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SE-412 96 Göteborg, Sweden
Sweden
Telephone +46–(0)31–7721000

Typeset in LATEX. Figures created using Matlab.

Chalmers reproservice
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ABSTRACT

The emergence of nanoelectromechanical systems has enabled the development
of sensors capable of detecting mass, charge, force, position, and spin with an
unprecedented precision. In particular, the low mass, high resonant frequency,
and high quality factor of carbon nanomechanical resonators make them ideal
for the creation of a high sensitivity mass sensor. Carbon nanotube resonators
are indeed the basis of the most sensitive mass sensors to date, whereas res-
onators made from suspended graphene monolayers are potentially capable of a
very high rate of operation, due to their large surface area. A complicating fac-
tor is that the available mass measurement schemes rely on that the measured
mass remains stationary, something that is no longer true at non-cryogenic
temperatures.

In this thesis, the effect of an elevated ambient temperature on a mass-
resonator system is studied by simulating ring-down experiments. Thermal
fluctuations in the position of the mass on the resonator introduce a stochastic
force in the system equations of motion; these stochastic differential equa-
tions are here solved analytically and numerically. The unperturbed resonator
is modeled as an undamped linear oscillator, but the addition of a diffusing
mass induces nonlinear dynamics in the system. The presence of the particle
mediates a coupling between vibrational modes, that acts as a new dissipa-
tion channel. Additionally, short-time correlations between the motion of the
diffusing particle and the vibrating resonator results in a second dissipation
mechanism, that causes a nonexponential decay of the vibrational energy. For
vibrational amplitudes that are much larger than the thermal energy this dis-
sipation is linear; for small amplitudes the decay takes the same form as that
of a nonlinearly damped oscillator.

KEYWORDS: nonequilibrium dynamics, nonlinear dynamics, noise, diffu-
sion, dissipation, nanoelectromechanical systems, mass sensing, resonators, car-
bon nanotubes, graphene, stochastic differential equations, equations of motion,
Fokker-Planck equation.
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1 Introduction

A factoid commonly quoted in high school math classes is that today’s pocket-
sized scientific calculators are smarter than early supercomputers, which filled
entire rooms. Notwithstanding the accuracy of such a statement, it is in-
disputable that the ongoing miniaturization of components has been a crucial
ingredient in the technological development of the last half-century. Fifty years
ago, Gordon Moore noted that the number of components on a chip had dou-
bled every two years for some time [1], and predicted that this trend would
continue for at least another decade. With startling precision it has held true
during five: a development driven by the decreased costs and increased opera-
tional speeds resulting from reduced system size.

The move towards smaller devices is not limited to integrated circuits; me-
chanical sensors like accelerometers and gyroscopes have been scaled down to
micrometer-sized versions. Such microelectromechanical systems (MEMS) are
today ubiquitous in modern cars, smartphones, and other consumer electronics.
Even smaller sensors, nanoelectromechanical systems (NEMS), are the subject
of much research motivated by their unprecedented sensitivity in measuring
charge [2,3], force [4], position [5,6], spin [7], and mass [8–13]. It would be easy
to conclude that smaller is always better, but is that really the case?

So far, the miniaturization of technology has largely been a matter of mak-
ing smaller versions of existing mechanisms. However, since different physical
processes will be relevant on microscopic length scales compared to those of
our macroscopic day-to-day world [14], there is a limit to how small a replica
of a device one can create without altering the manner in which it functions.
Since atoms that make up the surface of a material do not always have the
same properties as otherwise identical atoms deep in the bulk, and the surface-
to-volume ratio of an object is inversely proportional to its linear size, surface
effects will become progressively more important as devices are made smaller.
Nano- to micrometersized systems can conduct charge and heat in unfamiliar
ways, as their size can be comparable to the typical distance between particle
collisions. Very small systems, consisting of a few atoms or molecules, will
be governed by quantum mechanics; Heisenberg’s uncertainty principle then
places fundamental restrictions on how accurate measurements can become, as
well as how small a volume one can confine particles to. Finally, and of inter-
est to this thesis, small systems are subject to significant thermal fluctuations:
random variations in, for example, particle positions and velocities that are due
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2 1 Introduction

to energy exchanged during unpredictable interactions with the environment.
The size of a system does not effect whether it interacts with its environ-

ment; thermal fluctuations in some form are always present. However, they
remain negligible while the energy scale of the system dynamics (say, the vi-
brational energy of an oscillating beam) is much larger than the thermal energy
contained in the environment. The former energy scale does depend on the size
of a system, whereas the latter is a function only of temperature. Decreasing
the system size while keeping the surrounding conditions unchanged will thus
eventually render the two energy scales comparable. Consequently, at some
point of miniaturization, the dynamics of a system will be considerably altered
due to the presence of thermal fluctuations.

The particular realization of thermal fluctuations is system dependent; the
underlying physical processes as well as in which quantities fluctuations will
appear varies depending on the particular situation. For this reason, the dis-
cussion is henceforth restricted to the particular type of system that is the
subject of this thesis. I will study a small particle stuck on the surface of
a nanomechanical resonator∗ in the shape of a vibrating beam or drum; the
resonator is on the order of 1 µm across.

1.1 Noise in a resonator-particle system

A solid can be thought of as a large number of atoms organized in a regular
pattern: a lattice. A non-zero temperature will cause all these atoms to vibrate
slightly around their equilibrium positions, in a chaotic manner. Then, a parti-
cle placed on the surface of this solid will be subject to a large number of small
“kicks” from the vibrating atoms. Since the force imparted by each kick has
an unpredictable direction and magnitude, the result is that the particle will
bounce about on the surface in a random path. This is exactly what happens in
a system consisting of a particle adsorbed on a resonator; the resonator atoms
will vibrate, causing thermal fluctuations in the position of the particle.

Nanomechanical sensing schemes generally rely on monitoring how the res-
onant frequency of the resonator changes when the system is disturbed [15].
For example, mass can be measured by noting that if a particle of mass m is
added to a resonator of mass M , the change ∆ω < 0 in the resonant frequency
ω of the vibration mode ϕ is given by

−∆ω

ω
≈ 1

2
ϕ2(xp)

m

M
, (1.1)

where xp is the position of the added particle. It is thus clear that if there are

∗In theoretical physics in general, an oscillator is any system that can be described by
a Hamiltonian of the form H = 1

2mp2 + 1
2mω2x2. In the field of nanomechanics, however,

we adopt terminology borrowed from engineering, in which only systems that by themselves
produce an oscillatory signal are referred to as oscillators. Systems that require an external
force to begin oscillating, like pendulums, springs and LC-circuits, are called resonators.



1.2 Thesis outline 3

thermal fluctuations in xp the frequency shift ∆ω will also vary, introducing a
source of noise in the measurement.

Typically, the vibration amplitude of a driven resonator as a function of the
drive frequency is a Lorentzian, strongly peaked around the resonant frequency.
If frequency fluctuations (also referred to as phase noise [16]) are present, this
response curve changes. The peak broadens and can lose its symmetric shape,
and may even develop a fine structure [17–20]. However, spectral broadening
also results from the dissipation of energy, the mechanisms of which are not
yet completely understood in NEMS [15, 21–23]. To further complicate the
picture, carbon nanoresonators are nonlinear in many ways; nonlinear damp-
ing is present [24, 25], as well as an inherent, or geometric, nonlinearity that
causes dissipation [26] and broadening [27]. In addition, diffusing adsorbates
can induce a nonlinear response to driving [28,29], and they are also expected to
cause dissipation and to enable different vibrational modes to interact. Clearly,
there are several mechanisms present in nanoelectromechanical resonators that
can manifest in similar ways, and that interact in a non-trivial manner.

Here, I attempt to shed some light on this situation by studying the dy-
namics caused by a diffusing particle adsorbed on a resonator. To eliminate all
complications related to the forced response of a resonator, only its ring-down is
studied: simulated measurements similar to those of recent experiments [30,31].
In addition, I make use of a theoretician’s privileged situation and exclude from
the model all damping mechanisms except for the one associated with the dif-
fusing particle according to the fluctuation-dissipation theorem. What remains
is a perfectly linear, undamped resonator that, once excited, would oscillate in
the same fashion forever. Any deviation from this behaviour is thus attributable
to the presence of the adsorbed diffusing particle. The goal of the study is to
verify whether diffusion does indeed induce damping and mode coupling, and
if that is the case, to examine the resulting system dynamics.

1.2 Thesis outline

In attempting to describe something complicated, it can be a productive strat-
egy to break the problem down into smaller, and hopefully easier, parts. Here,
I shall endeavour to do just that. I begin in chapter 2 by studying the dynamics
of a nanoresonator without an adsorbed particle, and continue in chapter 3 by
examining the random motion of a particle on an immobile substrate. The two
parts are connected in chapter 4, in which I discuss the nonlinear dynamics
induced by the diffusing particle. The thesis concludes with a summary in
chapter 5, alongside an outlook on future work.
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2 Dynamics of nanomechanical
resonators

In this chapter, I describe a resonator in an unperturbed state: before any extra
particles are added. I do this by writing down the Lagrangian density [32] of
the resonator, determined from elasticity theory [33]. From this Lagrangian I
then find the resonator equations of motion, which are solved for the vibrational
eigenmodes and corresponding frequencies.

It may seem surprising that a nanomechanical resonator can be modelled
accurately by continuum mechanics, a classical theory that is successfully ap-
plied to the steel beams making up our bridges and buildings; beams that are
many orders of magnitude larger than a nanomechanical resonator. The key is
that continuum mechanics is a theory of deformations, and will perform very
well as long as the length scale of these deformations is much larger than the
length scale of any inhomogeneities in the solid being deformed. In the case of
a carbon resonator, the length scale for inhomogeneities is the typical distance
between atoms in the material: 10-20 Å. The characteristic length scale for a
deformation is the wave length of a vibrational mode. As I show in this chap-
ter, such wave lengths are on the order of the size of the resonator: four orders
of magnitude larger than the interatomic distance. This separation of length
scales is more than enough to consider the resonator as a smooth, homogeneous
solid, and continuum mechanics is then an appropriate theory to use.

2.1 Lagrangian density

A deformed elastic body is characterized by the displacement field u(x, t) =
(u1(x1, x2, x3, t), u2(x1, x2, x3, t), u3(x1, x2, x3, t)). That is, an infinitesimal vol-
ume element which in the relaxed solid is centered at x = (x1, x2, x3) will,
under deformation, be moved to the position x + u(x, t). Such a deformation
introduces a strain in the solid, described by the strain tensor ε [33], whose
elements are

εij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

+
∑
k

∂uk

∂xi

∂uk

∂xj

)
. (2.1)

5



6 2 Dynamics of nanomechanical resonators

The potential energy stored in a deformed body is given by the stretching free
energy density:

FS =
∑
i,j

[
1
2
λεiiεjj + µεijεij

]
. (2.2)

where the Lamé parameters µ and λ quantify the shear and compressive strain,
respectively.

In addition to the stretching energy density, there is a free energy density
associated with bending without stretching; in a body with bending rigidity κ
it is

FB = 1
2
κ
∑
i

∣∣∣∣∣∑
j

∂2ui

∂x2
j

∣∣∣∣∣
2

. (2.3)

Finally, the strain tensor ε is related to the stress tensor σ through the general
Hooke’s law:

σ = 2µε+ λTr [ε] I, (2.4)

where I is an identity matrix.
In this thesis, I am concerned with resonators that can be described as

one- and two-dimensional, henceforth referred to as beams and membranes.
The latter case is experimentally realized in resonators created by atomically
thin membranes, like graphene [24–26, 34–37]. A resonator that acts one-
dimensional is achieved by using a solid whose length is several orders of mag-
nitude larger than its width and depth. A prime example of such a device is a
carbon nanotube (CNT) resonator [10,24,27,38–41].

In the following, I set x = (x, y) in order to describe a two-dimensional res-
onator. The one-dimensional case will, in the final expressions (2.8) and (2.10),
be easily found by replacing gradients with one-dimensional spatial derivatives.
In addition, I only consider flexural (out-of-plane) displacements. This is an
adiabatic approximation based on the rate of change of the respective displace-
ments; the characteristic frequencies for the flexural oscillation of a nanores-
onator are much lower than the frequencies of longitudinal vibration. Thus,
for any deformation, the in-plane displacement field relaxes into a static state
before the flexural displacement shows any discernible change. With regards to
the resonator dynamics, then, the displacement field may be approximated [42]
as u(x, t) = (0, 0, u3(x, t)). I redefine u3(x, t) = w(x, y, t), and find that the
strain tensor simplifies to

ε =
1

2

(
(∂xw)

2 ∂xw∂yw
∂xw∂yw (∂yw)

2

)
= 1

2
∇w(∇w)T . (2.5)

Here, ∂xw ≡ ∂w/∂x, and the gradient ∇ is defined as a column vector.
Under the given conditions (that, in particular, ensure that ε2xy = εxxεyy),

the stretching free energy density can be written

FS = 1
2
Tr [σ] Tr [ε] = 1

2
Tr [σ] [∇w · ∇w] . (2.6)
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Henceforth it is assumed that Tr [σ] ≡ σ = constant , an assumption that is
valid for the resonators under discussion if the vibration amplitude is small or
if there is a large prestrain present, for example due to the fabrication process.

The bending free energy density becomes

FB = 1
2
κ
[
∇2w

]2
. (2.7)

Introducing the mass density ρ, I thus conclude that the Lagrangian density of
a one- or twodimensional body that is deformed only in the flexural direction
is

L0 =
1
2
ρẇ2 − 1

2
σ [∇w · ∇w]− 1

2
κ
[
∇2w

]2
(2.8)

2.2 Equations of motion

By setting the variation of the action S caused by (2.8) to zero, the equations
of motion are found. That is,

0 = δS = δ

∫
dxdt L0 =

=

∫
dxdt

(
ρẇδẇ − σ∇w · δ(∇w)− κ∇2wδ(∇2w)

)
=

∫
dxdt

(
−ρẅ + σ∇2w − κ∇4w

)
δw. (2.9)

In the final step, a number of partial integrations were performed. I consider
resonators with clamped boundaries, on which δw = 0, δ(∇w) = 0; the bound-
ary terms in the partial integrations consequently vanish. Finally, since the
variation δw is arbitrary, the equality (2.9) will only hold if the bracketed term
is zero:

ρẅ − σ∇2w + κ∇4w = 0. (2.10)

This is the equation of motion for the flexural displacement field of a resonator.
Without loss of generality, the displacement w(x, t) can be written as a sum

of resonator eigenmodes:

w(x, t) =
∞∑
n=0

qn(t)φn(x), (2.11)

where
−ω2

nρφn − σ∇2φn + κ∇4φn = 0. (2.12)

Here, ωn is the frequency of the vibration mode φn(x). I shall now explicitly
determine the eigenfrequecies and -modes for the the geometries under discus-
sion.
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Figure 2.1: Vibrational eigenmodes of a doubly clamped beam of length L.

2.2.1 Beam eigenmodes

I consider a one-dimensional resonator of length L that is doubly clamped:
φn(0) = φn(L) = φ′

n(0) = φ′
n(L) = 0. The now-ordinary differential equa-

tion (2.12) has the characteristic equation

κk4 − σk2 − ρω2
n = 0, (2.13)

with roots ±k+
n ,±ik−

n , where

k±
n =

√√
σ2

4κ2
+

ρω2
n

κ
± σ

2κ
. (2.14)

The general solution for the eigenfunction φn(x) is thus

φn(x) = An sinh k
+
n x+ A′

n sin k
−
n x+Bn cosh k

+
n x+B′

n cos k
−
n x, (2.15)

where the integration constants will be chosen so that the φn are real and
normalized to L: ∫ L

0

dx φm(x)φn(x) = Lδmn. (2.16)

That the eigenfunctions are orthogonal is straight-forwardly verified; see for
example [43].

The algebra involved in determining the A
(′)
n , B

(′)
n and the eigenfrequencies

ωn turns out to be simplified by a change of variables to Ξ = x−L/2. Then, the
boundary conditions neatly divide the φn into sets of even and odd functions:

φ2n(Ξ) = A2n cosh k
+
2nΞ + A′

2n cos k
−
2nΞ

φ2n+1(Ξ) = B2n+1 sinh k
+
2n+1Ξ + B′

2n+1 sin k
−
2n+1Ξ. (2.17)

The eigenfrequencies ωn are determined from the equation

k∓
n

k±
n

= ±
tan k−

n
L
2

tanh k+
n

L
2

, (2.18)
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Table 2.1: Normalized eigenfrequency ωn/ω0 for the n:th excited mode of a beam
and a membrane resonator, where ω0 is the fundamental mode frequency (corre-
sponding to (µ, ν) = (0, 1) for the membrane). For the beam resonator, a good ap-
proximation for the ratio ωn/ω0 is

1
9(2n+1)2, while for the membrane ωn/ω0 ≈ 6

5

√
n.

Note also the two-fold degeneracy of many of the membrane excited modes.

n Beam Membrane (µ, ν)

1 2.7245 1.5933 (±1, 1)
2 5.3139 2.1355 (±2, 1)
3 8.7633 2.2954 (0, 2)
4 13.074 2.6531 (±3, 1)
5 18.246 2.9173 (±1, 2)
6 24.280 3.1555 (±4, 1)
7 31.176 3.5001 (±2, 2)

where upper (lower) signs correspond to odd (even) n. While the value of the
frequencies depend on material parameters, the ratio between them is only a
function of the resonator geometry. Table 2.1 lists the ratio ωn/ω0 for some
excited modes: ω0 denotes the fundamental mode frequency. A quick estimate
is given by ωn/ω0 ≈ 1

9
(2n+ 1)2

Finally, the integration constants A
(′)
n and B

(′)
n are found from the boundary

conditions combined with the normalization chosen in (2.16). The result is that

A′
n = −

cosh k+
n

L
2

cos k−
n

L
2

An, B′
n = −

sinh k+
n

L
2

sin k−
n

L
2

Bn (2.19)

and

|An|2 = 2

[
1 +

sinh k+
nL

k+
nL

+
cosh2 k+

n
L
2

cos2 k−
n

L
2

(
1 +

sin k−
nL

k−
nL

)]−1

,

|Bn|2 = 2

[
1− sinh k+

nL

k+
nL

−
sinh2 k+

n
L
2

sin2 k−
n

L
2

(
1− sin k−

nL

k−
nL

)]−1

. (2.20)

The final undetermined phase is chosen so that the φn are real.
While the expressions for the eigenmodes may look complicated, the mode

shapes can be thought of as sines and cosines that have been somewhat de-
formed in order to fit the doubly clamped boundary conditions. The four
lowest vibrational modes are shown in figure 2.1 (page 8).
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2.2.2 Membrane eigenmodes

For an atomically thin graphene membrane [44], the bending rigidity κ is very
small [45], and may be neglected. Then, (2.12) becomes the Helmholtz equation

∇2φn = −ω2
nρ

σ
φn, (2.21)

with the known [46] solutions

φn(r, θ) = Ane
iµθJ|µ|

(
ωn

√
ρ

σ
r

)
. (2.22)

Here, µ ∈ Z and Jµ is a Bessel function of the first kind. All eigenmodes with
µ ̸= 0 are doubly degenerate.

The boundary condition that φn(R, θ) = 0 fixes the eigenfrequencies as

ωn =
α|µ|ν

R

√
σ

ρ
, (2.23)

where αµν is the ν:th zero of Jµ. The index n must now be interpreted as a
vector index n = (µ, ν). Again, the ratio between eigenfrequencies depends only
on the resonator geometry: some of the normalized excited mode frequencies
are listed in table 2.1. A quick estimate of the frequency ratio is ωn/ω0 ≈ 6

5

√
n.

The eigenfunctions are orthogonal by construction, and the normalization
is chosen so that ∫ 2π

0

dθ

∫ R

0

rdr φ∗
n(r, θ)φm(r, θ) = πR2δmn (2.24)

by setting

An =

[
J|µ|+1

(
ωn

√
ρ

σ
R

)]−1

=
[
J|µ|+1

(
α|µ|ν

)]−1
. (2.25)

The shape of the four lowest vibrational modes is shown in figure 2.2 (page 11).
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Figure 2.2: Vibrational eigenmodes of a circular membrane. Those excited modes
that are not rotationally symmetric are degenerate; there is a second eigenmode with
the same frequency but with a phase difference of π/2.
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3 Particle diffusion

In chapter 2, I described the unperturbed resonator, without the added com-
plication of an adsorbed particle. Here, I will approach the problem from the
opposite direction, and describe the motion of a particle over the surface of a
solid, without the added complication of allowing this solid to move.

I mentioned in section 1.1 that a particle adsorbed on a solid is, at any given
time, subject to a large number of random “kicks” caused by lattice vibrations
in the substrate. As a result, the particle will perform a random walk over the
surface of the solid, a random walk that is now mathematically characterized.

3.1 The Langevin equation

The position∗ x of a particle of mass m is described by Newton’s second law,

mẍ = F (t). (3.1)

In the present case, F (t) is the sum of all forces exerted by the lattice vibrations
on the particle. There will be two qualitatively different contributions to this
force: one stochastic (random) and one dissipative.

I shall assume that the stochastic component of F (t) is normally distributed.
This is based on that the force is the sum of a large number of random variables
(the vibrations of each lattice atom) and will thus tend to a normal distribution
according to the central limit theorem [47]. Then, the stochastic force can
be written as σξ(t), where σ is its standard deviation and ξ(t) ∈ N [0, 1].
Furthermore, I make the physically reasonable assumptions that if the particle
is stationary it will, on average, be kicked equally often in every direction, and
that since lattice vibrations are random, the net direction of the kicks at time
t will not have any influence on the net direction at another time t′. Formally,
this translates to that the mean ⟨ξ(t)⟩ = 0, and that ξ(t) is a white noise
process with correlation function ⟨ξ(t)ξ(t′)⟩ = δ(t− t′).

If, on the other hand, the particle is moving, it will be “in range” of the
lattice vibrations of a larger number of substrate atoms, in particular along

∗For convenience, x is written as a scalar in this chapter. For x ∈ Rn, the force F (t) also
becomes an n-dimensional vector, and there will be n copies of equation (3.1): one for each
component of x.

13
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the direction of motion. Consequently, the particle will meet more kicks along
that direction. The net effect of this increased collision rate γ is a friction force
between the particle and the substrate, that increases if the particle moves
faster. This dissipative contribution to F (t) is modelled as −mγẋ. Thus,
equation (3.1) can be written†

mẍ+mγẋ = σξ(t). (3.2)

This is the Langevin equation [50]. In figure 3.1 a), I show two paths found by
solving equation (3.2) in one dimension, with reflecting boundary conditions.
Both paths begin at the same position.

The fact that random forces (the σξ(t) in equation (3.2)) always‡ occur
together with friction (the mγẋ) is a reflection of the fluctuation-dissipation
theorem (FDT) [47]. The FDT is also seen in the fact that the standard
deviation σ of the stochastic force is related to the damping: σ =

√
2mγkBT .

This expression is found by formally integrating equation (3.2) to find the
velocity

ẋ = v0e
−γt +

σ

m

∫ t

0

dt′ e−γ(t−t′)ξ(t′), (3.3)

where v0 is given by the initial conditions. Equation (3.3) is then substituted
in the equipartition theorem 1

2
kBT = 1

2
m ⟨ẋ⟩2, which can be simplified using

the properties of the stochastic process ξ(t) and taking a t → ∞-limit.
Finally, it will be of interest to study the overdamped limit of the Langevin

equation. In this limit, the damping rate γ is large enough that ẍ ≪ γẋ, and
equation (3.2) becomes

ẋ =
σ

mγ
ξ(t) =

√
2kBT

mγ
ξ(t) ≡

√
2D ξ(t). (3.4)

In the final step the diffusion constant D is defined; this is the same diffusion
constant as the one appearing in the diffusion equation U̇ = D∂2

xU , where U
is the density field of some diffusing quantity [46]. The reason for this is made
clear in the next section.

†A much more careful derivation is certainly possible, for example from the Caldeira-
Leggett model [48]. To read this thesis, however, an intuitive understanding of the Langevin
equation is sufficient. The presented phenomenological argument is adapted from [49].

‡The FDT is valid as long as the system in question obeys detailed balance [47]. In our
case, the principle of detailed balance can be formulated as p(xA)wA→B = p(xB)wB→A.
Here, p(xA) is the probability that the particle is found at position xA and wA→B is the
probability that the particle will move from xA to xB . The equation of detailed balance thus
expresses that, over time, the particle will move from xA to xB (a transition that, of course,
requires that the particle is present at xA to begin with) as often as it will move from xB to
xA.
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Figure 3.1: a) Two example paths of a particle performing a random walk in
one dimension with reflecting boundary conditions. Both paths begin at the same
position. b) Probability distribution p(x, t) for the particle position based on the two
trajectories in a). Dark (light) areas indicate positions where the probability to find
the particle is small (large).

3.2 The Fokker-Planck equation

The Langevin equation (3.2) expresses the system dynamics directly in terms
of the fluctuating variable x. Another way to deal with stochastic quantities is
to work with their probability distribution p(x, ẋ, t). In terms of this distribu-
tion, one can calculate the probability that a particle under the influence of a
stochastic force will be at§ position x and have velocity ẋ at time t as

P (x, ẋ, t) =

∫ x+dx

x

dx′
∫ ẋ+dẋ

ẋ

dẋ′ p (x′, ẋ′, t) . (3.5)

A partial differential equation determining the time evolution of a probability
distribution is a Fokker-Planck equation (FPE).

Every stochastic differential equation (SDE) of the type

∂x

∂t
= A(x, t) + B(x, t)ξ(t), (3.6)

that describes the evolution of a random variable x subject to the drift A(x, t)
and the diffusion process B(x, t)ξ(t), has an equivalent FPE for the probability
distribution of the random variable. If (3.6) is assumed to be a Stratonovich

§Used in the physicist’s sense of “in a sufficiently small interval around”.
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SDE, this equivalent FPE is given by [47]

∂p

∂t
= −

∑
i

∂

∂xi

[
Ai(x, t)p(x, t)

]
+

1

2

∑
i,j,k

∂

∂xi

[
Bik(x, t)

∂

∂xj

[
Bjk(x, t)p(x, t)

]]
.

(3.7)
As an illustrative example, I will here sketch a derivation of the FPE for

the over-damped Langevin particle described by equation (3.4). I have chosen
to use a transparent derivation that clearly shows the connection between the
random variable and its probability distribution. However, it should be pointed
out that it is a second order-calculation that “happens to be correct”. This
lucky coincidence is due to that the starting equation (3.4) is linear, and that
the stochastic process is Gaussian with vanishing higher moments.

Since the particle in question must remain somewhere in space, the total
probability is conserved. Hence, the probability distribution must obey the
continuity equation:

ṗ(x, ẋ, t) + ∂x[ẋp(x, ẋ, t)] + ∂ẋ[ẍp(x, ẋ, t)] = 0. (3.8)

If I näıvely use equation (3.4) to set ẍ = 0, ẋ =
√
2D ξ(t), (3.8) becomes

ṗ = −
√
2D ξ(t)∂xp. (3.9)

This is not strictly accurate, since the probability distribution p represents a
quantity related to the ensemble of realizations of ξ(t), not a single trajectory
of the force. However, after taking the ensemble average below, the end result
will be correct.

Equation (3.9) is integrated from the time t to t+∆t:

p(t+∆t) = p(t)−
√
2D

∫ t+∆t

t

dt′ ξ(t′)∂xp(t
′). (3.10)

For brevity, only the time dependence of p(x, ẋ, t) is explicitly shown. Equa-
tion (3.10) is substituted into itself¶, and subsequently averaged over all real-
izations of the stochastic force ξ(t):

p(t+∆t) = p(t)−

⟨
√
2D

∫ t+∆t

t

dt′ ξ(t′)∂x

[
p(t)−

√
2D

∫ t′

t

dt′′ ξ(t′′)∂xp(t
′′)

]⟩

= p(t) + 2D

∫ t+∆t

t

dt′
∫ t′

t

dt′′δ(t′ − t′′)∂2
xp(t

′′) (3.11)

where I used that ⟨ξ(t)⟩ = 0 and ⟨ξ(t)ξ(t′)⟩ = δ(t − t′). Performing the final
integrations, and assuming that ∆t is sufficiently small that p stays constant

¶In this case, it is sufficient to take this iterative process only to the second order, since
ξ(t) is normally distributed. In general, one must study the limit of infinite iterations.



3.2 The Fokker-Planck equation 17

over the interval, yields

p(t+∆t) = p(t) + ∆tD∂2
xp(t). (3.12)

The factor 1
2
arises by considering the δ(t′ − t′′) as the limit of a sequence of

progressively more peaked functions symmetric around the point t′′ = t′, and
noting that the integral only goes to the peak — only over half of the area
bounded by the function curve. Rearranging terms and letting ∆t → 0 does
indeed leave the diffusion equation

ṗ = D
∂2p

∂x2
, (3.13)

as expected from section 3.1.
In figure 3.1 b) is plotted the probability density for a variable that only

has two realizations of the force ξ(t), giving the two random walks shown in
a). While such a force is not very common, figure 3.1 gives an intuitive sense
of how the particle paths and the probability distribution is related. In a more
realistic case, ξ(t) would cause a very large number of possible paths, and
the probability distribution would be constant; at any given time it would be
equally probable to find the particle at any point of the domain.



18 3 Particle diffusion



4 Complete system

In this chapter, I will join the theory of chapters 2 and 3 in order to describe
the combined system, where a particle is adsorbed on and allowed to diffuse
across the surface of a resonator during its ringdown. The prototype systems
under consideration are illustrated in figure 4.1 (page 20). I consider reflecting
boundaries and zero desorbation probability; the particle will never leave the
surface of the resonator.

4.1 Coupled equations of motion

Deriving the equations of motion is a three-step process. First, the Lagrangian
density for the full system is written down and varied. The resulting equations
of motion will be in terms of the displacement field and the particle position
xp, so the second step is to expand w(x, t) in a sum of eigenmodes according to
equation (2.11). In the third and final step, a stochastic force and accompanying
friction term are added by hand in the equation for xp, motivated by the
discussion in section 3.1.

Consider a particle of mass m that is adsorbed at position xp on the res-
onator surface; its position vector is then r(t) = (xp(t), w(xp(t), t)). The La-
grangian density for the entire system is found by adding the kinetic energy of
the adsorbed particle, 1

2
mṙ2, to the resonator Lagrangian L0, equation (2.8).

That is,

L = L0 +
1
2
mδ(xp − x)

[
ẋ2
p + (ẇ(xp, t) + ẋp · ∇w(xp, t))

2] . (4.1)

The δ(xp − x) ensures that the particle is point-like.
The variation of the field w now yields

0 = δS = δ

∫
dxdt L =

=

∫
dxdt [δL0 +mδ(xp − x)(ẇ + ẋp · ∇w) (δẇ + ẋp · δ(∇w))] . (4.2)

Note that ẇ + ẋp · ∇w = d
dt
w(xp(t), t) ≡ ẇp. The new term in L is partially

integrated, and as in the unperturbed case δw = 0 on the boundary, due to

19
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Figure 4.1: The systems under discussion in this thesis: a particle adsorbed on the
surface of NEMS resonator in the shape of a) a doubly clamped beam or b) a circular
membrane with a pinned boundary.

clamped resonator edges. The result is

0 =

∫
dxdt

[
δL0 − δw

[
∂

∂t
+ ẋp · ∇

](
mδ(xp − x)ẇp

)]
. (4.3)

The term resulting from the derivatives acting on the δ(xp − x) will cancel,
resulting in the equation of motion

ρẅ − σ∇2w + κ∇4w +mδ(xp − x)ẅp = 0, (4.4)

where ẅp ≡ d2

dt2
w(xp(t), t).

Varying xp instead results in

0 = δS = δ

∫
dxdt 1

2
mδ(xp − x)

[
ẋ2
p + (ẇ(xp, t) + ẋp · ∇w(xp, t))

2]
= δ

∫
dt 1

2
m
[
ẋ2
p + (ẇ(xp, t) + ẋp · ∇w(xp, t))

2]
= m

∫
dt
[
ẋp · δẋp + ẇp

(
∇ẇ · δxp + δẋp · ∇w + ẋp · δxp∇2w

)]
. (4.5)

The required partial integrations are performed, leaving the equation of motion

mẍp +mẅp∇w(xp, t) = 0. (4.6)

Equations (4.4) and (4.6) determine the dynamics of the resonator-particle
system in the absence of thermal fluctuations.
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The displacement field is now expanded as a sum of eigenmodes:

w(x, t) =
∑
k

qk(t)φk(x). (4.7)

The mode functions φk(x) are given by equation (2.17) for the beam and by
equation (2.22) for the membrane. In order to obtain an equation for the mode
amplitudes qk(t), I use that the eigenmodes are solutions of the unperturbed
equation of motion: −σ∇2φk(x) + κ∇4φk(x) = ρω2

kφk(x). The factor ẅp is
only present in perturbative terms, so it may be approximated as

ẅp =
d2

dt2
w(xp(t), t) =

d2

dt2

∑
k

qk(t)φk(xp) ≈ −
∑
k

ω2
kqk(t)φk(xp). (4.8)

Finally, the inner product of equation (4.4) with φn(x) is taken:

0 =

∫
dx φ†

n(x)
∑
k

[
ρq̈kφk(x) + ρω2

kqkφk(x)−mδ(xp − x)ω2
kqkφk(xp)

]
= Aρq̈n + Aρω2

nqn −mφ†
n(xp)

∑
k

ω2
kqkφk(xp). (4.9)

Here, A = πR2 (A = L) for the membrane (beam) resonator; Aρ = M , the
resonator mass. Equation (4.9) is divided by this M , and ϵ = m/M is defined.

After mode expansion, equation (4.6) becomes

mẍp −m
∑
k

ω2
kqkφk(xp)

∑
ℓ

qℓφ
′
ℓ(xp) = 0, (4.10)

where φ′
ℓ(xp) ≡ ∇φℓ(x)|x=xp . Equation (4.10) is now extended to include

the thermal diffusion of the particle across the resonator, by the insertion of
a stochastic force

√
2mγkBTξ(t) on the right-hand side and a friction term

mγẋp on the left-hand side. Finally, I take the overdamped limit, neglecting
the inertial term mẍp, and divide through by mγ.

The final equations of motion for the system are thus

q̈n + ω2
nqn − ϵφ†

n(xp)
∑
k

ω2
kqkφk(xp) = 0,

ẋp −
1

γ

∑
k,ℓ

ω2
kqkqℓφk(xp)φ

′
ℓ(xp) =

√
2D ξ(t),

⟨ξ(t)⟩ = 0, ⟨ξ(t)ξ(t′)⟩ = δ(t− t′). (4.11)

For the rest of this chapter, the discussion is restricted to the beam resonator
treated in Paper I [51], in which case xp becomes a scalar. The reason for this is
that results for the membrane resonator are still forthcoming, due to the lack
of existing algorithms for the numerical integration of stochastic differential
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equations that include two uncorrelated stochastic forces.

4.2 Analytical solution – one vibrational mode

The full set of equations (4.11) are nonlinear and stochastic, and thus not
possible to solve exactly. Instead, I will here study certain limiting cases.
Only the fundamental vibrational mode will be included (the accuracy of this
simplification is further discussed in section 4.3), and I separately examine the
cases of large- and small-amplitude vibration.

The single-mode equations of motion are

q̈0 + ω2
0q0
[
1− ϵφ2

0(xp)
]
= 0

ẋp =
ω2
0

2γ
∂x[φ

2
0(xp)] +

√
2D ξ(t). (4.12)

I make a change of variables into dimensionless action-angle variables E(τ), θ(τ)
by

ω0t = τ, xp/L = χ,

q0(t) = L
√
E cos(τ + θ),

q̇0(t) = −ω0L
√
E sin(τ + θ). (4.13)

Note that E ∝ q̇20/ω
2
0L

2 ≈ q20/L
2 Hence, E is proportional to the kinetic

energy contained in the fundamental mode; it is henceforth referred to as the
dimensionless mode energy. Later, in order to describe the mode energy of the
n:th mode, I will use En ≡ ω2

nq
2
n/ω

2
0L

2.
The form of q̇0 leads to the condition Ė = 2E θ̇ tan(τ+θ), by means of which

the transformed equations of motion are found to be

∂τE = −ϵφ2
0E sin 2(τ + θ),

∂τθ = −ϵφ2
0 cos

2(τ + θ),

∂τχ =
ω0

2γ
E cos2(τ + θ)∂χφ

2
0 +

√
2Dξ(τ), (4.14)

where D ≡ D/ω0L
2 is the dimensionless diffusion constant.

4.2.1 Large-amplitude vibrations

Particles adsorbed on a vibrating resonator will be driven towards and sub-
sequently trapped near an antinode of vibration [29]. The fact that thermal
fluctuations are now included in the model does not change this fact as long
as the typical energy conferred to the adsorbate by the environment (the ther-
mal energy) is much smaller than the kinetic energy of the particle due to the
fact that it is moving together with the vibrating resonator. That is, if the
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parameter
Etherm.

Evib.

=
1
2
kBT

1
2
mω2

0q
2
0

=
γD
ω0E

(4.15)

is small, fluctuations in particle position are very small, and the phase noise
can be neglected. In addition, since the particle position χ is almost constant,
the nonlinear term can be expanded:

∂χφ
2
0(χ) ≈ ∂2

χφ
2
0(χ)|χ=1/2 χ = 2φ0(

1
2
)φ′′

0(
1
2
)χ ≡ −kχ. (4.16)

I used that φ′
0(

1
2
) = 0 and dropped any constant terms. Using (4.16), the

third of equations (4.14) can now be formally solved. It is equivalent to equa-
tion (3.2), but instead of a constant γ there is now an effective damping rate

Γ =
ω0k

2γ
E(τ) cos2(τ + θ(τ)). (4.17)

The γ(t− t′) in the exponent of equation (3.3) is thus replaced by the integral
of Γ from τ ′ to τ . That is (χ(τ = 0) = 0),

χ(τ) =
√
2D
∫ τ

−∞
dτ ′ξ(τ ′)e−

ω0k
2γ

∫ τ
τ ′ dτ

′′E(τ ′′) cos2(τ ′′+θ(τ ′′)). (4.18)

To first non-vanishing order, φ2
0(χ) ≈ 1

2
kχ2 (the expansion term linear in

χ vanishes upon taking the average over the fluctuations ξ(τ)). Using this
together with equation (4.18), the first equation of (4.14) becomes

∂τE ≈ −ϵDkE(τ) sin 2(τ + θ)

∫ τ

−∞
dτ ′1dτ

′
2ξ(τ

′
1)ξ(τ

′
2) (4.19)

× exp

[
−ω0k

2γ
E(τ)

[∫ τ

τ ′1

dτ ′′ cos2(τ ′′ + θ(τ ′′)) +

∫ τ

τ ′2

dτ ′′ cos2(τ ′′ + θ(τ ′′))

]]

where E(τ) is assumed to be slowly varying compared to cos2(τ + θ(τ)). For
nanomechanical resonators this is generally the case, in particular for those
manufactured of carbon. Such NEMS are characterized [40, 52] by high Q-
factors, that measure the inverse decay of energy per period of oscillation, as
well as high resonant frequencies, so that the period is very small. Taking the
ensemble average of equation (4.19), ⟨ξ(τ ′1)ξ(τ ′2)⟩ = δ(τ ′1− τ ′2), which eliminates
the dτ ′2-integral and makes the two integrals in the exponent equal. Finally, I
average over one period in τ , causing the rapidly oscillating terms to vanish.
The result is

∂τE ≈ 2ϵDkE(τ)I
(
kγ−1ω0E(τ)

)
, (4.20)

where the integral I is

I(z) =
1

2π

∫ 2π

0

dτ sin 2τ

∫ τ

−∞
dτ ′e−z

∫ τ
τ ′ dτ

′′ cos2 τ ′′ , (4.21)
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Figure 4.2: a) The integral (4.21) together with the approximation (4.22). b) The
absolute value of the difference between the two curves in a).

z ∈ R. As shown in figure 4.2, this integral is well approximated by

I(z) ≈ −
[
4 +

√
π
(z
2
coth

z

2
− 1
)]−1

, (4.22)

and the error of this approximation decreases as z increases. Since coth z →
1 when z → ∞, for large vibrational amplitudes (corresponding to a large
vibrational energy E and consequently a large z)

I(z) ≈ −
[
4 +

√
π
(z
2
− 1
)]−1

≈ − 2√
πz

. (4.23)

Then, equation (4.21) becomes

∂τE ≈ −ϵ
4Dγ

ω0

√
π
. (4.24)

Hence, for resonator amplitudes that are large enough to inertially trap the
particle, the vibrational energy of the resonator is expected to decay linearly.

4.2.2 Small-amplitude vibrations

If the resonator amplitude is small, one must assume that the particle is not
inertially trapped but rather diffuses over the entire resonator surface. In order
to analyse the system dynamics in this limit, the equivalent Fokker-Planck
equation to the system (4.14) is found according to equation (3.7). Letting θ+
τ ≡ ν, a probability distribution p(E , ν, χ, τ) is sought. I identify x = (E , ν, χ),
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and

A =

 −ϵφ2
0E sin 2ν

1− ϵφ2
0 cos

2 ν
ω0

2γ
E cos2 ν∂χφ

2
0

 , B =

0 0 0
0 0 0

0 0
√
2D

 . (4.25)

After some simplification, the corresponding FPE becomes

(∂τ + ∂ν)p = ϵφ2
0

[
E sin 2ν∂Ep+ cos2 ν∂νp

]
− ω0

2γ
E cos2 ν∂χ(p∂χφ

2
0) +D∂2

χp.

(4.26)
As discussed in section 4.2.1, the vibrational energy E(τ) is, in the case

of nanomechanical resonators, a slowly varying function compared to the time
scale ω−1

0 . This latter time scale is also characteristic of the particle diffusion,
allowing for a separation of time scales in the FPE; the probability distribution
is approximated as p ≈ p0(E , τ)p1(E , ν, χ). Then, the particle position χ is
completely described by the equation

∂νp1 = −ω0

4γ
E(1 + cos 2ν)∂χ(p1∂χφ

2
0) +D∂2

χp1, (4.27)

which can be solved using perturbation theory. That is, since γD/ω0E ≫ 1
(see equation (4.15) and discussion thereof), E must be small and the term
proportional to it can be treated as a small correction to the one proportional
to D; the solution will be a power series p1 = p

(0)
1 + Ep(1)1 + . . .

To zeroth order in E , equation (4.27) is ∂νp
(0)
1 = D∂2

χp
(0)
1 . Since the vibra-

tional energy in this limit is much smaller than the thermal energy, the sensible
initial condition is that the particle is equally likely to be found anywhere along
the resonator while E = E0, the initial energy; p

(0)
1 (E , ν = 0, χ) = δ(E − E0).

Then, the zeroth order distribution is [46]

p
(0)
1 (E , ν, χ) =

∑
n

cosnπχe−n2π2Dν

∫ 1

0

dχ′ cosnπχ′ = 1, (4.28)

since only the n = 0-integral is nonvanishing.
To first order in E , I find

∂νp
(1)
1 −D∂2

χp
(1)
1 = −ω0

4γ
E(1 + cos 2ν)∂χ(p

(0)
1 ∂χφ

2
0)

= −ω0

4γ
E(1 + cos 2ν)∂2

χφ
2
0. (4.29)

This equation can be solved using separation of variables, where the χ-dependent
part is again a Fourier cosine series, now with the initial condition p

(1)
1 (E , ν = 0, χ)

= ω0E
2Dγ

φ2
0. That is,

p
(1)
1 =

ω0E
2γD

∑
n

fnNn(ν) cosnπχ. (4.30)
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where fn =
∫ 1

0
dχ′φ2

0(χ
′) cosnπχ′.

By substituting (4.30) in (4.29) and taking the inner product with cosmπχ,
I find that the function Nn(ν) is determined by the equation

N ′
n + λnNn = −λn(1 + cos 2ν), λn = n2π2D. (4.31)

It is straight-forward to find that

Nn(ν) = λn
λn cos 2ν + 2 sin 2ν

λ2
n + 4

− 1. (4.32)

The effect of the −1 will be to slightly change the constant value of the sta-
tionary solution p

(0)
1 : a higher-order correction that may be neglected. Then,

to first order in E ,

p1(E , ν, χ) = 1 +
ω0E
2Dγ

∑
n

λnfn
λn cos 2ν + 2 sin 2ν

λ2
n + 4

cosnπχ. (4.33)

Returning to the full FPE (4.26), substituting the separable solution p ≈
p0p1 and using that p1 solves (4.27), the equation becomes

p1∂τp0 = ϵφ2
0

[
E sin 2ν(p0∂Ep1 + p1∂Ep0) + p0 cos

2 ν∂νp1
]

= ϵφ2
0

[
p1E sin 2ν∂Ep0 +

p0
ω0E
Dγ

∑
n

fnλn cosnπχ

λ2
n + 4

[
1− 1

2
λn(1 + cos 2ν) sin 2ν

] ]
. (4.34)

Integrating over one period of the rapidly oscillating variable ν, I obtain

∂τp0 = φ2
0

ϵω0

2Dγ

∑
n

λnfn cosnπχ

λ2
n + 4

(E2∂Ep0 + 2p0E). (4.35)

Finally, the fluctuations χ are integrated out, leaving the equation

∂τp0 =
ϵω0

2Dγ

∑
n

λnf
2
n

λ2
n + 4

∂E(E2p0) (4.36)

that is solved by

p(E , τ) = 1

E2
f

(
1− αEτ

E

)
, α =

ϵω0

2Dγ

∑
n

λnf
2
n

λ2
n + 4

(4.37)

for some function f . However, the initial condition p(E , τ = 0) = δ(E − E0)
requires that f(E−1) = E2δ(E − E0), which determines the exact shape of f .
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Thus, I conclude that

p(E , τ) = 1

E2

E2

(1− αEτ)2
δ

(
E

1− αEτ
− E0

)
=

1

(1− αEτ)2
δ

(
E − E0

1 + αE0τ

)
.

(4.38)
Then, the time evolution of the average energy is

⟨E(τ)⟩ =
∫

dE ′ E ′p(E ′, τ) =

∫
dE ′ E ′

(1− αE ′τ)2
δ

(
E ′ − E0

1 + αE0τ

)
=

E0
1 + αE0τ

,

(4.39)
a decay that is characteristic of a nonlinearly damped oscillator.

The decay (4.39) tends to zero, and not to the kBT given by the equipar-
tition of energy. This error is amended by a more formal treatment that also
includes fluctuation corrections; see Appendix B of Paper I for details.

4.3 Numerical solution – N vibrational modes

The preceding analytical analysis has shown the following:

i) for resonator amplitudes that are large enough to inertially trap the ad-
sorbate, the vibrational energy is expected to decay linearly,

ii) for small resonator amplitudes, when the particle is free to diffuse across
the entire resonator, the energy is expected to decay in the manner of a
nonlinearly damped resonator.

However, the analysis of section 4.2 was done in a single mode-framework,
where the displacement field w(x, t) = q0(t)φ0(x). Clearly, then, it must be
verified to what degree these results are valid as excited vibrational modes are
included.

To study the full dynamics of the system, I numerically integrate the system
of equations (4.11) using a second order algorithm [53]. The chosen initial con-
dition is that all vibrational energy in the system is in the fundamental mode, a
condition that is easy to achieve experimentally by choosing the corresponding
actuation frequency. The particle is chosen to be initially adsorbed at the cen-
ter of the resonator – at the antinode of φ0. This is an experimentally realistic
choice as long as the initial resonator amplitude is large; simulations confirm
that the relocation of the particle from any starting position to the inertially
trapped position is very rapid. The chosen nanotube dimensions are shown in
table 4.1.

Working with the dimensionless quantities defined in section 4.2, I choose
D = 2.85 × 10−4, γ = 0.241ω0 and ϵ = 1.82 × 10−2. This ϵ corresponds to the
mass m of a mid-sized protein or a larger collection of non-interacting smaller
nanoparticles. The simulation temperature is set to 500 K and the initial vibra-
tional energy of the fundamental mode is E0(τ = 0) = 0.044 ≃ 104kBT (recall
that En(τ) = ω2

nq
2
n(τ)/ω

2
0L

2). This is simultaneously a large adsorbate mass,
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Figure 4.3: Dimensionless mode energies as function of time during ring-down of
the fundamental mode, shown in a logarithmic scale. For clarity, only the lowest
lying flexural modes are shown; higher modes behave similarily. The dashed line
indicates the thermal energy in dimensionless units.

Table 4.1: Resonator dimensions used in the simulations. The mass of the nanotube
is M = πdLρG, where ρG = 760 ag/µm2 is the graphene mass density.

Length L 1 µm
Diameter d 5 nm

Mass M 12 ag
Fundamental frequency ω0 2π × 108 MHz

high intial amplitude, high simulation temperature, and strong interaction be-
tween particle and substrate (determined by γ). These parameter values have
been chosen to be reasonably realistic, while still allowing for numerical sta-
bility and clear visualization of the found diffusion-induced effects. If nothing
else is stated, these are the values used in all subsequent calculations.

Figure 4.3 shows the vibrational energy contained in the three lowest lying
modes during a simulated ring-down experiment. The mode coupling mediated
by the adsorbed particle is clearly evident; E1(0) = E2(0) = 0, but the excited
modes seem to have thermalized almost instantly. As the simulation progresses,
the diffusing particle acts to damp out the fundamental mode and establish
equilibrium with higher-lying modes. The same data is shown in linear scale
in figure 4.4 a), together with a fit clearly showing that the fundamental mode
energy decays linearly. In figure 4.4 b) I show the evolution of the probability
distribution for the particle position. The high- and low-amplitude regimes
are clearly separated, as indicated by the dashed line; the particle is initially
trapped near the antinode (where χ = 1/2) while the vibrational amplitude is
high, and diffuses freely when the amplitude has decayed.
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Figure 4.4: Illustration of the transition between the high-amplitude regime, where
the adsorbate is inertially trapped at the vibration antinode, and the low-amplitude
regime, where the thermal fluctuations overcome the inertial trapping potential and
the particle diffuses freely. The horizontal dashed line approximately indicates the
point where the dynamics changes from one regime to the other. In a), the vibrational
energy E of the fundamental mode is shown together with a linear fit to the initial
decay. In b) is shown the evolution of the probability distribution p(χ, t), where
χ = xp/L. Early during the ringdown, there is a very high probability to find the
particle near the antinode at χ = 1/2, but as time progresses and the amplitude
decreases, p(χ, t) becomes nearly uniform.

To more closely investigate the nature of the mode coupling, I use that
En>0 ≪ E0 initially. Thus, for times τ & 0 and n > 0, the first equation
in (4.11) becomes

q̈n + ω2
nqn ≈ ϵω2

0q0φ0(xp)φn(xp). (4.40)

Making a change to action-angle variables (En(τ), θn(τ)), defined in analogy
with equation (4.13), leads to ∂τEn ∝ ϵq0 sin(ωnt+ θn). Since q0 ∝

√
E0, a first

approximation of the mode energy is

⟨En⟩ ∝ ϵ2E0(0)τ, n > 0. (4.41)

In order to test this relation, I define the thermalization time τtherm as the
time when En first exceeds kBT for some n > 0; τtherm is thus a lower bound for
the time taken for all excited modes to reach thermal equilibrium. The thermal-
ization time for a wide range of adsorbate masses and initial amplitudes were
found from integration of equation (4.11); the resulting values for τtherm are
shown in figure 4.5. The data was fitted to a model τtherm ∝ (ϵaE0(0))−b, where
the sum of squared residuals was found to be minimized by a = 1.86, b = 1.24.
This is quite reasonable agreement with the theoretical values of a = 2, b = 1
considering the roughness of the approximation (4.41) and that τtherm by con-
struction underestimates actual time required for thermalization.
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Figure 4.5: Dependence of the thermalization time on ϵ and E0(0). The black line
is a least-squares fit to the data. The numerical simulation becomes more sensitive
the more energy is put into the system, which explains the increased spread of the
data points as E0(0) increases

The mode coupling due to the particle is thus explained to a high degree
by the adsorbate simply being present, with no dependence on the fact that it
diffuses. However, that the particle changes position ensures that, eventually,
all modes do couple to each other and hence thermalize. In the calculation of
figure 4.3, χ(0) = 1/2 which means that ϕ1(χ(0)) = 0. The first excited mode
would thus have remained frozen out for the duration of the simulation, were
it not for the (initially small) fluctuations of χ around the starting position of
the particle.

In light of the discussion above, it is clear that the excited modes can
be assumed to be in thermal equilibrium on the time scale relevant for the
resonator ring-down from an initial amplitude E0(0) ≫ kBT . The collection
of excited modes then function as a background thermal bath, and the single
mode-results of section 4.2 are thus qualitatively correct. It is not surprising,
then, to realize that the mechanism behind the damping of the fundamental
mode seen in figure 4.3 is actually present already in the single mode-regime.

If χ (and hence φ2
0(χ)) does not contain a frequency component sin 2ν,

integrating the E-equation in (4.14) over rapid oscillations will lead to ∂τE = 0.
Since it is quite clear in figure 4.3 that ∂τE ̸= 0, χmust contain such a frequency
component just as E does: the two variables are correlated. In other words,
the particle motion is not independent from the resonator motion. Physically,
this correlation manifests in that the effect of the kicks from the particle on
the nanotube does not average to zero, as one might have expected given white
noise diffusion. Instead, the kicks will counter the resonator motion more often
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Figure 4.6: a) Slope of the decay of the fundamental mode during the initial, linear
regime, as a function of the number of modes N included in the simulation; circles
are data points while the dashed line is a linear fit. b) Damping parameter α, as
calculated by equation (4.37) (solid line) and by a numerical fit (dots).

than they amplify it, resulting in a net damping.
It is not only the fundamental mode that is subject to dissipation induced

by the diffusing particle; such dissipation is the reason why the higher modes
only gain energy until they thermalize around kBT . The mode coupling does
not, however, cease to act; vibrational energy is continually transferred from
the fundamental mode to the higher-lying modes, and subsequently dissipated
by the stochastic force caused by the adsorbate. Hence, once thermalized, each
excited mode acts as a new dissipation channel for the fundamental mode; a
result analogous to those of [26,27] where conservative geometric nonlinearities
were introduced in clean nanoresonators. The dependence of the decay rate on
N , the number of modes included in the simulation, is shown in figure 4.6 a).
The decay rate of E0 is expressed in units of −4ϵDγ/ω0

√
π in order to facilitate

comparision with the analytical result (4.24).
In principle, N → ∞, so there must be some cutoff at which including

more excited modes does not translate into a higher decay rate. I have not
determined this cut-off numerically, since the fact that the mode frequencies
increase quadratically with n (see table 2.1) means that the time step used in
the integration quickly becomes unmanageably small when N increases. In-
stead, the cut-off is analytically estimated by noting that the typical distance
covered by the diffusing particle during one period of the fundamental mode is√
4πD/ω0. If this distance is larger than half the wave length λn, the coupling

between the n:th mode and the fundamental mode will average to zero. Since
λn = 2L/(n+ 1), the cutoff condition is given by

2L

n+ 1
=

√
4πD

ω0

= 2L
√
πD, (4.42)
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so only modes with n . nmax ≈ (πD)−1/2 will contribute as extra dissipation
channels. For the value of D used in figure 4.6 a), nmax ≃ 20.

Finally, in order to test the validity of the perturbative calculation in
section 4.2.2, the computed energy evolution was fitted to a curve of the
shape (4.39), and the parameter α was extracted. The initial energy was set
to E0(0) = 10−4, and the ratio ω0E0/γD (the inverse of equation (4.15)) was
varied by changing the simulation temperature. All other simulation param-
eters were the same as those used in figure 4.3. This numerically determined
α is shown together with the analytical curve (4.37) in figure 4.6 b). It is
evident that the perturbative approach is indeed valid for ω0E0/γD ≪ 1, and
while (4.37) overestimates the magnitude of the damping in the intermediate
region ω0E0/γD . 1, the qualitative behaviour of α is captured.



5 Summary and outlook

I have studied the interaction of a linear mechanical resonator and a particle
adsorbed on and allowed to diffuse over its surface. In the nonlinear coupling
of two of the paradigm systems of physics – an harmonic oscillator in the shape
of a resonator vibrational mode, and a random walker – surprisingly complex
dynamics arise. The main result of this thesis is the investigation of two new
mechanisms of dissipation in a carbon nanotube nanomechanical resonator,
mechanisms induced by the diffusing particle.

First, the adsorbed particle mediates a mode coupling between the vibra-
tional modes of the resonator. By means of this coupling, vibrational energy
is transferred from the initially excited fundamental mode to intially frozen
excited modes, causing the latter to rapidly reach thermal equilibrium. Once
equilibrized, each excited mode functions as a dissipation channel, that siphons
energy from the fundamental mode and dissipates it to the environment, via
the friction between the resonator and the adsorbate.

Second, the motion of the resonator and the adsorbate, respectively, are
not independent processes. The existence of correlations between the oscil-
lation and the diffusion means that the effect of the stochastic force on the
resonator does not average to zero, as one might expect from a white noise
process. Instead the force creates a net nonexponential damping. Two regimes
are identified; when the vibration amplitude of the resonator is large, the ad-
sorbate is inertially trapped at an antinode of the vibration, and the mode
energy decays linearly. When the vibration amplitude is small, on the other
hand, the thermal fluctuations overcome the inertial trapping, and the particle
diffuses over the entire resonator; the fundamental mode energy then decays in
a manner characteristic of a nonlinearly damped resonator.

In the future, I aim to finish my work on diffusing a adsorbates on graphene
resonator, partially discussed in this thesis. Since the systems are quite simi-
lar, the two novel dissipation mechanisms found in the case of carbon nanotube
resonators are expected to be present in graphene resonators as well; a predic-
tion that seems to be confirmed by preliminary simulations. There is, however,
one qualitative difference between the systems; a two-dimensional graphene
resonator will have a large number of degenerate eigenmodes. The adsorba-
tion of a stationary particle breaks this degeneracy, but what will happen if
the particle is allowed to diffuse? I look forward to investigating this problem
further.

33
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In general, the results of this thesis need experimental verification. While,
for example, the thermalization rate depend only on adsorbate mass, device
geometry, and initial amplitude – parameters that are easily accessible in ex-
periments – it is not clear in what manner the found dissipation mechanisms
interact with other mechanisms, or if the found dissipation rates will be possible
to isolate and measure.

The applicability of the results presented in this thesis is not limited only
to mass sensing measurements, where particles are intentionally deposited on a
resonator. In any kind of experiment that takes place outside of vaccum, there
is a chance that air molecules or heavier particles, for example pollen grains,
will attach to a resonator, and confound the results. To better reflect such a
situation, my model can be extended to include several diffusing particles, as
well as to allow for adsorbtion- and desorbtion-events.

Finally, one complication that I have here ignored is the nonlinear nature
of carbon nanoresonators. The inclusion of, say, a Duffing nonlinearity in the
equations of motion would be an interesting extension of the present model.
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