length of the bounding box of the intersection as an upper bound on the position error for the estimate

considered in Fig. 3.
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Figure 7: Every constraint is replaced with a bounding box and then a bounding box enclosing the intersection of relaxed

constraints is computed. The maximum length of the bounding box enclosing the intersection gives an upper bound for the

position error for the estimate considered in Fig. 3.
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(d)

Figure 8: Comparison between the CDF of relative tightness of upper bounds versus the POCS position error for, (a) 8 reference

nodes, (b) 14 reference nodes, (c) 20 reference nodes, and (d) 26 reference nodes.
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Figure 9: CDF of the relative tightness for different algorithms in LOS scenario, (a) 14 reference nodes, (b) 26 reference nodes.
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Figure 10: The average tightness t̄v versus the number of reference nodes for different algorithms.
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Figure 11: Discs, formed by an estimate of the target position and the corresponding upper bound (Bound 1 Eqn.(26)), contains

the location of a moving target according to a trajectory.
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Figure 12: CDF of the normalized relative tightness of Bound1 for different algorithms in NLOS scenario, (a) 8 reference nodes

and (b) 14 reference nodes.
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Figure 13: Absolute values of Bound 1 and position errors for three algorithms in NLOS scenario for 14 reference nodes for (a)

SDP, (b) LLS, and (c) POCS.
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Figure 14: The CDF of the relative tightness of Upp-MaxDis versus the POCS position error for 10 reference nodes and different

lower bounds ρ of the Gaussian measurement errors (σ = 1 [m]).

Table 1: Summary of bounds.

Definition: Eqn.

e , ‖x̂− x‖2 (22)

vmax,1 , max
x∈B

‖x̂− x‖2 (23)

vmax,3 , max
x,y∈B

‖x− y‖2 (24)

Upper Bounds: Eqn.

Upp-MaxDis:

e 6 vmax,1 ≤
√

vsdp{Ai, bi, ci}Ni=0 (26)

Upp-MinBall:

vmax,3 ≤ 2R (44)

Upp-BBox:

vmax,3 ≤ vbbox (50)

Upp-RBBox:

vmax,3 ≤ vrbbox (55)

Table 2: Positions of reference nodes in 3D network.
ai

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

x [m] 0 10 0 0 10 10 0 10 5 5 0 10 5 5 5 5 5 0 10 0 0 10 0 10 10 5 5

y [m] 0 0 10 0 10 0 10 10 5 5 5 5 0 10 0 10 0 0 0 10 5 5 5 10 5 10 5

z [m] 0 0 0 10 0 10 10 10 0 10 5 5 5 5 0 0 10 5 5 5 0 0 10 5 10 10 5
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